Merge branch 'x86-64'
[deliverable/linux.git] / include / linux / security.h
1 /*
2 * Linux Security plug
3 *
4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5 * Copyright (C) 2001 Greg Kroah-Hartman <greg@kroah.com>
6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7 * Copyright (C) 2001 James Morris <jmorris@intercode.com.au>
8 * Copyright (C) 2001 Silicon Graphics, Inc. (Trust Technology Group)
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * Due to this file being licensed under the GPL there is controversy over
16 * whether this permits you to write a module that #includes this file
17 * without placing your module under the GPL. Please consult a lawyer for
18 * advice before doing this.
19 *
20 */
21
22 #ifndef __LINUX_SECURITY_H
23 #define __LINUX_SECURITY_H
24
25 #include <linux/fs.h>
26 #include <linux/binfmts.h>
27 #include <linux/signal.h>
28 #include <linux/resource.h>
29 #include <linux/sem.h>
30 #include <linux/shm.h>
31 #include <linux/msg.h>
32 #include <linux/sched.h>
33 #include <linux/key.h>
34
35 struct ctl_table;
36
37 /*
38 * These functions are in security/capability.c and are used
39 * as the default capabilities functions
40 */
41 extern int cap_capable (struct task_struct *tsk, int cap);
42 extern int cap_settime (struct timespec *ts, struct timezone *tz);
43 extern int cap_ptrace (struct task_struct *parent, struct task_struct *child);
44 extern int cap_capget (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted);
45 extern int cap_capset_check (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted);
46 extern void cap_capset_set (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted);
47 extern int cap_bprm_set_security (struct linux_binprm *bprm);
48 extern void cap_bprm_apply_creds (struct linux_binprm *bprm, int unsafe);
49 extern int cap_bprm_secureexec(struct linux_binprm *bprm);
50 extern int cap_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags);
51 extern int cap_inode_removexattr(struct dentry *dentry, char *name);
52 extern int cap_task_post_setuid (uid_t old_ruid, uid_t old_euid, uid_t old_suid, int flags);
53 extern void cap_task_reparent_to_init (struct task_struct *p);
54 extern int cap_syslog (int type);
55 extern int cap_vm_enough_memory (long pages);
56
57 struct msghdr;
58 struct sk_buff;
59 struct sock;
60 struct sockaddr;
61 struct socket;
62 struct flowi;
63 struct dst_entry;
64 struct xfrm_selector;
65 struct xfrm_policy;
66 struct xfrm_state;
67 struct xfrm_user_sec_ctx;
68
69 extern int cap_netlink_send(struct sock *sk, struct sk_buff *skb);
70 extern int cap_netlink_recv(struct sk_buff *skb);
71
72 /*
73 * Values used in the task_security_ops calls
74 */
75 /* setuid or setgid, id0 == uid or gid */
76 #define LSM_SETID_ID 1
77
78 /* setreuid or setregid, id0 == real, id1 == eff */
79 #define LSM_SETID_RE 2
80
81 /* setresuid or setresgid, id0 == real, id1 == eff, uid2 == saved */
82 #define LSM_SETID_RES 4
83
84 /* setfsuid or setfsgid, id0 == fsuid or fsgid */
85 #define LSM_SETID_FS 8
86
87 /* forward declares to avoid warnings */
88 struct nfsctl_arg;
89 struct sched_param;
90 struct swap_info_struct;
91
92 /* bprm_apply_creds unsafe reasons */
93 #define LSM_UNSAFE_SHARE 1
94 #define LSM_UNSAFE_PTRACE 2
95 #define LSM_UNSAFE_PTRACE_CAP 4
96
97 #ifdef CONFIG_SECURITY
98
99 /**
100 * struct security_operations - main security structure
101 *
102 * Security hooks for program execution operations.
103 *
104 * @bprm_alloc_security:
105 * Allocate and attach a security structure to the @bprm->security field.
106 * The security field is initialized to NULL when the bprm structure is
107 * allocated.
108 * @bprm contains the linux_binprm structure to be modified.
109 * Return 0 if operation was successful.
110 * @bprm_free_security:
111 * @bprm contains the linux_binprm structure to be modified.
112 * Deallocate and clear the @bprm->security field.
113 * @bprm_apply_creds:
114 * Compute and set the security attributes of a process being transformed
115 * by an execve operation based on the old attributes (current->security)
116 * and the information saved in @bprm->security by the set_security hook.
117 * Since this hook function (and its caller) are void, this hook can not
118 * return an error. However, it can leave the security attributes of the
119 * process unchanged if an access failure occurs at this point.
120 * bprm_apply_creds is called under task_lock. @unsafe indicates various
121 * reasons why it may be unsafe to change security state.
122 * @bprm contains the linux_binprm structure.
123 * @bprm_post_apply_creds:
124 * Runs after bprm_apply_creds with the task_lock dropped, so that
125 * functions which cannot be called safely under the task_lock can
126 * be used. This hook is a good place to perform state changes on
127 * the process such as closing open file descriptors to which access
128 * is no longer granted if the attributes were changed.
129 * Note that a security module might need to save state between
130 * bprm_apply_creds and bprm_post_apply_creds to store the decision
131 * on whether the process may proceed.
132 * @bprm contains the linux_binprm structure.
133 * @bprm_set_security:
134 * Save security information in the bprm->security field, typically based
135 * on information about the bprm->file, for later use by the apply_creds
136 * hook. This hook may also optionally check permissions (e.g. for
137 * transitions between security domains).
138 * This hook may be called multiple times during a single execve, e.g. for
139 * interpreters. The hook can tell whether it has already been called by
140 * checking to see if @bprm->security is non-NULL. If so, then the hook
141 * may decide either to retain the security information saved earlier or
142 * to replace it.
143 * @bprm contains the linux_binprm structure.
144 * Return 0 if the hook is successful and permission is granted.
145 * @bprm_check_security:
146 * This hook mediates the point when a search for a binary handler will
147 * begin. It allows a check the @bprm->security value which is set in
148 * the preceding set_security call. The primary difference from
149 * set_security is that the argv list and envp list are reliably
150 * available in @bprm. This hook may be called multiple times
151 * during a single execve; and in each pass set_security is called
152 * first.
153 * @bprm contains the linux_binprm structure.
154 * Return 0 if the hook is successful and permission is granted.
155 * @bprm_secureexec:
156 * Return a boolean value (0 or 1) indicating whether a "secure exec"
157 * is required. The flag is passed in the auxiliary table
158 * on the initial stack to the ELF interpreter to indicate whether libc
159 * should enable secure mode.
160 * @bprm contains the linux_binprm structure.
161 *
162 * Security hooks for filesystem operations.
163 *
164 * @sb_alloc_security:
165 * Allocate and attach a security structure to the sb->s_security field.
166 * The s_security field is initialized to NULL when the structure is
167 * allocated.
168 * @sb contains the super_block structure to be modified.
169 * Return 0 if operation was successful.
170 * @sb_free_security:
171 * Deallocate and clear the sb->s_security field.
172 * @sb contains the super_block structure to be modified.
173 * @sb_statfs:
174 * Check permission before obtaining filesystem statistics for the @mnt
175 * mountpoint.
176 * @dentry is a handle on the superblock for the filesystem.
177 * Return 0 if permission is granted.
178 * @sb_mount:
179 * Check permission before an object specified by @dev_name is mounted on
180 * the mount point named by @nd. For an ordinary mount, @dev_name
181 * identifies a device if the file system type requires a device. For a
182 * remount (@flags & MS_REMOUNT), @dev_name is irrelevant. For a
183 * loopback/bind mount (@flags & MS_BIND), @dev_name identifies the
184 * pathname of the object being mounted.
185 * @dev_name contains the name for object being mounted.
186 * @nd contains the nameidata structure for mount point object.
187 * @type contains the filesystem type.
188 * @flags contains the mount flags.
189 * @data contains the filesystem-specific data.
190 * Return 0 if permission is granted.
191 * @sb_copy_data:
192 * Allow mount option data to be copied prior to parsing by the filesystem,
193 * so that the security module can extract security-specific mount
194 * options cleanly (a filesystem may modify the data e.g. with strsep()).
195 * This also allows the original mount data to be stripped of security-
196 * specific options to avoid having to make filesystems aware of them.
197 * @type the type of filesystem being mounted.
