Merge branches 'sched/clock', 'sched/cleanups' and 'linus' into sched/urgent
[deliverable/linux.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
29 #define CLONE_NEWNET 0x40000000 /* New network namespace */
30 #define CLONE_IO 0x80000000 /* Clone io context */
31
32 /*
33 * Scheduling policies
34 */
35 #define SCHED_NORMAL 0
36 #define SCHED_FIFO 1
37 #define SCHED_RR 2
38 #define SCHED_BATCH 3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE 5
41
42 #ifdef __KERNEL__
43
44 struct sched_param {
45 int sched_priority;
46 };
47
48 #include <asm/param.h> /* for HZ */
49
50 #include <linux/capability.h>
51 #include <linux/threads.h>
52 #include <linux/kernel.h>
53 #include <linux/types.h>
54 #include <linux/timex.h>
55 #include <linux/jiffies.h>
56 #include <linux/rbtree.h>
57 #include <linux/thread_info.h>
58 #include <linux/cpumask.h>
59 #include <linux/errno.h>
60 #include <linux/nodemask.h>
61 #include <linux/mm_types.h>
62
63 #include <asm/system.h>
64 #include <asm/page.h>
65 #include <asm/ptrace.h>
66 #include <asm/cputime.h>
67
68 #include <linux/smp.h>
69 #include <linux/sem.h>
70 #include <linux/signal.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compiler.h>
73 #include <linux/completion.h>
74 #include <linux/pid.h>
75 #include <linux/percpu.h>
76 #include <linux/topology.h>
77 #include <linux/proportions.h>
78 #include <linux/seccomp.h>
79 #include <linux/rcupdate.h>
80 #include <linux/rtmutex.h>
81
82 #include <linux/time.h>
83 #include <linux/param.h>
84 #include <linux/resource.h>
85 #include <linux/timer.h>
86 #include <linux/hrtimer.h>
87 #include <linux/task_io_accounting.h>
88 #include <linux/kobject.h>
89 #include <linux/latencytop.h>
90 #include <linux/cred.h>
91
92 #include <asm/processor.h>
93
94 struct mem_cgroup;
95 struct exec_domain;
96 struct futex_pi_state;
97 struct robust_list_head;
98 struct bio;
99 struct bts_tracer;
100
101 /*
102 * List of flags we want to share for kernel threads,
103 * if only because they are not used by them anyway.
104 */
105 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
106
107 /*
108 * These are the constant used to fake the fixed-point load-average
109 * counting. Some notes:
110 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
111 * a load-average precision of 10 bits integer + 11 bits fractional
112 * - if you want to count load-averages more often, you need more
113 * precision, or rounding will get you. With 2-second counting freq,
114 * the EXP_n values would be 1981, 2034 and 2043 if still using only
115 * 11 bit fractions.
116 */
117 extern unsigned long avenrun[]; /* Load averages */
118
119 #define FSHIFT 11 /* nr of bits of precision */
120 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
121 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
122 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
123 #define EXP_5 2014 /* 1/exp(5sec/5min) */
124 #define EXP_15 2037 /* 1/exp(5sec/15min) */
125
126 #define CALC_LOAD(load,exp,n) \
127 load *= exp; \
128 load += n*(FIXED_1-exp); \
129 load >>= FSHIFT;
130
131 extern unsigned long total_forks;
132 extern int nr_threads;
133 DECLARE_PER_CPU(unsigned long, process_counts);
134 extern int nr_processes(void);
135 extern unsigned long nr_running(void);
136 extern unsigned long nr_uninterruptible(void);
137 extern unsigned long nr_active(void);
138 extern unsigned long nr_iowait(void);
139
140 struct seq_file;
141 struct cfs_rq;
142 struct task_group;
143 #ifdef CONFIG_SCHED_DEBUG
144 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
145 extern void proc_sched_set_task(struct task_struct *p);
146 extern void
147 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
148 #else
149 static inline void
150 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
151 {
152 }
153 static inline void proc_sched_set_task(struct task_struct *p)
154 {
155 }
156 static inline void
157 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
158 {
159 }
160 #endif
161
162 extern unsigned long long time_sync_thresh;
163
164 /*
165 * Task state bitmask. NOTE! These bits are also
166 * encoded in fs/proc/array.c: get_task_state().
167 *
168 * We have two separate sets of flags: task->state
169 * is about runnability, while task->exit_state are
170 * about the task exiting. Confusing, but this way
171 * modifying one set can't modify the other one by
172 * mistake.
173 */
174 #define TASK_RUNNING 0
175 #define TASK_INTERRUPTIBLE 1
176 #define TASK_UNINTERRUPTIBLE 2
177 #define __TASK_STOPPED 4
178 #define __TASK_TRACED 8
179 /* in tsk->exit_state */
180 #define EXIT_ZOMBIE 16
181 #define EXIT_DEAD 32
182 /* in tsk->state again */
183 #define TASK_DEAD 64
184 #define TASK_WAKEKILL 128
185
186 /* Convenience macros for the sake of set_task_state */
187 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
188 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
189 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
190
191 /* Convenience macros for the sake of wake_up */
192 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
193 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
194
195 /* get_task_state() */
196 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
197 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
198 __TASK_TRACED)
199
200 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
201 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
202 #define task_is_stopped_or_traced(task) \
203 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
204 #define task_contributes_to_load(task) \
205 ((task->state & TASK_UNINTERRUPTIBLE) != 0)
206
207 #define __set_task_state(tsk, state_value) \
208 do { (tsk)->state = (state_value); } while (0)
209 #define set_task_state(tsk, state_value) \
210 set_mb((tsk)->state, (state_value))
211
212 /*
213 * set_current_state() includes a barrier so that the write of current->state
214 * is correctly serialised wrt the caller's subsequent test of whether to
215 * actually sleep:
216 *
217 * set_current_state(TASK_UNINTERRUPTIBLE);
218 * if (do_i_need_to_sleep())
219 * schedule();
220 *
221 * If the caller does not need such serialisation then use __set_current_state()
222 */
223 #define __set_current_state(state_value) \
224 do { current->state = (state_value); } while (0)
225 #define set_current_state(state_value) \
226 set_mb(current->state, (state_value))
227
228 /* Task command name length */
229 #define TASK_COMM_LEN 16
230
231 #include <linux/spinlock.h>
232
233 /*
234 * This serializes "schedule()" and also protects
235 * the run-queue from deletions/modifications (but
236 * _adding_ to the beginning of the run-queue has
237 * a separate lock).
238 */
239 extern rwlock_t tasklist_lock;
240 extern spinlock_t mmlist_lock;
241
242 struct task_struct;
243
244 extern void sched_init(void);
245 extern void sched_init_smp(void);
246 extern asmlinkage void schedule_tail(struct task_struct *prev);
247 extern void init_idle(struct task_struct *idle, int cpu);
248 extern void init_idle_bootup_task(struct task_struct *idle);
249
250 extern int runqueue_is_locked(void);
251 extern void task_rq_unlock_wait(struct task_struct *p);
252
253 extern cpumask_var_t nohz_cpu_mask;
254 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
255 extern int select_nohz_load_balancer(int cpu);
256 #else
257 static inline int select_nohz_load_balancer(int cpu)
258 {
259 return 0;
260 }
261 #endif
262
263 /*
264 * Only dump TASK_* tasks. (0 for all tasks)
265 */
266 extern void show_state_filter(unsigned long state_filter);
267
268 static inline void show_state(void)
269 {
270 show_state_filter(0);
271 }
272
273 extern void show_regs(struct pt_regs *);
274
275 /*
276 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
277 * task), SP is the stack pointer of the first frame that should be shown in the back
278 * trace (or NULL if the entire call-chain of the task should be shown).
279 */
280 extern void show_stack(struct task_struct *task, unsigned long *sp);
281
282 void io_schedule(void);
283 long io_schedule_timeout(long timeout);
284
285 extern void cpu_init (void);
286 extern void trap_init(void);
287 extern void update_process_times(int user);
288 extern void scheduler_tick(void);
289
290 extern void sched_show_task(struct task_struct *p);
291
292 #ifdef CONFIG_DETECT_SOFTLOCKUP
293 extern void softlockup_tick(void);
294 extern void touch_softlockup_watchdog(void);
295 extern void touch_all_softlockup_watchdogs(void);
296 extern unsigned int softlockup_panic;
297 extern unsigned long sysctl_hung_task_check_count;
298 extern unsigned long sysctl_hung_task_timeout_secs;
299 extern unsigned long sysctl_hung_task_warnings;
300 extern int softlockup_thresh;
301 #else
302 static inline void softlockup_tick(void)
303 {
304 }
305 static inline void spawn_softlockup_task(void)
306 {
307 }
308 static inline void touch_softlockup_watchdog(void)
309 {
310 }
311 static inline void touch_all_softlockup_watchdogs(void)
312 {
313 }
314 #endif
315
316
317 /* Attach to any functions which should be ignored in wchan output. */
318 #define __sched __attribute__((__section__(".sched.text")))
319
320 /* Linker adds these: start and end of __sched functions */
321 extern char __sched_text_start[], __sched_text_end[];
322
323 /* Is this address in the __sched functions? */
324 extern int in_sched_functions(unsigned long addr);
325
326 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
327 extern signed long schedule_timeout(signed long timeout);
328 extern signed long schedule_timeout_interruptible(signed long timeout);
329 extern signed long schedule_timeout_killable(signed long timeout);
330 extern signed long schedule_timeout_uninterruptible(signed long timeout);
331 asmlinkage void schedule(void);
332
333 struct nsproxy;
334 struct user_namespace;
335
336 /* Maximum number of active map areas.. This is a random (large) number */
337 #define DEFAULT_MAX_MAP_COUNT 65536
338
339 extern int sysctl_max_map_count;
340
341 #include <linux/aio.h>
342
343 extern unsigned long
344 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
345 unsigned long, unsigned long);
346 extern unsigned long
347 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
348 unsigned long len, unsigned long pgoff,
349 unsigned long flags);
350 extern void arch_unmap_area(struct mm_struct *, unsigned long);
351 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
352
353 #if USE_SPLIT_PTLOCKS
354 /*
355 * The mm counters are not protected by its page_table_lock,
356 * so must be incremented atomically.
