Merge branch 'imx-for-2.6.36' of git://git.pengutronix.de/git/imx/linux-2.6
[deliverable/linux.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
29 #define CLONE_NEWNET 0x40000000 /* New network namespace */
30 #define CLONE_IO 0x80000000 /* Clone io context */
31
32 /*
33 * Scheduling policies
34 */
35 #define SCHED_NORMAL 0
36 #define SCHED_FIFO 1
37 #define SCHED_RR 2
38 #define SCHED_BATCH 3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE 5
41 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
42 #define SCHED_RESET_ON_FORK 0x40000000
43
44 #ifdef __KERNEL__
45
46 struct sched_param {
47 int sched_priority;
48 };
49
50 #include <asm/param.h> /* for HZ */
51
52 #include <linux/capability.h>
53 #include <linux/threads.h>
54 #include <linux/kernel.h>
55 #include <linux/types.h>
56 #include <linux/timex.h>
57 #include <linux/jiffies.h>
58 #include <linux/rbtree.h>
59 #include <linux/thread_info.h>
60 #include <linux/cpumask.h>
61 #include <linux/errno.h>
62 #include <linux/nodemask.h>
63 #include <linux/mm_types.h>
64
65 #include <asm/system.h>
66 #include <asm/page.h>
67 #include <asm/ptrace.h>
68 #include <asm/cputime.h>
69
70 #include <linux/smp.h>
71 #include <linux/sem.h>
72 #include <linux/signal.h>
73 #include <linux/path.h>
74 #include <linux/compiler.h>
75 #include <linux/completion.h>
76 #include <linux/pid.h>
77 #include <linux/percpu.h>
78 #include <linux/topology.h>
79 #include <linux/proportions.h>
80 #include <linux/seccomp.h>
81 #include <linux/rcupdate.h>
82 #include <linux/rculist.h>
83 #include <linux/rtmutex.h>
84
85 #include <linux/time.h>
86 #include <linux/param.h>
87 #include <linux/resource.h>
88 #include <linux/timer.h>
89 #include <linux/hrtimer.h>
90 #include <linux/task_io_accounting.h>
91 #include <linux/kobject.h>
92 #include <linux/latencytop.h>
93 #include <linux/cred.h>
94
95 #include <asm/processor.h>
96
97 struct exec_domain;
98 struct futex_pi_state;
99 struct robust_list_head;
100 struct bio_list;
101 struct fs_struct;
102 struct perf_event_context;
103
104 /*
105 * List of flags we want to share for kernel threads,
106 * if only because they are not used by them anyway.
107 */
108 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
109
110 /*
111 * These are the constant used to fake the fixed-point load-average
112 * counting. Some notes:
113 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
114 * a load-average precision of 10 bits integer + 11 bits fractional
115 * - if you want to count load-averages more often, you need more
116 * precision, or rounding will get you. With 2-second counting freq,
117 * the EXP_n values would be 1981, 2034 and 2043 if still using only
118 * 11 bit fractions.
119 */
120 extern unsigned long avenrun[]; /* Load averages */
121 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
122
123 #define FSHIFT 11 /* nr of bits of precision */
124 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
125 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
126 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
127 #define EXP_5 2014 /* 1/exp(5sec/5min) */
128 #define EXP_15 2037 /* 1/exp(5sec/15min) */
129
130 #define CALC_LOAD(load,exp,n) \
131 load *= exp; \
132 load += n*(FIXED_1-exp); \
133 load >>= FSHIFT;
134
135 extern unsigned long total_forks;
136 extern int nr_threads;
137 DECLARE_PER_CPU(unsigned long, process_counts);
138 extern int nr_processes(void);
139 extern unsigned long nr_running(void);
140 extern unsigned long nr_uninterruptible(void);
141 extern unsigned long nr_iowait(void);
142 extern unsigned long nr_iowait_cpu(int cpu);
143 extern unsigned long this_cpu_load(void);
144
145
146 extern void calc_global_load(void);
147
148 extern unsigned long get_parent_ip(unsigned long addr);
149
150 struct seq_file;
151 struct cfs_rq;
152 struct task_group;
153 #ifdef CONFIG_SCHED_DEBUG
154 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
155 extern void proc_sched_set_task(struct task_struct *p);
156 extern void
157 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
158 #else
159 static inline void
160 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
161 {
162 }
163 static inline void proc_sched_set_task(struct task_struct *p)
164 {
165 }
166 static inline void
167 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
168 {
169 }
170 #endif
171
172 /*
173 * Task state bitmask. NOTE! These bits are also
174 * encoded in fs/proc/array.c: get_task_state().
175 *
176 * We have two separate sets of flags: task->state
177 * is about runnability, while task->exit_state are
178 * about the task exiting. Confusing, but this way
179 * modifying one set can't modify the other one by
180 * mistake.
181 */
182 #define TASK_RUNNING 0
183 #define TASK_INTERRUPTIBLE 1
184 #define TASK_UNINTERRUPTIBLE 2
185 #define __TASK_STOPPED 4
186 #define __TASK_TRACED 8
187 /* in tsk->exit_state */
188 #define EXIT_ZOMBIE 16
189 #define EXIT_DEAD 32
190 /* in tsk->state again */
191 #define TASK_DEAD 64
192 #define TASK_WAKEKILL 128
193 #define TASK_WAKING 256
194 #define TASK_STATE_MAX 512
195
196 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW"
197
198 extern char ___assert_task_state[1 - 2*!!(
199 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
200
201 /* Convenience macros for the sake of set_task_state */
202 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
203 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
204 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
205
206 /* Convenience macros for the sake of wake_up */
207 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
208 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
209
210 /* get_task_state() */
211 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
212 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
213 __TASK_TRACED)
214
215 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
216 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
217 #define task_is_dead(task) ((task)->exit_state != 0)
218 #define task_is_stopped_or_traced(task) \
219 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
220 #define task_contributes_to_load(task) \
221 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
222 (task->flags & PF_FREEZING) == 0)
223
224 #define __set_task_state(tsk, state_value) \
225 do { (tsk)->state = (state_value); } while (0)
226 #define set_task_state(tsk, state_value) \
227 set_mb((tsk)->state, (state_value))
228
229 /*
230 * set_current_state() includes a barrier so that the write of current->state
231 * is correctly serialised wrt the caller's subsequent test of whether to
232 * actually sleep:
233 *
234 * set_current_state(TASK_UNINTERRUPTIBLE);
235 * if (do_i_need_to_sleep())
236 * schedule();
237 *
238 * If the caller does not need such serialisation then use __set_current_state()
239 */
240 #define __set_current_state(state_value) \
241 do { current->state = (state_value); } while (0)
242 #define set_current_state(state_value) \
243 set_mb(current->state, (state_value))
244
245 /* Task command name length */
246 #define TASK_COMM_LEN 16
247
248 #include <linux/spinlock.h>
249
250 /*
251 * This serializes "schedule()" and also protects
252 * the run-queue from deletions/modifications (but
253 * _adding_ to the beginning of the run-queue has
254 * a separate lock).
255 */
256 extern rwlock_t tasklist_lock;
257 extern spinlock_t mmlist_lock;
258
259 struct task_struct;
260
261 #ifdef CONFIG_PROVE_RCU
262 extern int lockdep_tasklist_lock_is_held(void);
263 #endif /* #ifdef CONFIG_PROVE_RCU */
264
265 extern void sched_init(void);
266 extern void sched_init_smp(void);
267 extern asmlinkage void schedule_tail(struct task_struct *prev);
268 extern void init_idle(struct task_struct *idle, int cpu);
269 extern void init_idle_bootup_task(struct task_struct *idle);
270
271 extern int runqueue_is_locked(int cpu);
272
273 extern cpumask_var_t nohz_cpu_mask;
274 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
275 extern void select_nohz_load_balancer(int stop_tick);
276 extern int get_nohz_timer_target(void);
277 #else
278 static inline void select_nohz_load_balancer(int stop_tick) { }
279 #endif
280
281 /*
282 * Only dump TASK_* tasks. (0 for all tasks)
283 */
284 extern void show_state_filter(unsigned long state_filter);
285
286 static inline void show_state(void)
287 {
288 show_state_filter(0);
289 }
290
291 extern void show_regs(struct pt_regs *);
292
293 /*
294 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
295 * task), SP is the stack pointer of the first frame that should be shown in the back
296 * trace (or NULL if the entire call-chain of the task should be shown).
297 */
298 extern void show_stack(struct task_struct *task, unsigned long *sp);
299
300 void io_schedule(void);
301 long io_schedule_timeout(long timeout);
302
303 extern void cpu_init (void);
304 extern void trap_init(void);
305 extern void update_process_times(int user);
306 extern void scheduler_tick(void);
307
308 extern void sched_show_task(struct task_struct *p);
309
310 #ifdef CONFIG_LOCKUP_DETECTOR
311 extern void touch_softlockup_watchdog(void);
312 extern void touch_softlockup_watchdog_sync(void);
313 extern void touch_all_softlockup_watchdogs(void);
314 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
315 void __user *buffer,
316 size_t *lenp, loff_t *ppos);
317 extern unsigned int softlockup_panic;
318 extern int softlockup_thresh;
319 #else
320 static inline void touch_softlockup_watchdog(void)
321 {
322 }
323 static inline void touch_softlockup_watchdog_sync(void)
324 {
325 }
326 static inline void touch_all_softlockup_watchdogs(void)
327 {
328 }
329 #endif
330
331 #ifdef CONFIG_DETECT_HUNG_TASK
332 extern unsigned int sysctl_hung_task_panic;
333 extern unsigned long sysctl_hung_task_check_count;
334 extern unsigned long sysctl_hung_task_timeout_secs;
335 extern unsigned long sysctl_hung_task_warnings;
336 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
337 void __user *buffer,
338 size_t *lenp, loff_t *ppos);
339 #endif
340
341 /* Attach to any functions which should be ignored in wchan output. */
342 #define __sched __attribute__((__section__(".sched.text")))
343
344 /* Linker adds these: start and end of __sched functions */
345 extern char __sched_text_start[], __sched_text_end[];
346
347 /* Is this address in the __sched functions? */
348 extern int in_sched_functions(unsigned long addr);
349
350 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
351 extern signed long schedule_timeout(signed long timeout);
352 extern signed long schedule_timeout_interruptible(signed long timeout);
353 extern signed long schedule_timeout_killable(signed long timeout);
354 extern signed long schedule_timeout_uninterruptible(signed long timeout);
355 asmlinkage void schedule(void);
356 extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner);
357
358 struct nsproxy;
359 struct user_namespace;
360
361 /*
362 * Default maximum number of active map areas, this limits the number of vmas
363 * per mm struct. Users can overwrite this number by sysctl but there is a
364 * problem.