198 * @orig the original mount data copied from userspace.
199 * @copy copied data which will be passed to the security module.
200 * Returns 0 if the copy was successful.
201 * @sb_check_sb:
202 * Check permission before the device with superblock @mnt->sb is mounted
203 * on the mount point named by @nd.
204 * @mnt contains the vfsmount for device being mounted.
205 * @nd contains the nameidata object for the mount point.
206 * Return 0 if permission is granted.
207 * @sb_umount:
208 * Check permission before the @mnt file system is unmounted.
209 * @mnt contains the mounted file system.
210 * @flags contains the unmount flags, e.g. MNT_FORCE.
211 * Return 0 if permission is granted.
212 * @sb_umount_close:
213 * Close any files in the @mnt mounted filesystem that are held open by
214 * the security module. This hook is called during an umount operation
215 * prior to checking whether the filesystem is still busy.
216 * @mnt contains the mounted filesystem.
217 * @sb_umount_busy:
218 * Handle a failed umount of the @mnt mounted filesystem, e.g. re-opening
219 * any files that were closed by umount_close. This hook is called during
220 * an umount operation if the umount fails after a call to the
221 * umount_close hook.
222 * @mnt contains the mounted filesystem.
223 * @sb_post_remount:
224 * Update the security module's state when a filesystem is remounted.
225 * This hook is only called if the remount was successful.
226 * @mnt contains the mounted file system.
227 * @flags contains the new filesystem flags.
228 * @data contains the filesystem-specific data.
229 * @sb_post_mountroot:
230 * Update the security module's state when the root filesystem is mounted.
231 * This hook is only called if the mount was successful.
232 * @sb_post_addmount:
233 * Update the security module's state when a filesystem is mounted.
234 * This hook is called any time a mount is successfully grafetd to
235 * the tree.
236 * @mnt contains the mounted filesystem.
237 * @mountpoint_nd contains the nameidata structure for the mount point.
238 * @sb_pivotroot:
239 * Check permission before pivoting the root filesystem.
240 * @old_nd contains the nameidata structure for the new location of the current root (put_old).
241 * @new_nd contains the nameidata structure for the new root (new_root).
242 * Return 0 if permission is granted.
243 * @sb_post_pivotroot:
244 * Update module state after a successful pivot.
245 * @old_nd contains the nameidata structure for the old root.
246 * @new_nd contains the nameidata structure for the new root.
247 *
248 * Security hooks for inode operations.
249 *
250 * @inode_alloc_security:
251 * Allocate and attach a security structure to @inode->i_security. The
252 * i_security field is initialized to NULL when the inode structure is
253 * allocated.
254 * @inode contains the inode structure.
255 * Return 0 if operation was successful.
256 * @inode_free_security:
257 * @inode contains the inode structure.
258 * Deallocate the inode security structure and set @inode->i_security to
259 * NULL.
260 * @inode_init_security:
261 * Obtain the security attribute name suffix and value to set on a newly
262 * created inode and set up the incore security field for the new inode.
263 * This hook is called by the fs code as part of the inode creation
264 * transaction and provides for atomic labeling of the inode, unlike
265 * the post_create/mkdir/... hooks called by the VFS. The hook function
266 * is expected to allocate the name and value via kmalloc, with the caller
267 * being responsible for calling kfree after using them.
268 * If the security module does not use security attributes or does
269 * not wish to put a security attribute on this particular inode,
270 * then it should return -EOPNOTSUPP to skip this processing.
271 * @inode contains the inode structure of the newly created inode.
272 * @dir contains the inode structure of the parent directory.
273 * @name will be set to the allocated name suffix (e.g. selinux).
274 * @value will be set to the allocated attribute value.
275 * @len will be set to the length of the value.
276 * Returns 0 if @name and @value have been successfully set,
277 * -EOPNOTSUPP if no security attribute is needed, or
278 * -ENOMEM on memory allocation failure.
279 * @inode_create:
280 * Check permission to create a regular file.
281 * @dir contains inode structure of the parent of the new file.
282 * @dentry contains the dentry structure for the file to be created.
283 * @mode contains the file mode of the file to be created.
284 * Return 0 if permission is granted.
285 * @inode_link:
286 * Check permission before creating a new hard link to a file.
287 * @old_dentry contains the dentry structure for an existing link to the file.
288 * @dir contains the inode structure of the parent directory of the new link.
289 * @new_dentry contains the dentry structure for the new link.
290 * Return 0 if permission is granted.
291 * @inode_unlink:
292 * Check the permission to remove a hard link to a file.
293 * @dir contains the inode structure of parent directory of the file.
294 * @dentry contains the dentry structure for file to be unlinked.
295 * Return 0 if permission is granted.
296 * @inode_symlink:
297 * Check the permission to create a symbolic link to a file.
298 * @dir contains the inode structure of parent directory of the symbolic link.
299 * @dentry contains the dentry structure of the symbolic link.
300 * @old_name contains the pathname of file.
301 * Return 0 if permission is granted.
302 * @inode_mkdir:
303 * Check permissions to create a new directory in the existing directory
304 * associated with inode strcture @dir.
305 * @dir containst the inode structure of parent of the directory to be created.
306 * @dentry contains the dentry structure of new directory.
307 * @mode contains the mode of new directory.
308 * Return 0 if permission is granted.
309 * @inode_rmdir:
310 * Check the permission to remove a directory.
311 * @dir contains the inode structure of parent of the directory to be removed.
312 * @dentry contains the dentry structure of directory to be removed.
313 * Return 0 if permission is granted.
314 * @inode_mknod:
315 * Check permissions when creating a special file (or a socket or a fifo
316 * file created via the mknod system call). Note that if mknod operation
317 * is being done for a regular file, then the create hook will be called
318 * and not this hook.
319 * @dir contains the inode structure of parent of the new file.
320 * @dentry contains the dentry structure of the new file.
321 * @mode contains the mode of the new file.
322 * @dev contains the the device number.
323 * Return 0 if permission is granted.
324 * @inode_rename:
325 * Check for permission to rename a file or directory.
326 * @old_dir contains the inode structure for parent of the old link.
327 * @old_dentry contains the dentry structure of the old link.
328 * @new_dir contains the inode structure for parent of the new link.
329 * @new_dentry contains the dentry structure of the new link.
330 * Return 0 if permission is granted.
331 * @inode_readlink:
332 * Check the permission to read the symbolic link.
333 * @dentry contains the dentry structure for the file link.
334 * Return 0 if permission is granted.
335 * @inode_follow_link:
336 * Check permission to follow a symbolic link when looking up a pathname.
337 * @dentry contains the dentry structure for the link.
338 * @nd contains the nameidata structure for the parent directory.
339 * Return 0 if permission is granted.
340 * @inode_permission:
341 * Check permission before accessing an inode. This hook is called by the
342 * existing Linux permission function, so a security module can use it to
343 * provide additional checking for existing Linux permission checks.
344 * Notice that this hook is called when a file is opened (as well as many
345 * other operations), whereas the file_security_ops permission hook is
346 * called when the actual read/write operations are performed.
347 * @inode contains the inode structure to check.
348 * @mask contains the permission mask.
349 * @nd contains the nameidata (may be NULL).
350 * Return 0 if permission is granted.
351 * @inode_setattr:
352 * Check permission before setting file attributes. Note that the kernel
353 * call to notify_change is performed from several locations, whenever
354 * file attributes change (such as when a file is truncated, chown/chmod
355 * operations, transferring disk quotas, etc).
356 * @dentry contains the dentry structure for the file.
357 * @attr is the iattr structure containing the new file attributes.
358 * Return 0 if permission is granted.
359 * @inode_getattr:
360 * Check permission before obtaining file attributes.
361 * @mnt is the vfsmount where the dentry was looked up
362 * @dentry contains the dentry structure for the file.
363 * Return 0 if permission is granted.
364 * @inode_delete:
365 * @inode contains the inode structure for deleted inode.
366 * This hook is called when a deleted inode is released (i.e. an inode
367 * with no hard links has its use count drop to zero). A security module
368 * can use this hook to release any persistent label associated with the
369 * inode.
370 * @inode_setxattr:
371 * Check permission before setting the extended attributes
372 * @value identified by @name for @dentry.
373 * Return 0 if permission is granted.
374 * @inode_post_setxattr:
375 * Update inode security field after successful setxattr operation.