357 */
358 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
359 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
360 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
361 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
362 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
363
364 #else /* !USE_SPLIT_PTLOCKS */
365 /*
366 * The mm counters are protected by its page_table_lock,
367 * so can be incremented directly.
368 */
369 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
370 #define get_mm_counter(mm, member) ((mm)->_##member)
371 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
372 #define inc_mm_counter(mm, member) (mm)->_##member++
373 #define dec_mm_counter(mm, member) (mm)->_##member--
374
375 #endif /* !USE_SPLIT_PTLOCKS */
376
377 #define get_mm_rss(mm) \
378 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
379 #define update_hiwater_rss(mm) do { \
380 unsigned long _rss = get_mm_rss(mm); \
381 if ((mm)->hiwater_rss < _rss) \
382 (mm)->hiwater_rss = _rss; \
383 } while (0)
384 #define update_hiwater_vm(mm) do { \
385 if ((mm)->hiwater_vm < (mm)->total_vm) \
386 (mm)->hiwater_vm = (mm)->total_vm; \
387 } while (0)
388
389 extern void set_dumpable(struct mm_struct *mm, int value);
390 extern int get_dumpable(struct mm_struct *mm);
391
392 /* mm flags */
393 /* dumpable bits */
394 #define MMF_DUMPABLE 0 /* core dump is permitted */
395 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
396 #define MMF_DUMPABLE_BITS 2
397
398 /* coredump filter bits */
399 #define MMF_DUMP_ANON_PRIVATE 2
400 #define MMF_DUMP_ANON_SHARED 3
401 #define MMF_DUMP_MAPPED_PRIVATE 4
402 #define MMF_DUMP_MAPPED_SHARED 5
403 #define MMF_DUMP_ELF_HEADERS 6
404 #define MMF_DUMP_HUGETLB_PRIVATE 7
405 #define MMF_DUMP_HUGETLB_SHARED 8
406 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
407 #define MMF_DUMP_FILTER_BITS 7
408 #define MMF_DUMP_FILTER_MASK \
409 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
410 #define MMF_DUMP_FILTER_DEFAULT \
411 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
412 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
413
414 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
415 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
416 #else
417 # define MMF_DUMP_MASK_DEFAULT_ELF 0
418 #endif
419
420 struct sighand_struct {
421 atomic_t count;
422 struct k_sigaction action[_NSIG];
423 spinlock_t siglock;
424 wait_queue_head_t signalfd_wqh;
425 };
426
427 struct pacct_struct {
428 int ac_flag;
429 long ac_exitcode;
430 unsigned long ac_mem;
431 cputime_t ac_utime, ac_stime;
432 unsigned long ac_minflt, ac_majflt;
433 };
434
435 /**
436 * struct task_cputime - collected CPU time counts
437 * @utime: time spent in user mode, in &cputime_t units
438 * @stime: time spent in kernel mode, in &cputime_t units
439 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
440 *
441 * This structure groups together three kinds of CPU time that are
442 * tracked for threads and thread groups. Most things considering
443 * CPU time want to group these counts together and treat all three
444 * of them in parallel.
445 */
446 struct task_cputime {
447 cputime_t utime;
448 cputime_t stime;
449 unsigned long long sum_exec_runtime;
450 };
451 /* Alternate field names when used to cache expirations. */
452 #define prof_exp stime
453 #define virt_exp utime
454 #define sched_exp sum_exec_runtime
455
456 /**
457 * struct thread_group_cputime - thread group interval timer counts
458 * @totals: thread group interval timers; substructure for
459 * uniprocessor kernel, per-cpu for SMP kernel.
460 *
461 * This structure contains the version of task_cputime, above, that is
462 * used for thread group CPU clock calculations.
463 */
464 struct thread_group_cputime {
465 struct task_cputime *totals;
466 };
467
468 /*
469 * NOTE! "signal_struct" does not have it's own
470 * locking, because a shared signal_struct always
471 * implies a shared sighand_struct, so locking
472 * sighand_struct is always a proper superset of
473 * the locking of signal_struct.
474 */
475 struct signal_struct {
476 atomic_t count;
477 atomic_t live;
478
479 wait_queue_head_t wait_chldexit; /* for wait4() */
480
481 /* current thread group signal load-balancing target: */
482 struct task_struct *curr_target;
483
484 /* shared signal handling: */
485 struct sigpending shared_pending;
486
487 /* thread group exit support */
488 int group_exit_code;
489 /* overloaded:
490 * - notify group_exit_task when ->count is equal to notify_count
491 * - everyone except group_exit_task is stopped during signal delivery
492 * of fatal signals, group_exit_task processes the signal.
493 */
494 int notify_count;
495 struct task_struct *group_exit_task;
496
497 /* thread group stop support, overloads group_exit_code too */
498 int group_stop_count;
499 unsigned int flags; /* see SIGNAL_* flags below */
500
501 /* POSIX.1b Interval Timers */
502 struct list_head posix_timers;
503
504 /* ITIMER_REAL timer for the process */
505 struct hrtimer real_timer;
506 struct pid *leader_pid;
507 ktime_t it_real_incr;
508
509 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
510 cputime_t it_prof_expires, it_virt_expires;
511 cputime_t it_prof_incr, it_virt_incr;
512
513 /*
514 * Thread group totals for process CPU clocks.
515 * See thread_group_cputime(), et al, for details.
516 */
517 struct thread_group_cputime cputime;
518
519 /* Earliest-expiration cache. */
520 struct task_cputime cputime_expires;
521
522 struct list_head cpu_timers[3];
523
524 /* job control IDs */
525
526 /*
527 * pgrp and session fields are deprecated.
528 * use the task_session_Xnr and task_pgrp_Xnr routines below
529 */
530
531 union {
532 pid_t pgrp __deprecated;
533 pid_t __pgrp;
534 };
535
536 struct pid *tty_old_pgrp;
537
538 union {
539 pid_t session __deprecated;
540 pid_t __session;
541 };
542
543 /* boolean value for session group leader */
544 int leader;
545
546 struct tty_struct *tty; /* NULL if no tty */
547
548 /*
549 * Cumulative resource counters for dead threads in the group,
550 * and for reaped dead child processes forked by this group.
551 * Live threads maintain their own counters and add to these
552 * in __exit_signal, except for the group leader.
553 */
554 cputime_t cutime, cstime;
555 cputime_t gtime;
556 cputime_t cgtime;
557 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
558 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
559 unsigned long inblock, oublock, cinblock, coublock;
560 struct task_io_accounting ioac;
561
562 /*
563 * We don't bother to synchronize most readers of this at all,
564 * because there is no reader checking a limit that actually needs
565 * to get both rlim_cur and rlim_max atomically, and either one
566 * alone is a single word that can safely be read normally.
567 * getrlimit/setrlimit use task_lock(current->group_leader) to
568 * protect this instead of the siglock, because they really
569 * have no need to disable irqs.
570 */
571 struct rlimit rlim[RLIM_NLIMITS];
572
573 #ifdef CONFIG_BSD_PROCESS_ACCT
574 struct pacct_struct pacct; /* per-process accounting information */
575 #endif
576 #ifdef CONFIG_TASKSTATS
577 struct taskstats *stats;
578 #endif
579 #ifdef CONFIG_AUDIT
580 unsigned audit_tty;
581 struct tty_audit_buf *tty_audit_buf;
582 #endif
583 };
584
585 /* Context switch must be unlocked if interrupts are to be enabled */
586 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
587 # define __ARCH_WANT_UNLOCKED_CTXSW
588 #endif
589
590 /*
591 * Bits in flags field of signal_struct.
592 */
593 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
594 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
595 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
596 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
597 /*
598 * Pending notifications to parent.
