Merge branch 'upstream-linus' of master.kernel.org:/pub/scm/linux/kernel/git/jgarzik...
[deliverable/linux.git] / include / linux / security.h
1 /*
2 * Linux Security plug
3 *
4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5 * Copyright (C) 2001 Greg Kroah-Hartman <greg@kroah.com>
6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7 * Copyright (C) 2001 James Morris <jmorris@intercode.com.au>
8 * Copyright (C) 2001 Silicon Graphics, Inc. (Trust Technology Group)
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * Due to this file being licensed under the GPL there is controversy over
16 * whether this permits you to write a module that #includes this file
17 * without placing your module under the GPL. Please consult a lawyer for
18 * advice before doing this.
19 *
20 */
21
22 #ifndef __LINUX_SECURITY_H
23 #define __LINUX_SECURITY_H
24
25 #include <linux/fs.h>
26 #include <linux/binfmts.h>
27 #include <linux/signal.h>
28 #include <linux/resource.h>
29 #include <linux/sem.h>
30 #include <linux/shm.h>
31 #include <linux/msg.h>
32 #include <linux/sched.h>
33 #include <linux/key.h>
34
35 struct ctl_table;
36
37 /*
38 * These functions are in security/capability.c and are used
39 * as the default capabilities functions
40 */
41 extern int cap_capable (struct task_struct *tsk, int cap);
42 extern int cap_settime (struct timespec *ts, struct timezone *tz);
43 extern int cap_ptrace (struct task_struct *parent, struct task_struct *child);
44 extern int cap_capget (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted);
45 extern int cap_capset_check (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted);
46 extern void cap_capset_set (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted);
47 extern int cap_bprm_set_security (struct linux_binprm *bprm);
48 extern void cap_bprm_apply_creds (struct linux_binprm *bprm, int unsafe);
49 extern int cap_bprm_secureexec(struct linux_binprm *bprm);
50 extern int cap_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags);
51 extern int cap_inode_removexattr(struct dentry *dentry, char *name);
52 extern int cap_task_post_setuid (uid_t old_ruid, uid_t old_euid, uid_t old_suid, int flags);
53 extern void cap_task_reparent_to_init (struct task_struct *p);
54 extern int cap_syslog (int type);
55 extern int cap_vm_enough_memory (long pages);
56
57 struct msghdr;
58 struct sk_buff;
59 struct sock;
60 struct sockaddr;
61 struct socket;
62 struct flowi;
63 struct dst_entry;
64 struct xfrm_selector;
65 struct xfrm_policy;
66 struct xfrm_state;
67 struct xfrm_user_sec_ctx;
68
69 extern int cap_netlink_send(struct sock *sk, struct sk_buff *skb);
70 extern int cap_netlink_recv(struct sk_buff *skb);
71
72 /*
73 * Values used in the task_security_ops calls
74 */
75 /* setuid or setgid, id0 == uid or gid */
76 #define LSM_SETID_ID 1
77
78 /* setreuid or setregid, id0 == real, id1 == eff */
79 #define LSM_SETID_RE 2
80
81 /* setresuid or setresgid, id0 == real, id1 == eff, uid2 == saved */
82 #define LSM_SETID_RES 4
83
84 /* setfsuid or setfsgid, id0 == fsuid or fsgid */
85 #define LSM_SETID_FS 8
86
87 /* forward declares to avoid warnings */
88 struct nfsctl_arg;
89 struct sched_param;
90 struct swap_info_struct;
91
92 /* bprm_apply_creds unsafe reasons */
93 #define LSM_UNSAFE_SHARE 1
94 #define LSM_UNSAFE_PTRACE 2
95 #define LSM_UNSAFE_PTRACE_CAP 4
96
97 #ifdef CONFIG_SECURITY
98
99 /**
100 * struct security_operations - main security structure
101 *
102 * Security hooks for program execution operations.
103 *
104 * @bprm_alloc_security:
105 * Allocate and attach a security structure to the @bprm->security field.
106 * The security field is initialized to NULL when the bprm structure is
107 * allocated.
108 * @bprm contains the linux_binprm structure to be modified.
109 * Return 0 if operation was successful.
110 * @bprm_free_security:
111 * @bprm contains the linux_binprm structure to be modified.
112 * Deallocate and clear the @bprm->security field.
113 * @bprm_apply_creds:
114 * Compute and set the security attributes of a process being transformed
115 * by an execve operation based on the old attributes (current->security)
116 * and the information saved in @bprm->security by the set_security hook.
117 * Since this hook function (and its caller) are void, this hook can not
118 * return an error. However, it can leave the security attributes of the
119 * process unchanged if an access failure occurs at this point.
120 * bprm_apply_creds is called under task_lock. @unsafe indicates various
121 * reasons why it may be unsafe to change security state.
122 * @bprm contains the linux_binprm structure.
123 * @bprm_post_apply_creds:
124 * Runs after bprm_apply_creds with the task_lock dropped, so that
125 * functions which cannot be called safely under the task_lock can
126 * be used. This hook is a good place to perform state changes on
127 * the process such as closing open file descriptors to which access
128 * is no longer granted if the attributes were changed.
129 * Note that a security module might need to save state between
130 * bprm_apply_creds and bprm_post_apply_creds to store the decision
131 * on whether the process may proceed.
132 * @bprm contains the linux_binprm structure.
133 * @bprm_set_security:
134 * Save security information in the bprm->security field, typically based
135 * on information about the bprm->file, for later use by the apply_creds
136 * hook. This hook may also optionally check permissions (e.g. for
137 * transitions between security domains).
138 * This hook may be called multiple times during a single execve, e.g. for
139 * interpreters. The hook can tell whether it has already been called by
140 * checking to see if @bprm->security is non-NULL. If so, then the hook
141 * may decide either to retain the security information saved earlier or
142 * to replace it.
143 * @bprm contains the linux_binprm structure.
144 * Return 0 if the hook is successful and permission is granted.
145 * @bprm_check_security:
146 * This hook mediates the point when a search for a binary handler will
147 * begin. It allows a check the @bprm->security value which is set in
148 * the preceding set_security call. The primary difference from
149 * set_security is that the argv list and envp list are reliably
150 * available in @bprm. This hook may be called multiple times
151 * during a single execve; and in each pass set_security is called
152 * first.
153 * @bprm contains the linux_binprm structure.
154 * Return 0 if the hook is successful and permission is granted.
155 * @bprm_secureexec:
156 * Return a boolean value (0 or 1) indicating whether a "secure exec"
157 * is required. The flag is passed in the auxiliary table
158 * on the initial stack to the ELF interpreter to indicate whether libc
159 * should enable secure mode.
160 * @bprm contains the linux_binprm structure.
161 *
162 * Security hooks for filesystem operations.
163 *
164 * @sb_alloc_security:
165 * Allocate and attach a security structure to the sb->s_security field.
166 * The s_security field is initialized to NULL when the structure is
167 * allocated.
168 * @sb contains the super_block structure to be modified.
169 * Return 0 if operation was successful.
170 * @sb_free_security:
171 * Deallocate and clear the sb->s_security field.
172 * @sb contains the super_block structure to be modified.
173 * @sb_statfs:
174 * Check permission before obtaining filesystem statistics for the @mnt
175 * mountpoint.
176 * @dentry is a handle on the superblock for the filesystem.
177 * Return 0 if permission is granted.
178 * @sb_mount:
179 * Check permission before an object specified by @dev_name is mounted on
180 * the mount point named by @nd. For an ordinary mount, @dev_name
181 * identifies a device if the file system type requires a device. For a
182 * remount (@flags & MS_REMOUNT), @dev_name is irrelevant. For a
183 * loopback/bind mount (@flags & MS_BIND), @dev_name identifies the
184 * pathname of the object being mounted.
185 * @dev_name contains the name for object being mounted.
186 * @nd contains the nameidata structure for mount point object.
187 * @type contains the filesystem type.
188 * @flags contains the mount flags.
189 * @data contains the filesystem-specific data.
190 * Return 0 if permission is granted.
191 * @sb_copy_data:
192 * Allow mount option data to be copied prior to parsing by the filesystem,
193 * so that the security module can extract security-specific mount
194 * options cleanly (a filesystem may modify the data e.g. with strsep()).
195 * This also allows the original mount data to be stripped of security-
196 * specific options to avoid having to make filesystems aware of them.
197 * @type the type of filesystem being mounted.
198 * @orig the original mount data copied from userspace.
199 * @copy copied data which will be passed to the security module.
200 * Returns 0 if the copy was successful.
201 * @sb_check_sb:
202 * Check permission before the device with superblock @mnt->sb is mounted
203 * on the mount point named by @nd.
204 * @mnt contains the vfsmount for device being mounted.
205 * @nd contains the nameidata object for the mount point.
206 * Return 0 if permission is granted.
207 * @sb_umount:
208 * Check permission before the @mnt file system is unmounted.
209 * @mnt contains the mounted file system.
210 * @flags contains the unmount flags, e.g. MNT_FORCE.
211 * Return 0 if permission is granted.
212 * @sb_umount_close:
213 * Close any files in the @mnt mounted filesystem that are held open by
214 * the security module. This hook is called during an umount operation
215 * prior to checking whether the filesystem is still busy.
216 * @mnt contains the mounted filesystem.
217 * @sb_umount_busy:
218 * Handle a failed umount of the @mnt mounted filesystem, e.g. re-opening
219 * any files that were closed by umount_close. This hook is called during
220 * an umount operation if the umount fails after a call to the
221 * umount_close hook.
222 * @mnt contains the mounted filesystem.
223 * @sb_post_remount:
224 * Update the security module's state when a filesystem is remounted.
225 * This hook is only called if the remount was successful.
226 * @mnt contains the mounted file system.
227 * @flags contains the new filesystem flags.
228 * @data contains the filesystem-specific data.
229 * @sb_post_mountroot:
230 * Update the security module's state when the root filesystem is mounted.
231 * This hook is only called if the mount was successful.
232 * @sb_post_addmount:
233 * Update the security module's state when a filesystem is mounted.
234 * This hook is called any time a mount is successfully grafetd to
235 * the tree.
236 * @mnt contains the mounted filesystem.
237 * @mountpoint_nd contains the nameidata structure for the mount point.
238 * @sb_pivotroot:
239 * Check permission before pivoting the root filesystem.
240 * @old_nd contains the nameidata structure for the new location of the current root (put_old).
241 * @new_nd contains the nameidata structure for the new root (new_root).
242 * Return 0 if permission is granted.
243 * @sb_post_pivotroot:
244 * Update module state after a successful pivot.
245 * @old_nd contains the nameidata structure for the old root.
246 * @new_nd contains the nameidata structure for the new root.
247 *
248 * Security hooks for inode operations.
249 *
250 * @inode_alloc_security:
251 * Allocate and attach a security structure to @inode->i_security. The
252 * i_security field is initialized to NULL when the inode structure is
253 * allocated.
254 * @inode contains the inode structure.
255 * Return 0 if operation was successful.
256 * @inode_free_security:
257 * @inode contains the inode structure.
258 * Deallocate the inode security structure and set @inode->i_security to
259 * NULL.
260 * @inode_init_security:
261 * Obtain the security attribute name suffix and value to set on a newly
262 * created inode and set up the incore security field for the new inode.
263 * This hook is called by the fs code as part of the inode creation
264 * transaction and provides for atomic labeling of the inode, unlike
265 * the post_create/mkdir/... hooks called by the VFS. The hook function
266 * is expected to allocate the name and value via kmalloc, with the caller
267 * being responsible for calling kfree after using them.
268 * If the security module does not use security attributes or does
269 * not wish to put a security attribute on this particular inode,
270 * then it should return -EOPNOTSUPP to skip this processing.
271 * @inode contains the inode structure of the newly created inode.
272 * @dir contains the inode structure of the parent directory.
273 * @name will be set to the allocated name suffix (e.g. selinux).
274 * @value will be set to the allocated attribute value.
275 * @len will be set to the length of the value.
276 * Returns 0 if @name and @value have been successfully set,
277 * -EOPNOTSUPP if no security attribute is needed, or
278 * -ENOMEM on memory allocation failure.
279 * @inode_create:
280 * Check permission to create a regular file.
281 * @dir contains inode structure of the parent of the new file.
282 * @dentry contains the dentry structure for the file to be created.
283 * @mode contains the file mode of the file to be created.
284 * Return 0 if permission is granted.
285 * @inode_link:
286 * Check permission before creating a new hard link to a file.
287 * @old_dentry contains the dentry structure for an existing link to the file.
288 * @dir contains the inode structure of the parent directory of the new link.
289 * @new_dentry contains the dentry structure for the new link.
290 * Return 0 if permission is granted.
291 * @inode_unlink:
292 * Check the permission to remove a hard link to a file.
293 * @dir contains the inode structure of parent directory of the file.
294 * @dentry contains the dentry structure for file to be unlinked.
295 * Return 0 if permission is granted.
296 * @inode_symlink:
297 * Check the permission to create a symbolic link to a file.
298 * @dir contains the inode structure of parent directory of the symbolic link.
299 * @dentry contains the dentry structure of the symbolic link.
300 * @old_name contains the pathname of file.
301 * Return 0 if permission is granted.
302 * @inode_mkdir:
303 * Check permissions to create a new directory in the existing directory
304 * associated with inode strcture @dir.
305 * @dir containst the inode structure of parent of the directory to be created.
306 * @dentry contains the dentry structure of new directory.
307 * @mode contains the mode of new directory.
308 * Return 0 if permission is granted.
309 * @inode_rmdir:
310 * Check the permission to remove a directory.
311 * @dir contains the inode structure of parent of the directory to be removed.
312 * @dentry contains the dentry structure of directory to be removed.
313 * Return 0 if permission is granted.
314 * @inode_mknod:
315 * Check permissions when creating a special file (or a socket or a fifo
316 * file created via the mknod system call). Note that if mknod operation
317 * is being done for a regular file, then the create hook will be called
318 * and not this hook.
319 * @dir contains the inode structure of parent of the new file.
320 * @dentry contains the dentry structure of the new file.
321 * @mode contains the mode of the new file.