376 * @value identified by @name for @dentry.
377 * @inode_getxattr:
378 * Check permission before obtaining the extended attributes
379 * identified by @name for @dentry.
380 * Return 0 if permission is granted.
381 * @inode_listxattr:
382 * Check permission before obtaining the list of extended attribute
383 * names for @dentry.
384 * Return 0 if permission is granted.
385 * @inode_removexattr:
386 * Check permission before removing the extended attribute
387 * identified by @name for @dentry.
388 * Return 0 if permission is granted.
389 * @inode_getsecurity:
390 * Copy the extended attribute representation of the security label
391 * associated with @name for @inode into @buffer. @buffer may be
392 * NULL to request the size of the buffer required. @size indicates
393 * the size of @buffer in bytes. Note that @name is the remainder
394 * of the attribute name after the security. prefix has been removed.
395 * @err is the return value from the preceding fs getxattr call,
396 * and can be used by the security module to determine whether it
397 * should try and canonicalize the attribute value.
398 * Return number of bytes used/required on success.
399 * @inode_setsecurity:
400 * Set the security label associated with @name for @inode from the
401 * extended attribute value @value. @size indicates the size of the
402 * @value in bytes. @flags may be XATTR_CREATE, XATTR_REPLACE, or 0.
403 * Note that @name is the remainder of the attribute name after the
404 * security. prefix has been removed.
405 * Return 0 on success.
406 * @inode_listsecurity:
407 * Copy the extended attribute names for the security labels
408 * associated with @inode into @buffer. The maximum size of @buffer
409 * is specified by @buffer_size. @buffer may be NULL to request
410 * the size of the buffer required.
411 * Returns number of bytes used/required on success.
412 *
413 * Security hooks for file operations
414 *
415 * @file_permission:
416 * Check file permissions before accessing an open file. This hook is
417 * called by various operations that read or write files. A security
418 * module can use this hook to perform additional checking on these
419 * operations, e.g. to revalidate permissions on use to support privilege
420 * bracketing or policy changes. Notice that this hook is used when the
421 * actual read/write operations are performed, whereas the
422 * inode_security_ops hook is called when a file is opened (as well as
423 * many other operations).
424 * Caveat: Although this hook can be used to revalidate permissions for
425 * various system call operations that read or write files, it does not
426 * address the revalidation of permissions for memory-mapped files.
427 * Security modules must handle this separately if they need such
428 * revalidation.
429 * @file contains the file structure being accessed.
430 * @mask contains the requested permissions.
431 * Return 0 if permission is granted.
432 * @file_alloc_security:
433 * Allocate and attach a security structure to the file->f_security field.
434 * The security field is initialized to NULL when the structure is first
435 * created.
436 * @file contains the file structure to secure.
437 * Return 0 if the hook is successful and permission is granted.
438 * @file_free_security:
439 * Deallocate and free any security structures stored in file->f_security.
440 * @file contains the file structure being modified.
441 * @file_ioctl:
442 * @file contains the file structure.
443 * @cmd contains the operation to perform.
444 * @arg contains the operational arguments.
445 * Check permission for an ioctl operation on @file. Note that @arg can
446 * sometimes represents a user space pointer; in other cases, it may be a
447 * simple integer value. When @arg represents a user space pointer, it
448 * should never be used by the security module.
449 * Return 0 if permission is granted.
450 * @file_mmap :
451 * Check permissions for a mmap operation. The @file may be NULL, e.g.
452 * if mapping anonymous memory.
453 * @file contains the file structure for file to map (may be NULL).
454 * @reqprot contains the protection requested by the application.
455 * @prot contains the protection that will be applied by the kernel.
456 * @flags contains the operational flags.
457 * Return 0 if permission is granted.
458 * @file_mprotect:
459 * Check permissions before changing memory access permissions.
460 * @vma contains the memory region to modify.
461 * @reqprot contains the protection requested by the application.
462 * @prot contains the protection that will be applied by the kernel.
463 * Return 0 if permission is granted.
464 * @file_lock:
465 * Check permission before performing file locking operations.
466 * Note: this hook mediates both flock and fcntl style locks.
467 * @file contains the file structure.
468 * @cmd contains the posix-translated lock operation to perform
469 * (e.g. F_RDLCK, F_WRLCK).
470 * Return 0 if permission is granted.
471 * @file_fcntl:
472 * Check permission before allowing the file operation specified by @cmd
473 * from being performed on the file @file. Note that @arg can sometimes
474 * represents a user space pointer; in other cases, it may be a simple
475 * integer value. When @arg represents a user space pointer, it should
476 * never be used by the security module.
477 * @file contains the file structure.
478 * @cmd contains the operation to be performed.
479 * @arg contains the operational arguments.
480 * Return 0 if permission is granted.
481 * @file_set_fowner:
482 * Save owner security information (typically from current->security) in
483 * file->f_security for later use by the send_sigiotask hook.
484 * @file contains the file structure to update.
485 * Return 0 on success.
486 * @file_send_sigiotask:
487 * Check permission for the file owner @fown to send SIGIO or SIGURG to the
488 * process @tsk. Note that this hook is sometimes called from interrupt.
489 * Note that the fown_struct, @fown, is never outside the context of a
490 * struct file, so the file structure (and associated security information)
491 * can always be obtained:
492 * (struct file *)((long)fown - offsetof(struct file,f_owner));
493 * @tsk contains the structure of task receiving signal.
494 * @fown contains the file owner information.
495 * @sig is the signal that will be sent. When 0, kernel sends SIGIO.
496 * Return 0 if permission is granted.
497 * @file_receive:
498 * This hook allows security modules to control the ability of a process
499 * to receive an open file descriptor via socket IPC.
500 * @file contains the file structure being received.
501 * Return 0 if permission is granted.
502 *
503 * Security hooks for task operations.
504 *
505 * @task_create:
506 * Check permission before creating a child process. See the clone(2)
507 * manual page for definitions of the @clone_flags.
508 * @clone_flags contains the flags indicating what should be shared.
509 * Return 0 if permission is granted.
510 * @task_alloc_security:
511 * @p contains the task_struct for child process.
512 * Allocate and attach a security structure to the p->security field. The
513 * security field is initialized to NULL when the task structure is
514 * allocated.
515 * Return 0 if operation was successful.
516 * @task_free_security:
517 * @p contains the task_struct for process.
518 * Deallocate and clear the p->security field.
519 * @task_setuid:
520 * Check permission before setting one or more of the user identity
521 * attributes of the current process. The @flags parameter indicates
522 * which of the set*uid system calls invoked this hook and how to
523 * interpret the @id0, @id1, and @id2 parameters. See the LSM_SETID
524 * definitions at the beginning of this file for the @flags values and
525 * their meanings.
526 * @id0 contains a uid.
527 * @id1 contains a uid.
528 * @id2 contains a uid.
529 * @flags contains one of the LSM_SETID_* values.
530 * Return 0 if permission is granted.
531 * @task_post_setuid:
532 * Update the module's state after setting one or more of the user
533 * identity attributes of the current process. The @flags parameter
534 * indicates which of the set*uid system calls invoked this hook. If
535 * @flags is LSM_SETID_FS, then @old_ruid is the old fs uid and the other
536 * parameters are not used.
537 * @old_ruid contains the old real uid (or fs uid if LSM_SETID_FS).
538 * @old_euid contains the old effective uid (or -1 if LSM_SETID_FS).
539 * @old_suid contains the old saved uid (or -1 if LSM_SETID_FS).
540 * @flags contains one of the LSM_SETID_* values.
541 * Return 0 on success.
542 * @task_setgid:
543 * Check permission before setting one or more of the group identity
544 * attributes of the current process. The @flags parameter indicates
545 * which of the set*gid system calls invoked this hook and how to
546 * interpret the @id0, @id1, and @id2 parameters. See the LSM_SETID
547 * definitions at the beginning of this file for the @flags values and
548 * their meanings.
549 * @id0 contains a gid.
550 * @id1 contains a gid.
551 * @id2 contains a gid.
552 * @flags contains one of the LSM_SETID_* values.
553 * Return 0 if permission is granted.
554 * @task_setpgid:
555 * Check permission before setting the process group identifier of the
556 * process @p to @pgid.
557 * @p contains the task_struct for process being modified.
558 * @pgid contains the new pgid.
559 * Return 0 if permission is granted.