365 *
366 * When a program's coredump is generated as ELF format, a section is created
367 * per a vma. In ELF, the number of sections is represented in unsigned short.
368 * This means the number of sections should be smaller than 65535 at coredump.
369 * Because the kernel adds some informative sections to a image of program at
370 * generating coredump, we need some margin. The number of extra sections is
371 * 1-3 now and depends on arch. We use "5" as safe margin, here.
372 */
373 #define MAPCOUNT_ELF_CORE_MARGIN (5)
374 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
375
376 extern int sysctl_max_map_count;
377
378 #include <linux/aio.h>
379
380 #ifdef CONFIG_MMU
381 extern void arch_pick_mmap_layout(struct mm_struct *mm);
382 extern unsigned long
383 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
384 unsigned long, unsigned long);
385 extern unsigned long
386 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
387 unsigned long len, unsigned long pgoff,
388 unsigned long flags);
389 extern void arch_unmap_area(struct mm_struct *, unsigned long);
390 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
391 #else
392 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
393 #endif
394
395
396 extern void set_dumpable(struct mm_struct *mm, int value);
397 extern int get_dumpable(struct mm_struct *mm);
398
399 /* mm flags */
400 /* dumpable bits */
401 #define MMF_DUMPABLE 0 /* core dump is permitted */
402 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
403
404 #define MMF_DUMPABLE_BITS 2
405 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
406
407 /* coredump filter bits */
408 #define MMF_DUMP_ANON_PRIVATE 2
409 #define MMF_DUMP_ANON_SHARED 3
410 #define MMF_DUMP_MAPPED_PRIVATE 4
411 #define MMF_DUMP_MAPPED_SHARED 5
412 #define MMF_DUMP_ELF_HEADERS 6
413 #define MMF_DUMP_HUGETLB_PRIVATE 7
414 #define MMF_DUMP_HUGETLB_SHARED 8
415
416 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
417 #define MMF_DUMP_FILTER_BITS 7
418 #define MMF_DUMP_FILTER_MASK \
419 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
420 #define MMF_DUMP_FILTER_DEFAULT \
421 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
422 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
423
424 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
425 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
426 #else
427 # define MMF_DUMP_MASK_DEFAULT_ELF 0
428 #endif
429 /* leave room for more dump flags */
430 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
431
432 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
433
434 struct sighand_struct {
435 atomic_t count;
436 struct k_sigaction action[_NSIG];
437 spinlock_t siglock;
438 wait_queue_head_t signalfd_wqh;
439 };
440
441 struct pacct_struct {
442 int ac_flag;
443 long ac_exitcode;
444 unsigned long ac_mem;
445 cputime_t ac_utime, ac_stime;
446 unsigned long ac_minflt, ac_majflt;
447 };
448
449 struct cpu_itimer {
450 cputime_t expires;
451 cputime_t incr;
452 u32 error;
453 u32 incr_error;
454 };
455
456 /**
457 * struct task_cputime - collected CPU time counts
458 * @utime: time spent in user mode, in &cputime_t units
459 * @stime: time spent in kernel mode, in &cputime_t units
460 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
461 *
462 * This structure groups together three kinds of CPU time that are
463 * tracked for threads and thread groups. Most things considering
464 * CPU time want to group these counts together and treat all three
465 * of them in parallel.
466 */
467 struct task_cputime {
468 cputime_t utime;
469 cputime_t stime;
470 unsigned long long sum_exec_runtime;
471 };
472 /* Alternate field names when used to cache expirations. */
473 #define prof_exp stime
474 #define virt_exp utime
475 #define sched_exp sum_exec_runtime
476
477 #define INIT_CPUTIME \
478 (struct task_cputime) { \
479 .utime = cputime_zero, \
480 .stime = cputime_zero, \
481 .sum_exec_runtime = 0, \
482 }
483
484 /*
485 * Disable preemption until the scheduler is running.
486 * Reset by start_kernel()->sched_init()->init_idle().
487 *
488 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
489 * before the scheduler is active -- see should_resched().
490 */
491 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
492
493 /**
494 * struct thread_group_cputimer - thread group interval timer counts
495 * @cputime: thread group interval timers.
496 * @running: non-zero when there are timers running and
497 * @cputime receives updates.
498 * @lock: lock for fields in this struct.
499 *
500 * This structure contains the version of task_cputime, above, that is
501 * used for thread group CPU timer calculations.
502 */
503 struct thread_group_cputimer {
504 struct task_cputime cputime;
505 int running;
506 spinlock_t lock;
507 };
508
509 /*
510 * NOTE! "signal_struct" does not have it's own
511 * locking, because a shared signal_struct always
512 * implies a shared sighand_struct, so locking
513 * sighand_struct is always a proper superset of
514 * the locking of signal_struct.
515 */
516 struct signal_struct {
517 atomic_t sigcnt;
518 atomic_t live;
519 int nr_threads;
520
521 wait_queue_head_t wait_chldexit; /* for wait4() */
522
523 /* current thread group signal load-balancing target: */
524 struct task_struct *curr_target;
525
526 /* shared signal handling: */
527 struct sigpending shared_pending;
528
529 /* thread group exit support */
530 int group_exit_code;
531 /* overloaded:
532 * - notify group_exit_task when ->count is equal to notify_count
533 * - everyone except group_exit_task is stopped during signal delivery
534 * of fatal signals, group_exit_task processes the signal.
535 */
536 int notify_count;
537 struct task_struct *group_exit_task;
538
539 /* thread group stop support, overloads group_exit_code too */
540 int group_stop_count;
541 unsigned int flags; /* see SIGNAL_* flags below */
542
543 /* POSIX.1b Interval Timers */
544 struct list_head posix_timers;
545
546 /* ITIMER_REAL timer for the process */
547 struct hrtimer real_timer;
548 struct pid *leader_pid;
549 ktime_t it_real_incr;
550
551 /*
552 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
553 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
554 * values are defined to 0 and 1 respectively
555 */
556 struct cpu_itimer it[2];
557
558 /*
559 * Thread group totals for process CPU timers.
560 * See thread_group_cputimer(), et al, for details.
561 */
562 struct thread_group_cputimer cputimer;
563
564 /* Earliest-expiration cache. */
565 struct task_cputime cputime_expires;
566
567 struct list_head cpu_timers[3];
568
569 struct pid *tty_old_pgrp;
570
571 /* boolean value for session group leader */
572 int leader;
573
574 struct tty_struct *tty; /* NULL if no tty */
575
576 /*
577 * Cumulative resource counters for dead threads in the group,
578 * and for reaped dead child processes forked by this group.
579 * Live threads maintain their own counters and add to these
580 * in __exit_signal, except for the group leader.
581 */
582 cputime_t utime, stime, cutime, cstime;
583 cputime_t gtime;
584 cputime_t cgtime;
585 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
586 cputime_t prev_utime, prev_stime;
587 #endif
588 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
589 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
590 unsigned long inblock, oublock, cinblock, coublock;
591 unsigned long maxrss, cmaxrss;
592 struct task_io_accounting ioac;
593
594 /*
595 * Cumulative ns of schedule CPU time fo dead threads in the
596 * group, not including a zombie group leader, (This only differs
597 * from jiffies_to_ns(utime + stime) if sched_clock uses something
598 * other than jiffies.)
599 */
600 unsigned long long sum_sched_runtime;
601
602 /*
603 * We don't bother to synchronize most readers of this at all,
604 * because there is no reader checking a limit that actually needs
605 * to get both rlim_cur and rlim_max atomically, and either one
606 * alone is a single word that can safely be read normally.
607 * getrlimit/setrlimit use task_lock(current->group_leader) to
608 * protect this instead of the siglock, because they really
609 * have no need to disable irqs.
610 */
611 struct rlimit rlim[RLIM_NLIMITS];
612
613 #ifdef CONFIG_BSD_PROCESS_ACCT
614 struct pacct_struct pacct; /* per-process accounting information */
615 #endif
616 #ifdef CONFIG_TASKSTATS
617 struct taskstats *stats;
618 #endif
619 #ifdef CONFIG_AUDIT
620 unsigned audit_tty;
621 struct tty_audit_buf *tty_audit_buf;
622 #endif
623
624 int oom_adj; /* OOM kill score adjustment (bit shift) */
625 int oom_score_adj; /* OOM kill score adjustment */
626 };
627
628 /* Context switch must be unlocked if interrupts are to be enabled */
629 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
630 # define __ARCH_WANT_UNLOCKED_CTXSW
631 #endif
632
633 /*
634 * Bits in flags field of signal_struct.
635 */
636 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
637 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
638 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
639 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
640 /*
641 * Pending notifications to parent.