322 * @dev contains the the device number.
323 * Return 0 if permission is granted.
324 * @inode_rename:
325 * Check for permission to rename a file or directory.
326 * @old_dir contains the inode structure for parent of the old link.
327 * @old_dentry contains the dentry structure of the old link.
328 * @new_dir contains the inode structure for parent of the new link.
329 * @new_dentry contains the dentry structure of the new link.
330 * Return 0 if permission is granted.
331 * @inode_readlink:
332 * Check the permission to read the symbolic link.
333 * @dentry contains the dentry structure for the file link.
334 * Return 0 if permission is granted.
335 * @inode_follow_link:
336 * Check permission to follow a symbolic link when looking up a pathname.
337 * @dentry contains the dentry structure for the link.
338 * @nd contains the nameidata structure for the parent directory.
339 * Return 0 if permission is granted.
340 * @inode_permission:
341 * Check permission before accessing an inode. This hook is called by the
342 * existing Linux permission function, so a security module can use it to
343 * provide additional checking for existing Linux permission checks.
344 * Notice that this hook is called when a file is opened (as well as many
345 * other operations), whereas the file_security_ops permission hook is
346 * called when the actual read/write operations are performed.
347 * @inode contains the inode structure to check.
348 * @mask contains the permission mask.
349 * @nd contains the nameidata (may be NULL).
350 * Return 0 if permission is granted.
351 * @inode_setattr:
352 * Check permission before setting file attributes. Note that the kernel
353 * call to notify_change is performed from several locations, whenever
354 * file attributes change (such as when a file is truncated, chown/chmod
355 * operations, transferring disk quotas, etc).
356 * @dentry contains the dentry structure for the file.
357 * @attr is the iattr structure containing the new file attributes.
358 * Return 0 if permission is granted.
359 * @inode_getattr:
360 * Check permission before obtaining file attributes.
361 * @mnt is the vfsmount where the dentry was looked up
362 * @dentry contains the dentry structure for the file.
363 * Return 0 if permission is granted.
364 * @inode_delete:
365 * @inode contains the inode structure for deleted inode.
366 * This hook is called when a deleted inode is released (i.e. an inode
367 * with no hard links has its use count drop to zero). A security module
368 * can use this hook to release any persistent label associated with the
369 * inode.
370 * @inode_setxattr:
371 * Check permission before setting the extended attributes
372 * @value identified by @name for @dentry.
373 * Return 0 if permission is granted.
374 * @inode_post_setxattr:
375 * Update inode security field after successful setxattr operation.
376 * @value identified by @name for @dentry.
377 * @inode_getxattr:
378 * Check permission before obtaining the extended attributes
379 * identified by @name for @dentry.
380 * Return 0 if permission is granted.
381 * @inode_listxattr:
382 * Check permission before obtaining the list of extended attribute
383 * names for @dentry.
384 * Return 0 if permission is granted.
385 * @inode_removexattr:
386 * Check permission before removing the extended attribute
387 * identified by @name for @dentry.
388 * Return 0 if permission is granted.
389 * @inode_getsecurity:
390 * Copy the extended attribute representation of the security label
391 * associated with @name for @inode into @buffer. @buffer may be
392 * NULL to request the size of the buffer required. @size indicates
393 * the size of @buffer in bytes. Note that @name is the remainder
394 * of the attribute name after the security. prefix has been removed.
395 * @err is the return value from the preceding fs getxattr call,
396 * and can be used by the security module to determine whether it
397 * should try and canonicalize the attribute value.
398 * Return number of bytes used/required on success.
399 * @inode_setsecurity:
400 * Set the security label associated with @name for @inode from the
401 * extended attribute value @value. @size indicates the size of the
402 * @value in bytes. @flags may be XATTR_CREATE, XATTR_REPLACE, or 0.
403 * Note that @name is the remainder of the attribute name after the
404 * security. prefix has been removed.
405 * Return 0 on success.
406 * @inode_listsecurity:
407 * Copy the extended attribute names for the security labels
408 * associated with @inode into @buffer. The maximum size of @buffer
409 * is specified by @buffer_size. @buffer may be NULL to request
410 * the size of the buffer required.
411 * Returns number of bytes used/required on success.
412 *
413 * Security hooks for file operations
414 *
415 * @file_permission:
416 * Check file permissions before accessing an open file. This hook is
417 * called by various operations that read or write files. A security
418 * module can use this hook to perform additional checking on these
419 * operations, e.g. to revalidate permissions on use to support privilege
420 * bracketing or policy changes. Notice that this hook is used when the
421 * actual read/write operations are performed, whereas the
422 * inode_security_ops hook is called when a file is opened (as well as
423 * many other operations).
424 * Caveat: Although this hook can be used to revalidate permissions for
425 * various system call operations that read or write files, it does not
426 * address the revalidation of permissions for memory-mapped files.
427 * Security modules must handle this separately if they need such
428 * revalidation.
429 * @file contains the file structure being accessed.
430 * @mask contains the requested permissions.
431 * Return 0 if permission is granted.
432 * @file_alloc_security:
433 * Allocate and attach a security structure to the file->f_security field.
434 * The security field is initialized to NULL when the structure is first
435 * created.
436 * @file contains the file structure to secure.
437 * Return 0 if the hook is successful and permission is granted.
438 * @file_free_security:
439 * Deallocate and free any security structures stored in file->f_security.
440 * @file contains the file structure being modified.
441 * @file_ioctl:
442 * @file contains the file structure.
443 * @cmd contains the operation to perform.
444 * @arg contains the operational arguments.
445 * Check permission for an ioctl operation on @file. Note that @arg can
446 * sometimes represents a user space pointer; in other cases, it may be a
447 * simple integer value. When @arg represents a user space pointer, it
448 * should never be used by the security module.
449 * Return 0 if permission is granted.
450 * @file_mmap :
451 * Check permissions for a mmap operation. The @file may be NULL, e.g.
452 * if mapping anonymous memory.
453 * @file contains the file structure for file to map (may be NULL).
454 * @reqprot contains the protection requested by the application.
455 * @prot contains the protection that will be applied by the kernel.
456 * @flags contains the operational flags.
457 * Return 0 if permission is granted.
458 * @file_mprotect:
459 * Check permissions before changing memory access permissions.
460 * @vma contains the memory region to modify.
461 * @reqprot contains the protection requested by the application.
462 * @prot contains the protection that will be applied by the kernel.
463 * Return 0 if permission is granted.
464 * @file_lock:
465 * Check permission before performing file locking operations.
466 * Note: this hook mediates both flock and fcntl style locks.
467 * @file contains the file structure.
468 * @cmd contains the posix-translated lock operation to perform
469 * (e.g. F_RDLCK, F_WRLCK).
470 * Return 0 if permission is granted.
471 * @file_fcntl:
472 * Check permission before allowing the file operation specified by @cmd
473 * from being performed on the file @file. Note that @arg can sometimes
474 * represents a user space pointer; in other cases, it may be a simple
475 * integer value. When @arg represents a user space pointer, it should
476 * never be used by the security module.
477 * @file contains the file structure.
478 * @cmd contains the operation to be performed.
479 * @arg contains the operational arguments.
480 * Return 0 if permission is granted.
481 * @file_set_fowner:
482 * Save owner security information (typically from current->security) in
483 * file->f_security for later use by the send_sigiotask hook.
484 * @file contains the file structure to update.
485 * Return 0 on success.
486 * @file_send_sigiotask:
487 * Check permission for the file owner @fown to send SIGIO or SIGURG to the
488 * process @tsk. Note that this hook is sometimes called from interrupt.
489 * Note that the fown_struct, @fown, is never outside the context of a
490 * struct file, so the file structure (and associated security information)
491 * can always be obtained:
492 * (struct file *)((long)fown - offsetof(struct file,f_owner));
493 * @tsk contains the structure of task receiving signal.
494 * @fown contains the file owner information.
495 * @sig is the signal that will be sent. When 0, kernel sends SIGIO.
496 * Return 0 if permission is granted.
497 * @file_receive:
498 * This hook allows security modules to control the ability of a process
499 * to receive an open file descriptor via socket IPC.
500 * @file contains the file structure being received.
501 * Return 0 if permission is granted.
502 *
503 * Security hooks for task operations.
504 *
505 * @task_create:
506 * Check permission before creating a child process. See the clone(2)
507 * manual page for definitions of the @clone_flags.
508 * @clone_flags contains the flags indicating what should be shared.
509 * Return 0 if permission is granted.
510 * @task_alloc_security:
511 * @p contains the task_struct for child process.
512 * Allocate and attach a security structure to the p->security field. The
513 * security field is initialized to NULL when the task structure is
514 * allocated.
515 * Return 0 if operation was successful.
516 * @task_free_security:
517 * @p contains the task_struct for process.
518 * Deallocate and clear the p->security field.
519 * @task_setuid:
520 * Check permission before setting one or more of the user identity
521 * attributes of the current process. The @flags parameter indicates
522 * which of the set*uid system calls invoked this hook and how to
523 * interpret the @id0, @id1, and @id2 parameters. See the LSM_SETID
524 * definitions at the beginning of this file for the @flags values and
525 * their meanings.
526 * @id0 contains a uid.
527 * @id1 contains a uid.
528 * @id2 contains a uid.
529 * @flags contains one of the LSM_SETID_* values.
530 * Return 0 if permission is granted.
531 * @task_post_setuid:
532 * Update the module's state after setting one or more of the user
533 * identity attributes of the current process. The @flags parameter
534 * indicates which of the set*uid system calls invoked this hook. If
535 * @flags is LSM_SETID_FS, then @old_ruid is the old fs uid and the other
536 * parameters are not used.
537 * @old_ruid contains the old real uid (or fs uid if LSM_SETID_FS).
538 * @old_euid contains the old effective uid (or -1 if LSM_SETID_FS).
539 * @old_suid contains the old saved uid (or -1 if LSM_SETID_FS).
540 * @flags contains one of the LSM_SETID_* values.
541 * Return 0 on success.
542 * @task_setgid:
543 * Check permission before setting one or more of the group identity
544 * attributes of the current process. The @flags parameter indicates
545 * which of the set*gid system calls invoked this hook and how to
546 * interpret the @id0, @id1, and @id2 parameters. See the LSM_SETID
547 * definitions at the beginning of this file for the @flags values and
548 * their meanings.
549 * @id0 contains a gid.
550 * @id1 contains a gid.
551 * @id2 contains a gid.
552 * @flags contains one of the LSM_SETID_* values.
553 * Return 0 if permission is granted.
554 * @task_setpgid:
555 * Check permission before setting the process group identifier of the
556 * process @p to @pgid.
557 * @p contains the task_struct for process being modified.
558 * @pgid contains the new pgid.
559 * Return 0 if permission is granted.
560 * @task_getpgid:
561 * Check permission before getting the process group identifier of the
562 * process @p.
563 * @p contains the task_struct for the process.
564 * Return 0 if permission is granted.
565 * @task_getsid:
566 * Check permission before getting the session identifier of the process
567 * @p.
568 * @p contains the task_struct for the process.
569 * Return 0 if permission is granted.
570 * @task_setgroups:
571 * Check permission before setting the supplementary group set of the
572 * current process.
573 * @group_info contains the new group information.
574 * Return 0 if permission is granted.
575 * @task_setnice:
576 * Check permission before setting the nice value of @p to @nice.
577 * @p contains the task_struct of process.
578 * @nice contains the new nice value.
579 * Return 0 if permission is granted.
580 * @task_setioprio
581 * Check permission before setting the ioprio value of @p to @ioprio.
582 * @p contains the task_struct of process.
583 * @ioprio contains the new ioprio value
584 * Return 0 if permission is granted.
585 * @task_setrlimit:
586 * Check permission before setting the resource limits of the current
587 * process for @resource to @new_rlim. The old resource limit values can
588 * be examined by dereferencing (current->signal->rlim + resource).
589 * @resource contains the resource whose limit is being set.
590 * @new_rlim contains the new limits for @resource.
591 * Return 0 if permission is granted.
592 * @task_setscheduler:
593 * Check permission before setting scheduling policy and/or parameters of
594 * process @p based on @policy and @lp.
595 * @p contains the task_struct for process.
596 * @policy contains the scheduling policy.
597 * @lp contains the scheduling parameters.
598 * Return 0 if permission is granted.
599 * @task_getscheduler:
600 * Check permission before obtaining scheduling information for process
601 * @p.
602 * @p contains the task_struct for process.
603 * Return 0 if permission is granted.
604 * @task_movememory
605 * Check permission before moving memory owned by process @p.
606 * @p contains the task_struct for process.
607 * Return 0 if permission is granted.
608 * @task_kill:
609 * Check permission before sending signal @sig to @p. @info can be NULL,
610 * the constant 1, or a pointer to a siginfo structure. If @info is 1 or
611 * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming
612 * from the kernel and should typically be permitted.
613 * SIGIO signals are handled separately by the send_sigiotask hook in
614 * file_security_ops.
615 * @p contains the task_struct for process.
616 * @info contains the signal information.
617 * @sig contains the signal value.
618 * Return 0 if permission is granted.
619 * @task_wait:
620 * Check permission before allowing a process to reap a child process @p
621 * and collect its status information.
622 * @p contains the task_struct for process.
623 * Return 0 if permission is granted.
624 * @task_prctl:
625 * Check permission before performing a process control operation on the
626 * current process.
627 * @option contains the operation.
628 * @arg2 contains a argument.
629 * @arg3 contains a argument.
630 * @arg4 contains a argument.
631 * @arg5 contains a argument.
632 * Return 0 if permission is granted.
633 * @task_reparent_to_init:
634 * Set the security attributes in @p->security for a kernel thread that
635 * is being reparented to the init task.
636 * @p contains the task_struct for the kernel thread.
637 * @task_to_inode:
638 * Set the security attributes for an inode based on an associated task's
639 * security attributes, e.g. for /proc/pid inodes.
640 * @p contains the task_struct for the task.
641 * @inode contains the inode structure for the inode.
642 *
643 * Security hooks for Netlink messaging.