599 */
600 #define SIGNAL_CLD_STOPPED 0x00000010
601 #define SIGNAL_CLD_CONTINUED 0x00000020
602 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
603
604 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
605
606 /* If true, all threads except ->group_exit_task have pending SIGKILL */
607 static inline int signal_group_exit(const struct signal_struct *sig)
608 {
609 return (sig->flags & SIGNAL_GROUP_EXIT) ||
610 (sig->group_exit_task != NULL);
611 }
612
613 /*
614 * Some day this will be a full-fledged user tracking system..
615 */
616 struct user_struct {
617 atomic_t __count; /* reference count */
618 atomic_t processes; /* How many processes does this user have? */
619 atomic_t files; /* How many open files does this user have? */
620 atomic_t sigpending; /* How many pending signals does this user have? */
621 #ifdef CONFIG_INOTIFY_USER
622 atomic_t inotify_watches; /* How many inotify watches does this user have? */
623 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
624 #endif
625 #ifdef CONFIG_EPOLL
626 atomic_t epoll_devs; /* The number of epoll descriptors currently open */
627 atomic_t epoll_watches; /* The number of file descriptors currently watched */
628 #endif
629 #ifdef CONFIG_POSIX_MQUEUE
630 /* protected by mq_lock */
631 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
632 #endif
633 unsigned long locked_shm; /* How many pages of mlocked shm ? */
634
635 #ifdef CONFIG_KEYS
636 struct key *uid_keyring; /* UID specific keyring */
637 struct key *session_keyring; /* UID's default session keyring */
638 #endif
639
640 /* Hash table maintenance information */
641 struct hlist_node uidhash_node;
642 uid_t uid;
643 struct user_namespace *user_ns;
644
645 #ifdef CONFIG_USER_SCHED
646 struct task_group *tg;
647 #ifdef CONFIG_SYSFS
648 struct kobject kobj;
649 struct work_struct work;
650 #endif
651 #endif
652 };
653
654 extern int uids_sysfs_init(void);
655
656 extern struct user_struct *find_user(uid_t);
657
658 extern struct user_struct root_user;
659 #define INIT_USER (&root_user)
660
661
662 struct backing_dev_info;
663 struct reclaim_state;
664
665 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
666 struct sched_info {
667 /* cumulative counters */
668 unsigned long pcount; /* # of times run on this cpu */
669 unsigned long long run_delay; /* time spent waiting on a runqueue */
670
671 /* timestamps */
672 unsigned long long last_arrival,/* when we last ran on a cpu */
673 last_queued; /* when we were last queued to run */
674 #ifdef CONFIG_SCHEDSTATS
675 /* BKL stats */
676 unsigned int bkl_count;
677 #endif
678 };
679 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
680
681 #ifdef CONFIG_TASK_DELAY_ACCT
682 struct task_delay_info {
683 spinlock_t lock;
684 unsigned int flags; /* Private per-task flags */
685
686 /* For each stat XXX, add following, aligned appropriately
687 *
688 * struct timespec XXX_start, XXX_end;
689 * u64 XXX_delay;
690 * u32 XXX_count;
691 *
692 * Atomicity of updates to XXX_delay, XXX_count protected by
693 * single lock above (split into XXX_lock if contention is an issue).
694 */
695
696 /*
697 * XXX_count is incremented on every XXX operation, the delay
698 * associated with the operation is added to XXX_delay.
699 * XXX_delay contains the accumulated delay time in nanoseconds.
700 */
701 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
702 u64 blkio_delay; /* wait for sync block io completion */
703 u64 swapin_delay; /* wait for swapin block io completion */
704 u32 blkio_count; /* total count of the number of sync block */
705 /* io operations performed */
706 u32 swapin_count; /* total count of the number of swapin block */
707 /* io operations performed */
708
709 struct timespec freepages_start, freepages_end;
710 u64 freepages_delay; /* wait for memory reclaim */
711 u32 freepages_count; /* total count of memory reclaim */
712 };
713 #endif /* CONFIG_TASK_DELAY_ACCT */
714
715 static inline int sched_info_on(void)
716 {
717 #ifdef CONFIG_SCHEDSTATS
718 return 1;
719 #elif defined(CONFIG_TASK_DELAY_ACCT)
720 extern int delayacct_on;
721 return delayacct_on;
722 #else
723 return 0;
724 #endif
725 }
726
727 enum cpu_idle_type {
728 CPU_IDLE,
729 CPU_NOT_IDLE,
730 CPU_NEWLY_IDLE,
731 CPU_MAX_IDLE_TYPES
732 };
733
734 /*
735 * sched-domains (multiprocessor balancing) declarations:
736 */
737
738 /*
739 * Increase resolution of nice-level calculations:
740 */
741 #define SCHED_LOAD_SHIFT 10
742 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
743
744 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
745
746 #ifdef CONFIG_SMP
747 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */
748 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */
749 #define SD_BALANCE_EXEC 4 /* Balance on exec */
750 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */
751 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */
752 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */
753 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */
754 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */
755 #define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */
756 #define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */
757 #define SD_SERIALIZE 1024 /* Only a single load balancing instance */
758 #define SD_WAKE_IDLE_FAR 2048 /* Gain latency sacrificing cache hit */
759
760 enum powersavings_balance_level {
761 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */
762 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package
763 * first for long running threads
764 */
765 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle
766 * cpu package for power savings
767 */
768 MAX_POWERSAVINGS_BALANCE_LEVELS
769 };
770
771 extern int sched_mc_power_savings, sched_smt_power_savings;
772
773 static inline int sd_balance_for_mc_power(void)
774 {
775 if (sched_smt_power_savings)
776 return SD_POWERSAVINGS_BALANCE;
777
778 return 0;
779 }
780
781 static inline int sd_balance_for_package_power(void)
782 {
783 if (sched_mc_power_savings | sched_smt_power_savings)
784 return SD_POWERSAVINGS_BALANCE;
785
786 return 0;
787 }
788
789 /*
790 * Optimise SD flags for power savings:
791 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings.
792 * Keep default SD flags if sched_{smt,mc}_power_saving=0
793 */
794
795 static inline int sd_power_saving_flags(void)
796 {
797 if (sched_mc_power_savings | sched_smt_power_savings)
798 return SD_BALANCE_NEWIDLE;
799
800 return 0;
801 }
802
803 struct sched_group {
804 struct sched_group *next; /* Must be a circular list */
805
806 /*
807 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
808 * single CPU. This is read only (except for setup, hotplug CPU).