560 * @task_getpgid:
561 * Check permission before getting the process group identifier of the
562 * process @p.
563 * @p contains the task_struct for the process.
564 * Return 0 if permission is granted.
565 * @task_getsid:
566 * Check permission before getting the session identifier of the process
567 * @p.
568 * @p contains the task_struct for the process.
569 * Return 0 if permission is granted.
570 * @task_setgroups:
571 * Check permission before setting the supplementary group set of the
572 * current process.
573 * @group_info contains the new group information.
574 * Return 0 if permission is granted.
575 * @task_setnice:
576 * Check permission before setting the nice value of @p to @nice.
577 * @p contains the task_struct of process.
578 * @nice contains the new nice value.
579 * Return 0 if permission is granted.
580 * @task_setioprio
581 * Check permission before setting the ioprio value of @p to @ioprio.
582 * @p contains the task_struct of process.
583 * @ioprio contains the new ioprio value
584 * Return 0 if permission is granted.
585 * @task_setrlimit:
586 * Check permission before setting the resource limits of the current
587 * process for @resource to @new_rlim. The old resource limit values can
588 * be examined by dereferencing (current->signal->rlim + resource).
589 * @resource contains the resource whose limit is being set.
590 * @new_rlim contains the new limits for @resource.
591 * Return 0 if permission is granted.
592 * @task_setscheduler:
593 * Check permission before setting scheduling policy and/or parameters of
594 * process @p based on @policy and @lp.
595 * @p contains the task_struct for process.
596 * @policy contains the scheduling policy.
597 * @lp contains the scheduling parameters.
598 * Return 0 if permission is granted.
599 * @task_getscheduler:
600 * Check permission before obtaining scheduling information for process
601 * @p.
602 * @p contains the task_struct for process.
603 * Return 0 if permission is granted.
604 * @task_movememory
605 * Check permission before moving memory owned by process @p.
606 * @p contains the task_struct for process.
607 * Return 0 if permission is granted.
608 * @task_kill:
609 * Check permission before sending signal @sig to @p. @info can be NULL,
610 * the constant 1, or a pointer to a siginfo structure. If @info is 1 or
611 * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming
612 * from the kernel and should typically be permitted.
613 * SIGIO signals are handled separately by the send_sigiotask hook in
614 * file_security_ops.
615 * @p contains the task_struct for process.
616 * @info contains the signal information.
617 * @sig contains the signal value.
618 * Return 0 if permission is granted.
619 * @task_wait:
620 * Check permission before allowing a process to reap a child process @p
621 * and collect its status information.
622 * @p contains the task_struct for process.
623 * Return 0 if permission is granted.
624 * @task_prctl:
625 * Check permission before performing a process control operation on the
626 * current process.
627 * @option contains the operation.
628 * @arg2 contains a argument.
629 * @arg3 contains a argument.
630 * @arg4 contains a argument.
631 * @arg5 contains a argument.
632 * Return 0 if permission is granted.
633 * @task_reparent_to_init:
634 * Set the security attributes in @p->security for a kernel thread that
635 * is being reparented to the init task.
636 * @p contains the task_struct for the kernel thread.
637 * @task_to_inode:
638 * Set the security attributes for an inode based on an associated task's
639 * security attributes, e.g. for /proc/pid inodes.
640 * @p contains the task_struct for the task.
641 * @inode contains the inode structure for the inode.
642 *
643 * Security hooks for Netlink messaging.
644 *
645 * @netlink_send:
646 * Save security information for a netlink message so that permission
647 * checking can be performed when the message is processed. The security
648 * information can be saved using the eff_cap field of the
649 * netlink_skb_parms structure. Also may be used to provide fine
650 * grained control over message transmission.
651 * @sk associated sock of task sending the message.,
652 * @skb contains the sk_buff structure for the netlink message.
653 * Return 0 if the information was successfully saved and message
654 * is allowed to be transmitted.
655 * @netlink_recv:
656 * Check permission before processing the received netlink message in
657 * @skb.
658 * @skb contains the sk_buff structure for the netlink message.
659 * Return 0 if permission is granted.
660 *
661 * Security hooks for Unix domain networking.
662 *
663 * @unix_stream_connect:
664 * Check permissions before establishing a Unix domain stream connection
665 * between @sock and @other.
666 * @sock contains the socket structure.
667 * @other contains the peer socket structure.
668 * Return 0 if permission is granted.
669 * @unix_may_send:
670 * Check permissions before connecting or sending datagrams from @sock to
671 * @other.
672 * @sock contains the socket structure.
673 * @sock contains the peer socket structure.
674 * Return 0 if permission is granted.
675 *
676 * The @unix_stream_connect and @unix_may_send hooks were necessary because
677 * Linux provides an alternative to the conventional file name space for Unix
678 * domain sockets. Whereas binding and connecting to sockets in the file name
679 * space is mediated by the typical file permissions (and caught by the mknod
680 * and permission hooks in inode_security_ops), binding and connecting to
681 * sockets in the abstract name space is completely unmediated. Sufficient
682 * control of Unix domain sockets in the abstract name space isn't possible
683 * using only the socket layer hooks, since we need to know the actual target
684 * socket, which is not looked up until we are inside the af_unix code.
685 *
686 * Security hooks for socket operations.
687 *
688 * @socket_create:
689 * Check permissions prior to creating a new socket.
690 * @family contains the requested protocol family.
691 * @type contains the requested communications type.
692 * @protocol contains the requested protocol.
693 * @kern set to 1 if a kernel socket.
694 * Return 0 if permission is granted.
695 * @socket_post_create:
696 * This hook allows a module to update or allocate a per-socket security
697 * structure. Note that the security field was not added directly to the
698 * socket structure, but rather, the socket security information is stored
699 * in the associated inode. Typically, the inode alloc_security hook will
700 * allocate and and attach security information to
701 * sock->inode->i_security. This hook may be used to update the
702 * sock->inode->i_security field with additional information that wasn't
703 * available when the inode was allocated.
704 * @sock contains the newly created socket structure.
705 * @family contains the requested protocol family.
706 * @type contains the requested communications type.
707 * @protocol contains the requested protocol.
708 * @kern set to 1 if a kernel socket.
709 * @socket_bind:
710 * Check permission before socket protocol layer bind operation is
711 * performed and the socket @sock is bound to the address specified in the
712 * @address parameter.
713 * @sock contains the socket structure.
714 * @address contains the address to bind to.
715 * @addrlen contains the length of address.
716 * Return 0 if permission is granted.
717 * @socket_connect:
718 * Check permission before socket protocol layer connect operation
719 * attempts to connect socket @sock to a remote address, @address.
720 * @sock contains the socket structure.
721 * @address contains the address of remote endpoint.
722 * @addrlen contains the length of address.
723 * Return 0 if permission is granted.
724 * @socket_listen:
725 * Check permission before socket protocol layer listen operation.
726 * @sock contains the socket structure.
727 * @backlog contains the maximum length for the pending connection queue.
728 * Return 0 if permission is granted.
729 * @socket_accept:
730 * Check permission before accepting a new connection. Note that the new
731 * socket, @newsock, has been created and some information copied to it,
732 * but the accept operation has not actually been performed.
733 * @sock contains the listening socket structure.
734 * @newsock contains the newly created server socket for connection.
735 * Return 0 if permission is granted.
736 * @socket_post_accept:
737 * This hook allows a security module to copy security
738 * information into the newly created socket's inode.
739 * @sock contains the listening socket structure.
740 * @newsock contains the newly created server socket for connection.
741 * @socket_sendmsg:
742 * Check permission before transmitting a message to another socket.
743 * @sock contains the socket structure.
744 * @msg contains the message to be transmitted.
745 * @size contains the size of message.
746 * Return 0 if permission is granted.
747 * @socket_recvmsg:
748 * Check permission before receiving a message from a socket.
749 * @sock contains the socket structure.
750 * @msg contains the message structure.
751 * @size contains the size of message structure.
752 * @flags contains the operational flags.
753 * Return 0 if permission is granted.
754 * @socket_getsockname:
755 * Check permission before the local address (name) of the socket object
756 * @sock is retrieved.
757 * @sock contains the socket structure.
758 * Return 0 if permission is granted.
759 * @socket_getpeername:
760 * Check permission before the remote address (name) of a socket object
761 * @sock is retrieved.
762 * @sock contains the socket structure.