642 */
643 #define SIGNAL_CLD_STOPPED 0x00000010
644 #define SIGNAL_CLD_CONTINUED 0x00000020
645 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
646
647 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
648
649 /* If true, all threads except ->group_exit_task have pending SIGKILL */
650 static inline int signal_group_exit(const struct signal_struct *sig)
651 {
652 return (sig->flags & SIGNAL_GROUP_EXIT) ||
653 (sig->group_exit_task != NULL);
654 }
655
656 /*
657 * Some day this will be a full-fledged user tracking system..
658 */
659 struct user_struct {
660 atomic_t __count; /* reference count */
661 atomic_t processes; /* How many processes does this user have? */
662 atomic_t files; /* How many open files does this user have? */
663 atomic_t sigpending; /* How many pending signals does this user have? */
664 #ifdef CONFIG_INOTIFY_USER
665 atomic_t inotify_watches; /* How many inotify watches does this user have? */
666 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
667 #endif
668 #ifdef CONFIG_EPOLL
669 atomic_t epoll_watches; /* The number of file descriptors currently watched */
670 #endif
671 #ifdef CONFIG_POSIX_MQUEUE
672 /* protected by mq_lock */
673 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
674 #endif
675 unsigned long locked_shm; /* How many pages of mlocked shm ? */
676
677 #ifdef CONFIG_KEYS
678 struct key *uid_keyring; /* UID specific keyring */
679 struct key *session_keyring; /* UID's default session keyring */
680 #endif
681
682 /* Hash table maintenance information */
683 struct hlist_node uidhash_node;
684 uid_t uid;
685 struct user_namespace *user_ns;
686
687 #ifdef CONFIG_PERF_EVENTS
688 atomic_long_t locked_vm;
689 #endif
690 };
691
692 extern int uids_sysfs_init(void);
693
694 extern struct user_struct *find_user(uid_t);
695
696 extern struct user_struct root_user;
697 #define INIT_USER (&root_user)
698
699
700 struct backing_dev_info;
701 struct reclaim_state;
702
703 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
704 struct sched_info {
705 /* cumulative counters */
706 unsigned long pcount; /* # of times run on this cpu */
707 unsigned long long run_delay; /* time spent waiting on a runqueue */
708
709 /* timestamps */
710 unsigned long long last_arrival,/* when we last ran on a cpu */
711 last_queued; /* when we were last queued to run */
712 #ifdef CONFIG_SCHEDSTATS
713 /* BKL stats */
714 unsigned int bkl_count;
715 #endif
716 };
717 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
718
719 #ifdef CONFIG_TASK_DELAY_ACCT
720 struct task_delay_info {
721 spinlock_t lock;
722 unsigned int flags; /* Private per-task flags */
723
724 /* For each stat XXX, add following, aligned appropriately
725 *
726 * struct timespec XXX_start, XXX_end;
727 * u64 XXX_delay;
728 * u32 XXX_count;
729 *
730 * Atomicity of updates to XXX_delay, XXX_count protected by
731 * single lock above (split into XXX_lock if contention is an issue).
732 */
733
734 /*
735 * XXX_count is incremented on every XXX operation, the delay
736 * associated with the operation is added to XXX_delay.
737 * XXX_delay contains the accumulated delay time in nanoseconds.
738 */
739 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
740 u64 blkio_delay; /* wait for sync block io completion */
741 u64 swapin_delay; /* wait for swapin block io completion */
742 u32 blkio_count; /* total count of the number of sync block */
743 /* io operations performed */
744 u32 swapin_count; /* total count of the number of swapin block */
745 /* io operations performed */
746
747 struct timespec freepages_start, freepages_end;
748 u64 freepages_delay; /* wait for memory reclaim */
749 u32 freepages_count; /* total count of memory reclaim */
750 };
751 #endif /* CONFIG_TASK_DELAY_ACCT */
752
753 static inline int sched_info_on(void)
754 {
755 #ifdef CONFIG_SCHEDSTATS
756 return 1;
757 #elif defined(CONFIG_TASK_DELAY_ACCT)
758 extern int delayacct_on;
759 return delayacct_on;
760 #else
761 return 0;
762 #endif
763 }
764
765 enum cpu_idle_type {
766 CPU_IDLE,
767 CPU_NOT_IDLE,
768 CPU_NEWLY_IDLE,
769 CPU_MAX_IDLE_TYPES
770 };
771
772 /*
773 * sched-domains (multiprocessor balancing) declarations:
774 */
775
776 /*
777 * Increase resolution of nice-level calculations:
778 */
779 #define SCHED_LOAD_SHIFT 10
780 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
781
782 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
783
784 #ifdef CONFIG_SMP
785 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
786 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
787 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
788 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
789 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
790 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
791 #define SD_PREFER_LOCAL 0x0040 /* Prefer to keep tasks local to this domain */
792 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
793 #define SD_POWERSAVINGS_BALANCE 0x0100 /* Balance for power savings */
794 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
795 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
796 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
797 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
798
799 enum powersavings_balance_level {
800 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */
801 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package
802 * first for long running threads
803 */
804 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle
805 * cpu package for power savings
806 */
807 MAX_POWERSAVINGS_BALANCE_LEVELS
808 };
809
810 extern int sched_mc_power_savings, sched_smt_power_savings;
811
812 static inline int sd_balance_for_mc_power(void)
813 {
814 if (sched_smt_power_savings)
815 return SD_POWERSAVINGS_BALANCE;
816
817 if (!sched_mc_power_savings)
818 return SD_PREFER_SIBLING;
819
820 return 0;
821 }
822
823 static inline int sd_balance_for_package_power(void)
824 {
825 if (sched_mc_power_savings | sched_smt_power_savings)
826 return SD_POWERSAVINGS_BALANCE;
827
828 return SD_PREFER_SIBLING;
829 }
830
831 extern int __weak arch_sd_sibiling_asym_packing(void);
832
833 /*
834 * Optimise SD flags for power savings:
835 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings.
836 * Keep default SD flags if sched_{smt,mc}_power_saving=0
837 */
838
839 static inline int sd_power_saving_flags(void)
840 {
841 if (sched_mc_power_savings | sched_smt_power_savings)
842 return SD_BALANCE_NEWIDLE;
843
844 return 0;
845 }
846
847 struct sched_group {
848 struct sched_group *next; /* Must be a circular list */
849
850 /*
851 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
852 * single CPU.
853 */
854 unsigned int cpu_power, cpu_power_orig;
855
856 /*
857 * The CPUs this group covers.
858 *
859 * NOTE: this field is variable length. (Allocated dynamically
860 * by attaching extra space to the end of the structure,
861 * depending on how many CPUs the kernel has booted up with)
862 *
863 * It is also be embedded into static data structures at build
864 * time. (See 'struct static_sched_group' in kernel/sched.c)
865 */
866 unsigned long cpumask[0];
867 };
868
869 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
870 {
871 return to_cpumask(sg->cpumask);
872 }
873
874 enum sched_domain_level {
875 SD_LV_NONE = 0,
876 SD_LV_SIBLING,
877 SD_LV_MC,
878 SD_LV_CPU,
879 SD_LV_NODE,
880 SD_LV_ALLNODES,
881 SD_LV_MAX
882 };
883
884 struct sched_domain_attr {
885 int relax_domain_level;
886 };
887
888 #define SD_ATTR_INIT (struct sched_domain_attr) { \
889 .relax_domain_level = -1, \
890 }
891
892 struct sched_domain {
893 /* These fields must be setup */
894 struct sched_domain *parent; /* top domain must be null terminated */
895 struct sched_domain *child; /* bottom domain must be null terminated */
896 struct sched_group *groups; /* the balancing groups of the domain */
897 unsigned long min_interval; /* Minimum balance interval ms */
898 unsigned long max_interval; /* Maximum balance interval ms */
899 unsigned int busy_factor; /* less balancing by factor if busy */
900 unsigned int imbalance_pct; /* No balance until over watermark */
901 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
902 unsigned int busy_idx;
903 unsigned int idle_idx;
904 unsigned int newidle_idx;
905 unsigned int wake_idx;
906 unsigned int forkexec_idx;
907 unsigned int smt_gain;
908 int flags; /* See SD_* */
909 enum sched_domain_level level;
910
911 /* Runtime fields. */
912 unsigned long last_balance; /* init to jiffies. units in jiffies */
913 unsigned int balance_interval; /* initialise to 1. units in ms. */
914 unsigned int nr_balance_failed; /* initialise to 0 */
915
916 u64 last_update;
917
918 #ifdef CONFIG_SCHEDSTATS
919 /* load_balance() stats */
920 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
921 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
922 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
923 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
924 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
925 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
926 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
927 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
928
929 /* Active load balancing */
930 unsigned int alb_count;
931 unsigned int alb_failed;
932 unsigned int alb_pushed;
933
934 /* SD_BALANCE_EXEC stats */
935 unsigned int sbe_count;
936 unsigned int sbe_balanced;
937 unsigned int sbe_pushed;
938
939 /* SD_BALANCE_FORK stats */
940 unsigned int sbf_count;
941 unsigned int sbf_balanced;
942 unsigned int sbf_pushed;
943
944 /* try_to_wake_up() stats */
945 unsigned int ttwu_wake_remote;
946 unsigned int ttwu_move_affine;
947 unsigned int ttwu_move_balance;
948 #endif
949 #ifdef CONFIG_SCHED_DEBUG
950 char *name;
951 #endif
952
953 unsigned int span_weight;
954 /*
955 * Span of all CPUs in this domain.