809 * Note : Never change cpu_power without recompute its reciprocal
810 */
811 unsigned int __cpu_power;
812 /*
813 * reciprocal value of cpu_power to avoid expensive divides
814 * (see include/linux/reciprocal_div.h)
815 */
816 u32 reciprocal_cpu_power;
817
818 unsigned long cpumask[];
819 };
820
821 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
822 {
823 return to_cpumask(sg->cpumask);
824 }
825
826 enum sched_domain_level {
827 SD_LV_NONE = 0,
828 SD_LV_SIBLING,
829 SD_LV_MC,
830 SD_LV_CPU,
831 SD_LV_NODE,
832 SD_LV_ALLNODES,
833 SD_LV_MAX
834 };
835
836 struct sched_domain_attr {
837 int relax_domain_level;
838 };
839
840 #define SD_ATTR_INIT (struct sched_domain_attr) { \
841 .relax_domain_level = -1, \
842 }
843
844 struct sched_domain {
845 /* These fields must be setup */
846 struct sched_domain *parent; /* top domain must be null terminated */
847 struct sched_domain *child; /* bottom domain must be null terminated */
848 struct sched_group *groups; /* the balancing groups of the domain */
849 unsigned long min_interval; /* Minimum balance interval ms */
850 unsigned long max_interval; /* Maximum balance interval ms */
851 unsigned int busy_factor; /* less balancing by factor if busy */
852 unsigned int imbalance_pct; /* No balance until over watermark */
853 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
854 unsigned int busy_idx;
855 unsigned int idle_idx;
856 unsigned int newidle_idx;
857 unsigned int wake_idx;
858 unsigned int forkexec_idx;
859 int flags; /* See SD_* */
860 enum sched_domain_level level;
861
862 /* Runtime fields. */
863 unsigned long last_balance; /* init to jiffies. units in jiffies */
864 unsigned int balance_interval; /* initialise to 1. units in ms. */
865 unsigned int nr_balance_failed; /* initialise to 0 */
866
867 u64 last_update;
868
869 #ifdef CONFIG_SCHEDSTATS
870 /* load_balance() stats */
871 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
872 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
873 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
874 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
875 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
876 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
877 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
878 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
879
880 /* Active load balancing */
881 unsigned int alb_count;
882 unsigned int alb_failed;
883 unsigned int alb_pushed;
884
885 /* SD_BALANCE_EXEC stats */
886 unsigned int sbe_count;
887 unsigned int sbe_balanced;
888 unsigned int sbe_pushed;
889
890 /* SD_BALANCE_FORK stats */
891 unsigned int sbf_count;
892 unsigned int sbf_balanced;
893 unsigned int sbf_pushed;
894
895 /* try_to_wake_up() stats */
896 unsigned int ttwu_wake_remote;
897 unsigned int ttwu_move_affine;
898 unsigned int ttwu_move_balance;
899 #endif
900 #ifdef CONFIG_SCHED_DEBUG
901 char *name;
902 #endif
903
904 /* span of all CPUs in this domain */
905 unsigned long span[];
906 };
907
908 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
909 {
910 return to_cpumask(sd->span);
911 }
912
913 extern void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
914 struct sched_domain_attr *dattr_new);
915
916 /* Test a flag in parent sched domain */
917 static inline int test_sd_parent(struct sched_domain *sd, int flag)
918 {
919 if (sd->parent && (sd->parent->flags & flag))
920 return 1;
921
922 return 0;
923 }
924
925 #else /* CONFIG_SMP */
926
927 struct sched_domain_attr;
928
929 static inline void
930 partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
931 struct sched_domain_attr *dattr_new)
932 {
933 }
934 #endif /* !CONFIG_SMP */
935
936 struct io_context; /* See blkdev.h */
937
938
939 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
940 extern void prefetch_stack(struct task_struct *t);
941 #else
942 static inline void prefetch_stack(struct task_struct *t) { }
943 #endif
944
945 struct audit_context; /* See audit.c */
946 struct mempolicy;
947 struct pipe_inode_info;
948 struct uts_namespace;
949
950 struct rq;
951 struct sched_domain;
952
953 struct sched_class {
954 const struct sched_class *next;
955
956 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
957 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
958 void (*yield_task) (struct rq *rq);
959
960 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int sync);
961
962 struct task_struct * (*pick_next_task) (struct rq *rq);
963 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
964
965 #ifdef CONFIG_SMP
966 int (*select_task_rq)(struct task_struct *p, int sync);
967
968 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
969 struct rq *busiest, unsigned long max_load_move,
970 struct sched_domain *sd, enum cpu_idle_type idle,
971 int *all_pinned, int *this_best_prio);
972
973 int (*move_one_task) (struct rq *this_rq, int this_cpu,
974 struct rq *busiest, struct sched_domain *sd,
975 enum cpu_idle_type idle);
976 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
977 void (*post_schedule) (struct rq *this_rq);
978 void (*task_wake_up) (struct rq *this_rq, struct task_struct *task);
979
980 void (*set_cpus_allowed)(struct task_struct *p,
981 const struct cpumask *newmask);
982
983 void (*rq_online)(struct rq *rq);
984 void (*rq_offline)(struct rq *rq);
985 #endif
986
987 void (*set_curr_task) (struct rq *rq);
988 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
989 void (*task_new) (struct rq *rq, struct task_struct *p);
990
991 void (*switched_from) (struct rq *this_rq, struct task_struct *task,
992 int running);
993 void (*switched_to) (struct rq *this_rq, struct task_struct *task,
994 int running);
995 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
996 int oldprio, int running);
997
998 #ifdef CONFIG_FAIR_GROUP_SCHED
999 void (*moved_group) (struct task_struct *p);
1000 #endif
1001 };
1002
1003 struct load_weight {
1004 unsigned long weight, inv_weight;
1005 };
1006
1007 /*
1008 * CFS stats for a schedulable entity (task, task-group etc)
1009 *
1010 * Current field usage histogram:
1011 *
1012 * 4 se->block_start
1013 * 4 se->run_node
1014 * 4 se->sleep_start
1015 * 6 se->load.weight
1016 */
1017 struct sched_entity {
1018 struct load_weight load; /* for load-balancing */
1019 struct rb_node run_node;
1020 struct list_head group_node;
1021 unsigned int on_rq;
1022
1023 u64 exec_start;
1024 u64 sum_exec_runtime;
1025 u64 vruntime;
1026 u64 prev_sum_exec_runtime;
1027
1028 u64 last_wakeup;
1029 u64 avg_overlap;
1030
1031 #ifdef CONFIG_SCHEDSTATS
1032 u64 wait_start;
1033 u64 wait_max;
1034 u64 wait_count;
1035 u64 wait_sum;
1036
1037 u64 sleep_start;
1038 u64 sleep_max;
1039 s64 sum_sleep_runtime;
1040
1041 u64 block_start;
1042 u64 block_max;
1043 u64 exec_max;
1044 u64 slice_max;
1045
1046 u64 nr_migrations;
1047 u64 nr_migrations_cold;
1048 u64 nr_failed_migrations_affine;
1049 u64 nr_failed_migrations_running;
1050 u64 nr_failed_migrations_hot;
1051 u64 nr_forced_migrations;
1052 u64 nr_forced2_migrations;
1053
1054 u64 nr_wakeups;
1055 u64 nr_wakeups_sync;
1056 u64 nr_wakeups_migrate;
1057 u64 nr_wakeups_local;
1058 u64 nr_wakeups_remote;
1059 u64 nr_wakeups_affine;
1060 u64 nr_wakeups_affine_attempts;
1061 u64 nr_wakeups_passive;
1062 u64 nr_wakeups_idle;
1063 #endif
1064
1065 #ifdef CONFIG_FAIR_GROUP_SCHED
1066 struct sched_entity *parent;
1067 /* rq on which this entity is (to be) queued: */
1068 struct cfs_rq *cfs_rq;
1069 /* rq "owned" by this entity/group: */
1070 struct cfs_rq *my_q;
1071 #endif
1072 };
1073
1074 struct sched_rt_entity {
1075 struct list_head run_list;
1076 unsigned long timeout;
1077 unsigned int time_slice;
1078 int nr_cpus_allowed;
1079
1080 struct sched_rt_entity *back;
1081 #ifdef CONFIG_RT_GROUP_SCHED
1082 struct sched_rt_entity *parent;
1083 /* rq on which this entity is (to be) queued: */
1084 struct rt_rq *rt_rq;
1085 /* rq "owned" by this entity/group: */
1086 struct rt_rq *my_q;
1087 #endif
1088 };
1089
1090 struct task_struct {
1091 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1092 void *stack;
1093 atomic_t usage;
1094 unsigned int flags; /* per process flags, defined below */
1095 unsigned int ptrace;
1096
1097 int lock_depth; /* BKL lock depth */
1098
1099 #ifdef CONFIG_SMP
1100 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1101 int oncpu;
1102 #endif
1103 #endif
1104
1105 int prio, static_prio, normal_prio;
1106 unsigned int rt_priority;
1107 const struct sched_class *sched_class;
1108 struct sched_entity se;
1109 struct sched_rt_entity rt;
1110
1111 #ifdef CONFIG_PREEMPT_NOTIFIERS
1112 /* list of struct preempt_notifier: */
1113 struct hlist_head preempt_notifiers;
1114 #endif
1115
1116 /*
1117 * fpu_counter contains the number of consecutive context switches
1118 * that the FPU is used. If this is over a threshold, the lazy fpu
1119 * saving becomes unlazy to save the trap. This is an unsigned char
1120 * so that after 256 times the counter wraps and the behavior turns
1121 * lazy again; this to deal with bursty apps that only use FPU for
1122 * a short time
1123 */
1124 unsigned char fpu_counter;
1125 s8 oomkilladj; /* OOM kill score adjustment (bit shift). */
1126 #ifdef CONFIG_BLK_DEV_IO_TRACE
1127 unsigned int btrace_seq;
1128 #endif
1129
1130 unsigned int policy;
1131 cpumask_t cpus_allowed;
1132
1133 #ifdef CONFIG_PREEMPT_RCU
1134 int rcu_read_lock_nesting;
1135 int rcu_flipctr_idx;
1136 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1137
1138 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1139 struct sched_info sched_info;
1140 #endif
1141
1142 struct list_head tasks;
1143
1144 struct mm_struct *mm, *active_mm;
1145
1146 /* task state */
1147 struct linux_binfmt *binfmt;
1148 int exit_state;
1149 int exit_code, exit_signal;
1150 int pdeath_signal; /* The signal sent when the parent dies */
1151 /* ??? */
1152 unsigned int personality;
1153 unsigned did_exec:1;
1154 pid_t pid;
1155 pid_t tgid;
1156
1157 #ifdef CONFIG_CC_STACKPROTECTOR
1158 /* Canary value for the -fstack-protector gcc feature */
1159 unsigned long stack_canary;
1160 #endif
1161 /*
1162 * pointers to (original) parent process, youngest child, younger sibling,
1163 * older sibling, respectively. (p->father can be replaced with
1164 * p->real_parent->pid)
1165 */
1166 struct task_struct *real_parent; /* real parent process */
1167 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1168 /*
1169 * children/sibling forms the list of my natural children
1170 */
1171 struct list_head children; /* list of my children */
1172 struct list_head sibling; /* linkage in my parent's children list */
1173 struct task_struct *group_leader; /* threadgroup leader */
1174
1175 /*
1176 * ptraced is the list of tasks this task is using ptrace on.
1177 * This includes both natural children and PTRACE_ATTACH targets.