763 * Return 0 if permission is granted.
764 * @socket_getsockopt:
765 * Check permissions before retrieving the options associated with socket
766 * @sock.
767 * @sock contains the socket structure.
768 * @level contains the protocol level to retrieve option from.
769 * @optname contains the name of option to retrieve.
770 * Return 0 if permission is granted.
771 * @socket_setsockopt:
772 * Check permissions before setting the options associated with socket
773 * @sock.
774 * @sock contains the socket structure.
775 * @level contains the protocol level to set options for.
776 * @optname contains the name of the option to set.
777 * Return 0 if permission is granted.
778 * @socket_shutdown:
779 * Checks permission before all or part of a connection on the socket
780 * @sock is shut down.
781 * @sock contains the socket structure.
782 * @how contains the flag indicating how future sends and receives are handled.
783 * Return 0 if permission is granted.
784 * @socket_sock_rcv_skb:
785 * Check permissions on incoming network packets. This hook is distinct
786 * from Netfilter's IP input hooks since it is the first time that the
787 * incoming sk_buff @skb has been associated with a particular socket, @sk.
788 * @sk contains the sock (not socket) associated with the incoming sk_buff.
789 * @skb contains the incoming network data.
790 * @socket_getpeersec:
791 * This hook allows the security module to provide peer socket security
792 * state to userspace via getsockopt SO_GETPEERSEC.
793 * @sock is the local socket.
794 * @optval userspace memory where the security state is to be copied.
795 * @optlen userspace int where the module should copy the actual length
796 * of the security state.
797 * @len as input is the maximum length to copy to userspace provided
798 * by the caller.
799 * Return 0 if all is well, otherwise, typical getsockopt return
800 * values.
801 * @sk_alloc_security:
802 * Allocate and attach a security structure to the sk->sk_security field,
803 * which is used to copy security attributes between local stream sockets.
804 * @sk_free_security:
805 * Deallocate security structure.
806 * @sk_getsid:
807 * Retrieve the LSM-specific sid for the sock to enable caching of network
808 * authorizations.
809 *
810 * Security hooks for XFRM operations.
811 *
812 * @xfrm_policy_alloc_security:
813 * @xp contains the xfrm_policy being added to Security Policy Database
814 * used by the XFRM system.
815 * @sec_ctx contains the security context information being provided by
816 * the user-level policy update program (e.g., setkey).
817 * Allocate a security structure to the xp->security field.
818 * The security field is initialized to NULL when the xfrm_policy is
819 * allocated.
820 * Return 0 if operation was successful (memory to allocate, legal context)
821 * @xfrm_policy_clone_security:
822 * @old contains an existing xfrm_policy in the SPD.
823 * @new contains a new xfrm_policy being cloned from old.
824 * Allocate a security structure to the new->security field
825 * that contains the information from the old->security field.
826 * Return 0 if operation was successful (memory to allocate).
827 * @xfrm_policy_free_security:
828 * @xp contains the xfrm_policy
829 * Deallocate xp->security.
830 * @xfrm_policy_delete_security:
831 * @xp contains the xfrm_policy.
832 * Authorize deletion of xp->security.
833 * @xfrm_state_alloc_security:
834 * @x contains the xfrm_state being added to the Security Association
835 * Database by the XFRM system.
836 * @sec_ctx contains the security context information being provided by
837 * the user-level SA generation program (e.g., setkey or racoon).
838 * Allocate a security structure to the x->security field. The
839 * security field is initialized to NULL when the xfrm_state is
840 * allocated.
841 * Return 0 if operation was successful (memory to allocate, legal context).
842 * @xfrm_state_free_security:
843 * @x contains the xfrm_state.
844 * Deallocate x->security.
845 * @xfrm_state_delete_security:
846 * @x contains the xfrm_state.
847 * Authorize deletion of x->security.
848 * @xfrm_policy_lookup:
849 * @xp contains the xfrm_policy for which the access control is being
850 * checked.
851 * @sk_sid contains the sock security label that is used to authorize
852 * access to the policy xp.
853 * @dir contains the direction of the flow (input or output).
854 * Check permission when a sock selects a xfrm_policy for processing
855 * XFRMs on a packet. The hook is called when selecting either a
856 * per-socket policy or a generic xfrm policy.
857 * Return 0 if permission is granted.
858 *
859 * Security hooks affecting all Key Management operations
860 *
861 * @key_alloc:
862 * Permit allocation of a key and assign security data. Note that key does
863 * not have a serial number assigned at this point.
864 * @key points to the key.
865 * @flags is the allocation flags
866 * Return 0 if permission is granted, -ve error otherwise.
867 * @key_free:
868 * Notification of destruction; free security data.
869 * @key points to the key.
870 * No return value.
871 * @key_permission:
872 * See whether a specific operational right is granted to a process on a
873 * key.
874 * @key_ref refers to the key (key pointer + possession attribute bit).
875 * @context points to the process to provide the context against which to
876 * evaluate the security data on the key.
877 * @perm describes the combination of permissions required of this key.
878 * Return 1 if permission granted, 0 if permission denied and -ve it the
879 * normal permissions model should be effected.
880 *
881 * Security hooks affecting all System V IPC operations.
882 *
883 * @ipc_permission:
884 * Check permissions for access to IPC
885 * @ipcp contains the kernel IPC permission structure
886 * @flag contains the desired (requested) permission set
887 * Return 0 if permission is granted.
888 *
889 * Security hooks for individual messages held in System V IPC message queues
890 * @msg_msg_alloc_security:
891 * Allocate and attach a security structure to the msg->security field.
892 * The security field is initialized to NULL when the structure is first
893 * created.
894 * @msg contains the message structure to be modified.
895 * Return 0 if operation was successful and permission is granted.
896 * @msg_msg_free_security:
897 * Deallocate the security structure for this message.
898 * @msg contains the message structure to be modified.
899 *
900 * Security hooks for System V IPC Message Queues
901 *
902 * @msg_queue_alloc_security:
903 * Allocate and attach a security structure to the
904 * msq->q_perm.security field. The security field is initialized to
905 * NULL when the structure is first created.
906 * @msq contains the message queue structure to be modified.
907 * Return 0 if operation was successful and permission is granted.
908 * @msg_queue_free_security:
909 * Deallocate security structure for this message queue.
910 * @msq contains the message queue structure to be modified.
911 * @msg_queue_associate:
912 * Check permission when a message queue is requested through the
913 * msgget system call. This hook is only called when returning the
914 * message queue identifier for an existing message queue, not when a
915 * new message queue is created.
916 * @msq contains the message queue to act upon.
917 * @msqflg contains the operation control flags.
918 * Return 0 if permission is granted.
919 * @msg_queue_msgctl:
920 * Check permission when a message control operation specified by @cmd
921 * is to be performed on the message queue @msq.
922 * The @msq may be NULL, e.g. for IPC_INFO or MSG_INFO.
923 * @msq contains the message queue to act upon. May be NULL.
924 * @cmd contains the operation to be performed.
925 * Return 0 if permission is granted.
926 * @msg_queue_msgsnd:
927 * Check permission before a message, @msg, is enqueued on the message
928 * queue, @msq.
929 * @msq contains the message queue to send message to.
930 * @msg contains the message to be enqueued.
931 * @msqflg contains operational flags.
932 * Return 0 if permission is granted.
933 * @msg_queue_msgrcv:
934 * Check permission before a message, @msg, is removed from the message
935 * queue, @msq. The @target task structure contains a pointer to the
936 * process that will be receiving the message (not equal to the current
937 * process when inline receives are being performed).
938 * @msq contains the message queue to retrieve message from.
939 * @msg contains the message destination.
940 * @target contains the task structure for recipient process.
941 * @type contains the type of message requested.
942 * @mode contains the operational flags.
943 * Return 0 if permission is granted.
944 *
945 * Security hooks for System V Shared Memory Segments
946 *
947 * @shm_alloc_security:
948 * Allocate and attach a security structure to the shp->shm_perm.security
949 * field. The security field is initialized to NULL when the structure is
950 * first created.
951 * @shp contains the shared memory structure to be modified.
952 * Return 0 if operation was successful and permission is granted.
953 * @shm_free_security:
954 * Deallocate the security struct for this memory segment.
955 * @shp contains the shared memory structure to be modified.