956 *
957 * NOTE: this field is variable length. (Allocated dynamically
958 * by attaching extra space to the end of the structure,
959 * depending on how many CPUs the kernel has booted up with)
960 *
961 * It is also be embedded into static data structures at build
962 * time. (See 'struct static_sched_domain' in kernel/sched.c)
963 */
964 unsigned long span[0];
965 };
966
967 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
968 {
969 return to_cpumask(sd->span);
970 }
971
972 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
973 struct sched_domain_attr *dattr_new);
974
975 /* Allocate an array of sched domains, for partition_sched_domains(). */
976 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
977 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
978
979 /* Test a flag in parent sched domain */
980 static inline int test_sd_parent(struct sched_domain *sd, int flag)
981 {
982 if (sd->parent && (sd->parent->flags & flag))
983 return 1;
984
985 return 0;
986 }
987
988 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
989 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
990
991 #else /* CONFIG_SMP */
992
993 struct sched_domain_attr;
994
995 static inline void
996 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
997 struct sched_domain_attr *dattr_new)
998 {
999 }
1000 #endif /* !CONFIG_SMP */
1001
1002
1003 struct io_context; /* See blkdev.h */
1004
1005
1006 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1007 extern void prefetch_stack(struct task_struct *t);
1008 #else
1009 static inline void prefetch_stack(struct task_struct *t) { }
1010 #endif
1011
1012 struct audit_context; /* See audit.c */
1013 struct mempolicy;
1014 struct pipe_inode_info;
1015 struct uts_namespace;
1016
1017 struct rq;
1018 struct sched_domain;
1019
1020 /*
1021 * wake flags
1022 */
1023 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */
1024 #define WF_FORK 0x02 /* child wakeup after fork */
1025
1026 #define ENQUEUE_WAKEUP 1
1027 #define ENQUEUE_WAKING 2
1028 #define ENQUEUE_HEAD 4
1029
1030 #define DEQUEUE_SLEEP 1
1031
1032 struct sched_class {
1033 const struct sched_class *next;
1034
1035 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1036 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1037 void (*yield_task) (struct rq *rq);
1038
1039 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1040
1041 struct task_struct * (*pick_next_task) (struct rq *rq);
1042 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1043
1044 #ifdef CONFIG_SMP
1045 int (*select_task_rq)(struct rq *rq, struct task_struct *p,
1046 int sd_flag, int flags);
1047
1048 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1049 void (*post_schedule) (struct rq *this_rq);
1050 void (*task_waking) (struct rq *this_rq, struct task_struct *task);
1051 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1052
1053 void (*set_cpus_allowed)(struct task_struct *p,
1054 const struct cpumask *newmask);
1055
1056 void (*rq_online)(struct rq *rq);
1057 void (*rq_offline)(struct rq *rq);
1058 #endif
1059
1060 void (*set_curr_task) (struct rq *rq);
1061 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1062 void (*task_fork) (struct task_struct *p);
1063
1064 void (*switched_from) (struct rq *this_rq, struct task_struct *task,
1065 int running);
1066 void (*switched_to) (struct rq *this_rq, struct task_struct *task,
1067 int running);
1068 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1069 int oldprio, int running);
1070
1071 unsigned int (*get_rr_interval) (struct rq *rq,
1072 struct task_struct *task);
1073
1074 #ifdef CONFIG_FAIR_GROUP_SCHED
1075 void (*moved_group) (struct task_struct *p, int on_rq);
1076 #endif
1077 };
1078
1079 struct load_weight {
1080 unsigned long weight, inv_weight;
1081 };
1082
1083 #ifdef CONFIG_SCHEDSTATS
1084 struct sched_statistics {
1085 u64 wait_start;
1086 u64 wait_max;
1087 u64 wait_count;
1088 u64 wait_sum;
1089 u64 iowait_count;
1090 u64 iowait_sum;
1091
1092 u64 sleep_start;
1093 u64 sleep_max;
1094 s64 sum_sleep_runtime;
1095
1096 u64 block_start;
1097 u64 block_max;
1098 u64 exec_max;
1099 u64 slice_max;
1100
1101 u64 nr_migrations_cold;
1102 u64 nr_failed_migrations_affine;
1103 u64 nr_failed_migrations_running;
1104 u64 nr_failed_migrations_hot;
1105 u64 nr_forced_migrations;
1106
1107 u64 nr_wakeups;
1108 u64 nr_wakeups_sync;
1109 u64 nr_wakeups_migrate;
1110 u64 nr_wakeups_local;
1111 u64 nr_wakeups_remote;
1112 u64 nr_wakeups_affine;
1113 u64 nr_wakeups_affine_attempts;
1114 u64 nr_wakeups_passive;
1115 u64 nr_wakeups_idle;
1116 };
1117 #endif
1118
1119 struct sched_entity {
1120 struct load_weight load; /* for load-balancing */
1121 struct rb_node run_node;
1122 struct list_head group_node;
1123 unsigned int on_rq;
1124
1125 u64 exec_start;
1126 u64 sum_exec_runtime;
1127 u64 vruntime;
1128 u64 prev_sum_exec_runtime;
1129
1130 u64 nr_migrations;
1131
1132 #ifdef CONFIG_SCHEDSTATS
1133 struct sched_statistics statistics;
1134 #endif
1135
1136 #ifdef CONFIG_FAIR_GROUP_SCHED
1137 struct sched_entity *parent;
1138 /* rq on which this entity is (to be) queued: */
1139 struct cfs_rq *cfs_rq;
1140 /* rq "owned" by this entity/group: */
1141 struct cfs_rq *my_q;
1142 #endif
1143 };
1144
1145 struct sched_rt_entity {
1146 struct list_head run_list;
1147 unsigned long timeout;
1148 unsigned int time_slice;
1149 int nr_cpus_allowed;
1150
1151 struct sched_rt_entity *back;
1152 #ifdef CONFIG_RT_GROUP_SCHED
1153 struct sched_rt_entity *parent;
1154 /* rq on which this entity is (to be) queued: */
1155 struct rt_rq *rt_rq;
1156 /* rq "owned" by this entity/group: */
1157 struct rt_rq *my_q;
1158 #endif
1159 };
1160
1161 struct rcu_node;
1162
1163 struct task_struct {
1164 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1165 void *stack;
1166 atomic_t usage;
1167 unsigned int flags; /* per process flags, defined below */
1168 unsigned int ptrace;
1169
1170 int lock_depth; /* BKL lock depth */
1171
1172 #ifdef CONFIG_SMP
1173 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1174 int oncpu;
1175 #endif
1176 #endif
1177
1178 int prio, static_prio, normal_prio;
1179 unsigned int rt_priority;
1180 const struct sched_class *sched_class;
1181 struct sched_entity se;
1182 struct sched_rt_entity rt;
1183
1184 #ifdef CONFIG_PREEMPT_NOTIFIERS
1185 /* list of struct preempt_notifier: */
1186 struct hlist_head preempt_notifiers;
1187 #endif
1188
1189 /*
1190 * fpu_counter contains the number of consecutive context switches
1191 * that the FPU is used. If this is over a threshold, the lazy fpu
1192 * saving becomes unlazy to save the trap. This is an unsigned char
1193 * so that after 256 times the counter wraps and the behavior turns
1194 * lazy again; this to deal with bursty apps that only use FPU for
1195 * a short time
1196 */
1197 unsigned char fpu_counter;
1198 #ifdef CONFIG_BLK_DEV_IO_TRACE
1199 unsigned int btrace_seq;
1200 #endif
1201
1202 unsigned int policy;
1203 cpumask_t cpus_allowed;
1204
1205 #ifdef CONFIG_TREE_PREEMPT_RCU
1206 int rcu_read_lock_nesting;
1207 char rcu_read_unlock_special;
1208 struct rcu_node *rcu_blocked_node;
1209 struct list_head rcu_node_entry;
1210 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1211
1212 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1213 struct sched_info sched_info;
1214 #endif
1215
1216 struct list_head tasks;
1217 struct plist_node pushable_tasks;
1218
1219 struct mm_struct *mm, *active_mm;
1220 #if defined(SPLIT_RSS_COUNTING)
1221 struct task_rss_stat rss_stat;
1222 #endif
1223 /* task state */
1224 int exit_state;
1225 int exit_code, exit_signal;
1226 int pdeath_signal; /* The signal sent when the parent dies */
1227 /* ??? */
1228 unsigned int personality;
1229 unsigned did_exec:1;
1230 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1231 * execve */
1232 unsigned in_iowait:1;
1233
1234
1235 /* Revert to default priority/policy when forking */
1236 unsigned sched_reset_on_fork:1;
1237
1238 pid_t pid;
1239 pid_t tgid;
1240
1241 #ifdef CONFIG_CC_STACKPROTECTOR
1242 /* Canary value for the -fstack-protector gcc feature */
1243 unsigned long stack_canary;
1244 #endif
1245
1246 /*
1247 * pointers to (original) parent process, youngest child, younger sibling,
1248 * older sibling, respectively. (p->father can be replaced with
1249 * p->real_parent->pid)
1250 */
1251 struct task_struct *real_parent; /* real parent process */
1252 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1253 /*
1254 * children/sibling forms the list of my natural children
1255 */
1256 struct list_head children; /* list of my children */
1257 struct list_head sibling; /* linkage in my parent's children list */
1258 struct task_struct *group_leader; /* threadgroup leader */
1259
1260 /*
1261 * ptraced is the list of tasks this task is using ptrace on.
1262 * This includes both natural children and PTRACE_ATTACH targets.