1178 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1179 */
1180 struct list_head ptraced;
1181 struct list_head ptrace_entry;
1182
1183 #ifdef CONFIG_X86_PTRACE_BTS
1184 /*
1185 * This is the tracer handle for the ptrace BTS extension.
1186 * This field actually belongs to the ptracer task.
1187 */
1188 struct bts_tracer *bts;
1189 /*
1190 * The buffer to hold the BTS data.
1191 */
1192 void *bts_buffer;
1193 size_t bts_size;
1194 #endif /* CONFIG_X86_PTRACE_BTS */
1195
1196 /* PID/PID hash table linkage. */
1197 struct pid_link pids[PIDTYPE_MAX];
1198 struct list_head thread_group;
1199
1200 struct completion *vfork_done; /* for vfork() */
1201 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1202 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1203
1204 cputime_t utime, stime, utimescaled, stimescaled;
1205 cputime_t gtime;
1206 cputime_t prev_utime, prev_stime;
1207 unsigned long nvcsw, nivcsw; /* context switch counts */
1208 struct timespec start_time; /* monotonic time */
1209 struct timespec real_start_time; /* boot based time */
1210 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1211 unsigned long min_flt, maj_flt;
1212
1213 struct task_cputime cputime_expires;
1214 struct list_head cpu_timers[3];
1215
1216 /* process credentials */
1217 const struct cred *real_cred; /* objective and real subjective task
1218 * credentials (COW) */
1219 const struct cred *cred; /* effective (overridable) subjective task
1220 * credentials (COW) */
1221 struct mutex cred_exec_mutex; /* execve vs ptrace cred calculation mutex */
1222
1223 char comm[TASK_COMM_LEN]; /* executable name excluding path
1224 - access with [gs]et_task_comm (which lock
1225 it with task_lock())
1226 - initialized normally by flush_old_exec */
1227 /* file system info */
1228 int link_count, total_link_count;
1229 #ifdef CONFIG_SYSVIPC
1230 /* ipc stuff */
1231 struct sysv_sem sysvsem;
1232 #endif
1233 #ifdef CONFIG_DETECT_SOFTLOCKUP
1234 /* hung task detection */
1235 unsigned long last_switch_timestamp;
1236 unsigned long last_switch_count;
1237 #endif
1238 /* CPU-specific state of this task */
1239 struct thread_struct thread;
1240 /* filesystem information */
1241 struct fs_struct *fs;
1242 /* open file information */
1243 struct files_struct *files;
1244 /* namespaces */
1245 struct nsproxy *nsproxy;
1246 /* signal handlers */
1247 struct signal_struct *signal;
1248 struct sighand_struct *sighand;
1249
1250 sigset_t blocked, real_blocked;
1251 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1252 struct sigpending pending;
1253
1254 unsigned long sas_ss_sp;
1255 size_t sas_ss_size;
1256 int (*notifier)(void *priv);
1257 void *notifier_data;
1258 sigset_t *notifier_mask;
1259 struct audit_context *audit_context;
1260 #ifdef CONFIG_AUDITSYSCALL
1261 uid_t loginuid;
1262 unsigned int sessionid;
1263 #endif
1264 seccomp_t seccomp;
1265
1266 /* Thread group tracking */
1267 u32 parent_exec_id;
1268 u32 self_exec_id;
1269 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
1270 spinlock_t alloc_lock;
1271
1272 /* Protection of the PI data structures: */
1273 spinlock_t pi_lock;
1274
1275 #ifdef CONFIG_RT_MUTEXES
1276 /* PI waiters blocked on a rt_mutex held by this task */
1277 struct plist_head pi_waiters;
1278 /* Deadlock detection and priority inheritance handling */
1279 struct rt_mutex_waiter *pi_blocked_on;
1280 #endif
1281
1282 #ifdef CONFIG_DEBUG_MUTEXES
1283 /* mutex deadlock detection */
1284 struct mutex_waiter *blocked_on;
1285 #endif
1286 #ifdef CONFIG_TRACE_IRQFLAGS
1287 unsigned int irq_events;
1288 int hardirqs_enabled;
1289 unsigned long hardirq_enable_ip;
1290 unsigned int hardirq_enable_event;
1291 unsigned long hardirq_disable_ip;
1292 unsigned int hardirq_disable_event;
1293 int softirqs_enabled;
1294 unsigned long softirq_disable_ip;
1295 unsigned int softirq_disable_event;
1296 unsigned long softirq_enable_ip;
1297 unsigned int softirq_enable_event;
1298 int hardirq_context;
1299 int softirq_context;
1300 #endif
1301 #ifdef CONFIG_LOCKDEP
1302 # define MAX_LOCK_DEPTH 48UL
1303 u64 curr_chain_key;
1304 int lockdep_depth;
1305 unsigned int lockdep_recursion;
1306 struct held_lock held_locks[MAX_LOCK_DEPTH];
1307 #endif
1308
1309 /* journalling filesystem info */
1310 void *journal_info;
1311
1312 /* stacked block device info */
1313 struct bio *bio_list, **bio_tail;
1314
1315 /* VM state */
1316 struct reclaim_state *reclaim_state;
1317
1318 struct backing_dev_info *backing_dev_info;
1319
1320 struct io_context *io_context;
1321
1322 unsigned long ptrace_message;
1323 siginfo_t *last_siginfo; /* For ptrace use. */
1324 struct task_io_accounting ioac;
1325 #if defined(CONFIG_TASK_XACCT)
1326 u64 acct_rss_mem1; /* accumulated rss usage */
1327 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1328 cputime_t acct_timexpd; /* stime + utime since last update */
1329 #endif
1330 #ifdef CONFIG_CPUSETS
1331 nodemask_t mems_allowed;
1332 int cpuset_mems_generation;
1333 int cpuset_mem_spread_rotor;
1334 #endif
1335 #ifdef CONFIG_CGROUPS
1336 /* Control Group info protected by css_set_lock */
1337 struct css_set *cgroups;
1338 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1339 struct list_head cg_list;
1340 #endif
1341 #ifdef CONFIG_FUTEX
1342 struct robust_list_head __user *robust_list;
1343 #ifdef CONFIG_COMPAT
1344 struct compat_robust_list_head __user *compat_robust_list;
1345 #endif
1346 struct list_head pi_state_list;
1347 struct futex_pi_state *pi_state_cache;
1348 #endif
1349 #ifdef CONFIG_NUMA
1350 struct mempolicy *mempolicy;
1351 short il_next;
1352 #endif
1353 atomic_t fs_excl; /* holding fs exclusive resources */
1354 struct rcu_head rcu;
1355
1356 /*
1357 * cache last used pipe for splice
1358 */
1359 struct pipe_inode_info *splice_pipe;
1360 #ifdef CONFIG_TASK_DELAY_ACCT
1361 struct task_delay_info *delays;
1362 #endif
1363 #ifdef CONFIG_FAULT_INJECTION
1364 int make_it_fail;
1365 #endif
1366 struct prop_local_single dirties;
1367 #ifdef CONFIG_LATENCYTOP
1368 int latency_record_count;
1369 struct latency_record latency_record[LT_SAVECOUNT];
1370 #endif
1371 /*
1372 * time slack values; these are used to round up poll() and
1373 * select() etc timeout values. These are in nanoseconds.
1374 */
1375 unsigned long timer_slack_ns;
1376 unsigned long default_timer_slack_ns;
1377
1378 struct list_head *scm_work_list;
1379 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1380 /* Index of current stored adress in ret_stack */
1381 int curr_ret_stack;
1382 /* Stack of return addresses for return function tracing */
1383 struct ftrace_ret_stack *ret_stack;
1384 /*
1385 * Number of functions that haven't been traced
1386 * because of depth overrun.
1387 */
1388 atomic_t trace_overrun;
1389 /* Pause for the tracing */
1390 atomic_t tracing_graph_pause;
1391 #endif
1392 #ifdef CONFIG_TRACING
1393 /* state flags for use by tracers */
1394 unsigned long trace;
1395 #endif
1396 };
1397
1398 /*
1399 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1400 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1401 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1402 * values are inverted: lower p->prio value means higher priority.
1403 *
1404 * The MAX_USER_RT_PRIO value allows the actual maximum
1405 * RT priority to be separate from the value exported to
1406 * user-space. This allows kernel threads to set their
1407 * priority to a value higher than any user task. Note:
1408 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1409 */
1410
1411 #define MAX_USER_RT_PRIO 100
1412 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1413
1414 #define MAX_PRIO (MAX_RT_PRIO + 40)
1415 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1416
1417 static inline int rt_prio(int prio)
1418 {
1419 if (unlikely(prio < MAX_RT_PRIO))
1420 return 1;
1421 return 0;
1422 }
1423
1424 static inline int rt_task(struct task_struct *p)
1425 {
1426 return rt_prio(p->prio);
1427 }
1428
1429 static inline void set_task_session(struct task_struct *tsk, pid_t session)
1430 {
1431 tsk->signal->__session = session;
1432 }
1433
1434 static inline void set_task_pgrp(struct task_struct *tsk, pid_t pgrp)
1435 {
1436 tsk->signal->__pgrp = pgrp;
1437 }
1438
1439 static inline struct pid *task_pid(struct task_struct *task)
1440 {
1441 return task->pids[PIDTYPE_PID].pid;
1442 }
1443
1444 static inline struct pid *task_tgid(struct task_struct *task)
1445 {
1446 return task->group_leader->pids[PIDTYPE_PID].pid;
1447 }
1448
1449 static inline struct pid *task_pgrp(struct task_struct *task)
1450 {
1451 return task->group_leader->pids[PIDTYPE_PGID].pid;
1452 }
1453
1454 static inline struct pid *task_session(struct task_struct *task)
1455 {
1456 return task->group_leader->pids[PIDTYPE_SID].pid;
1457 }
1458
1459 struct pid_namespace;
1460
1461 /*
1462 * the helpers to get the task's different pids as they are seen
1463 * from various namespaces
1464 *
1465 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1466 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1467 * current.