956 * @shm_associate:
957 * Check permission when a shared memory region is requested through the
958 * shmget system call. This hook is only called when returning the shared
959 * memory region identifier for an existing region, not when a new shared
960 * memory region is created.
961 * @shp contains the shared memory structure to be modified.
962 * @shmflg contains the operation control flags.
963 * Return 0 if permission is granted.
964 * @shm_shmctl:
965 * Check permission when a shared memory control operation specified by
966 * @cmd is to be performed on the shared memory region @shp.
967 * The @shp may be NULL, e.g. for IPC_INFO or SHM_INFO.
968 * @shp contains shared memory structure to be modified.
969 * @cmd contains the operation to be performed.
970 * Return 0 if permission is granted.
971 * @shm_shmat:
972 * Check permissions prior to allowing the shmat system call to attach the
973 * shared memory segment @shp to the data segment of the calling process.
974 * The attaching address is specified by @shmaddr.
975 * @shp contains the shared memory structure to be modified.
976 * @shmaddr contains the address to attach memory region to.
977 * @shmflg contains the operational flags.
978 * Return 0 if permission is granted.
979 *
980 * Security hooks for System V Semaphores
981 *
982 * @sem_alloc_security:
983 * Allocate and attach a security structure to the sma->sem_perm.security
984 * field. The security field is initialized to NULL when the structure is
985 * first created.
986 * @sma contains the semaphore structure
987 * Return 0 if operation was successful and permission is granted.
988 * @sem_free_security:
989 * deallocate security struct for this semaphore
990 * @sma contains the semaphore structure.
991 * @sem_associate:
992 * Check permission when a semaphore is requested through the semget
993 * system call. This hook is only called when returning the semaphore
994 * identifier for an existing semaphore, not when a new one must be
995 * created.
996 * @sma contains the semaphore structure.
997 * @semflg contains the operation control flags.
998 * Return 0 if permission is granted.
999 * @sem_semctl:
1000 * Check permission when a semaphore operation specified by @cmd is to be
1001 * performed on the semaphore @sma. The @sma may be NULL, e.g. for
1002 * IPC_INFO or SEM_INFO.
1003 * @sma contains the semaphore structure. May be NULL.
1004 * @cmd contains the operation to be performed.
1005 * Return 0 if permission is granted.
1006 * @sem_semop
1007 * Check permissions before performing operations on members of the
1008 * semaphore set @sma. If the @alter flag is nonzero, the semaphore set
1009 * may be modified.
1010 * @sma contains the semaphore structure.
1011 * @sops contains the operations to perform.
1012 * @nsops contains the number of operations to perform.
1013 * @alter contains the flag indicating whether changes are to be made.
1014 * Return 0 if permission is granted.
1015 *
1016 * @ptrace:
1017 * Check permission before allowing the @parent process to trace the
1018 * @child process.
1019 * Security modules may also want to perform a process tracing check
1020 * during an execve in the set_security or apply_creds hooks of
1021 * binprm_security_ops if the process is being traced and its security
1022 * attributes would be changed by the execve.
1023 * @parent contains the task_struct structure for parent process.
1024 * @child contains the task_struct structure for child process.
1025 * Return 0 if permission is granted.
1026 * @capget:
1027 * Get the @effective, @inheritable, and @permitted capability sets for
1028 * the @target process. The hook may also perform permission checking to
1029 * determine if the current process is allowed to see the capability sets
1030 * of the @target process.
1031 * @target contains the task_struct structure for target process.
1032 * @effective contains the effective capability set.
1033 * @inheritable contains the inheritable capability set.
1034 * @permitted contains the permitted capability set.
1035 * Return 0 if the capability sets were successfully obtained.
1036 * @capset_check:
1037 * Check permission before setting the @effective, @inheritable, and
1038 * @permitted capability sets for the @target process.
1039 * Caveat: @target is also set to current if a set of processes is
1040 * specified (i.e. all processes other than current and init or a
1041 * particular process group). Hence, the capset_set hook may need to
1042 * revalidate permission to the actual target process.
1043 * @target contains the task_struct structure for target process.
1044 * @effective contains the effective capability set.
1045 * @inheritable contains the inheritable capability set.
1046 * @permitted contains the permitted capability set.
1047 * Return 0 if permission is granted.
1048 * @capset_set:
1049 * Set the @effective, @inheritable, and @permitted capability sets for
1050 * the @target process. Since capset_check cannot always check permission
1051 * to the real @target process, this hook may also perform permission
1052 * checking to determine if the current process is allowed to set the
1053 * capability sets of the @target process. However, this hook has no way
1054 * of returning an error due to the structure of the sys_capset code.
1055 * @target contains the task_struct structure for target process.
1056 * @effective contains the effective capability set.
1057 * @inheritable contains the inheritable capability set.
1058 * @permitted contains the permitted capability set.
1059 * @capable:
1060 * Check whether the @tsk process has the @cap capability.
1061 * @tsk contains the task_struct for the process.
1062 * @cap contains the capability <include/linux/capability.h>.
1063 * Return 0 if the capability is granted for @tsk.
1064 * @acct:
1065 * Check permission before enabling or disabling process accounting. If
1066 * accounting is being enabled, then @file refers to the open file used to
1067 * store accounting records. If accounting is being disabled, then @file
1068 * is NULL.
1069 * @file contains the file structure for the accounting file (may be NULL).
1070 * Return 0 if permission is granted.
1071 * @sysctl:
1072 * Check permission before accessing the @table sysctl variable in the
1073 * manner specified by @op.
1074 * @table contains the ctl_table structure for the sysctl variable.
1075 * @op contains the operation (001 = search, 002 = write, 004 = read).
1076 * Return 0 if permission is granted.
1077 * @syslog:
1078 * Check permission before accessing the kernel message ring or changing
1079 * logging to the console.
1080 * See the syslog(2) manual page for an explanation of the @type values.
1081 * @type contains the type of action.
1082 * Return 0 if permission is granted.
1083 * @settime:
1084 * Check permission to change the system time.
1085 * struct timespec and timezone are defined in include/linux/time.h
1086 * @ts contains new time
1087 * @tz contains new timezone
1088 * Return 0 if permission is granted.
1089 * @vm_enough_memory:
1090 * Check permissions for allocating a new virtual mapping.
1091 * @pages contains the number of pages.
1092 * Return 0 if permission is granted.
1093 *
1094 * @register_security:
1095 * allow module stacking.
1096 * @name contains the name of the security module being stacked.
1097 * @ops contains a pointer to the struct security_operations of the module to stack.
1098 * @unregister_security:
1099 * remove a stacked module.
1100 * @name contains the name of the security module being unstacked.
1101 * @ops contains a pointer to the struct security_operations of the module to unstack.
1102 *
1103 * This is the main security structure.