644 *
645 * @netlink_send:
646 * Save security information for a netlink message so that permission
647 * checking can be performed when the message is processed. The security
648 * information can be saved using the eff_cap field of the
649 * netlink_skb_parms structure. Also may be used to provide fine
650 * grained control over message transmission.
651 * @sk associated sock of task sending the message.,
652 * @skb contains the sk_buff structure for the netlink message.
653 * Return 0 if the information was successfully saved and message
654 * is allowed to be transmitted.
655 * @netlink_recv:
656 * Check permission before processing the received netlink message in
657 * @skb.
658 * @skb contains the sk_buff structure for the netlink message.
659 * Return 0 if permission is granted.
660 *
661 * Security hooks for Unix domain networking.
662 *
663 * @unix_stream_connect:
664 * Check permissions before establishing a Unix domain stream connection
665 * between @sock and @other.
666 * @sock contains the socket structure.
667 * @other contains the peer socket structure.
668 * Return 0 if permission is granted.
669 * @unix_may_send:
670 * Check permissions before connecting or sending datagrams from @sock to
671 * @other.
672 * @sock contains the socket structure.
673 * @sock contains the peer socket structure.
674 * Return 0 if permission is granted.
675 *
676 * The @unix_stream_connect and @unix_may_send hooks were necessary because
677 * Linux provides an alternative to the conventional file name space for Unix
678 * domain sockets. Whereas binding and connecting to sockets in the file name
679 * space is mediated by the typical file permissions (and caught by the mknod
680 * and permission hooks in inode_security_ops), binding and connecting to
681 * sockets in the abstract name space is completely unmediated. Sufficient
682 * control of Unix domain sockets in the abstract name space isn't possible
683 * using only the socket layer hooks, since we need to know the actual target
684 * socket, which is not looked up until we are inside the af_unix code.
685 *
686 * Security hooks for socket operations.
687 *
688 * @socket_create:
689 * Check permissions prior to creating a new socket.
690 * @family contains the requested protocol family.
691 * @type contains the requested communications type.
692 * @protocol contains the requested protocol.
693 * @kern set to 1 if a kernel socket.
694 * Return 0 if permission is granted.
695 * @socket_post_create:
696 * This hook allows a module to update or allocate a per-socket security
697 * structure. Note that the security field was not added directly to the
698 * socket structure, but rather, the socket security information is stored
699 * in the associated inode. Typically, the inode alloc_security hook will
700 * allocate and and attach security information to
701 * sock->inode->i_security. This hook may be used to update the
702 * sock->inode->i_security field with additional information that wasn't
703 * available when the inode was allocated.
704 * @sock contains the newly created socket structure.
705 * @family contains the requested protocol family.
706 * @type contains the requested communications type.
707 * @protocol contains the requested protocol.
708 * @kern set to 1 if a kernel socket.
709 * @socket_bind:
710 * Check permission before socket protocol layer bind operation is
711 * performed and the socket @sock is bound to the address specified in the
712 * @address parameter.
713 * @sock contains the socket structure.
714 * @address contains the address to bind to.
715 * @addrlen contains the length of address.
716 * Return 0 if permission is granted.
717 * @socket_connect:
718 * Check permission before socket protocol layer connect operation
719 * attempts to connect socket @sock to a remote address, @address.
720 * @sock contains the socket structure.
721 * @address contains the address of remote endpoint.
722 * @addrlen contains the length of address.
723 * Return 0 if permission is granted.
724 * @socket_listen:
725 * Check permission before socket protocol layer listen operation.
726 * @sock contains the socket structure.
727 * @backlog contains the maximum length for the pending connection queue.
728 * Return 0 if permission is granted.
729 * @socket_accept:
730 * Check permission before accepting a new connection. Note that the new
731 * socket, @newsock, has been created and some information copied to it,
732 * but the accept operation has not actually been performed.
733 * @sock contains the listening socket structure.
734 * @newsock contains the newly created server socket for connection.
735 * Return 0 if permission is granted.
736 * @socket_post_accept:
737 * This hook allows a security module to copy security
738 * information into the newly created socket's inode.
739 * @sock contains the listening socket structure.
740 * @newsock contains the newly created server socket for connection.
741 * @socket_sendmsg:
742 * Check permission before transmitting a message to another socket.
743 * @sock contains the socket structure.
744 * @msg contains the message to be transmitted.
745 * @size contains the size of message.
746 * Return 0 if permission is granted.
747 * @socket_recvmsg:
748 * Check permission before receiving a message from a socket.
749 * @sock contains the socket structure.
750 * @msg contains the message structure.
751 * @size contains the size of message structure.
752 * @flags contains the operational flags.
753 * Return 0 if permission is granted.
754 * @socket_getsockname:
755 * Check permission before the local address (name) of the socket object
756 * @sock is retrieved.
757 * @sock contains the socket structure.
758 * Return 0 if permission is granted.
759 * @socket_getpeername:
760 * Check permission before the remote address (name) of a socket object
761 * @sock is retrieved.
762 * @sock contains the socket structure.
763 * Return 0 if permission is granted.
764 * @socket_getsockopt:
765 * Check permissions before retrieving the options associated with socket
766 * @sock.
767 * @sock contains the socket structure.
768 * @level contains the protocol level to retrieve option from.
769 * @optname contains the name of option to retrieve.
770 * Return 0 if permission is granted.
771 * @socket_setsockopt:
772 * Check permissions before setting the options associated with socket
773 * @sock.
774 * @sock contains the socket structure.
775 * @level contains the protocol level to set options for.
776 * @optname contains the name of the option to set.
777 * Return 0 if permission is granted.
778 * @socket_shutdown:
779 * Checks permission before all or part of a connection on the socket
780 * @sock is shut down.
781 * @sock contains the socket structure.
782 * @how contains the flag indicating how future sends and receives are handled.
783 * Return 0 if permission is granted.
784 * @socket_sock_rcv_skb:
785 * Check permissions on incoming network packets. This hook is distinct
786 * from Netfilter's IP input hooks since it is the first time that the
787 * incoming sk_buff @skb has been associated with a particular socket, @sk.
788 * @sk contains the sock (not socket) associated with the incoming sk_buff.
789 * @skb contains the incoming network data.
790 * @socket_getpeersec:
791 * This hook allows the security module to provide peer socket security
792 * state to userspace via getsockopt SO_GETPEERSEC.
793 * @sock is the local socket.
794 * @optval userspace memory where the security state is to be copied.
795 * @optlen userspace int where the module should copy the actual length
796 * of the security state.
797 * @len as input is the maximum length to copy to userspace provided
798 * by the caller.
799 * Return 0 if all is well, otherwise, typical getsockopt return
800 * values.
801 * @sk_alloc_security:
802 * Allocate and attach a security structure to the sk->sk_security field,
803 * which is used to copy security attributes between local stream sockets.
804 * @sk_free_security:
805 * Deallocate security structure.
806 * @sk_getsid:
807 * Retrieve the LSM-specific sid for the sock to enable caching of network
808 * authorizations.
809 *
810 * Security hooks for XFRM operations.
811 *
812 * @xfrm_policy_alloc_security:
813 * @xp contains the xfrm_policy being added to Security Policy Database
814 * used by the XFRM system.
815 * @sec_ctx contains the security context information being provided by
816 * the user-level policy update program (e.g., setkey).
817 * Allocate a security structure to the xp->security field.
818 * The security field is initialized to NULL when the xfrm_policy is
819 * allocated.
820 * Return 0 if operation was successful (memory to allocate, legal context)
821 * @xfrm_policy_clone_security:
822 * @old contains an existing xfrm_policy in the SPD.
823 * @new contains a new xfrm_policy being cloned from old.
824 * Allocate a security structure to the new->security field
825 * that contains the information from the old->security field.
826 * Return 0 if operation was successful (memory to allocate).
827 * @xfrm_policy_free_security:
828 * @xp contains the xfrm_policy
829 * Deallocate xp->security.
830 * @xfrm_policy_delete_security:
831 * @xp contains the xfrm_policy.
832 * Authorize deletion of xp->security.
833 * @xfrm_state_alloc_security:
834 * @x contains the xfrm_state being added to the Security Association
835 * Database by the XFRM system.
836 * @sec_ctx contains the security context information being provided by
837 * the user-level SA generation program (e.g., setkey or racoon).
838 * Allocate a security structure to the x->security field. The
839 * security field is initialized to NULL when the xfrm_state is
840 * allocated.
841 * Return 0 if operation was successful (memory to allocate, legal context).
842 * @xfrm_state_free_security:
843 * @x contains the xfrm_state.
844 * Deallocate x->security.
845 * @xfrm_state_delete_security:
846 * @x contains the xfrm_state.
847 * Authorize deletion of x->security.
848 * @xfrm_policy_lookup:
849 * @xp contains the xfrm_policy for which the access control is being
850 * checked.
851 * @sk_sid contains the sock security label that is used to authorize
852 * access to the policy xp.
853 * @dir contains the direction of the flow (input or output).
854 * Check permission when a sock selects a xfrm_policy for processing
855 * XFRMs on a packet. The hook is called when selecting either a
856 * per-socket policy or a generic xfrm policy.
857 * Return 0 if permission is granted.
858 *
859 * Security hooks affecting all Key Management operations
860 *
861 * @key_alloc:
862 * Permit allocation of a key and assign security data. Note that key does
863 * not have a serial number assigned at this point.
864 * @key points to the key.
865 * Return 0 if permission is granted, -ve error otherwise.
866 * @key_free:
867 * Notification of destruction; free security data.
868 * @key points to the key.
869 * No return value.
870 * @key_permission:
871 * See whether a specific operational right is granted to a process on a
872 * key.
873 * @key_ref refers to the key (key pointer + possession attribute bit).
874 * @context points to the process to provide the context against which to
875 * evaluate the security data on the key.
876 * @perm describes the combination of permissions required of this key.
877 * Return 1 if permission granted, 0 if permission denied and -ve it the
878 * normal permissions model should be effected.
879 *
880 * Security hooks affecting all System V IPC operations.
881 *
882 * @ipc_permission:
883 * Check permissions for access to IPC
884 * @ipcp contains the kernel IPC permission structure
885 * @flag contains the desired (requested) permission set
886 * Return 0 if permission is granted.
887 *
888 * Security hooks for individual messages held in System V IPC message queues
889 * @msg_msg_alloc_security:
890 * Allocate and attach a security structure to the msg->security field.
891 * The security field is initialized to NULL when the structure is first
892 * created.
893 * @msg contains the message structure to be modified.
894 * Return 0 if operation was successful and permission is granted.
895 * @msg_msg_free_security:
896 * Deallocate the security structure for this message.
897 * @msg contains the message structure to be modified.
898 *
899 * Security hooks for System V IPC Message Queues
900 *
901 * @msg_queue_alloc_security:
902 * Allocate and attach a security structure to the
903 * msq->q_perm.security field. The security field is initialized to
904 * NULL when the structure is first created.
905 * @msq contains the message queue structure to be modified.
906 * Return 0 if operation was successful and permission is granted.
907 * @msg_queue_free_security:
908 * Deallocate security structure for this message queue.
909 * @msq contains the message queue structure to be modified.
910 * @msg_queue_associate:
911 * Check permission when a message queue is requested through the
912 * msgget system call. This hook is only called when returning the
913 * message queue identifier for an existing message queue, not when a
914 * new message queue is created.
915 * @msq contains the message queue to act upon.
916 * @msqflg contains the operation control flags.
917 * Return 0 if permission is granted.
918 * @msg_queue_msgctl:
919 * Check permission when a message control operation specified by @cmd
920 * is to be performed on the message queue @msq.
921 * The @msq may be NULL, e.g. for IPC_INFO or MSG_INFO.
922 * @msq contains the message queue to act upon. May be NULL.
923 * @cmd contains the operation to be performed.
924 * Return 0 if permission is granted.
925 * @msg_queue_msgsnd:
926 * Check permission before a message, @msg, is enqueued on the message
927 * queue, @msq.
928 * @msq contains the message queue to send message to.
929 * @msg contains the message to be enqueued.
930 * @msqflg contains operational flags.
931 * Return 0 if permission is granted.
932 * @msg_queue_msgrcv:
933 * Check permission before a message, @msg, is removed from the message
934 * queue, @msq. The @target task structure contains a pointer to the
935 * process that will be receiving the message (not equal to the current
936 * process when inline receives are being performed).
937 * @msq contains the message queue to retrieve message from.
938 * @msg contains the message destination.
939 * @target contains the task structure for recipient process.
940 * @type contains the type of message requested.
941 * @mode contains the operational flags.
942 * Return 0 if permission is granted.
943 *
944 * Security hooks for System V Shared Memory Segments
945 *
946 * @shm_alloc_security:
947 * Allocate and attach a security structure to the shp->shm_perm.security
948 * field. The security field is initialized to NULL when the structure is
949 * first created.
950 * @shp contains the shared memory structure to be modified.
951 * Return 0 if operation was successful and permission is granted.
952 * @shm_free_security:
953 * Deallocate the security struct for this memory segment.
954 * @shp contains the shared memory structure to be modified.
955 * @shm_associate:
956 * Check permission when a shared memory region is requested through the
957 * shmget system call. This hook is only called when returning the shared
958 * memory region identifier for an existing region, not when a new shared
959 * memory region is created.
960 * @shp contains the shared memory structure to be modified.
961 * @shmflg contains the operation control flags.
962 * Return 0 if permission is granted.
963 * @shm_shmctl:
964 * Check permission when a shared memory control operation specified by
965 * @cmd is to be performed on the shared memory region @shp.
966 * The @shp may be NULL, e.g. for IPC_INFO or SHM_INFO.
967 * @shp contains shared memory structure to be modified.
968 * @cmd contains the operation to be performed.
969 * Return 0 if permission is granted.
970 * @shm_shmat:
971 * Check permissions prior to allowing the shmat system call to attach the
972 * shared memory segment @shp to the data segment of the calling process.
973 * The attaching address is specified by @shmaddr.
974 * @shp contains the shared memory structure to be modified.
975 * @shmaddr contains the address to attach memory region to.
976 * @shmflg contains the operational flags.
977 * Return 0 if permission is granted.