1468 * task_xid_nr_ns() : id seen from the ns specified;
1469 *
1470 * set_task_vxid() : assigns a virtual id to a task;
1471 *
1472 * see also pid_nr() etc in include/linux/pid.h
1473 */
1474
1475 static inline pid_t task_pid_nr(struct task_struct *tsk)
1476 {
1477 return tsk->pid;
1478 }
1479
1480 pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1481
1482 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1483 {
1484 return pid_vnr(task_pid(tsk));
1485 }
1486
1487
1488 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1489 {
1490 return tsk->tgid;
1491 }
1492
1493 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1494
1495 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1496 {
1497 return pid_vnr(task_tgid(tsk));
1498 }
1499
1500
1501 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1502 {
1503 return tsk->signal->__pgrp;
1504 }
1505
1506 pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1507
1508 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1509 {
1510 return pid_vnr(task_pgrp(tsk));
1511 }
1512
1513
1514 static inline pid_t task_session_nr(struct task_struct *tsk)
1515 {
1516 return tsk->signal->__session;
1517 }
1518
1519 pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1520
1521 static inline pid_t task_session_vnr(struct task_struct *tsk)
1522 {
1523 return pid_vnr(task_session(tsk));
1524 }
1525
1526
1527 /**
1528 * pid_alive - check that a task structure is not stale
1529 * @p: Task structure to be checked.
1530 *
1531 * Test if a process is not yet dead (at most zombie state)
1532 * If pid_alive fails, then pointers within the task structure
1533 * can be stale and must not be dereferenced.
1534 */
1535 static inline int pid_alive(struct task_struct *p)
1536 {
1537 return p->pids[PIDTYPE_PID].pid != NULL;
1538 }
1539
1540 /**
1541 * is_global_init - check if a task structure is init
1542 * @tsk: Task structure to be checked.
1543 *
1544 * Check if a task structure is the first user space task the kernel created.
1545 */
1546 static inline int is_global_init(struct task_struct *tsk)
1547 {
1548 return tsk->pid == 1;
1549 }
1550
1551 /*
1552 * is_container_init:
1553 * check whether in the task is init in its own pid namespace.
1554 */
1555 extern int is_container_init(struct task_struct *tsk);
1556
1557 extern struct pid *cad_pid;
1558
1559 extern void free_task(struct task_struct *tsk);
1560 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1561
1562 extern void __put_task_struct(struct task_struct *t);
1563
1564 static inline void put_task_struct(struct task_struct *t)
1565 {
1566 if (atomic_dec_and_test(&t->usage))
1567 __put_task_struct(t);
1568 }
1569
1570 extern cputime_t task_utime(struct task_struct *p);
1571 extern cputime_t task_stime(struct task_struct *p);
1572 extern cputime_t task_gtime(struct task_struct *p);
1573
1574 /*
1575 * Per process flags
1576 */
1577 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1578 /* Not implemented yet, only for 486*/
1579 #define PF_STARTING 0x00000002 /* being created */
1580 #define PF_EXITING 0x00000004 /* getting shut down */
1581 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1582 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1583 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1584 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1585 #define PF_DUMPCORE 0x00000200 /* dumped core */
1586 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1587 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1588 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1589 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1590 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1591 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1592 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1593 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1594 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */
1595 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1596 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1597 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1598 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1599 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1600 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1601 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1602 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1603 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1604 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1605 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */
1606
1607 /*
1608 * Only the _current_ task can read/write to tsk->flags, but other
1609 * tasks can access tsk->flags in readonly mode for example
1610 * with tsk_used_math (like during threaded core dumping).
1611 * There is however an exception to this rule during ptrace
1612 * or during fork: the ptracer task is allowed to write to the
1613 * child->flags of its traced child (same goes for fork, the parent
1614 * can write to the child->flags), because we're guaranteed the
1615 * child is not running and in turn not changing child->flags
1616 * at the same time the parent does it.
1617 */
1618 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1619 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1620 #define clear_used_math() clear_stopped_child_used_math(current)
1621 #define set_used_math() set_stopped_child_used_math(current)
1622 #define conditional_stopped_child_used_math(condition, child) \
1623 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1624 #define conditional_used_math(condition) \
1625 conditional_stopped_child_used_math(condition, current)
1626 #define copy_to_stopped_child_used_math(child) \
1627 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1628 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1629 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1630 #define used_math() tsk_used_math(current)
1631
1632 #ifdef CONFIG_SMP
1633 extern int set_cpus_allowed_ptr(struct task_struct *p,
1634 const struct cpumask *new_mask);
1635 #else
1636 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1637 const struct cpumask *new_mask)
1638 {
1639 if (!cpumask_test_cpu(0, new_mask))
1640 return -EINVAL;
1641 return 0;
1642 }
1643 #endif
1644 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1645 {
1646 return set_cpus_allowed_ptr(p, &new_mask);
1647 }
1648
1649 extern unsigned long long sched_clock(void);
1650
1651 extern void sched_clock_init(void);
1652 extern u64 sched_clock_cpu(int cpu);
1653
1654 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1655 static inline void sched_clock_tick(void)
1656 {
1657 }
1658
1659 static inline void sched_clock_idle_sleep_event(void)
1660 {
1661 }
1662
1663 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1664 {
1665 }
1666 #else
1667 extern void sched_clock_tick(void);
1668 extern void sched_clock_idle_sleep_event(void);
1669 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1670 #endif
1671
1672 /*
1673 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1674 * clock constructed from sched_clock():
1675 */
1676 extern unsigned long long cpu_clock(int cpu);
1677
1678 extern unsigned long long
1679 task_sched_runtime(struct task_struct *task);
1680 extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1681
1682 /* sched_exec is called by processes performing an exec */
1683 #ifdef CONFIG_SMP
1684 extern void sched_exec(void);
1685 #else
1686 #define sched_exec() {}
1687 #endif
1688
1689 extern void sched_clock_idle_sleep_event(void);
1690 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1691
1692 #ifdef CONFIG_HOTPLUG_CPU
1693 extern void idle_task_exit(void);
1694 #else
1695 static inline void idle_task_exit(void) {}
1696 #endif
1697
1698 extern void sched_idle_next(void);
1699
1700 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1701 extern void wake_up_idle_cpu(int cpu);
1702 #else
1703 static inline void wake_up_idle_cpu(int cpu) { }
1704 #endif
1705
1706 extern unsigned int sysctl_sched_latency;
1707 extern unsigned int sysctl_sched_min_granularity;
1708 extern unsigned int sysctl_sched_wakeup_granularity;
1709 extern unsigned int sysctl_sched_shares_ratelimit;
1710 extern unsigned int sysctl_sched_shares_thresh;
1711 #ifdef CONFIG_SCHED_DEBUG
1712 extern unsigned int sysctl_sched_child_runs_first;
1713 extern unsigned int sysctl_sched_features;
1714 extern unsigned int sysctl_sched_migration_cost;
1715 extern unsigned int sysctl_sched_nr_migrate;
1716
1717 int sched_nr_latency_handler(struct ctl_table *table, int write,
1718 struct file *file, void __user *buffer, size_t *length,
1719 loff_t *ppos);
1720 #endif
1721 extern unsigned int sysctl_sched_rt_period;
1722 extern int sysctl_sched_rt_runtime;
1723
1724 int sched_rt_handler(struct ctl_table *table, int write,
1725 struct file *filp, void __user *buffer, size_t *lenp,
1726 loff_t *ppos);
1727
1728 extern unsigned int sysctl_sched_compat_yield;
1729
1730 #ifdef CONFIG_RT_MUTEXES
1731 extern int rt_mutex_getprio(struct task_struct *p);
1732 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1733 extern void rt_mutex_adjust_pi(struct task_struct *p);
1734 #else
1735 static inline int rt_mutex_getprio(struct task_struct *p)
1736 {
1737 return p->normal_prio;
1738 }
1739 # define rt_mutex_adjust_pi(p) do { } while (0)
1740 #endif
1741
1742 extern void set_user_nice(struct task_struct *p, long nice);
1743 extern int task_prio(const struct task_struct *p);
1744 extern int task_nice(const struct task_struct *p);
1745 extern int can_nice(const struct task_struct *p, const int nice);
1746 extern int task_curr(const struct task_struct *p);
1747 extern int idle_cpu(int cpu);
1748 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1749 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1750 struct sched_param *);
1751 extern struct task_struct *idle_task(int cpu);
1752 extern struct task_struct *curr_task(int cpu);
1753 extern void set_curr_task(int cpu, struct task_struct *p);
1754
1755 void yield(void);
1756
1757 /*
1758 * The default (Linux) execution domain.