1104 */
1105 struct security_operations {
1106 int (*ptrace) (struct task_struct * parent, struct task_struct * child);
1107 int (*capget) (struct task_struct * target,
1108 kernel_cap_t * effective,
1109 kernel_cap_t * inheritable, kernel_cap_t * permitted);
1110 int (*capset_check) (struct task_struct * target,
1111 kernel_cap_t * effective,
1112 kernel_cap_t * inheritable,
1113 kernel_cap_t * permitted);
1114 void (*capset_set) (struct task_struct * target,
1115 kernel_cap_t * effective,
1116 kernel_cap_t * inheritable,
1117 kernel_cap_t * permitted);
1118 int (*capable) (struct task_struct * tsk, int cap);
1119 int (*acct) (struct file * file);
1120 int (*sysctl) (struct ctl_table * table, int op);
1121 int (*quotactl) (int cmds, int type, int id, struct super_block * sb);
1122 int (*quota_on) (struct dentry * dentry);
1123 int (*syslog) (int type);
1124 int (*settime) (struct timespec *ts, struct timezone *tz);
1125 int (*vm_enough_memory) (long pages);
1126
1127 int (*bprm_alloc_security) (struct linux_binprm * bprm);
1128 void (*bprm_free_security) (struct linux_binprm * bprm);
1129 void (*bprm_apply_creds) (struct linux_binprm * bprm, int unsafe);
1130 void (*bprm_post_apply_creds) (struct linux_binprm * bprm);
1131 int (*bprm_set_security) (struct linux_binprm * bprm);
1132 int (*bprm_check_security) (struct linux_binprm * bprm);
1133 int (*bprm_secureexec) (struct linux_binprm * bprm);
1134
1135 int (*sb_alloc_security) (struct super_block * sb);
1136 void (*sb_free_security) (struct super_block * sb);
1137 int (*sb_copy_data)(struct file_system_type *type,
1138 void *orig, void *copy);
1139 int (*sb_kern_mount) (struct super_block *sb, void *data);
1140 int (*sb_statfs) (struct dentry *dentry);
1141 int (*sb_mount) (char *dev_name, struct nameidata * nd,
1142 char *type, unsigned long flags, void *data);
1143 int (*sb_check_sb) (struct vfsmount * mnt, struct nameidata * nd);
1144 int (*sb_umount) (struct vfsmount * mnt, int flags);
1145 void (*sb_umount_close) (struct vfsmount * mnt);
1146 void (*sb_umount_busy) (struct vfsmount * mnt);
1147 void (*sb_post_remount) (struct vfsmount * mnt,
1148 unsigned long flags, void *data);
1149 void (*sb_post_mountroot) (void);
1150 void (*sb_post_addmount) (struct vfsmount * mnt,
1151 struct nameidata * mountpoint_nd);
1152 int (*sb_pivotroot) (struct nameidata * old_nd,
1153 struct nameidata * new_nd);
1154 void (*sb_post_pivotroot) (struct nameidata * old_nd,
1155 struct nameidata * new_nd);
1156
1157 int (*inode_alloc_security) (struct inode *inode);
1158 void (*inode_free_security) (struct inode *inode);
1159 int (*inode_init_security) (struct inode *inode, struct inode *dir,
1160 char **name, void **value, size_t *len);
1161 int (*inode_create) (struct inode *dir,
1162 struct dentry *dentry, int mode);
1163 int (*inode_link) (struct dentry *old_dentry,
1164 struct inode *dir, struct dentry *new_dentry);
1165 int (*inode_unlink) (struct inode *dir, struct dentry *dentry);
1166 int (*inode_symlink) (struct inode *dir,
1167 struct dentry *dentry, const char *old_name);
1168 int (*inode_mkdir) (struct inode *dir, struct dentry *dentry, int mode);
1169 int (*inode_rmdir) (struct inode *dir, struct dentry *dentry);
1170 int (*inode_mknod) (struct inode *dir, struct dentry *dentry,
1171 int mode, dev_t dev);
1172 int (*inode_rename) (struct inode *old_dir, struct dentry *old_dentry,
1173 struct inode *new_dir, struct dentry *new_dentry);
1174 int (*inode_readlink) (struct dentry *dentry);
1175 int (*inode_follow_link) (struct dentry *dentry, struct nameidata *nd);
1176 int (*inode_permission) (struct inode *inode, int mask, struct nameidata *nd);
1177 int (*inode_setattr) (struct dentry *dentry, struct iattr *attr);
1178 int (*inode_getattr) (struct vfsmount *mnt, struct dentry *dentry);
1179 void (*inode_delete) (struct inode *inode);
1180 int (*inode_setxattr) (struct dentry *dentry, char *name, void *value,
1181 size_t size, int flags);
1182 void (*inode_post_setxattr) (struct dentry *dentry, char *name, void *value,
1183 size_t size, int flags);
1184 int (*inode_getxattr) (struct dentry *dentry, char *name);
1185 int (*inode_listxattr) (struct dentry *dentry);
1186 int (*inode_removexattr) (struct dentry *dentry, char *name);
1187 const char *(*inode_xattr_getsuffix) (void);
1188 int (*inode_getsecurity)(const struct inode *inode, const char *name, void *buffer, size_t size, int err);
1189 int (*inode_setsecurity)(struct inode *inode, const char *name, const void *value, size_t size, int flags);
1190 int (*inode_listsecurity)(struct inode *inode, char *buffer, size_t buffer_size);
1191
1192 int (*file_permission) (struct file * file, int mask);
1193 int (*file_alloc_security) (struct file * file);
1194 void (*file_free_security) (struct file * file);
1195 int (*file_ioctl) (struct file * file, unsigned int cmd,
1196 unsigned long arg);
1197 int (*file_mmap) (struct file * file,
1198 unsigned long reqprot,
1199 unsigned long prot, unsigned long flags);
1200 int (*file_mprotect) (struct vm_area_struct * vma,
1201 unsigned long reqprot,
1202 unsigned long prot);
1203 int (*file_lock) (struct file * file, unsigned int cmd);
1204 int (*file_fcntl) (struct file * file, unsigned int cmd,
1205 unsigned long arg);
1206 int (*file_set_fowner) (struct file * file);
1207 int (*file_send_sigiotask) (struct task_struct * tsk,
1208 struct fown_struct * fown, int sig);
1209 int (*file_receive) (struct file * file);
1210
1211 int (*task_create) (unsigned long clone_flags);
1212 int (*task_alloc_security) (struct task_struct * p);
1213 void (*task_free_security) (struct task_struct * p);
1214 int (*task_setuid) (uid_t id0, uid_t id1, uid_t id2, int flags);
1215 int (*task_post_setuid) (uid_t old_ruid /* or fsuid */ ,
1216 uid_t old_euid, uid_t old_suid, int flags);
1217 int (*task_setgid) (gid_t id0, gid_t id1, gid_t id2, int flags);
1218 int (*task_setpgid) (struct task_struct * p, pid_t pgid);
1219 int (*task_getpgid) (struct task_struct * p);
1220 int (*task_getsid) (struct task_struct * p);
1221 int (*task_setgroups) (struct group_info *group_info);
1222 int (*task_setnice) (struct task_struct * p, int nice);
1223 int (*task_setioprio) (struct task_struct * p, int ioprio);
1224 int (*task_setrlimit) (unsigned int resource, struct rlimit * new_rlim);
1225 int (*task_setscheduler) (struct task_struct * p, int policy,
1226 struct sched_param * lp);
1227 int (*task_getscheduler) (struct task_struct * p);
1228 int (*task_movememory) (struct task_struct * p);
1229 int (*task_kill) (struct task_struct * p,
1230 struct siginfo * info, int sig);
1231 int (*task_wait) (struct task_struct * p);
1232 int (*task_prctl) (int option, unsigned long arg2,
1233 unsigned long arg3, unsigned long arg4,
1234 unsigned long arg5);
1235 void (*task_reparent_to_init) (struct task_struct * p);
1236 void (*task_to_inode)(struct task_struct *p, struct inode *inode);
1237
1238 int (*ipc_permission) (struct kern_ipc_perm * ipcp, short flag);
1239
1240 int (*msg_msg_alloc_security) (struct msg_msg * msg);
1241 void (*msg_msg_free_security) (struct msg_msg * msg);
1242
1243 int (*msg_queue_alloc_security) (struct msg_queue * msq);
1244 void (*msg_queue_free_security) (struct msg_queue * msq);
1245 int (*msg_queue_associate) (struct msg_queue * msq, int msqflg);
1246 int (*msg_queue_msgctl) (struct msg_queue * msq, int cmd);
1247 int (*msg_queue_msgsnd) (struct msg_queue * msq,
1248 struct msg_msg * msg, int msqflg);
1249 int (*msg_queue_msgrcv) (struct msg_queue * msq,
1250 struct msg_msg * msg,
1251 struct task_struct * target,
1252 long type, int mode);
1253
1254 int (*shm_alloc_security) (struct shmid_kernel * shp);
1255 void (*shm_free_security) (struct shmid_kernel * shp);
1256 int (*shm_associate) (struct shmid_kernel * shp, int shmflg);
1257 int (*shm_shmctl) (struct shmid_kernel * shp, int cmd);
1258 int (*shm_shmat) (struct shmid_kernel * shp,
1259 char __user *shmaddr, int shmflg);
1260
1261 int (*sem_alloc_security) (struct sem_array * sma);