978 *
979 * Security hooks for System V Semaphores
980 *
981 * @sem_alloc_security:
982 * Allocate and attach a security structure to the sma->sem_perm.security
983 * field. The security field is initialized to NULL when the structure is
984 * first created.
985 * @sma contains the semaphore structure
986 * Return 0 if operation was successful and permission is granted.
987 * @sem_free_security:
988 * deallocate security struct for this semaphore
989 * @sma contains the semaphore structure.
990 * @sem_associate:
991 * Check permission when a semaphore is requested through the semget
992 * system call. This hook is only called when returning the semaphore
993 * identifier for an existing semaphore, not when a new one must be
994 * created.
995 * @sma contains the semaphore structure.
996 * @semflg contains the operation control flags.
997 * Return 0 if permission is granted.
998 * @sem_semctl:
999 * Check permission when a semaphore operation specified by @cmd is to be
1000 * performed on the semaphore @sma. The @sma may be NULL, e.g. for
1001 * IPC_INFO or SEM_INFO.
1002 * @sma contains the semaphore structure. May be NULL.
1003 * @cmd contains the operation to be performed.
1004 * Return 0 if permission is granted.
1005 * @sem_semop
1006 * Check permissions before performing operations on members of the
1007 * semaphore set @sma. If the @alter flag is nonzero, the semaphore set
1008 * may be modified.
1009 * @sma contains the semaphore structure.
1010 * @sops contains the operations to perform.
1011 * @nsops contains the number of operations to perform.
1012 * @alter contains the flag indicating whether changes are to be made.
1013 * Return 0 if permission is granted.
1014 *
1015 * @ptrace:
1016 * Check permission before allowing the @parent process to trace the
1017 * @child process.
1018 * Security modules may also want to perform a process tracing check
1019 * during an execve in the set_security or apply_creds hooks of
1020 * binprm_security_ops if the process is being traced and its security
1021 * attributes would be changed by the execve.
1022 * @parent contains the task_struct structure for parent process.
1023 * @child contains the task_struct structure for child process.
1024 * Return 0 if permission is granted.
1025 * @capget:
1026 * Get the @effective, @inheritable, and @permitted capability sets for
1027 * the @target process. The hook may also perform permission checking to
1028 * determine if the current process is allowed to see the capability sets
1029 * of the @target process.
1030 * @target contains the task_struct structure for target process.
1031 * @effective contains the effective capability set.
1032 * @inheritable contains the inheritable capability set.
1033 * @permitted contains the permitted capability set.
1034 * Return 0 if the capability sets were successfully obtained.
1035 * @capset_check:
1036 * Check permission before setting the @effective, @inheritable, and
1037 * @permitted capability sets for the @target process.
1038 * Caveat: @target is also set to current if a set of processes is
1039 * specified (i.e. all processes other than current and init or a
1040 * particular process group). Hence, the capset_set hook may need to
1041 * revalidate permission to the actual target process.
1042 * @target contains the task_struct structure for target process.
1043 * @effective contains the effective capability set.
1044 * @inheritable contains the inheritable capability set.
1045 * @permitted contains the permitted capability set.
1046 * Return 0 if permission is granted.
1047 * @capset_set:
1048 * Set the @effective, @inheritable, and @permitted capability sets for
1049 * the @target process. Since capset_check cannot always check permission
1050 * to the real @target process, this hook may also perform permission
1051 * checking to determine if the current process is allowed to set the
1052 * capability sets of the @target process. However, this hook has no way
1053 * of returning an error due to the structure of the sys_capset code.
1054 * @target contains the task_struct structure for target process.
1055 * @effective contains the effective capability set.
1056 * @inheritable contains the inheritable capability set.
1057 * @permitted contains the permitted capability set.
1058 * @capable:
1059 * Check whether the @tsk process has the @cap capability.
1060 * @tsk contains the task_struct for the process.
1061 * @cap contains the capability <include/linux/capability.h>.
1062 * Return 0 if the capability is granted for @tsk.
1063 * @acct:
1064 * Check permission before enabling or disabling process accounting. If
1065 * accounting is being enabled, then @file refers to the open file used to
1066 * store accounting records. If accounting is being disabled, then @file
1067 * is NULL.
1068 * @file contains the file structure for the accounting file (may be NULL).
1069 * Return 0 if permission is granted.
1070 * @sysctl:
1071 * Check permission before accessing the @table sysctl variable in the
1072 * manner specified by @op.
1073 * @table contains the ctl_table structure for the sysctl variable.
1074 * @op contains the operation (001 = search, 002 = write, 004 = read).
1075 * Return 0 if permission is granted.
1076 * @syslog:
1077 * Check permission before accessing the kernel message ring or changing
1078 * logging to the console.
1079 * See the syslog(2) manual page for an explanation of the @type values.
1080 * @type contains the type of action.
1081 * Return 0 if permission is granted.
1082 * @settime:
1083 * Check permission to change the system time.
1084 * struct timespec and timezone are defined in include/linux/time.h
1085 * @ts contains new time
1086 * @tz contains new timezone
1087 * Return 0 if permission is granted.
1088 * @vm_enough_memory:
1089 * Check permissions for allocating a new virtual mapping.
1090 * @pages contains the number of pages.
1091 * Return 0 if permission is granted.
1092 *
1093 * @register_security:
1094 * allow module stacking.
1095 * @name contains the name of the security module being stacked.
1096 * @ops contains a pointer to the struct security_operations of the module to stack.
1097 * @unregister_security:
1098 * remove a stacked module.
1099 * @name contains the name of the security module being unstacked.
1100 * @ops contains a pointer to the struct security_operations of the module to unstack.
1101 *
1102 * This is the main security structure.
1103 */
1104 struct security_operations {
1105 int (*ptrace) (struct task_struct * parent, struct task_struct * child);
1106 int (*capget) (struct task_struct * target,
1107 kernel_cap_t * effective,
1108 kernel_cap_t * inheritable, kernel_cap_t * permitted);
1109 int (*capset_check) (struct task_struct * target,
1110 kernel_cap_t * effective,
1111 kernel_cap_t * inheritable,
1112 kernel_cap_t * permitted);
1113 void (*capset_set) (struct task_struct * target,
1114 kernel_cap_t * effective,
1115 kernel_cap_t * inheritable,
1116 kernel_cap_t * permitted);
1117 int (*capable) (struct task_struct * tsk, int cap);
1118 int (*acct) (struct file * file);
1119 int (*sysctl) (struct ctl_table * table, int op);
1120 int (*quotactl) (int cmds, int type, int id, struct super_block * sb);
1121 int (*quota_on) (struct dentry * dentry);
1122 int (*syslog) (int type);
1123 int (*settime) (struct timespec *ts, struct timezone *tz);
1124 int (*vm_enough_memory) (long pages);
1125
1126 int (*bprm_alloc_security) (struct linux_binprm * bprm);
1127 void (*bprm_free_security) (struct linux_binprm * bprm);
1128 void (*bprm_apply_creds) (struct linux_binprm * bprm, int unsafe);
1129 void (*bprm_post_apply_creds) (struct linux_binprm * bprm);
1130 int (*bprm_set_security) (struct linux_binprm * bprm);
1131 int (*bprm_check_security) (struct linux_binprm * bprm);
1132 int (*bprm_secureexec) (struct linux_binprm * bprm);
1133
1134 int (*sb_alloc_security) (struct super_block * sb);
1135 void (*sb_free_security) (struct super_block * sb);
1136 int (*sb_copy_data)(struct file_system_type *type,
1137 void *orig, void *copy);
1138 int (*sb_kern_mount) (struct super_block *sb, void *data);
1139 int (*sb_statfs) (struct dentry *dentry);
1140 int (*sb_mount) (char *dev_name, struct nameidata * nd,
1141 char *type, unsigned long flags, void *data);
1142 int (*sb_check_sb) (struct vfsmount * mnt, struct nameidata * nd);
1143 int (*sb_umount) (struct vfsmount * mnt, int flags);
1144 void (*sb_umount_close) (struct vfsmount * mnt);
1145 void (*sb_umount_busy) (struct vfsmount * mnt);
1146 void (*sb_post_remount) (struct vfsmount * mnt,
1147 unsigned long flags, void *data);
1148 void (*sb_post_mountroot) (void);
1149 void (*sb_post_addmount) (struct vfsmount * mnt,
1150 struct nameidata * mountpoint_nd);
1151 int (*sb_pivotroot) (struct nameidata * old_nd,
1152 struct nameidata * new_nd);
1153 void (*sb_post_pivotroot) (struct nameidata * old_nd,
1154 struct nameidata * new_nd);
1155
1156 int (*inode_alloc_security) (struct inode *inode);
1157 void (*inode_free_security) (struct inode *inode);
1158 int (*inode_init_security) (struct inode *inode, struct inode *dir,
1159 char **name, void **value, size_t *len);
1160 int (*inode_create) (struct inode *dir,
1161 struct dentry *dentry, int mode);
1162 int (*inode_link) (struct dentry *old_dentry,
1163 struct inode *dir, struct dentry *new_dentry);
1164 int (*inode_unlink) (struct inode *dir, struct dentry *dentry);
1165 int (*inode_symlink) (struct inode *dir,
1166 struct dentry *dentry, const char *old_name);
1167 int (*inode_mkdir) (struct inode *dir, struct dentry *dentry, int mode);
1168 int (*inode_rmdir) (struct inode *dir, struct dentry *dentry);
1169 int (*inode_mknod) (struct inode *dir, struct dentry *dentry,
1170 int mode, dev_t dev);
1171 int (*inode_rename) (struct inode *old_dir, struct dentry *old_dentry,
1172 struct inode *new_dir, struct dentry *new_dentry);
1173 int (*inode_readlink) (struct dentry *dentry);
1174 int (*inode_follow_link) (struct dentry *dentry, struct nameidata *nd);
1175 int (*inode_permission) (struct inode *inode, int mask, struct nameidata *nd);
1176 int (*inode_setattr) (struct dentry *dentry, struct iattr *attr);
1177 int (*inode_getattr) (struct vfsmount *mnt, struct dentry *dentry);
1178 void (*inode_delete) (struct inode *inode);
1179 int (*inode_setxattr) (struct dentry *dentry, char *name, void *value,
1180 size_t size, int flags);
1181 void (*inode_post_setxattr) (struct dentry *dentry, char *name, void *value,
1182 size_t size, int flags);
1183 int (*inode_getxattr) (struct dentry *dentry, char *name);
1184 int (*inode_listxattr) (struct dentry *dentry);
1185 int (*inode_removexattr) (struct dentry *dentry, char *name);
1186 const char *(*inode_xattr_getsuffix) (void);
1187 int (*inode_getsecurity)(const struct inode *inode, const char *name, void *buffer, size_t size, int err);
1188 int (*inode_setsecurity)(struct inode *inode, const char *name, const void *value, size_t size, int flags);
1189 int (*inode_listsecurity)(struct inode *inode, char *buffer, size_t buffer_size);
1190
1191 int (*file_permission) (struct file * file, int mask);
1192 int (*file_alloc_security) (struct file * file);
1193 void (*file_free_security) (struct file * file);
1194 int (*file_ioctl) (struct file * file, unsigned int cmd,
1195 unsigned long arg);
1196 int (*file_mmap) (struct file * file,
1197 unsigned long reqprot,
1198 unsigned long prot, unsigned long flags);
1199 int (*file_mprotect) (struct vm_area_struct * vma,
1200 unsigned long reqprot,
1201 unsigned long prot);
1202 int (*file_lock) (struct file * file, unsigned int cmd);
1203 int (*file_fcntl) (struct file * file, unsigned int cmd,
1204 unsigned long arg);
1205 int (*file_set_fowner) (struct file * file);
1206 int (*file_send_sigiotask) (struct task_struct * tsk,
1207 struct fown_struct * fown, int sig);
1208 int (*file_receive) (struct file * file);
1209
1210 int (*task_create) (unsigned long clone_flags);
1211 int (*task_alloc_security) (struct task_struct * p);
1212 void (*task_free_security) (struct task_struct * p);
1213 int (*task_setuid) (uid_t id0, uid_t id1, uid_t id2, int flags);
1214 int (*task_post_setuid) (uid_t old_ruid /* or fsuid */ ,
1215 uid_t old_euid, uid_t old_suid, int flags);
1216 int (*task_setgid) (gid_t id0, gid_t id1, gid_t id2, int flags);
1217 int (*task_setpgid) (struct task_struct * p, pid_t pgid);
1218 int (*task_getpgid) (struct task_struct * p);
1219 int (*task_getsid) (struct task_struct * p);
1220 int (*task_setgroups) (struct group_info *group_info);
1221 int (*task_setnice) (struct task_struct * p, int nice);
1222 int (*task_setioprio) (struct task_struct * p, int ioprio);
1223 int (*task_setrlimit) (unsigned int resource, struct rlimit * new_rlim);
1224 int (*task_setscheduler) (struct task_struct * p, int policy,
1225 struct sched_param * lp);
1226 int (*task_getscheduler) (struct task_struct * p);
1227 int (*task_movememory) (struct task_struct * p);
1228 int (*task_kill) (struct task_struct * p,
1229 struct siginfo * info, int sig);
1230 int (*task_wait) (struct task_struct * p);
1231 int (*task_prctl) (int option, unsigned long arg2,
1232 unsigned long arg3, unsigned long arg4,
1233 unsigned long arg5);
1234 void (*task_reparent_to_init) (struct task_struct * p);
1235 void (*task_to_inode)(struct task_struct *p, struct inode *inode);