1263 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1264 */
1265 struct list_head ptraced;
1266 struct list_head ptrace_entry;
1267
1268 /* PID/PID hash table linkage. */
1269 struct pid_link pids[PIDTYPE_MAX];
1270 struct list_head thread_group;
1271
1272 struct completion *vfork_done; /* for vfork() */
1273 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1274 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1275
1276 cputime_t utime, stime, utimescaled, stimescaled;
1277 cputime_t gtime;
1278 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1279 cputime_t prev_utime, prev_stime;
1280 #endif
1281 unsigned long nvcsw, nivcsw; /* context switch counts */
1282 struct timespec start_time; /* monotonic time */
1283 struct timespec real_start_time; /* boot based time */
1284 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1285 unsigned long min_flt, maj_flt;
1286
1287 struct task_cputime cputime_expires;
1288 struct list_head cpu_timers[3];
1289
1290 /* process credentials */
1291 const struct cred *real_cred; /* objective and real subjective task
1292 * credentials (COW) */
1293 const struct cred *cred; /* effective (overridable) subjective task
1294 * credentials (COW) */
1295 struct mutex cred_guard_mutex; /* guard against foreign influences on
1296 * credential calculations
1297 * (notably. ptrace) */
1298 struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */
1299
1300 char comm[TASK_COMM_LEN]; /* executable name excluding path
1301 - access with [gs]et_task_comm (which lock
1302 it with task_lock())
1303 - initialized normally by setup_new_exec */
1304 /* file system info */
1305 int link_count, total_link_count;
1306 #ifdef CONFIG_SYSVIPC
1307 /* ipc stuff */
1308 struct sysv_sem sysvsem;
1309 #endif
1310 #ifdef CONFIG_DETECT_HUNG_TASK
1311 /* hung task detection */
1312 unsigned long last_switch_count;
1313 #endif
1314 /* CPU-specific state of this task */
1315 struct thread_struct thread;
1316 /* filesystem information */
1317 struct fs_struct *fs;
1318 /* open file information */
1319 struct files_struct *files;
1320 /* namespaces */
1321 struct nsproxy *nsproxy;
1322 /* signal handlers */
1323 struct signal_struct *signal;
1324 struct sighand_struct *sighand;
1325
1326 sigset_t blocked, real_blocked;
1327 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1328 struct sigpending pending;
1329
1330 unsigned long sas_ss_sp;
1331 size_t sas_ss_size;
1332 int (*notifier)(void *priv);
1333 void *notifier_data;
1334 sigset_t *notifier_mask;
1335 struct audit_context *audit_context;
1336 #ifdef CONFIG_AUDITSYSCALL
1337 uid_t loginuid;
1338 unsigned int sessionid;
1339 #endif
1340 seccomp_t seccomp;
1341
1342 /* Thread group tracking */
1343 u32 parent_exec_id;
1344 u32 self_exec_id;
1345 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1346 * mempolicy */
1347 spinlock_t alloc_lock;
1348
1349 #ifdef CONFIG_GENERIC_HARDIRQS
1350 /* IRQ handler threads */
1351 struct irqaction *irqaction;
1352 #endif
1353
1354 /* Protection of the PI data structures: */
1355 raw_spinlock_t pi_lock;
1356
1357 #ifdef CONFIG_RT_MUTEXES
1358 /* PI waiters blocked on a rt_mutex held by this task */
1359 struct plist_head pi_waiters;
1360 /* Deadlock detection and priority inheritance handling */
1361 struct rt_mutex_waiter *pi_blocked_on;
1362 #endif
1363
1364 #ifdef CONFIG_DEBUG_MUTEXES
1365 /* mutex deadlock detection */
1366 struct mutex_waiter *blocked_on;
1367 #endif
1368 #ifdef CONFIG_TRACE_IRQFLAGS
1369 unsigned int irq_events;
1370 unsigned long hardirq_enable_ip;
1371 unsigned long hardirq_disable_ip;
1372 unsigned int hardirq_enable_event;
1373 unsigned int hardirq_disable_event;
1374 int hardirqs_enabled;
1375 int hardirq_context;
1376 unsigned long softirq_disable_ip;
1377 unsigned long softirq_enable_ip;
1378 unsigned int softirq_disable_event;
1379 unsigned int softirq_enable_event;
1380 int softirqs_enabled;
1381 int softirq_context;
1382 #endif
1383 #ifdef CONFIG_LOCKDEP
1384 # define MAX_LOCK_DEPTH 48UL
1385 u64 curr_chain_key;
1386 int lockdep_depth;
1387 unsigned int lockdep_recursion;
1388 struct held_lock held_locks[MAX_LOCK_DEPTH];
1389 gfp_t lockdep_reclaim_gfp;
1390 #endif
1391
1392 /* journalling filesystem info */
1393 void *journal_info;
1394
1395 /* stacked block device info */
1396 struct bio_list *bio_list;
1397
1398 /* VM state */
1399 struct reclaim_state *reclaim_state;
1400
1401 struct backing_dev_info *backing_dev_info;
1402
1403 struct io_context *io_context;
1404
1405 unsigned long ptrace_message;
1406 siginfo_t *last_siginfo; /* For ptrace use. */
1407 struct task_io_accounting ioac;
1408 #if defined(CONFIG_TASK_XACCT)
1409 u64 acct_rss_mem1; /* accumulated rss usage */
1410 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1411 cputime_t acct_timexpd; /* stime + utime since last update */
1412 #endif
1413 #ifdef CONFIG_CPUSETS
1414 nodemask_t mems_allowed; /* Protected by alloc_lock */
1415 int mems_allowed_change_disable;
1416 int cpuset_mem_spread_rotor;
1417 int cpuset_slab_spread_rotor;
1418 #endif
1419 #ifdef CONFIG_CGROUPS
1420 /* Control Group info protected by css_set_lock */
1421 struct css_set *cgroups;
1422 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1423 struct list_head cg_list;
1424 #endif
1425 #ifdef CONFIG_FUTEX
1426 struct robust_list_head __user *robust_list;
1427 #ifdef CONFIG_COMPAT
1428 struct compat_robust_list_head __user *compat_robust_list;
1429 #endif
1430 struct list_head pi_state_list;
1431 struct futex_pi_state *pi_state_cache;
1432 #endif
1433 #ifdef CONFIG_PERF_EVENTS
1434 struct perf_event_context *perf_event_ctxp;
1435 struct mutex perf_event_mutex;
1436 struct list_head perf_event_list;
1437 #endif
1438 #ifdef CONFIG_NUMA
1439 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1440 short il_next;
1441 #endif
1442 atomic_t fs_excl; /* holding fs exclusive resources */
1443 struct rcu_head rcu;
1444
1445 /*
1446 * cache last used pipe for splice
1447 */
1448 struct pipe_inode_info *splice_pipe;
1449 #ifdef CONFIG_TASK_DELAY_ACCT
1450 struct task_delay_info *delays;
1451 #endif
1452 #ifdef CONFIG_FAULT_INJECTION
1453 int make_it_fail;
1454 #endif
1455 struct prop_local_single dirties;
1456 #ifdef CONFIG_LATENCYTOP
1457 int latency_record_count;
1458 struct latency_record latency_record[LT_SAVECOUNT];
1459 #endif
1460 /*
1461 * time slack values; these are used to round up poll() and
1462 * select() etc timeout values. These are in nanoseconds.
1463 */
1464 unsigned long timer_slack_ns;
1465 unsigned long default_timer_slack_ns;
1466
1467 struct list_head *scm_work_list;
1468 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1469 /* Index of current stored address in ret_stack */
1470 int curr_ret_stack;
1471 /* Stack of return addresses for return function tracing */
1472 struct ftrace_ret_stack *ret_stack;
1473 /* time stamp for last schedule */
1474 unsigned long long ftrace_timestamp;
1475 /*
1476 * Number of functions that haven't been traced
1477 * because of depth overrun.
1478 */
1479 atomic_t trace_overrun;
1480 /* Pause for the tracing */
1481 atomic_t tracing_graph_pause;
1482 #endif
1483 #ifdef CONFIG_TRACING
1484 /* state flags for use by tracers */
1485 unsigned long trace;
1486 /* bitmask of trace recursion */
1487 unsigned long trace_recursion;
1488 #endif /* CONFIG_TRACING */
1489 #ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */
1490 struct memcg_batch_info {
1491 int do_batch; /* incremented when batch uncharge started */
1492 struct mem_cgroup *memcg; /* target memcg of uncharge */
1493 unsigned long bytes; /* uncharged usage */
1494 unsigned long memsw_bytes; /* uncharged mem+swap usage */
1495 } memcg_batch;
1496 #endif
1497 };
1498
1499 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1500 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1501
1502 /*
1503 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1504 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1505 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1506 * values are inverted: lower p->prio value means higher priority.
1507 *
1508 * The MAX_USER_RT_PRIO value allows the actual maximum
1509 * RT priority to be separate from the value exported to
1510 * user-space. This allows kernel threads to set their
1511 * priority to a value higher than any user task. Note:
1512 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1513 */
1514
1515 #define MAX_USER_RT_PRIO 100
1516 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1517
1518 #define MAX_PRIO (MAX_RT_PRIO + 40)
1519 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1520
1521 static inline int rt_prio(int prio)
1522 {
1523 if (unlikely(prio < MAX_RT_PRIO))
1524 return 1;
1525 return 0;
1526 }
1527
1528 static inline int rt_task(struct task_struct *p)
1529 {
1530 return rt_prio(p->prio);
1531 }
1532
1533 static inline struct pid *task_pid(struct task_struct *task)
1534 {
1535 return task->pids[PIDTYPE_PID].pid;
1536 }
1537
1538 static inline struct pid *task_tgid(struct task_struct *task)
1539 {
1540 return task->group_leader->pids[PIDTYPE_PID].pid;
1541 }
1542
1543 /*
1544 * Without tasklist or rcu lock it is not safe to dereference
1545 * the result of task_pgrp/task_session even if task == current,
1546 * we can race with another thread doing sys_setsid/sys_setpgid.