1759 */
1760 extern struct exec_domain default_exec_domain;
1761
1762 union thread_union {
1763 struct thread_info thread_info;
1764 unsigned long stack[THREAD_SIZE/sizeof(long)];
1765 };
1766
1767 #ifndef __HAVE_ARCH_KSTACK_END
1768 static inline int kstack_end(void *addr)
1769 {
1770 /* Reliable end of stack detection:
1771 * Some APM bios versions misalign the stack
1772 */
1773 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1774 }
1775 #endif
1776
1777 extern union thread_union init_thread_union;
1778 extern struct task_struct init_task;
1779
1780 extern struct mm_struct init_mm;
1781
1782 extern struct pid_namespace init_pid_ns;
1783
1784 /*
1785 * find a task by one of its numerical ids
1786 *
1787 * find_task_by_pid_type_ns():
1788 * it is the most generic call - it finds a task by all id,
1789 * type and namespace specified
1790 * find_task_by_pid_ns():
1791 * finds a task by its pid in the specified namespace
1792 * find_task_by_vpid():
1793 * finds a task by its virtual pid
1794 *
1795 * see also find_vpid() etc in include/linux/pid.h
1796 */
1797
1798 extern struct task_struct *find_task_by_pid_type_ns(int type, int pid,
1799 struct pid_namespace *ns);
1800
1801 extern struct task_struct *find_task_by_vpid(pid_t nr);
1802 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1803 struct pid_namespace *ns);
1804
1805 extern void __set_special_pids(struct pid *pid);
1806
1807 /* per-UID process charging. */
1808 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1809 static inline struct user_struct *get_uid(struct user_struct *u)
1810 {
1811 atomic_inc(&u->__count);
1812 return u;
1813 }
1814 extern void free_uid(struct user_struct *);
1815 extern void release_uids(struct user_namespace *ns);
1816
1817 #include <asm/current.h>
1818
1819 extern void do_timer(unsigned long ticks);
1820
1821 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1822 extern int wake_up_process(struct task_struct *tsk);
1823 extern void wake_up_new_task(struct task_struct *tsk,
1824 unsigned long clone_flags);
1825 #ifdef CONFIG_SMP
1826 extern void kick_process(struct task_struct *tsk);
1827 #else
1828 static inline void kick_process(struct task_struct *tsk) { }
1829 #endif
1830 extern void sched_fork(struct task_struct *p, int clone_flags);
1831 extern void sched_dead(struct task_struct *p);
1832
1833 extern void proc_caches_init(void);
1834 extern void flush_signals(struct task_struct *);
1835 extern void ignore_signals(struct task_struct *);
1836 extern void flush_signal_handlers(struct task_struct *, int force_default);
1837 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1838
1839 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1840 {
1841 unsigned long flags;
1842 int ret;
1843
1844 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1845 ret = dequeue_signal(tsk, mask, info);
1846 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1847
1848 return ret;
1849 }
1850
1851 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1852 sigset_t *mask);
1853 extern void unblock_all_signals(void);
1854 extern void release_task(struct task_struct * p);
1855 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1856 extern int force_sigsegv(int, struct task_struct *);
1857 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1858 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1859 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1860 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1861 extern int kill_pgrp(struct pid *pid, int sig, int priv);
1862 extern int kill_pid(struct pid *pid, int sig, int priv);
1863 extern int kill_proc_info(int, struct siginfo *, pid_t);
1864 extern int do_notify_parent(struct task_struct *, int);
1865 extern void force_sig(int, struct task_struct *);
1866 extern void force_sig_specific(int, struct task_struct *);
1867 extern int send_sig(int, struct task_struct *, int);
1868 extern void zap_other_threads(struct task_struct *p);
1869 extern struct sigqueue *sigqueue_alloc(void);
1870 extern void sigqueue_free(struct sigqueue *);
1871 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
1872 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1873 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1874
1875 static inline int kill_cad_pid(int sig, int priv)
1876 {
1877 return kill_pid(cad_pid, sig, priv);
1878 }
1879
1880 /* These can be the second arg to send_sig_info/send_group_sig_info. */
1881 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
1882 #define SEND_SIG_PRIV ((struct siginfo *) 1)
1883 #define SEND_SIG_FORCED ((struct siginfo *) 2)
1884
1885 static inline int is_si_special(const struct siginfo *info)
1886 {
1887 return info <= SEND_SIG_FORCED;
1888 }
1889
1890 /* True if we are on the alternate signal stack. */
1891
1892 static inline int on_sig_stack(unsigned long sp)
1893 {
1894 return (sp - current->sas_ss_sp < current->sas_ss_size);
1895 }
1896
1897 static inline int sas_ss_flags(unsigned long sp)
1898 {
1899 return (current->sas_ss_size == 0 ? SS_DISABLE
1900 : on_sig_stack(sp) ? SS_ONSTACK : 0);
1901 }
1902
1903 /*
1904 * Routines for handling mm_structs
1905 */
1906 extern struct mm_struct * mm_alloc(void);
1907
1908 /* mmdrop drops the mm and the page tables */
1909 extern void __mmdrop(struct mm_struct *);
1910 static inline void mmdrop(struct mm_struct * mm)
1911 {
1912 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1913 __mmdrop(mm);
1914 }
1915
1916 /* mmput gets rid of the mappings and all user-space */
1917 extern void mmput(struct mm_struct *);
1918 /* Grab a reference to a task's mm, if it is not already going away */
1919 extern struct mm_struct *get_task_mm(struct task_struct *task);
1920 /* Remove the current tasks stale references to the old mm_struct */
1921 extern void mm_release(struct task_struct *, struct mm_struct *);
1922 /* Allocate a new mm structure and copy contents from tsk->mm */
1923 extern struct mm_struct *dup_mm(struct task_struct *tsk);
1924
1925 extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
1926 extern void flush_thread(void);
1927 extern void exit_thread(void);
1928
1929 extern void exit_files(struct task_struct *);
1930 extern void __cleanup_signal(struct signal_struct *);
1931 extern void __cleanup_sighand(struct sighand_struct *);
1932
1933 extern void exit_itimers(struct signal_struct *);
1934 extern void flush_itimer_signals(void);
1935
1936 extern NORET_TYPE void do_group_exit(int);
1937
1938 extern void daemonize(const char *, ...);
1939 extern int allow_signal(int);
1940 extern int disallow_signal(int);
1941
1942 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1943 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1944 struct task_struct *fork_idle(int);
1945
1946 extern void set_task_comm(struct task_struct *tsk, char *from);
1947 extern char *get_task_comm(char *to, struct task_struct *tsk);
1948
1949 #ifdef CONFIG_SMP
1950 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1951 #else
1952 static inline unsigned long wait_task_inactive(struct task_struct *p,
1953 long match_state)
1954 {
1955 return 1;
1956 }
1957 #endif
1958
1959 #define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks)
1960
1961 #define for_each_process(p) \
1962 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
1963
1964 extern bool is_single_threaded(struct task_struct *);
1965
1966 /*
1967 * Careful: do_each_thread/while_each_thread is a double loop so
1968 * 'break' will not work as expected - use goto instead.
1969 */
1970 #define do_each_thread(g, t) \
1971 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
1972
1973 #define while_each_thread(g, t) \
1974 while ((t = next_thread(t)) != g)
1975
1976 /* de_thread depends on thread_group_leader not being a pid based check */
1977 #define thread_group_leader(p) (p == p->group_leader)
1978
1979 /* Do to the insanities of de_thread it is possible for a process
1980 * to have the pid of the thread group leader without actually being
1981 * the thread group leader. For iteration through the pids in proc
1982 * all we care about is that we have a task with the appropriate
1983 * pid, we don't actually care if we have the right task.
1984 */
1985 static inline int has_group_leader_pid(struct task_struct *p)
1986 {
1987 return p->pid == p->tgid;
1988 }
1989
1990 static inline
1991 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
1992 {
1993 return p1->tgid == p2->tgid;
1994 }
1995
1996 static inline struct task_struct *next_thread(const struct task_struct *p)
1997 {
1998 return list_entry(rcu_dereference(p->thread_group.next),
1999 struct task_struct, thread_group);
2000 }
2001
2002 static inline int thread_group_empty(struct task_struct *p)
2003 {
2004 return list_empty(&p->thread_group);
2005 }
2006
2007 #define delay_group_leader(p) \
2008 (thread_group_leader(p) && !thread_group_empty(p))
2009
2010 /*
2011 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2012 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2013 * pins the final release of task.io_context. Also protects ->cpuset and
2014 * ->cgroup.subsys[].