1236
1237 int (*ipc_permission) (struct kern_ipc_perm * ipcp, short flag);
1238
1239 int (*msg_msg_alloc_security) (struct msg_msg * msg);
1240 void (*msg_msg_free_security) (struct msg_msg * msg);
1241
1242 int (*msg_queue_alloc_security) (struct msg_queue * msq);
1243 void (*msg_queue_free_security) (struct msg_queue * msq);
1244 int (*msg_queue_associate) (struct msg_queue * msq, int msqflg);
1245 int (*msg_queue_msgctl) (struct msg_queue * msq, int cmd);
1246 int (*msg_queue_msgsnd) (struct msg_queue * msq,
1247 struct msg_msg * msg, int msqflg);
1248 int (*msg_queue_msgrcv) (struct msg_queue * msq,
1249 struct msg_msg * msg,
1250 struct task_struct * target,
1251 long type, int mode);
1252
1253 int (*shm_alloc_security) (struct shmid_kernel * shp);
1254 void (*shm_free_security) (struct shmid_kernel * shp);
1255 int (*shm_associate) (struct shmid_kernel * shp, int shmflg);
1256 int (*shm_shmctl) (struct shmid_kernel * shp, int cmd);
1257 int (*shm_shmat) (struct shmid_kernel * shp,
1258 char __user *shmaddr, int shmflg);
1259
1260 int (*sem_alloc_security) (struct sem_array * sma);
1261 void (*sem_free_security) (struct sem_array * sma);
1262 int (*sem_associate) (struct sem_array * sma, int semflg);
1263 int (*sem_semctl) (struct sem_array * sma, int cmd);
1264 int (*sem_semop) (struct sem_array * sma,
1265 struct sembuf * sops, unsigned nsops, int alter);
1266
1267 int (*netlink_send) (struct sock * sk, struct sk_buff * skb);
1268 int (*netlink_recv) (struct sk_buff * skb);
1269
1270 /* allow module stacking */
1271 int (*register_security) (const char *name,
1272 struct security_operations *ops);
1273 int (*unregister_security) (const char *name,
1274 struct security_operations *ops);
1275
1276 void (*d_instantiate) (struct dentry *dentry, struct inode *inode);
1277
1278 int (*getprocattr)(struct task_struct *p, char *name, void *value, size_t size);
1279 int (*setprocattr)(struct task_struct *p, char *name, void *value, size_t size);
1280
1281 #ifdef CONFIG_SECURITY_NETWORK
1282 int (*unix_stream_connect) (struct socket * sock,
1283 struct socket * other, struct sock * newsk);
1284 int (*unix_may_send) (struct socket * sock, struct socket * other);
1285
1286 int (*socket_create) (int family, int type, int protocol, int kern);
1287 void (*socket_post_create) (struct socket * sock, int family,
1288 int type, int protocol, int kern);
1289 int (*socket_bind) (struct socket * sock,
1290 struct sockaddr * address, int addrlen);
1291 int (*socket_connect) (struct socket * sock,
1292 struct sockaddr * address, int addrlen);
1293 int (*socket_listen) (struct socket * sock, int backlog);
1294 int (*socket_accept) (struct socket * sock, struct socket * newsock);
1295 void (*socket_post_accept) (struct socket * sock,
1296 struct socket * newsock);
1297 int (*socket_sendmsg) (struct socket * sock,
1298 struct msghdr * msg, int size);
1299 int (*socket_recvmsg) (struct socket * sock,
1300 struct msghdr * msg, int size, int flags);
1301 int (*socket_getsockname) (struct socket * sock);
1302 int (*socket_getpeername) (struct socket * sock);
1303 int (*socket_getsockopt) (struct socket * sock, int level, int optname);
1304 int (*socket_setsockopt) (struct socket * sock, int level, int optname);
1305 int (*socket_shutdown) (struct socket * sock, int how);
1306 int (*socket_sock_rcv_skb) (struct sock * sk, struct sk_buff * skb);
1307 int (*socket_getpeersec_stream) (struct socket *sock, char __user *optval, int __user *optlen, unsigned len);
1308 int (*socket_getpeersec_dgram) (struct sk_buff *skb, char **secdata, u32 *seclen);
1309 int (*sk_alloc_security) (struct sock *sk, int family, gfp_t priority);
1310 void (*sk_free_security) (struct sock *sk);
1311 unsigned int (*sk_getsid) (struct sock *sk, struct flowi *fl, u8 dir);
1312 #endif /* CONFIG_SECURITY_NETWORK */
1313
1314 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1315 int (*xfrm_policy_alloc_security) (struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx);
1316 int (*xfrm_policy_clone_security) (struct xfrm_policy *old, struct xfrm_policy *new);
1317 void (*xfrm_policy_free_security) (struct xfrm_policy *xp);
1318 int (*xfrm_policy_delete_security) (struct xfrm_policy *xp);
1319 int (*xfrm_state_alloc_security) (struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx);
1320 void (*xfrm_state_free_security) (struct xfrm_state *x);
1321 int (*xfrm_state_delete_security) (struct xfrm_state *x);
1322 int (*xfrm_policy_lookup)(struct xfrm_policy *xp, u32 sk_sid, u8 dir);
1323 #endif /* CONFIG_SECURITY_NETWORK_XFRM */
1324
1325 /* key management security hooks */
1326 #ifdef CONFIG_KEYS
1327 int (*key_alloc)(struct key *key, struct task_struct *tsk);
1328 void (*key_free)(struct key *key);
1329 int (*key_permission)(key_ref_t key_ref,
1330 struct task_struct *context,
1331 key_perm_t perm);
1332
1333 #endif /* CONFIG_KEYS */
1334
1335 };
1336
1337 /* global variables */
1338 extern struct security_operations *security_ops;
1339
1340 /* inline stuff */
1341 static inline int security_ptrace (struct task_struct * parent, struct task_struct * child)
1342 {
1343 return security_ops->ptrace (parent, child);
1344 }
1345
1346 static inline int security_capget (struct task_struct *target,
1347 kernel_cap_t *effective,
1348 kernel_cap_t *inheritable,
1349 kernel_cap_t *permitted)
1350 {
1351 return security_ops->capget (target, effective, inheritable, permitted);
1352 }
1353
1354 static inline int security_capset_check (struct task_struct *target,
1355 kernel_cap_t *effective,
1356 kernel_cap_t *inheritable,
1357 kernel_cap_t *permitted)
1358 {
1359 return security_ops->capset_check (target, effective, inheritable, permitted);
1360 }
1361
1362 static inline void security_capset_set (struct task_struct *target,
1363 kernel_cap_t *effective,
1364 kernel_cap_t *inheritable,
1365 kernel_cap_t *permitted)
1366 {
1367 security_ops->capset_set (target, effective, inheritable, permitted);
1368 }
1369
1370 static inline int security_capable(struct task_struct *tsk, int cap)
1371 {
1372 return security_ops->capable(tsk, cap);
1373 }
1374
1375 static inline int security_acct (struct file *file)
1376 {
1377 return security_ops->acct (file);
1378 }
1379
1380 static inline int security_sysctl(struct ctl_table *table, int op)
1381 {
1382 return security_ops->sysctl(table, op);
1383 }
1384
1385 static inline int security_quotactl (int cmds, int type, int id,
1386 struct super_block *sb)
1387 {
1388 return security_ops->quotactl (cmds, type, id, sb);
1389 }
1390
1391 static inline int security_quota_on (struct dentry * dentry)
1392 {
1393 return security_ops->quota_on (dentry);
1394 }
1395
1396 static inline int security_syslog(int type)
1397 {
1398 return security_ops->syslog(type);
1399 }
1400
1401 static inline int security_settime(struct timespec *ts, struct timezone *tz)
1402 {
1403 return security_ops->settime(ts, tz);
1404 }
1405
1406
1407 static inline int security_vm_enough_memory(long pages)
1408 {
1409 return security_ops->vm_enough_memory(pages);
1410 }
1411
1412 static inline int security_bprm_alloc (struct linux_binprm *bprm)
1413 {
1414 return security_ops->bprm_alloc_security (bprm);
1415 }
1416 static inline void security_bprm_free (struct linux_binprm *bprm)
1417 {
1418 security_ops->bprm_free_security (bprm);
1419 }
1420 static inline void security_bprm_apply_creds (struct linux_binprm *bprm, int unsafe)
1421 {
1422 security_ops->bprm_apply_creds (bprm, unsafe);
1423 }
1424 static inline void security_bprm_post_apply_creds (struct linux_binprm *bprm)
1425 {
1426 security_ops->bprm_post_apply_creds (bprm);
1427 }
1428 static inline int security_bprm_set (struct linux_binprm *bprm)
1429 {
1430 return security_ops->bprm_set_security (bprm);
1431 }
1432
1433 static inline int security_bprm_check (struct linux_binprm *bprm)
1434 {
1435 return security_ops->bprm_check_security (bprm);
1436 }
1437
1438 static inline int security_bprm_secureexec (struct linux_binprm *bprm)
1439 {
1440 return security_ops->bprm_secureexec (bprm);
1441 }
1442
1443 static inline int security_sb_alloc (struct super_block *sb)
1444 {
1445 return security_ops->sb_alloc_security (sb);
1446 }
1447
1448 static inline void security_sb_free (struct super_block *sb)
1449 {
1450 security_ops->sb_free_security (sb);
1451 }
1452
1453 static inline int security_sb_copy_data (struct file_system_type *type,
1454 void *orig, void *copy)
1455 {
1456 return security_ops->sb_copy_data (type, orig, copy);
1457 }
1458
1459 static inline int security_sb_kern_mount (struct super_block *sb, void *data)
1460 {
1461 return security_ops->sb_kern_mount (sb, data);
1462 }
1463
1464 static inline int security_sb_statfs (struct dentry *dentry)
1465 {
1466 return security_ops->sb_statfs (dentry);
1467 }
1468
1469 static inline int security_sb_mount (char *dev_name, struct nameidata *nd,
1470 char *type, unsigned long flags,
1471 void *data)
1472 {
1473 return security_ops->sb_mount (dev_name, nd, type, flags, data);
1474 }
1475
1476 static inline int security_sb_check_sb (struct vfsmount *mnt,
1477 struct nameidata *nd)
1478 {
1479 return security_ops->sb_check_sb (mnt, nd);
1480 }
1481
1482 static inline int security_sb_umount (struct vfsmount *mnt, int flags)
1483 {
1484 return security_ops->sb_umount (mnt, flags);
1485 }
1486
1487 static inline void security_sb_umount_close (struct vfsmount *mnt)
1488 {
1489 security_ops->sb_umount_close (mnt);
1490 }
1491
1492 static inline void security_sb_umount_busy (struct vfsmount *mnt)
1493 {
1494 security_ops->sb_umount_busy (mnt);
1495 }
1496
1497 static inline void security_sb_post_remount (struct vfsmount *mnt,
1498 unsigned long flags, void *data)
1499 {
1500 security_ops->sb_post_remount (mnt, flags, data);
1501 }
1502
1503 static inline void security_sb_post_mountroot (void)
1504 {
1505 security_ops->sb_post_mountroot ();
1506 }
1507
1508 static inline void security_sb_post_addmount (struct vfsmount *mnt,
1509 struct nameidata *mountpoint_nd)
1510 {
1511 security_ops->sb_post_addmount (mnt, mountpoint_nd);
1512 }
1513
1514 static inline int security_sb_pivotroot (struct nameidata *old_nd,
1515 struct nameidata *new_nd)
1516 {
1517 return security_ops->sb_pivotroot (old_nd, new_nd);
1518 }
1519
1520 static inline void security_sb_post_pivotroot (struct nameidata *old_nd,
1521 struct nameidata *new_nd)
1522 {
1523 security_ops->sb_post_pivotroot (old_nd, new_nd);
1524 }
1525
1526 static inline int security_inode_alloc (struct inode *inode)
1527 {
1528 return security_ops->inode_alloc_security (inode);
1529 }
1530
1531 static inline void security_inode_free (struct inode *inode)
1532 {
1533 security_ops->inode_free_security (inode);
1534 }
1535
1536 static inline int security_inode_init_security (struct inode *inode,
1537 struct inode *dir,
1538 char **name,
1539 void **value,
1540 size_t *len)
1541 {
1542 if (unlikely (IS_PRIVATE (inode)))
1543 return -EOPNOTSUPP;
1544 return security_ops->inode_init_security (inode, dir, name, value, len);
1545 }
1546
1547 static inline int security_inode_create (struct inode *dir,
1548 struct dentry *dentry,
1549 int mode)
1550 {
1551 if (unlikely (IS_PRIVATE (dir)))
1552 return 0;
1553 return security_ops->inode_create (dir, dentry, mode);
1554 }
1555
1556 static inline int security_inode_link (struct dentry *old_dentry,
1557 struct inode *dir,
1558 struct dentry *new_dentry)
1559 {
1560 if (unlikely (IS_PRIVATE (old_dentry->d_inode)))
1561 return 0;
1562 return security_ops->inode_link (old_dentry, dir, new_dentry);
1563 }
1564
1565 static inline int security_inode_unlink (struct inode *dir,
1566 struct dentry *dentry)
1567 {
1568 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1569 return 0;
1570 return security_ops->inode_unlink (dir, dentry);
1571 }
1572
1573 static inline int security_inode_symlink (struct inode *dir,
1574 struct dentry *dentry,
1575 const char *old_name)
1576 {
1577 if (unlikely (IS_PRIVATE (dir)))
1578 return 0;
1579 return security_ops->inode_symlink (dir, dentry, old_name);
1580 }
1581
1582 static inline int security_inode_mkdir (struct inode *dir,
1583 struct dentry *dentry,
1584 int mode)
1585 {
1586 if (unlikely (IS_PRIVATE (dir)))
1587 return 0;
1588 return security_ops->inode_mkdir (dir, dentry, mode);
1589 }
1590
1591 static inline int security_inode_rmdir (struct inode *dir,
1592 struct dentry *dentry)
1593 {
1594 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1595 return 0;
1596 return security_ops->inode_rmdir (dir, dentry);
1597 }
1598
1599 static inline int security_inode_mknod (struct inode *dir,
1600 struct dentry *dentry,
1601 int mode, dev_t dev)
1602 {
1603 if (unlikely (IS_PRIVATE (dir)))
1604 return 0;
1605 return security_ops->inode_mknod (dir, dentry, mode, dev);
1606 }
1607
1608 static inline int security_inode_rename (struct inode *old_dir,
1609 struct dentry *old_dentry,
1610 struct inode *new_dir,
1611 struct dentry *new_dentry)
1612 {
1613 if (unlikely (IS_PRIVATE (old_dentry->d_inode) ||
1614 (new_dentry->d_inode && IS_PRIVATE (new_dentry->d_inode))))
1615 return 0;
1616 return security_ops->inode_rename (old_dir, old_dentry,
1617 new_dir, new_dentry);
1618 }
1619
1620 static inline int security_inode_readlink (struct dentry *dentry)
1621 {
1622 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1623 return 0;