1547 */
1548 static inline struct pid *task_pgrp(struct task_struct *task)
1549 {
1550 return task->group_leader->pids[PIDTYPE_PGID].pid;
1551 }
1552
1553 static inline struct pid *task_session(struct task_struct *task)
1554 {
1555 return task->group_leader->pids[PIDTYPE_SID].pid;
1556 }
1557
1558 struct pid_namespace;
1559
1560 /*
1561 * the helpers to get the task's different pids as they are seen
1562 * from various namespaces
1563 *
1564 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1565 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1566 * current.
1567 * task_xid_nr_ns() : id seen from the ns specified;
1568 *
1569 * set_task_vxid() : assigns a virtual id to a task;
1570 *
1571 * see also pid_nr() etc in include/linux/pid.h
1572 */
1573 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1574 struct pid_namespace *ns);
1575
1576 static inline pid_t task_pid_nr(struct task_struct *tsk)
1577 {
1578 return tsk->pid;
1579 }
1580
1581 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1582 struct pid_namespace *ns)
1583 {
1584 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1585 }
1586
1587 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1588 {
1589 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1590 }
1591
1592
1593 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1594 {
1595 return tsk->tgid;
1596 }
1597
1598 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1599
1600 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1601 {
1602 return pid_vnr(task_tgid(tsk));
1603 }
1604
1605
1606 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1607 struct pid_namespace *ns)
1608 {
1609 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1610 }
1611
1612 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1613 {
1614 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1615 }
1616
1617
1618 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1619 struct pid_namespace *ns)
1620 {
1621 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1622 }
1623
1624 static inline pid_t task_session_vnr(struct task_struct *tsk)
1625 {
1626 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1627 }
1628
1629 /* obsolete, do not use */
1630 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1631 {
1632 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1633 }
1634
1635 /**
1636 * pid_alive - check that a task structure is not stale
1637 * @p: Task structure to be checked.
1638 *
1639 * Test if a process is not yet dead (at most zombie state)
1640 * If pid_alive fails, then pointers within the task structure
1641 * can be stale and must not be dereferenced.
1642 */
1643 static inline int pid_alive(struct task_struct *p)
1644 {
1645 return p->pids[PIDTYPE_PID].pid != NULL;
1646 }
1647
1648 /**
1649 * is_global_init - check if a task structure is init
1650 * @tsk: Task structure to be checked.
1651 *
1652 * Check if a task structure is the first user space task the kernel created.
1653 */
1654 static inline int is_global_init(struct task_struct *tsk)
1655 {
1656 return tsk->pid == 1;
1657 }
1658
1659 /*
1660 * is_container_init:
1661 * check whether in the task is init in its own pid namespace.
1662 */
1663 extern int is_container_init(struct task_struct *tsk);
1664
1665 extern struct pid *cad_pid;
1666
1667 extern void free_task(struct task_struct *tsk);
1668 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1669
1670 extern void __put_task_struct(struct task_struct *t);
1671
1672 static inline void put_task_struct(struct task_struct *t)
1673 {
1674 if (atomic_dec_and_test(&t->usage))
1675 __put_task_struct(t);
1676 }
1677
1678 extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1679 extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1680
1681 /*
1682 * Per process flags
1683 */
1684 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1685 /* Not implemented yet, only for 486*/
1686 #define PF_STARTING 0x00000002 /* being created */
1687 #define PF_EXITING 0x00000004 /* getting shut down */
1688 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1689 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1690 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1691 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1692 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1693 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1694 #define PF_DUMPCORE 0x00000200 /* dumped core */
1695 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1696 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1697 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1698 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1699 #define PF_FREEZING 0x00004000 /* freeze in progress. do not account to load */
1700 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1701 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1702 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1703 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1704 #define PF_OOM_ORIGIN 0x00080000 /* Allocating much memory to others */
1705 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1706 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1707 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1708 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1709 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1710 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1711 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1712 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1713 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1714 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1715 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1716 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */
1717
1718 /*
1719 * Only the _current_ task can read/write to tsk->flags, but other
1720 * tasks can access tsk->flags in readonly mode for example
1721 * with tsk_used_math (like during threaded core dumping).
1722 * There is however an exception to this rule during ptrace
1723 * or during fork: the ptracer task is allowed to write to the
1724 * child->flags of its traced child (same goes for fork, the parent
1725 * can write to the child->flags), because we're guaranteed the
1726 * child is not running and in turn not changing child->flags
1727 * at the same time the parent does it.
1728 */
1729 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1730 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1731 #define clear_used_math() clear_stopped_child_used_math(current)
1732 #define set_used_math() set_stopped_child_used_math(current)
1733 #define conditional_stopped_child_used_math(condition, child) \
1734 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1735 #define conditional_used_math(condition) \
1736 conditional_stopped_child_used_math(condition, current)
1737 #define copy_to_stopped_child_used_math(child) \
1738 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1739 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1740 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1741 #define used_math() tsk_used_math(current)
1742
1743 #ifdef CONFIG_TREE_PREEMPT_RCU
1744
1745 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1746 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1747
1748 static inline void rcu_copy_process(struct task_struct *p)
1749 {
1750 p->rcu_read_lock_nesting = 0;
1751 p->rcu_read_unlock_special = 0;
1752 p->rcu_blocked_node = NULL;
1753 INIT_LIST_HEAD(&p->rcu_node_entry);
1754 }
1755
1756 #else
1757
1758 static inline void rcu_copy_process(struct task_struct *p)
1759 {
1760 }
1761
1762 #endif
1763
1764 #ifdef CONFIG_SMP
1765 extern int set_cpus_allowed_ptr(struct task_struct *p,
1766 const struct cpumask *new_mask);
1767 #else
1768 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1769 const struct cpumask *new_mask)
1770 {
1771 if (!cpumask_test_cpu(0, new_mask))
1772 return -EINVAL;
1773 return 0;
1774 }
1775 #endif
1776
1777 #ifndef CONFIG_CPUMASK_OFFSTACK
1778 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1779 {
1780 return set_cpus_allowed_ptr(p, &new_mask);
1781 }
1782 #endif
1783
1784 /*
1785 * Do not use outside of architecture code which knows its limitations.
1786 *
1787 * sched_clock() has no promise of monotonicity or bounded drift between
1788 * CPUs, use (which you should not) requires disabling IRQs.
1789 *
1790 * Please use one of the three interfaces below.
1791 */
1792 extern unsigned long long notrace sched_clock(void);
1793 /*
1794 * See the comment in kernel/sched_clock.c
1795 */
1796 extern u64 cpu_clock(int cpu);
1797 extern u64 local_clock(void);
1798 extern u64 sched_clock_cpu(int cpu);
1799
1800
1801 extern void sched_clock_init(void);
1802
1803 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1804 static inline void sched_clock_tick(void)
1805 {
1806 }
1807
1808 static inline void sched_clock_idle_sleep_event(void)
1809 {
1810 }
1811
1812 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1813 {
1814 }
1815 #else
1816 /*
1817 * Architectures can set this to 1 if they have specified
1818 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1819 * but then during bootup it turns out that sched_clock()
1820 * is reliable after all:
1821 */
1822 extern int sched_clock_stable;
1823
1824 extern void sched_clock_tick(void);
1825 extern void sched_clock_idle_sleep_event(void);
1826 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1827 #endif
1828
1829 extern unsigned long long
1830 task_sched_runtime(struct task_struct *task);
1831 extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1832
1833 /* sched_exec is called by processes performing an exec */
1834 #ifdef CONFIG_SMP
1835 extern void sched_exec(void);
1836 #else
1837 #define sched_exec() {}
1838 #endif
1839
1840 extern void sched_clock_idle_sleep_event(void);
1841 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1842
1843 #ifdef CONFIG_HOTPLUG_CPU
1844 extern void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p);
1845 extern void idle_task_exit(void);
1846 #else
1847 static inline void idle_task_exit(void) {}
1848 #endif
1849
1850 extern void sched_idle_next(void);
1851
1852 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1853 extern void wake_up_idle_cpu(int cpu);
1854 #else
1855 static inline void wake_up_idle_cpu(int cpu) { }
1856 #endif
1857
1858 extern unsigned int sysctl_sched_latency;
1859 extern unsigned int sysctl_sched_min_granularity;
1860 extern unsigned int sysctl_sched_wakeup_granularity;
1861 extern unsigned int sysctl_sched_shares_ratelimit;
1862 extern unsigned int sysctl_sched_shares_thresh;
1863 extern unsigned int sysctl_sched_child_runs_first;
1864
1865 enum sched_tunable_scaling {
1866 SCHED_TUNABLESCALING_NONE,
1867 SCHED_TUNABLESCALING_LOG,
1868 SCHED_TUNABLESCALING_LINEAR,
1869 SCHED_TUNABLESCALING_END,
1870 };
1871 extern enum sched_tunable_scaling sysctl_sched_tunable_scaling;
1872
1873 #ifdef CONFIG_SCHED_DEBUG
1874 extern unsigned int sysctl_sched_migration_cost;
1875 extern unsigned int sysctl_sched_nr_migrate;
1876 extern unsigned int sysctl_sched_time_avg;
1877 extern unsigned int sysctl_timer_migration;
1878
1879 int sched_proc_update_handler(struct ctl_table *table, int write,
1880 void __user *buffer, size_t *length,
1881 loff_t *ppos);
1882 #endif
1883 #ifdef CONFIG_SCHED_DEBUG
1884 static inline unsigned int get_sysctl_timer_migration(void)
1885 {
1886 return sysctl_timer_migration;
1887 }
1888 #else
1889 static inline unsigned int get_sysctl_timer_migration(void)
1890 {
1891 return 1;
1892 }
1893 #endif
1894 extern unsigned int sysctl_sched_rt_period;
1895 extern int sysctl_sched_rt_runtime;
1896
1897 int sched_rt_handler(struct ctl_table *table, int write,
1898 void __user *buffer, size_t *lenp,
1899 loff_t *ppos);
1900
1901 extern unsigned int sysctl_sched_compat_yield;
1902
1903 #ifdef CONFIG_RT_MUTEXES
1904 extern int rt_mutex_getprio(struct task_struct *p);
1905 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1906 extern void rt_mutex_adjust_pi(struct task_struct *p);
1907 #else
1908 static inline int rt_mutex_getprio(struct task_struct *p)
1909 {
1910 return p->normal_prio;
1911 }
1912 # define rt_mutex_adjust_pi(p) do { } while (0)
1913 #endif
1914
1915 extern void set_user_nice(struct task_struct *p, long nice);
1916 extern int task_prio(const struct task_struct *p);
1917 extern int task_nice(const struct task_struct *p);
1918 extern int can_nice(const struct task_struct *p, const int nice);
1919 extern int task_curr(const struct task_struct *p);
1920 extern int idle_cpu(int cpu);
1921 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1922 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1923 struct sched_param *);
1924 extern struct task_struct *idle_task(int cpu);
1925 extern struct task_struct *curr_task(int cpu);
1926 extern void set_curr_task(int cpu, struct task_struct *p);
1927
1928 void yield(void);
1929
1930 /*
1931 * The default (Linux) execution domain.