2015 *
2016 * Nests both inside and outside of read_lock(&tasklist_lock).
2017 * It must not be nested with write_lock_irq(&tasklist_lock),
2018 * neither inside nor outside.
2019 */
2020 static inline void task_lock(struct task_struct *p)
2021 {
2022 spin_lock(&p->alloc_lock);
2023 }
2024
2025 static inline void task_unlock(struct task_struct *p)
2026 {
2027 spin_unlock(&p->alloc_lock);
2028 }
2029
2030 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2031 unsigned long *flags);
2032
2033 static inline void unlock_task_sighand(struct task_struct *tsk,
2034 unsigned long *flags)
2035 {
2036 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2037 }
2038
2039 #ifndef __HAVE_THREAD_FUNCTIONS
2040
2041 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2042 #define task_stack_page(task) ((task)->stack)
2043
2044 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2045 {
2046 *task_thread_info(p) = *task_thread_info(org);
2047 task_thread_info(p)->task = p;
2048 }
2049
2050 static inline unsigned long *end_of_stack(struct task_struct *p)
2051 {
2052 return (unsigned long *)(task_thread_info(p) + 1);
2053 }
2054
2055 #endif
2056
2057 static inline int object_is_on_stack(void *obj)
2058 {
2059 void *stack = task_stack_page(current);
2060
2061 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2062 }
2063
2064 extern void thread_info_cache_init(void);
2065
2066 /* set thread flags in other task's structures
2067 * - see asm/thread_info.h for TIF_xxxx flags available
2068 */
2069 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2070 {
2071 set_ti_thread_flag(task_thread_info(tsk), flag);
2072 }
2073
2074 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2075 {
2076 clear_ti_thread_flag(task_thread_info(tsk), flag);
2077 }
2078
2079 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2080 {
2081 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2082 }
2083
2084 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2085 {
2086 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2087 }
2088
2089 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2090 {
2091 return test_ti_thread_flag(task_thread_info(tsk), flag);
2092 }
2093
2094 static inline void set_tsk_need_resched(struct task_struct *tsk)
2095 {
2096 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2097 }
2098
2099 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2100 {
2101 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2102 }
2103
2104 static inline int test_tsk_need_resched(struct task_struct *tsk)
2105 {
2106 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2107 }
2108
2109 static inline int signal_pending(struct task_struct *p)
2110 {
2111 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2112 }
2113
2114 extern int __fatal_signal_pending(struct task_struct *p);
2115
2116 static inline int fatal_signal_pending(struct task_struct *p)
2117 {
2118 return signal_pending(p) && __fatal_signal_pending(p);
2119 }
2120
2121 static inline int signal_pending_state(long state, struct task_struct *p)
2122 {
2123 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2124 return 0;
2125 if (!signal_pending(p))
2126 return 0;
2127
2128 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2129 }
2130
2131 static inline int need_resched(void)
2132 {
2133 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2134 }
2135
2136 /*
2137 * cond_resched() and cond_resched_lock(): latency reduction via
2138 * explicit rescheduling in places that are safe. The return
2139 * value indicates whether a reschedule was done in fact.
2140 * cond_resched_lock() will drop the spinlock before scheduling,
2141 * cond_resched_softirq() will enable bhs before scheduling.
2142 */
2143 extern int _cond_resched(void);
2144 #ifdef CONFIG_PREEMPT_BKL
2145 static inline int cond_resched(void)
2146 {
2147 return 0;
2148 }
2149 #else
2150 static inline int cond_resched(void)
2151 {
2152 return _cond_resched();
2153 }
2154 #endif
2155 extern int cond_resched_lock(spinlock_t * lock);
2156 extern int cond_resched_softirq(void);
2157 static inline int cond_resched_bkl(void)
2158 {
2159 return _cond_resched();
2160 }
2161
2162 /*
2163 * Does a critical section need to be broken due to another
2164 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2165 * but a general need for low latency)
2166 */
2167 static inline int spin_needbreak(spinlock_t *lock)
2168 {
2169 #ifdef CONFIG_PREEMPT
2170 return spin_is_contended(lock);
2171 #else
2172 return 0;
2173 #endif
2174 }
2175
2176 /*
2177 * Thread group CPU time accounting.
2178 */
2179
2180 extern int thread_group_cputime_alloc(struct task_struct *);
2181 extern void thread_group_cputime(struct task_struct *, struct task_cputime *);
2182
2183 static inline void thread_group_cputime_init(struct signal_struct *sig)
2184 {
2185 sig->cputime.totals = NULL;
2186 }
2187
2188 static inline int thread_group_cputime_clone_thread(struct task_struct *curr)
2189 {
2190 if (curr->signal->cputime.totals)
2191 return 0;
2192 return thread_group_cputime_alloc(curr);
2193 }
2194
2195 static inline void thread_group_cputime_free(struct signal_struct *sig)
2196 {
2197 free_percpu(sig->cputime.totals);
2198 }
2199
2200 /*
2201 * Reevaluate whether the task has signals pending delivery.
2202 * Wake the task if so.
2203 * This is required every time the blocked sigset_t changes.
2204 * callers must hold sighand->siglock.
2205 */
2206 extern void recalc_sigpending_and_wake(struct task_struct *t);
2207 extern void recalc_sigpending(void);
2208
2209 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2210
2211 /*
2212 * Wrappers for p->thread_info->cpu access. No-op on UP.
2213 */
2214 #ifdef CONFIG_SMP
2215
2216 static inline unsigned int task_cpu(const struct task_struct *p)
2217 {
2218 return task_thread_info(p)->cpu;
2219 }
2220
2221 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2222
2223 #else
2224
2225 static inline unsigned int task_cpu(const struct task_struct *p)
2226 {
2227 return 0;
2228 }
2229
2230 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2231 {
2232 }
2233
2234 #endif /* CONFIG_SMP */
2235
2236 extern void arch_pick_mmap_layout(struct mm_struct *mm);
2237
2238 #ifdef CONFIG_TRACING
2239 extern void
2240 __trace_special(void *__tr, void *__data,
2241 unsigned long arg1, unsigned long arg2, unsigned long arg3);
2242 #else
2243 static inline void
2244 __trace_special(void *__tr, void *__data,
2245 unsigned long arg1, unsigned long arg2, unsigned long arg3)
2246 {
2247 }
2248 #endif
2249
2250 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2251 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2252
2253 extern void normalize_rt_tasks(void);
2254
2255 #ifdef CONFIG_GROUP_SCHED
2256
2257 extern struct task_group init_task_group;
2258 #ifdef CONFIG_USER_SCHED
2259 extern struct task_group root_task_group;
2260 extern void set_tg_uid(struct user_struct *user);
2261 #endif
2262
2263 extern struct task_group *sched_create_group(struct task_group *parent);
2264 extern void sched_destroy_group(struct task_group *tg);
2265 extern void sched_move_task(struct task_struct *tsk);
2266 #ifdef CONFIG_FAIR_GROUP_SCHED
2267 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2268 extern unsigned long sched_group_shares(struct task_group *tg);
2269 #endif
2270 #ifdef CONFIG_RT_GROUP_SCHED
2271 extern int sched_group_set_rt_runtime(struct task_group *tg,
2272 long rt_runtime_us);
2273 extern long sched_group_rt_runtime(struct task_group *tg);
2274 extern int sched_group_set_rt_period(struct task_group *tg,
2275 long rt_period_us);
2276 extern long sched_group_rt_period(struct task_group *tg);
2277 #endif
2278 #endif
2279
2280 #ifdef CONFIG_TASK_XACCT
2281 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2282 {
2283 tsk->ioac.rchar += amt;
2284 }
2285
2286 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2287 {
2288 tsk->ioac.wchar += amt;
2289 }
2290
2291 static inline void inc_syscr(struct task_struct *tsk)
2292 {
2293 tsk->ioac.syscr++;
2294 }
2295
2296 static inline void inc_syscw(struct task_struct *tsk)
2297 {
2298 tsk->ioac.syscw++;
2299 }
2300 #else
2301 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2302 {
2303 }
2304
2305 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2306 {
2307 }
2308
2309 static inline void inc_syscr(struct task_struct *tsk)
2310 {
2311 }
2312
2313 static inline void inc_syscw(struct task_struct *tsk)
2314 {
2315 }
2316 #endif
2317
2318 #ifndef TASK_SIZE_OF
2319 #define TASK_SIZE_OF(tsk) TASK_SIZE
2320 #endif
2321
2322 #ifdef CONFIG_MM_OWNER
2323 extern void mm_update_next_owner(struct mm_struct *mm);
2324 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2325 #else
2326 static inline void mm_update_next_owner(struct mm_struct *mm)
2327 {
2328 }
2329
2330 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2331 {
2332 }
2333 #endif /* CONFIG_MM_OWNER */
2334
2335 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
2336
2337 #endif /* __KERNEL__ */
2338
2339 #endif
This page took 0.077073 seconds and 6 git commands to generate.