1624 return security_ops->inode_readlink (dentry);
1625 }
1626
1627 static inline int security_inode_follow_link (struct dentry *dentry,
1628 struct nameidata *nd)
1629 {
1630 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1631 return 0;
1632 return security_ops->inode_follow_link (dentry, nd);
1633 }
1634
1635 static inline int security_inode_permission (struct inode *inode, int mask,
1636 struct nameidata *nd)
1637 {
1638 if (unlikely (IS_PRIVATE (inode)))
1639 return 0;
1640 return security_ops->inode_permission (inode, mask, nd);
1641 }
1642
1643 static inline int security_inode_setattr (struct dentry *dentry,
1644 struct iattr *attr)
1645 {
1646 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1647 return 0;
1648 return security_ops->inode_setattr (dentry, attr);
1649 }
1650
1651 static inline int security_inode_getattr (struct vfsmount *mnt,
1652 struct dentry *dentry)
1653 {
1654 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1655 return 0;
1656 return security_ops->inode_getattr (mnt, dentry);
1657 }
1658
1659 static inline void security_inode_delete (struct inode *inode)
1660 {
1661 if (unlikely (IS_PRIVATE (inode)))
1662 return;
1663 security_ops->inode_delete (inode);
1664 }
1665
1666 static inline int security_inode_setxattr (struct dentry *dentry, char *name,
1667 void *value, size_t size, int flags)
1668 {
1669 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1670 return 0;
1671 return security_ops->inode_setxattr (dentry, name, value, size, flags);
1672 }
1673
1674 static inline void security_inode_post_setxattr (struct dentry *dentry, char *name,
1675 void *value, size_t size, int flags)
1676 {
1677 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1678 return;
1679 security_ops->inode_post_setxattr (dentry, name, value, size, flags);
1680 }
1681
1682 static inline int security_inode_getxattr (struct dentry *dentry, char *name)
1683 {
1684 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1685 return 0;
1686 return security_ops->inode_getxattr (dentry, name);
1687 }
1688
1689 static inline int security_inode_listxattr (struct dentry *dentry)
1690 {
1691 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1692 return 0;
1693 return security_ops->inode_listxattr (dentry);
1694 }
1695
1696 static inline int security_inode_removexattr (struct dentry *dentry, char *name)
1697 {
1698 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1699 return 0;
1700 return security_ops->inode_removexattr (dentry, name);
1701 }
1702
1703 static inline const char *security_inode_xattr_getsuffix(void)
1704 {
1705 return security_ops->inode_xattr_getsuffix();
1706 }
1707
1708 static inline int security_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err)
1709 {
1710 if (unlikely (IS_PRIVATE (inode)))
1711 return 0;
1712 return security_ops->inode_getsecurity(inode, name, buffer, size, err);
1713 }
1714
1715 static inline int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1716 {
1717 if (unlikely (IS_PRIVATE (inode)))
1718 return 0;
1719 return security_ops->inode_setsecurity(inode, name, value, size, flags);
1720 }
1721
1722 static inline int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1723 {
1724 if (unlikely (IS_PRIVATE (inode)))
1725 return 0;
1726 return security_ops->inode_listsecurity(inode, buffer, buffer_size);
1727 }
1728
1729 static inline int security_file_permission (struct file *file, int mask)
1730 {
1731 return security_ops->file_permission (file, mask);
1732 }
1733
1734 static inline int security_file_alloc (struct file *file)
1735 {
1736 return security_ops->file_alloc_security (file);
1737 }
1738
1739 static inline void security_file_free (struct file *file)
1740 {
1741 security_ops->file_free_security (file);
1742 }
1743
1744 static inline int security_file_ioctl (struct file *file, unsigned int cmd,
1745 unsigned long arg)
1746 {
1747 return security_ops->file_ioctl (file, cmd, arg);
1748 }
1749
1750 static inline int security_file_mmap (struct file *file, unsigned long reqprot,
1751 unsigned long prot,
1752 unsigned long flags)
1753 {
1754 return security_ops->file_mmap (file, reqprot, prot, flags);
1755 }
1756
1757 static inline int security_file_mprotect (struct vm_area_struct *vma,
1758 unsigned long reqprot,
1759 unsigned long prot)
1760 {
1761 return security_ops->file_mprotect (vma, reqprot, prot);
1762 }
1763
1764 static inline int security_file_lock (struct file *file, unsigned int cmd)
1765 {
1766 return security_ops->file_lock (file, cmd);
1767 }
1768
1769 static inline int security_file_fcntl (struct file *file, unsigned int cmd,
1770 unsigned long arg)
1771 {
1772 return security_ops->file_fcntl (file, cmd, arg);
1773 }
1774
1775 static inline int security_file_set_fowner (struct file *file)
1776 {
1777 return security_ops->file_set_fowner (file);
1778 }
1779
1780 static inline int security_file_send_sigiotask (struct task_struct *tsk,
1781 struct fown_struct *fown,
1782 int sig)
1783 {
1784 return security_ops->file_send_sigiotask (tsk, fown, sig);
1785 }
1786
1787 static inline int security_file_receive (struct file *file)
1788 {
1789 return security_ops->file_receive (file);
1790 }
1791
1792 static inline int security_task_create (unsigned long clone_flags)
1793 {
1794 return security_ops->task_create (clone_flags);
1795 }
1796
1797 static inline int security_task_alloc (struct task_struct *p)
1798 {
1799 return security_ops->task_alloc_security (p);
1800 }
1801
1802 static inline void security_task_free (struct task_struct *p)
1803 {
1804 security_ops->task_free_security (p);
1805 }
1806
1807 static inline int security_task_setuid (uid_t id0, uid_t id1, uid_t id2,
1808 int flags)
1809 {
1810 return security_ops->task_setuid (id0, id1, id2, flags);
1811 }
1812
1813 static inline int security_task_post_setuid (uid_t old_ruid, uid_t old_euid,
1814 uid_t old_suid, int flags)
1815 {
1816 return security_ops->task_post_setuid (old_ruid, old_euid, old_suid, flags);
1817 }
1818
1819 static inline int security_task_setgid (gid_t id0, gid_t id1, gid_t id2,
1820 int flags)
1821 {
1822 return security_ops->task_setgid (id0, id1, id2, flags);
1823 }
1824
1825 static inline int security_task_setpgid (struct task_struct *p, pid_t pgid)
1826 {
1827 return security_ops->task_setpgid (p, pgid);
1828 }
1829
1830 static inline int security_task_getpgid (struct task_struct *p)
1831 {
1832 return security_ops->task_getpgid (p);
1833 }
1834
1835 static inline int security_task_getsid (struct task_struct *p)
1836 {
1837 return security_ops->task_getsid (p);
1838 }
1839
1840 static inline int security_task_setgroups (struct group_info *group_info)
1841 {
1842 return security_ops->task_setgroups (group_info);
1843 }
1844
1845 static inline int security_task_setnice (struct task_struct *p, int nice)
1846 {
1847 return security_ops->task_setnice (p, nice);
1848 }
1849
1850 static inline int security_task_setioprio (struct task_struct *p, int ioprio)
1851 {
1852 return security_ops->task_setioprio (p, ioprio);
1853 }
1854
1855 static inline int security_task_setrlimit (unsigned int resource,
1856 struct rlimit *new_rlim)
1857 {
1858 return security_ops->task_setrlimit (resource, new_rlim);
1859 }
1860
1861 static inline int security_task_setscheduler (struct task_struct *p,
1862 int policy,
1863 struct sched_param *lp)
1864 {
1865 return security_ops->task_setscheduler (p, policy, lp);
1866 }
1867
1868 static inline int security_task_getscheduler (struct task_struct *p)
1869 {
1870 return security_ops->task_getscheduler (p);
1871 }
1872
1873 static inline int security_task_movememory (struct task_struct *p)
1874 {
1875 return security_ops->task_movememory (p);
1876 }
1877
1878 static inline int security_task_kill (struct task_struct *p,
1879 struct siginfo *info, int sig)
1880 {
1881 return security_ops->task_kill (p, info, sig);
1882 }
1883
1884 static inline int security_task_wait (struct task_struct *p)
1885 {
1886 return security_ops->task_wait (p);
1887 }
1888
1889 static inline int security_task_prctl (int option, unsigned long arg2,
1890 unsigned long arg3,
1891 unsigned long arg4,
1892 unsigned long arg5)
1893 {
1894 return security_ops->task_prctl (option, arg2, arg3, arg4, arg5);
1895 }
1896
1897 static inline void security_task_reparent_to_init (struct task_struct *p)
1898 {
1899 security_ops->task_reparent_to_init (p);
1900 }
1901
1902 static inline void security_task_to_inode(struct task_struct *p, struct inode *inode)
1903 {
1904 security_ops->task_to_inode(p, inode);
1905 }
1906
1907 static inline int security_ipc_permission (struct kern_ipc_perm *ipcp,
1908 short flag)
1909 {
1910 return security_ops->ipc_permission (ipcp, flag);
1911 }
1912
1913 static inline int security_msg_msg_alloc (struct msg_msg * msg)
1914 {
1915 return security_ops->msg_msg_alloc_security (msg);
1916 }
1917
1918 static inline void security_msg_msg_free (struct msg_msg * msg)
1919 {
1920 security_ops->msg_msg_free_security(msg);
1921 }
1922
1923 static inline int security_msg_queue_alloc (struct msg_queue *msq)
1924 {
1925 return security_ops->msg_queue_alloc_security (msq);
1926 }
1927
1928 static inline void security_msg_queue_free (struct msg_queue *msq)
1929 {
1930 security_ops->msg_queue_free_security (msq);
1931 }
1932
1933 static inline int security_msg_queue_associate (struct msg_queue * msq,
1934 int msqflg)
1935 {
1936 return security_ops->msg_queue_associate (msq, msqflg);
1937 }
1938
1939 static inline int security_msg_queue_msgctl (struct msg_queue * msq, int cmd)
1940 {
1941 return security_ops->msg_queue_msgctl (msq, cmd);
1942 }
1943
1944 static inline int security_msg_queue_msgsnd (struct msg_queue * msq,
1945 struct msg_msg * msg, int msqflg)
1946 {
1947 return security_ops->msg_queue_msgsnd (msq, msg, msqflg);
1948 }
1949
1950 static inline int security_msg_queue_msgrcv (struct msg_queue * msq,
1951 struct msg_msg * msg,
1952 struct task_struct * target,
1953 long type, int mode)
1954 {
1955 return security_ops->msg_queue_msgrcv (msq, msg, target, type, mode);
1956 }
1957
1958 static inline int security_shm_alloc (struct shmid_kernel *shp)
1959 {
1960 return security_ops->shm_alloc_security (shp);
1961 }
1962
1963 static inline void security_shm_free (struct shmid_kernel *shp)
1964 {
1965 security_ops->shm_free_security (shp);
1966 }
1967
1968 static inline int security_shm_associate (struct shmid_kernel * shp,
1969 int shmflg)
1970 {
1971 return security_ops->shm_associate(shp, shmflg);
1972 }
1973
1974 static inline int security_shm_shmctl (struct shmid_kernel * shp, int cmd)
1975 {
1976 return security_ops->shm_shmctl (shp, cmd);
1977 }
1978
1979 static inline int security_shm_shmat (struct shmid_kernel * shp,
1980 char __user *shmaddr, int shmflg)
1981 {
1982 return security_ops->shm_shmat(shp, shmaddr, shmflg);
1983 }
1984
1985 static inline int security_sem_alloc (struct sem_array *sma)
1986 {
1987 return security_ops->sem_alloc_security (sma);
1988 }
1989
1990 static inline void security_sem_free (struct sem_array *sma)
1991 {
1992 security_ops->sem_free_security (sma);
1993 }
1994
1995 static inline int security_sem_associate (struct sem_array * sma, int semflg)
1996 {
1997 return security_ops->sem_associate (sma, semflg);
1998 }
1999
2000 static inline int security_sem_semctl (struct sem_array * sma, int cmd)
2001 {
2002 return security_ops->sem_semctl(sma, cmd);
2003 }
2004
2005 static inline int security_sem_semop (struct sem_array * sma,
2006 struct sembuf * sops, unsigned nsops,
2007 int alter)
2008 {
2009 return security_ops->sem_semop(sma, sops, nsops, alter);
2010 }
2011
2012 static inline void security_d_instantiate (struct dentry *dentry, struct inode *inode)
2013 {
2014 if (unlikely (inode && IS_PRIVATE (inode)))
2015 return;
2016 security_ops->d_instantiate (dentry, inode);
2017 }
2018
2019 static inline int security_getprocattr(struct task_struct *p, char *name, void *value, size_t size)
2020 {
2021 return security_ops->getprocattr(p, name, value, size);
2022 }
2023
2024 static inline int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
2025 {
2026 return security_ops->setprocattr(p, name, value, size);
2027 }
2028
2029 static inline int security_netlink_send(struct sock *sk, struct sk_buff * skb)
2030 {
2031 return security_ops->netlink_send(sk, skb);
2032 }
2033
2034 static inline int security_netlink_recv(struct sk_buff * skb)
2035 {
2036 return security_ops->netlink_recv(skb);
2037 }
2038
2039 /* prototypes */
2040 extern int security_init (void);
2041 extern int register_security (struct security_operations *ops);
2042 extern int unregister_security (struct security_operations *ops);
2043 extern int mod_reg_security (const char *name, struct security_operations *ops);
2044 extern int mod_unreg_security (const char *name, struct security_operations *ops);
2045 extern struct dentry *securityfs_create_file(const char *name, mode_t mode,
2046 struct dentry *parent, void *data,
2047 struct file_operations *fops);
2048 extern struct dentry *securityfs_create_dir(const char *name, struct dentry *parent);
2049 extern void securityfs_remove(struct dentry *dentry);
2050
2051
2052 #else /* CONFIG_SECURITY */
2053
2054 /*
2055 * This is the default capabilities functionality. Most of these functions
2056 * are just stubbed out, but a few must call the proper capable code.