1932 */
1933 extern struct exec_domain default_exec_domain;
1934
1935 union thread_union {
1936 struct thread_info thread_info;
1937 unsigned long stack[THREAD_SIZE/sizeof(long)];
1938 };
1939
1940 #ifndef __HAVE_ARCH_KSTACK_END
1941 static inline int kstack_end(void *addr)
1942 {
1943 /* Reliable end of stack detection:
1944 * Some APM bios versions misalign the stack
1945 */
1946 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1947 }
1948 #endif
1949
1950 extern union thread_union init_thread_union;
1951 extern struct task_struct init_task;
1952
1953 extern struct mm_struct init_mm;
1954
1955 extern struct pid_namespace init_pid_ns;
1956
1957 /*
1958 * find a task by one of its numerical ids
1959 *
1960 * find_task_by_pid_ns():
1961 * finds a task by its pid in the specified namespace
1962 * find_task_by_vpid():
1963 * finds a task by its virtual pid
1964 *
1965 * see also find_vpid() etc in include/linux/pid.h
1966 */
1967
1968 extern struct task_struct *find_task_by_vpid(pid_t nr);
1969 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1970 struct pid_namespace *ns);
1971
1972 extern void __set_special_pids(struct pid *pid);
1973
1974 /* per-UID process charging. */
1975 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1976 static inline struct user_struct *get_uid(struct user_struct *u)
1977 {
1978 atomic_inc(&u->__count);
1979 return u;
1980 }
1981 extern void free_uid(struct user_struct *);
1982 extern void release_uids(struct user_namespace *ns);
1983
1984 #include <asm/current.h>
1985
1986 extern void do_timer(unsigned long ticks);
1987
1988 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1989 extern int wake_up_process(struct task_struct *tsk);
1990 extern void wake_up_new_task(struct task_struct *tsk,
1991 unsigned long clone_flags);
1992 #ifdef CONFIG_SMP
1993 extern void kick_process(struct task_struct *tsk);
1994 #else
1995 static inline void kick_process(struct task_struct *tsk) { }
1996 #endif
1997 extern void sched_fork(struct task_struct *p, int clone_flags);
1998 extern void sched_dead(struct task_struct *p);
1999
2000 extern void proc_caches_init(void);
2001 extern void flush_signals(struct task_struct *);
2002 extern void __flush_signals(struct task_struct *);
2003 extern void ignore_signals(struct task_struct *);
2004 extern void flush_signal_handlers(struct task_struct *, int force_default);
2005 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2006
2007 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2008 {
2009 unsigned long flags;
2010 int ret;
2011
2012 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2013 ret = dequeue_signal(tsk, mask, info);
2014 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2015
2016 return ret;
2017 }
2018
2019 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2020 sigset_t *mask);
2021 extern void unblock_all_signals(void);
2022 extern void release_task(struct task_struct * p);
2023 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2024 extern int force_sigsegv(int, struct task_struct *);
2025 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2026 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2027 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2028 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
2029 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2030 extern int kill_pid(struct pid *pid, int sig, int priv);
2031 extern int kill_proc_info(int, struct siginfo *, pid_t);
2032 extern int do_notify_parent(struct task_struct *, int);
2033 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2034 extern void force_sig(int, struct task_struct *);
2035 extern int send_sig(int, struct task_struct *, int);
2036 extern int zap_other_threads(struct task_struct *p);
2037 extern struct sigqueue *sigqueue_alloc(void);
2038 extern void sigqueue_free(struct sigqueue *);
2039 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2040 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2041 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2042
2043 static inline int kill_cad_pid(int sig, int priv)
2044 {
2045 return kill_pid(cad_pid, sig, priv);
2046 }
2047
2048 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2049 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2050 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2051 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2052
2053 /*
2054 * True if we are on the alternate signal stack.
2055 */
2056 static inline int on_sig_stack(unsigned long sp)
2057 {
2058 #ifdef CONFIG_STACK_GROWSUP
2059 return sp >= current->sas_ss_sp &&
2060 sp - current->sas_ss_sp < current->sas_ss_size;
2061 #else
2062 return sp > current->sas_ss_sp &&
2063 sp - current->sas_ss_sp <= current->sas_ss_size;
2064 #endif
2065 }
2066
2067 static inline int sas_ss_flags(unsigned long sp)
2068 {
2069 return (current->sas_ss_size == 0 ? SS_DISABLE
2070 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2071 }
2072
2073 /*
2074 * Routines for handling mm_structs
2075 */
2076 extern struct mm_struct * mm_alloc(void);
2077
2078 /* mmdrop drops the mm and the page tables */
2079 extern void __mmdrop(struct mm_struct *);
2080 static inline void mmdrop(struct mm_struct * mm)
2081 {
2082 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2083 __mmdrop(mm);
2084 }
2085
2086 /* mmput gets rid of the mappings and all user-space */
2087 extern void mmput(struct mm_struct *);
2088 /* Grab a reference to a task's mm, if it is not already going away */
2089 extern struct mm_struct *get_task_mm(struct task_struct *task);
2090 /* Remove the current tasks stale references to the old mm_struct */
2091 extern void mm_release(struct task_struct *, struct mm_struct *);
2092 /* Allocate a new mm structure and copy contents from tsk->mm */
2093 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2094
2095 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2096 struct task_struct *, struct pt_regs *);
2097 extern void flush_thread(void);
2098 extern void exit_thread(void);
2099
2100 extern void exit_files(struct task_struct *);
2101 extern void __cleanup_sighand(struct sighand_struct *);
2102
2103 extern void exit_itimers(struct signal_struct *);
2104 extern void flush_itimer_signals(void);
2105
2106 extern NORET_TYPE void do_group_exit(int);
2107
2108 extern void daemonize(const char *, ...);
2109 extern int allow_signal(int);
2110 extern int disallow_signal(int);
2111
2112 extern int do_execve(const char *,
2113 const char __user * const __user *,
2114 const char __user * const __user *, struct pt_regs *);
2115 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2116 struct task_struct *fork_idle(int);
2117
2118 extern void set_task_comm(struct task_struct *tsk, char *from);
2119 extern char *get_task_comm(char *to, struct task_struct *tsk);
2120
2121 #ifdef CONFIG_SMP
2122 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2123 #else
2124 static inline unsigned long wait_task_inactive(struct task_struct *p,
2125 long match_state)
2126 {
2127 return 1;
2128 }
2129 #endif
2130
2131 #define next_task(p) \
2132 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2133
2134 #define for_each_process(p) \
2135 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2136
2137 extern bool current_is_single_threaded(void);
2138
2139 /*
2140 * Careful: do_each_thread/while_each_thread is a double loop so
2141 * 'break' will not work as expected - use goto instead.
2142 */
2143 #define do_each_thread(g, t) \
2144 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2145
2146 #define while_each_thread(g, t) \
2147 while ((t = next_thread(t)) != g)
2148
2149 static inline int get_nr_threads(struct task_struct *tsk)
2150 {
2151 return tsk->signal->nr_threads;
2152 }
2153
2154 /* de_thread depends on thread_group_leader not being a pid based check */
2155 #define thread_group_leader(p) (p == p->group_leader)
2156
2157 /* Do to the insanities of de_thread it is possible for a process
2158 * to have the pid of the thread group leader without actually being
2159 * the thread group leader. For iteration through the pids in proc
2160 * all we care about is that we have a task with the appropriate
2161 * pid, we don't actually care if we have the right task.
2162 */
2163 static inline int has_group_leader_pid(struct task_struct *p)
2164 {
2165 return p->pid == p->tgid;
2166 }
2167
2168 static inline
2169 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2170 {
2171 return p1->tgid == p2->tgid;
2172 }
2173
2174 static inline struct task_struct *next_thread(const struct task_struct *p)
2175 {
2176 return list_entry_rcu(p->thread_group.next,
2177 struct task_struct, thread_group);
2178 }
2179
2180 static inline int thread_group_empty(struct task_struct *p)
2181 {
2182 return list_empty(&p->thread_group);
2183 }
2184
2185 #define delay_group_leader(p) \
2186 (thread_group_leader(p) && !thread_group_empty(p))
2187
2188 static inline int task_detached(struct task_struct *p)
2189 {
2190 return p->exit_signal == -1;
2191 }
2192
2193 /*
2194 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2195 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2196 * pins the final release of task.io_context. Also protects ->cpuset and
2197 * ->cgroup.subsys[].