2057 */
2058
2059 static inline int security_init(void)
2060 {
2061 return 0;
2062 }
2063
2064 static inline int security_ptrace (struct task_struct *parent, struct task_struct * child)
2065 {
2066 return cap_ptrace (parent, child);
2067 }
2068
2069 static inline int security_capget (struct task_struct *target,
2070 kernel_cap_t *effective,
2071 kernel_cap_t *inheritable,
2072 kernel_cap_t *permitted)
2073 {
2074 return cap_capget (target, effective, inheritable, permitted);
2075 }
2076
2077 static inline int security_capset_check (struct task_struct *target,
2078 kernel_cap_t *effective,
2079 kernel_cap_t *inheritable,
2080 kernel_cap_t *permitted)
2081 {
2082 return cap_capset_check (target, effective, inheritable, permitted);
2083 }
2084
2085 static inline void security_capset_set (struct task_struct *target,
2086 kernel_cap_t *effective,
2087 kernel_cap_t *inheritable,
2088 kernel_cap_t *permitted)
2089 {
2090 cap_capset_set (target, effective, inheritable, permitted);
2091 }
2092
2093 static inline int security_capable(struct task_struct *tsk, int cap)
2094 {
2095 return cap_capable(tsk, cap);
2096 }
2097
2098 static inline int security_acct (struct file *file)
2099 {
2100 return 0;
2101 }
2102
2103 static inline int security_sysctl(struct ctl_table *table, int op)
2104 {
2105 return 0;
2106 }
2107
2108 static inline int security_quotactl (int cmds, int type, int id,
2109 struct super_block * sb)
2110 {
2111 return 0;
2112 }
2113
2114 static inline int security_quota_on (struct dentry * dentry)
2115 {
2116 return 0;
2117 }
2118
2119 static inline int security_syslog(int type)
2120 {
2121 return cap_syslog(type);
2122 }
2123
2124 static inline int security_settime(struct timespec *ts, struct timezone *tz)
2125 {
2126 return cap_settime(ts, tz);
2127 }
2128
2129 static inline int security_vm_enough_memory(long pages)
2130 {
2131 return cap_vm_enough_memory(pages);
2132 }
2133
2134 static inline int security_bprm_alloc (struct linux_binprm *bprm)
2135 {
2136 return 0;
2137 }
2138
2139 static inline void security_bprm_free (struct linux_binprm *bprm)
2140 { }
2141
2142 static inline void security_bprm_apply_creds (struct linux_binprm *bprm, int unsafe)
2143 {
2144 cap_bprm_apply_creds (bprm, unsafe);
2145 }
2146
2147 static inline void security_bprm_post_apply_creds (struct linux_binprm *bprm)
2148 {
2149 return;
2150 }
2151
2152 static inline int security_bprm_set (struct linux_binprm *bprm)
2153 {
2154 return cap_bprm_set_security (bprm);
2155 }
2156
2157 static inline int security_bprm_check (struct linux_binprm *bprm)
2158 {
2159 return 0;
2160 }
2161
2162 static inline int security_bprm_secureexec (struct linux_binprm *bprm)
2163 {
2164 return cap_bprm_secureexec(bprm);
2165 }
2166
2167 static inline int security_sb_alloc (struct super_block *sb)
2168 {
2169 return 0;
2170 }
2171
2172 static inline void security_sb_free (struct super_block *sb)
2173 { }
2174
2175 static inline int security_sb_copy_data (struct file_system_type *type,
2176 void *orig, void *copy)
2177 {
2178 return 0;
2179 }
2180
2181 static inline int security_sb_kern_mount (struct super_block *sb, void *data)
2182 {
2183 return 0;
2184 }
2185
2186 static inline int security_sb_statfs (struct dentry *dentry)
2187 {
2188 return 0;
2189 }
2190
2191 static inline int security_sb_mount (char *dev_name, struct nameidata *nd,
2192 char *type, unsigned long flags,
2193 void *data)
2194 {
2195 return 0;
2196 }
2197
2198 static inline int security_sb_check_sb (struct vfsmount *mnt,
2199 struct nameidata *nd)
2200 {
2201 return 0;
2202 }
2203
2204 static inline int security_sb_umount (struct vfsmount *mnt, int flags)
2205 {
2206 return 0;
2207 }
2208
2209 static inline void security_sb_umount_close (struct vfsmount *mnt)
2210 { }
2211
2212 static inline void security_sb_umount_busy (struct vfsmount *mnt)
2213 { }
2214
2215 static inline void security_sb_post_remount (struct vfsmount *mnt,
2216 unsigned long flags, void *data)
2217 { }
2218
2219 static inline void security_sb_post_mountroot (void)
2220 { }
2221
2222 static inline void security_sb_post_addmount (struct vfsmount *mnt,
2223 struct nameidata *mountpoint_nd)
2224 { }
2225
2226 static inline int security_sb_pivotroot (struct nameidata *old_nd,
2227 struct nameidata *new_nd)
2228 {
2229 return 0;
2230 }
2231
2232 static inline void security_sb_post_pivotroot (struct nameidata *old_nd,
2233 struct nameidata *new_nd)
2234 { }
2235
2236 static inline int security_inode_alloc (struct inode *inode)
2237 {
2238 return 0;
2239 }
2240
2241 static inline void security_inode_free (struct inode *inode)
2242 { }
2243
2244 static inline int security_inode_init_security (struct inode *inode,
2245 struct inode *dir,
2246 char **name,
2247 void **value,
2248 size_t *len)
2249 {
2250 return -EOPNOTSUPP;
2251 }
2252
2253 static inline int security_inode_create (struct inode *dir,
2254 struct dentry *dentry,
2255 int mode)
2256 {
2257 return 0;
2258 }
2259
2260 static inline int security_inode_link (struct dentry *old_dentry,
2261 struct inode *dir,
2262 struct dentry *new_dentry)
2263 {
2264 return 0;
2265 }
2266
2267 static inline int security_inode_unlink (struct inode *dir,
2268 struct dentry *dentry)
2269 {
2270 return 0;
2271 }
2272
2273 static inline int security_inode_symlink (struct inode *dir,
2274 struct dentry *dentry,
2275 const char *old_name)
2276 {
2277 return 0;
2278 }
2279
2280 static inline int security_inode_mkdir (struct inode *dir,
2281 struct dentry *dentry,
2282 int mode)
2283 {
2284 return 0;
2285 }
2286
2287 static inline int security_inode_rmdir (struct inode *dir,
2288 struct dentry *dentry)
2289 {
2290 return 0;
2291 }
2292
2293 static inline int security_inode_mknod (struct inode *dir,
2294 struct dentry *dentry,
2295 int mode, dev_t dev)
2296 {
2297 return 0;
2298 }
2299
2300 static inline int security_inode_rename (struct inode *old_dir,
2301 struct dentry *old_dentry,
2302 struct inode *new_dir,
2303 struct dentry *new_dentry)
2304 {
2305 return 0;
2306 }
2307
2308 static inline int security_inode_readlink (struct dentry *dentry)
2309 {
2310 return 0;
2311 }
2312
2313 static inline int security_inode_follow_link (struct dentry *dentry,
2314 struct nameidata *nd)
2315 {
2316 return 0;
2317 }
2318
2319 static inline int security_inode_permission (struct inode *inode, int mask,
2320 struct nameidata *nd)
2321 {
2322 return 0;
2323 }
2324
2325 static inline int security_inode_setattr (struct dentry *dentry,
2326 struct iattr *attr)
2327 {
2328 return 0;
2329 }
2330
2331 static inline int security_inode_getattr (struct vfsmount *mnt,
2332 struct dentry *dentry)
2333 {
2334 return 0;
2335 }
2336
2337 static inline void security_inode_delete (struct inode *inode)
2338 { }
2339
2340 static inline int security_inode_setxattr (struct dentry *dentry, char *name,
2341 void *value, size_t size, int flags)
2342 {
2343 return cap_inode_setxattr(dentry, name, value, size, flags);
2344 }
2345
2346 static inline void security_inode_post_setxattr (struct dentry *dentry, char *name,
2347 void *value, size_t size, int flags)
2348 { }
2349
2350 static inline int security_inode_getxattr (struct dentry *dentry, char *name)
2351 {
2352 return 0;
2353 }
2354
2355 static inline int security_inode_listxattr (struct dentry *dentry)
2356 {
2357 return 0;
2358 }
2359
2360 static inline int security_inode_removexattr (struct dentry *dentry, char *name)
2361 {
2362 return cap_inode_removexattr(dentry, name);
2363 }
2364
2365 static inline const char *security_inode_xattr_getsuffix (void)
2366 {
2367 return NULL ;
2368 }
2369
2370 static inline int security_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err)
2371 {
2372 return -EOPNOTSUPP;
2373 }
2374
2375 static inline int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
2376 {
2377 return -EOPNOTSUPP;
2378 }
2379
2380 static inline int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2381 {
2382 return 0;
2383 }
2384
2385 static inline int security_file_permission (struct file *file, int mask)
2386 {
2387 return 0;
2388 }
2389
2390 static inline int security_file_alloc (struct file *file)
2391 {
2392 return 0;
2393 }
2394
2395 static inline void security_file_free (struct file *file)
2396 { }
2397
2398 static inline int security_file_ioctl (struct file *file, unsigned int cmd,
2399 unsigned long arg)
2400 {
2401 return 0;
2402 }
2403
2404 static inline int security_file_mmap (struct file *file, unsigned long reqprot,
2405 unsigned long prot,
2406 unsigned long flags)
2407 {
2408 return 0;
2409 }
2410
2411 static inline int security_file_mprotect (struct vm_area_struct *vma,
2412 unsigned long reqprot,
2413 unsigned long prot)
2414 {
2415 return 0;
2416 }
2417
2418 static inline int security_file_lock (struct file *file, unsigned int cmd)
2419 {
2420 return 0;
2421 }
2422
2423 static inline int security_file_fcntl (struct file *file, unsigned int cmd,
2424 unsigned long arg)
2425 {
2426 return 0;
2427 }
2428
2429 static inline int security_file_set_fowner (struct file *file)
2430 {
2431 return 0;
2432 }
2433
2434 static inline int security_file_send_sigiotask (struct task_struct *tsk,
2435 struct fown_struct *fown,
2436 int sig)
2437 {
2438 return 0;
2439 }
2440
2441 static inline int security_file_receive (struct file *file)
2442 {
2443 return 0;
2444 }
2445
2446 static inline int security_task_create (unsigned long clone_flags)
2447 {
2448 return 0;
2449 }
2450
2451 static inline int security_task_alloc (struct task_struct *p)
2452 {
2453 return 0;
2454 }
2455
2456 static inline void security_task_free (struct task_struct *p)
2457 { }
2458
2459 static inline int security_task_setuid (uid_t id0, uid_t id1, uid_t id2,
2460 int flags)
2461 {
2462 return 0;
2463 }
2464
2465 static inline int security_task_post_setuid (uid_t old_ruid, uid_t old_euid,
2466 uid_t old_suid, int flags)
2467 {
2468 return cap_task_post_setuid (old_ruid, old_euid, old_suid, flags);
2469 }
2470
2471 static inline int security_task_setgid (gid_t id0, gid_t id1, gid_t id2,
2472 int flags)
2473 {
2474 return 0;
2475 }
2476
2477 static inline int security_task_setpgid (struct task_struct *p, pid_t pgid)
2478 {
2479 return 0;
2480 }
2481
2482 static inline int security_task_getpgid (struct task_struct *p)
2483 {
2484 return 0;
2485 }
2486
2487 static inline int security_task_getsid (struct task_struct *p)
2488 {
2489 return 0;
2490 }
2491
2492 static inline int security_task_setgroups (struct group_info *group_info)
2493 {
2494 return 0;
2495 }
2496
2497 static inline int security_task_setnice (struct task_struct *p, int nice)
2498 {
2499 return 0;
2500 }
2501
2502 static inline int security_task_setioprio (struct task_struct *p, int ioprio)
2503 {
2504 return 0;
2505 }
2506
2507 static inline int security_task_setrlimit (unsigned int resource,
2508 struct rlimit *new_rlim)
2509 {
2510 return 0;
2511 }
2512
2513 static inline int security_task_setscheduler (struct task_struct *p,
2514 int policy,
2515 struct sched_param *lp)
2516 {
2517 return 0;
2518 }
2519
2520 static inline int security_task_getscheduler (struct task_struct *p)
2521 {
2522 return 0;
2523 }
2524
2525 static inline int security_task_movememory (struct task_struct *p)
2526 {
2527 return 0;
2528 }
2529
2530 static inline int security_task_kill (struct task_struct *p,
2531 struct siginfo *info, int sig)
2532 {
2533 return 0;
2534 }
2535
2536 static inline int security_task_wait (struct task_struct *p)
2537 {
2538 return 0;
2539 }
2540
2541 static inline int security_task_prctl (int option, unsigned long arg2,
2542 unsigned long arg3,
2543 unsigned long arg4,
2544 unsigned long arg5)
2545 {
2546 return 0;
2547 }
2548
2549 static inline void security_task_reparent_to_init (struct task_struct *p)
2550 {
2551 cap_task_reparent_to_init (p);
2552 }
2553
2554 static inline void security_task_to_inode(struct task_struct *p, struct inode *inode)
2555 { }
2556
2557 static inline int security_ipc_permission (struct kern_ipc_perm *ipcp,
2558 short flag)
2559 {
2560 return 0;
2561 }
2562
2563 static inline int security_msg_msg_alloc (struct msg_msg * msg)
2564 {
2565 return 0;
2566 }
2567
2568 static inline void security_msg_msg_free (struct msg_msg * msg)
2569 { }
2570
2571 static inline int security_msg_queue_alloc (struct msg_queue *msq)
2572 {
2573 return 0;
2574 }
2575
2576 static inline void security_msg_queue_free (struct msg_queue *msq)
2577 { }
2578
2579 static inline int security_msg_queue_associate (struct msg_queue * msq,
2580 int msqflg)
2581 {
2582 return 0;
2583 }
2584
2585 static inline int security_msg_queue_msgctl (struct msg_queue * msq, int cmd)
2586 {
2587 return 0;
2588 }
2589
2590 static inline int security_msg_queue_msgsnd (struct msg_queue * msq,
2591 struct msg_msg * msg, int msqflg)
2592 {
2593 return 0;
2594 }
2595
2596 static inline int security_msg_queue_msgrcv (struct msg_queue * msq,
2597 struct msg_msg * msg,
2598 struct task_struct * target,
2599 long type, int mode)
2600 {
2601 return 0;
2602 }
2603
2604 static inline int security_shm_alloc (struct shmid_kernel *shp)
2605 {
2606 return 0;
2607 }
2608
2609 static inline void security_shm_free (struct shmid_kernel *shp)
2610 { }
2611
2612 static inline int security_shm_associate (struct shmid_kernel * shp,
2613 int shmflg)
2614 {
2615 return 0;
2616 }
2617
2618 static inline int security_shm_shmctl (struct shmid_kernel * shp, int cmd)
2619 {
2620 return 0;
2621 }
2622
2623 static inline int security_shm_shmat (struct shmid_kernel * shp,
2624 char __user *shmaddr, int shmflg)
2625 {
2626 return 0;
2627 }
2628
2629 static inline int security_sem_alloc (struct sem_array *sma)
2630 {
2631 return 0;
2632 }
2633
2634 static inline void security_sem_free (struct sem_array *sma)
2635 { }
2636
2637 static inline int security_sem_associate (struct sem_array * sma, int semflg)
2638 {
2639 return 0;
2640 }
2641
2642 static inline int security_sem_semctl (struct sem_array * sma, int cmd)
2643 {
2644 return 0;
2645 }
2646
2647 static inline int security_sem_semop (struct sem_array * sma,
2648 struct sembuf * sops, unsigned nsops,
2649 int alter)
2650 {
2651 return 0;
2652 }
2653
2654 static inline void security_d_instantiate (struct dentry *dentry, struct inode *inode)
2655 { }
2656
2657 static inline int security_getprocattr(struct task_struct *p, char *name, void *value, size_t size)
2658 {
2659 return -EINVAL;
2660 }
2661
2662 static inline int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
2663 {
2664 return -EINVAL;
2665 }
2666
2667 static inline int security_netlink_send (struct sock *sk, struct sk_buff *skb)
2668 {
2669 return cap_netlink_send (sk, skb);
2670 }
2671
2672 static inline int security_netlink_recv (struct sk_buff *skb)
2673 {
2674 return cap_netlink_recv (skb);
2675 }
2676
2677 static inline struct dentry *securityfs_create_dir(const char *name,
2678 struct dentry *parent)
2679 {
2680 return ERR_PTR(-ENODEV);
2681 }
2682
2683 static inline struct dentry *securityfs_create_file(const char *name,
2684 mode_t mode,
2685 struct dentry *parent,
2686 void *data,
2687 struct file_operations *fops)
2688 {
2689 return ERR_PTR(-ENODEV);
2690 }
2691
2692 static inline void securityfs_remove(struct dentry *dentry)
2693 {
2694 }
2695
2696 #endif /* CONFIG_SECURITY */
2697
2698 #ifdef CONFIG_SECURITY_NETWORK
2699 static inline int security_unix_stream_connect(struct socket * sock,
2700 struct socket * other,
2701 struct sock * newsk)
2702 {
2703 return security_ops->unix_stream_connect(sock, other, newsk);
2704 }
2705
2706
2707 static inline int security_unix_may_send(struct socket * sock,
2708 struct socket * other)
2709 {
2710 return security_ops->unix_may_send(sock, other);
2711 }
2712
2713 static inline int security_socket_create (int family, int type,
2714 int protocol, int kern)
2715 {
2716 return security_ops->socket_create(family, type, protocol, kern);
2717 }
2718
2719 static inline void security_socket_post_create(struct socket * sock,
2720 int family,
2721 int type,
2722 int protocol, int kern)
2723 {
2724 security_ops->socket_post_create(sock, family, type,
2725 protocol, kern);
2726 }
2727
2728 static inline int security_socket_bind(struct socket * sock,
2729 struct sockaddr * address,
2730 int addrlen)
2731 {
2732 return security_ops->socket_bind(sock, address, addrlen);
2733 }
2734
2735 static inline int security_socket_connect(struct socket * sock,
2736 struct sockaddr * address,
2737 int addrlen)
2738 {
2739 return security_ops->socket_connect(sock, address, addrlen);
2740 }
2741
2742 static inline int security_socket_listen(struct socket * sock, int backlog)
2743 {
2744 return security_ops->socket_listen(sock, backlog);
2745 }
2746
2747 static inline int security_socket_accept(struct socket * sock,
2748 struct socket * newsock)
2749 {
2750 return security_ops->socket_accept(sock, newsock);
2751 }
2752
2753 static inline void security_socket_post_accept(struct socket * sock,
2754 struct socket * newsock)
2755 {
2756 security_ops->socket_post_accept(sock, newsock);
2757 }
2758
2759 static inline int security_socket_sendmsg(struct socket * sock,
2760 struct msghdr * msg, int size)
2761 {
2762 return security_ops->socket_sendmsg(sock, msg, size);
2763 }
2764
2765 static inline int security_socket_recvmsg(struct socket * sock,
2766 struct msghdr * msg, int size,
2767 int flags)
2768 {
2769 return security_ops->socket_recvmsg(sock, msg, size, flags);
2770 }
2771
2772 static inline int security_socket_getsockname(struct socket * sock)
2773 {
2774 return security_ops->socket_getsockname(sock);
2775 }
2776
2777 static inline int security_socket_getpeername(struct socket * sock)
2778 {
2779 return security_ops->socket_getpeername(sock);
2780 }
2781
2782 static inline int security_socket_getsockopt(struct socket * sock,
2783 int level, int optname)
2784 {
2785 return security_ops->socket_getsockopt(sock, level, optname);
2786 }
2787
2788 static inline int security_socket_setsockopt(struct socket * sock,
2789 int level, int optname)
2790 {
2791 return security_ops->socket_setsockopt(sock, level, optname);
2792 }
2793
2794 static inline int security_socket_shutdown(struct socket * sock, int how)
2795 {
2796 return security_ops->socket_shutdown(sock, how);
2797 }
2798
2799 static inline int security_sock_rcv_skb (struct sock * sk,
2800 struct sk_buff * skb)
2801 {
2802 return security_ops->socket_sock_rcv_skb (sk, skb);
2803 }
2804
2805 static inline int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2806 int __user *optlen, unsigned len)
2807 {
2808 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
2809 }
2810
2811 static inline int security_socket_getpeersec_dgram(struct sk_buff *skb, char **secdata,
2812 u32 *seclen)
2813 {
2814 return security_ops->socket_getpeersec_dgram(skb, secdata, seclen);
2815 }
2816
2817 static inline int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2818 {
2819 return security_ops->sk_alloc_security(sk, family, priority);
2820 }
2821
2822 static inline void security_sk_free(struct sock *sk)
2823 {
2824 return security_ops->sk_free_security(sk);
2825 }
2826
2827 static inline unsigned int security_sk_sid(struct sock *sk, struct flowi *fl, u8 dir)
2828 {
2829 return security_ops->sk_getsid(sk, fl, dir);
2830 }
2831 #else /* CONFIG_SECURITY_NETWORK */
2832 static inline int security_unix_stream_connect(struct socket * sock,
2833 struct socket * other,
2834 struct sock * newsk)
2835 {
2836 return 0;
2837 }
2838
2839 static inline int security_unix_may_send(struct socket * sock,
2840 struct socket * other)
2841 {
2842 return 0;
2843 }
2844
2845 static inline int security_socket_create (int family, int type,
2846 int protocol, int kern)
2847 {
2848 return 0;
2849 }
2850
2851 static inline void security_socket_post_create(struct socket * sock,
2852 int family,
2853 int type,
2854 int protocol, int kern)
2855 {
2856 }
2857
2858 static inline int security_socket_bind(struct socket * sock,
2859 struct sockaddr * address,
2860 int addrlen)
2861 {
2862 return 0;
2863 }
2864
2865 static inline int security_socket_connect(struct socket * sock,
2866 struct sockaddr * address,
2867 int addrlen)
2868 {
2869 return 0;
2870 }
2871
2872 static inline int security_socket_listen(struct socket * sock, int backlog)
2873 {
2874 return 0;
2875 }
2876
2877 static inline int security_socket_accept(struct socket * sock,
2878 struct socket * newsock)
2879 {
2880 return 0;
2881 }
2882
2883 static inline void security_socket_post_accept(struct socket * sock,
2884 struct socket * newsock)
2885 {
2886 }
2887
2888 static inline int security_socket_sendmsg(struct socket * sock,
2889 struct msghdr * msg, int size)
2890 {
2891 return 0;
2892 }
2893
2894 static inline int security_socket_recvmsg(struct socket * sock,
2895 struct msghdr * msg, int size,
2896 int flags)
2897 {
2898 return 0;
2899 }
2900
2901 static inline int security_socket_getsockname(struct socket * sock)
2902 {
2903 return 0;
2904 }
2905
2906 static inline int security_socket_getpeername(struct socket * sock)
2907 {
2908 return 0;
2909 }
2910
2911 static inline int security_socket_getsockopt(struct socket * sock,
2912 int level, int optname)
2913 {
2914 return 0;
2915 }
2916
2917 static inline int security_socket_setsockopt(struct socket * sock,
2918 int level, int optname)
2919 {
2920 return 0;
2921 }
2922
2923 static inline int security_socket_shutdown(struct socket * sock, int how)
2924 {
2925 return 0;
2926 }
2927 static inline int security_sock_rcv_skb (struct sock * sk,
2928 struct sk_buff * skb)
2929 {
2930 return 0;
2931 }
2932
2933 static inline int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2934 int __user *optlen, unsigned len)
2935 {
2936 return -ENOPROTOOPT;
2937 }
2938
2939 static inline int security_socket_getpeersec_dgram(struct sk_buff *skb, char **secdata,
2940 u32 *seclen)
2941 {
2942 return -ENOPROTOOPT;
2943 }
2944
2945 static inline int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2946 {
2947 return 0;
2948 }
2949
2950 static inline void security_sk_free(struct sock *sk)
2951 {
2952 }
2953
2954 static inline unsigned int security_sk_sid(struct sock *sk, struct flowi *fl, u8 dir)
2955 {
2956 return 0;
2957 }
2958 #endif /* CONFIG_SECURITY_NETWORK */
2959
2960 #ifdef CONFIG_SECURITY_NETWORK_XFRM
2961 static inline int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx)
2962 {
2963 return security_ops->xfrm_policy_alloc_security(xp, sec_ctx);
2964 }
2965
2966 static inline int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new)
2967 {
2968 return security_ops->xfrm_policy_clone_security(old, new);
2969 }
2970
2971 static inline void security_xfrm_policy_free(struct xfrm_policy *xp)
2972 {
2973 security_ops->xfrm_policy_free_security(xp);
2974 }
2975
2976 static inline int security_xfrm_policy_delete(struct xfrm_policy *xp)
2977 {
2978 return security_ops->xfrm_policy_delete_security(xp);
2979 }
2980
2981 static inline int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
2982 {
2983 return security_ops->xfrm_state_alloc_security(x, sec_ctx);
2984 }
2985
2986 static inline int security_xfrm_state_delete(struct xfrm_state *x)
2987 {
2988 return security_ops->xfrm_state_delete_security(x);
2989 }
2990
2991 static inline void security_xfrm_state_free(struct xfrm_state *x)
2992 {
2993 security_ops->xfrm_state_free_security(x);
2994 }
2995
2996 static inline int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 sk_sid, u8 dir)
2997 {
2998 return security_ops->xfrm_policy_lookup(xp, sk_sid, dir);
2999 }
3000 #else /* CONFIG_SECURITY_NETWORK_XFRM */
3001 static inline int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx)
3002 {
3003 return 0;
3004 }
3005
3006 static inline int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new)
3007 {
3008 return 0;
3009 }
3010
3011 static inline void security_xfrm_policy_free(struct xfrm_policy *xp)
3012 {
3013 }
3014
3015 static inline int security_xfrm_policy_delete(struct xfrm_policy *xp)
3016 {
3017 return 0;
3018 }
3019
3020 static inline int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
3021 {
3022 return 0;
3023 }
3024
3025 static inline void security_xfrm_state_free(struct xfrm_state *x)
3026 {
3027 }
3028
3029 static inline int security_xfrm_state_delete(struct xfrm_state *x)
3030 {
3031 return 0;
3032 }
3033
3034 static inline int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 sk_sid, u8 dir)
3035 {
3036 return 0;
3037 }
3038 #endif /* CONFIG_SECURITY_NETWORK_XFRM */
3039
3040 #ifdef CONFIG_KEYS
3041 #ifdef CONFIG_SECURITY
3042 static inline int security_key_alloc(struct key *key,
3043 struct task_struct *tsk)
3044 {
3045 return security_ops->key_alloc(key, tsk);
3046 }
3047
3048 static inline void security_key_free(struct key *key)
3049 {
3050 security_ops->key_free(key);
3051 }
3052
3053 static inline int security_key_permission(key_ref_t key_ref,
3054 struct task_struct *context,
3055 key_perm_t perm)
3056 {
3057 return security_ops->key_permission(key_ref, context, perm);
3058 }
3059
3060 #else
3061
3062 static inline int security_key_alloc(struct key *key,
3063 struct task_struct *tsk)
3064 {
3065 return 0;
3066 }
3067
3068 static inline void security_key_free(struct key *key)
3069 {
3070 }
3071
3072 static inline int security_key_permission(key_ref_t key_ref,
3073 struct task_struct *context,
3074 key_perm_t perm)
3075 {
3076 return 0;
3077 }
3078
3079 #endif
3080 #endif /* CONFIG_KEYS */
3081
3082 #endif /* ! __LINUX_SECURITY_H */
3083
This page took 0.09648 seconds and 6 git commands to generate.