2198 *
2199 * Nests both inside and outside of read_lock(&tasklist_lock).
2200 * It must not be nested with write_lock_irq(&tasklist_lock),
2201 * neither inside nor outside.
2202 */
2203 static inline void task_lock(struct task_struct *p)
2204 {
2205 spin_lock(&p->alloc_lock);
2206 }
2207
2208 static inline void task_unlock(struct task_struct *p)
2209 {
2210 spin_unlock(&p->alloc_lock);
2211 }
2212
2213 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2214 unsigned long *flags);
2215
2216 static inline void unlock_task_sighand(struct task_struct *tsk,
2217 unsigned long *flags)
2218 {
2219 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2220 }
2221
2222 #ifndef __HAVE_THREAD_FUNCTIONS
2223
2224 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2225 #define task_stack_page(task) ((task)->stack)
2226
2227 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2228 {
2229 *task_thread_info(p) = *task_thread_info(org);
2230 task_thread_info(p)->task = p;
2231 }
2232
2233 static inline unsigned long *end_of_stack(struct task_struct *p)
2234 {
2235 return (unsigned long *)(task_thread_info(p) + 1);
2236 }
2237
2238 #endif
2239
2240 static inline int object_is_on_stack(void *obj)
2241 {
2242 void *stack = task_stack_page(current);
2243
2244 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2245 }
2246
2247 extern void thread_info_cache_init(void);
2248
2249 #ifdef CONFIG_DEBUG_STACK_USAGE
2250 static inline unsigned long stack_not_used(struct task_struct *p)
2251 {
2252 unsigned long *n = end_of_stack(p);
2253
2254 do { /* Skip over canary */
2255 n++;
2256 } while (!*n);
2257
2258 return (unsigned long)n - (unsigned long)end_of_stack(p);
2259 }
2260 #endif
2261
2262 /* set thread flags in other task's structures
2263 * - see asm/thread_info.h for TIF_xxxx flags available
2264 */
2265 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2266 {
2267 set_ti_thread_flag(task_thread_info(tsk), flag);
2268 }
2269
2270 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2271 {
2272 clear_ti_thread_flag(task_thread_info(tsk), flag);
2273 }
2274
2275 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2276 {
2277 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2278 }
2279
2280 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2281 {
2282 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2283 }
2284
2285 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2286 {
2287 return test_ti_thread_flag(task_thread_info(tsk), flag);
2288 }
2289
2290 static inline void set_tsk_need_resched(struct task_struct *tsk)
2291 {
2292 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2293 }
2294
2295 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2296 {
2297 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2298 }
2299
2300 static inline int test_tsk_need_resched(struct task_struct *tsk)
2301 {
2302 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2303 }
2304
2305 static inline int restart_syscall(void)
2306 {
2307 set_tsk_thread_flag(current, TIF_SIGPENDING);
2308 return -ERESTARTNOINTR;
2309 }
2310
2311 static inline int signal_pending(struct task_struct *p)
2312 {
2313 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2314 }
2315
2316 static inline int __fatal_signal_pending(struct task_struct *p)
2317 {
2318 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2319 }
2320
2321 static inline int fatal_signal_pending(struct task_struct *p)
2322 {
2323 return signal_pending(p) && __fatal_signal_pending(p);
2324 }
2325
2326 static inline int signal_pending_state(long state, struct task_struct *p)
2327 {
2328 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2329 return 0;
2330 if (!signal_pending(p))
2331 return 0;
2332
2333 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2334 }
2335
2336 static inline int need_resched(void)
2337 {
2338 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2339 }
2340
2341 /*
2342 * cond_resched() and cond_resched_lock(): latency reduction via
2343 * explicit rescheduling in places that are safe. The return
2344 * value indicates whether a reschedule was done in fact.
2345 * cond_resched_lock() will drop the spinlock before scheduling,
2346 * cond_resched_softirq() will enable bhs before scheduling.
2347 */
2348 extern int _cond_resched(void);
2349
2350 #define cond_resched() ({ \
2351 __might_sleep(__FILE__, __LINE__, 0); \
2352 _cond_resched(); \
2353 })
2354
2355 extern int __cond_resched_lock(spinlock_t *lock);
2356
2357 #ifdef CONFIG_PREEMPT
2358 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2359 #else
2360 #define PREEMPT_LOCK_OFFSET 0
2361 #endif
2362
2363 #define cond_resched_lock(lock) ({ \
2364 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2365 __cond_resched_lock(lock); \
2366 })
2367
2368 extern int __cond_resched_softirq(void);
2369
2370 #define cond_resched_softirq() ({ \
2371 __might_sleep(__FILE__, __LINE__, SOFTIRQ_OFFSET); \
2372 __cond_resched_softirq(); \
2373 })
2374
2375 /*
2376 * Does a critical section need to be broken due to another
2377 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2378 * but a general need for low latency)
2379 */
2380 static inline int spin_needbreak(spinlock_t *lock)
2381 {
2382 #ifdef CONFIG_PREEMPT
2383 return spin_is_contended(lock);
2384 #else
2385 return 0;
2386 #endif
2387 }
2388
2389 /*
2390 * Thread group CPU time accounting.
2391 */
2392 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2393 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2394
2395 static inline void thread_group_cputime_init(struct signal_struct *sig)
2396 {
2397 spin_lock_init(&sig->cputimer.lock);
2398 }
2399
2400 /*
2401 * Reevaluate whether the task has signals pending delivery.
2402 * Wake the task if so.
2403 * This is required every time the blocked sigset_t changes.
2404 * callers must hold sighand->siglock.
2405 */
2406 extern void recalc_sigpending_and_wake(struct task_struct *t);
2407 extern void recalc_sigpending(void);
2408
2409 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2410
2411 /*
2412 * Wrappers for p->thread_info->cpu access. No-op on UP.
2413 */
2414 #ifdef CONFIG_SMP
2415
2416 static inline unsigned int task_cpu(const struct task_struct *p)
2417 {
2418 return task_thread_info(p)->cpu;
2419 }
2420
2421 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2422
2423 #else
2424
2425 static inline unsigned int task_cpu(const struct task_struct *p)
2426 {
2427 return 0;
2428 }
2429
2430 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2431 {
2432 }
2433
2434 #endif /* CONFIG_SMP */
2435
2436 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2437 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2438
2439 extern void normalize_rt_tasks(void);
2440
2441 #ifdef CONFIG_CGROUP_SCHED
2442
2443 extern struct task_group init_task_group;
2444
2445 extern struct task_group *sched_create_group(struct task_group *parent);
2446 extern void sched_destroy_group(struct task_group *tg);
2447 extern void sched_move_task(struct task_struct *tsk);
2448 #ifdef CONFIG_FAIR_GROUP_SCHED
2449 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2450 extern unsigned long sched_group_shares(struct task_group *tg);
2451 #endif
2452 #ifdef CONFIG_RT_GROUP_SCHED
2453 extern int sched_group_set_rt_runtime(struct task_group *tg,
2454 long rt_runtime_us);
2455 extern long sched_group_rt_runtime(struct task_group *tg);
2456 extern int sched_group_set_rt_period(struct task_group *tg,
2457 long rt_period_us);
2458 extern long sched_group_rt_period(struct task_group *tg);
2459 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2460 #endif
2461 #endif
2462
2463 extern int task_can_switch_user(struct user_struct *up,
2464 struct task_struct *tsk);
2465
2466 #ifdef CONFIG_TASK_XACCT
2467 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2468 {
2469 tsk->ioac.rchar += amt;
2470 }
2471
2472 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2473 {
2474 tsk->ioac.wchar += amt;
2475 }
2476
2477 static inline void inc_syscr(struct task_struct *tsk)
2478 {
2479 tsk->ioac.syscr++;
2480 }
2481
2482 static inline void inc_syscw(struct task_struct *tsk)
2483 {
2484 tsk->ioac.syscw++;
2485 }
2486 #else
2487 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2488 {
2489 }
2490
2491 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2492 {
2493 }
2494
2495 static inline void inc_syscr(struct task_struct *tsk)
2496 {
2497 }
2498
2499 static inline void inc_syscw(struct task_struct *tsk)
2500 {
2501 }
2502 #endif
2503
2504 #ifndef TASK_SIZE_OF
2505 #define TASK_SIZE_OF(tsk) TASK_SIZE
2506 #endif
2507
2508 /*
2509 * Call the function if the target task is executing on a CPU right now:
2510 */
2511 extern void task_oncpu_function_call(struct task_struct *p,
2512 void (*func) (void *info), void *info);
2513
2514
2515 #ifdef CONFIG_MM_OWNER
2516 extern void mm_update_next_owner(struct mm_struct *mm);
2517 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2518 #else
2519 static inline void mm_update_next_owner(struct mm_struct *mm)
2520 {
2521 }
2522
2523 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2524 {
2525 }
2526 #endif /* CONFIG_MM_OWNER */
2527
2528 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2529 unsigned int limit)
2530 {
2531 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2532 }
2533
2534 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2535 unsigned int limit)
2536 {
2537 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2538 }
2539
2540 static inline unsigned long rlimit(unsigned int limit)
2541 {
2542 return task_rlimit(current, limit);
2543 }
2544
2545 static inline unsigned long rlimit_max(unsigned int limit)
2546 {
2547 return task_rlimit_max(current, limit);
2548 }
2549
2550 #endif /* __KERNEL__ */
2551
2552 #endif
This page took 0.088237 seconds and 6 git commands to generate.