1262 void (*sem_free_security) (struct sem_array * sma);
1263 int (*sem_associate) (struct sem_array * sma, int semflg);
1264 int (*sem_semctl) (struct sem_array * sma, int cmd);
1265 int (*sem_semop) (struct sem_array * sma,
1266 struct sembuf * sops, unsigned nsops, int alter);
1267
1268 int (*netlink_send) (struct sock * sk, struct sk_buff * skb);
1269 int (*netlink_recv) (struct sk_buff * skb);
1270
1271 /* allow module stacking */
1272 int (*register_security) (const char *name,
1273 struct security_operations *ops);
1274 int (*unregister_security) (const char *name,
1275 struct security_operations *ops);
1276
1277 void (*d_instantiate) (struct dentry *dentry, struct inode *inode);
1278
1279 int (*getprocattr)(struct task_struct *p, char *name, void *value, size_t size);
1280 int (*setprocattr)(struct task_struct *p, char *name, void *value, size_t size);
1281
1282 #ifdef CONFIG_SECURITY_NETWORK
1283 int (*unix_stream_connect) (struct socket * sock,
1284 struct socket * other, struct sock * newsk);
1285 int (*unix_may_send) (struct socket * sock, struct socket * other);
1286
1287 int (*socket_create) (int family, int type, int protocol, int kern);
1288 void (*socket_post_create) (struct socket * sock, int family,
1289 int type, int protocol, int kern);
1290 int (*socket_bind) (struct socket * sock,
1291 struct sockaddr * address, int addrlen);
1292 int (*socket_connect) (struct socket * sock,
1293 struct sockaddr * address, int addrlen);
1294 int (*socket_listen) (struct socket * sock, int backlog);
1295 int (*socket_accept) (struct socket * sock, struct socket * newsock);
1296 void (*socket_post_accept) (struct socket * sock,
1297 struct socket * newsock);
1298 int (*socket_sendmsg) (struct socket * sock,
1299 struct msghdr * msg, int size);
1300 int (*socket_recvmsg) (struct socket * sock,
1301 struct msghdr * msg, int size, int flags);
1302 int (*socket_getsockname) (struct socket * sock);
1303 int (*socket_getpeername) (struct socket * sock);
1304 int (*socket_getsockopt) (struct socket * sock, int level, int optname);
1305 int (*socket_setsockopt) (struct socket * sock, int level, int optname);
1306 int (*socket_shutdown) (struct socket * sock, int how);
1307 int (*socket_sock_rcv_skb) (struct sock * sk, struct sk_buff * skb);
1308 int (*socket_getpeersec_stream) (struct socket *sock, char __user *optval, int __user *optlen, unsigned len);
1309 int (*socket_getpeersec_dgram) (struct sk_buff *skb, char **secdata, u32 *seclen);
1310 int (*sk_alloc_security) (struct sock *sk, int family, gfp_t priority);
1311 void (*sk_free_security) (struct sock *sk);
1312 unsigned int (*sk_getsid) (struct sock *sk, struct flowi *fl, u8 dir);
1313 #endif /* CONFIG_SECURITY_NETWORK */
1314
1315 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1316 int (*xfrm_policy_alloc_security) (struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx);
1317 int (*xfrm_policy_clone_security) (struct xfrm_policy *old, struct xfrm_policy *new);
1318 void (*xfrm_policy_free_security) (struct xfrm_policy *xp);
1319 int (*xfrm_policy_delete_security) (struct xfrm_policy *xp);
1320 int (*xfrm_state_alloc_security) (struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx);
1321 void (*xfrm_state_free_security) (struct xfrm_state *x);
1322 int (*xfrm_state_delete_security) (struct xfrm_state *x);
1323 int (*xfrm_policy_lookup)(struct xfrm_policy *xp, u32 sk_sid, u8 dir);
1324 #endif /* CONFIG_SECURITY_NETWORK_XFRM */
1325
1326 /* key management security hooks */
1327 #ifdef CONFIG_KEYS
1328 int (*key_alloc)(struct key *key, struct task_struct *tsk, unsigned long flags);
1329 void (*key_free)(struct key *key);
1330 int (*key_permission)(key_ref_t key_ref,
1331 struct task_struct *context,
1332 key_perm_t perm);
1333
1334 #endif /* CONFIG_KEYS */
1335
1336 };
1337
1338 /* global variables */
1339 extern struct security_operations *security_ops;
1340
1341 /* inline stuff */
1342 static inline int security_ptrace (struct task_struct * parent, struct task_struct * child)
1343 {
1344 return security_ops->ptrace (parent, child);
1345 }
1346
1347 static inline int security_capget (struct task_struct *target,
1348 kernel_cap_t *effective,
1349 kernel_cap_t *inheritable,
1350 kernel_cap_t *permitted)
1351 {
1352 return security_ops->capget (target, effective, inheritable, permitted);
1353 }
1354
1355 static inline int security_capset_check (struct task_struct *target,
1356 kernel_cap_t *effective,
1357 kernel_cap_t *inheritable,
1358 kernel_cap_t *permitted)
1359 {
1360 return security_ops->capset_check (target, effective, inheritable, permitted);
1361 }
1362
1363 static inline void security_capset_set (struct task_struct *target,
1364 kernel_cap_t *effective,
1365 kernel_cap_t *inheritable,
1366 kernel_cap_t *permitted)
1367 {
1368 security_ops->capset_set (target, effective, inheritable, permitted);
1369 }
1370
1371 static inline int security_capable(struct task_struct *tsk, int cap)
1372 {
1373 return security_ops->capable(tsk, cap);
1374 }
1375
1376 static inline int security_acct (struct file *file)
1377 {
1378 return security_ops->acct (file);
1379 }
1380
1381 static inline int security_sysctl(struct ctl_table *table, int op)
1382 {
1383 return security_ops->sysctl(table, op);
1384 }
1385
1386 static inline int security_quotactl (int cmds, int type, int id,
1387 struct super_block *sb)
1388 {
1389 return security_ops->quotactl (cmds, type, id, sb);
1390 }
1391
1392 static inline int security_quota_on (struct dentry * dentry)
1393 {
1394 return security_ops->quota_on (dentry);
1395 }
1396
1397 static inline int security_syslog(int type)
1398 {
1399 return security_ops->syslog(type);
1400 }
1401
1402 static inline int security_settime(struct timespec *ts, struct timezone *tz)
1403 {
1404 return security_ops->settime(ts, tz);
1405 }
1406
1407
1408 static inline int security_vm_enough_memory(long pages)
1409 {
1410 return security_ops->vm_enough_memory(pages);
1411 }
1412
1413 static inline int security_bprm_alloc (struct linux_binprm *bprm)
1414 {
1415 return security_ops->bprm_alloc_security (bprm);
1416 }
1417 static inline void security_bprm_free (struct linux_binprm *bprm)
1418 {
1419 security_ops->bprm_free_security (bprm);
1420 }
1421 static inline void security_bprm_apply_creds (struct linux_binprm *bprm, int unsafe)
1422 {
1423 security_ops->bprm_apply_creds (bprm, unsafe);
1424 }
1425 static inline void security_bprm_post_apply_creds (struct linux_binprm *bprm)
1426 {
1427 security_ops->bprm_post_apply_creds (bprm);
1428 }
1429 static inline int security_bprm_set (struct linux_binprm *bprm)
1430 {
1431 return security_ops->bprm_set_security (bprm);
1432 }
1433
1434 static inline int security_bprm_check (struct linux_binprm *bprm)
1435 {
1436 return security_ops->bprm_check_security (bprm);
1437 }
1438
1439 static inline int security_bprm_secureexec (struct linux_binprm *bprm)
1440 {
1441 return security_ops->bprm_secureexec (bprm);
1442 }
1443
1444 static inline int security_sb_alloc (struct super_block *sb)
1445 {
1446 return security_ops->sb_alloc_security (sb);
1447 }
1448
1449 static inline void security_sb_free (struct super_block *sb)
1450 {
1451 security_ops->sb_free_security (sb);
1452 }
1453
1454 static inline int security_sb_copy_data (struct file_system_type *type,
1455 void *orig, void *copy)
1456 {
1457 return security_ops->sb_copy_data (type, orig, copy);
1458 }
1459
1460 static inline int security_sb_kern_mount (struct super_block *sb, void *data)
1461 {
1462 return security_ops->sb_kern_mount (sb, data);
1463 }
1464
1465 static inline int security_sb_statfs (struct dentry *dentry)
1466 {
1467 return security_ops->sb_statfs (dentry);
1468 }
1469
1470 static inline int security_sb_mount (char *dev_name, struct nameidata *nd,
1471 char *type, unsigned long flags,
1472 void *data)
1473 {
1474 return security_ops->sb_mount (dev_name, nd, type, flags, data);
1475 }
1476
1477 static inline int security_sb_check_sb (struct vfsmount *mnt,
1478 struct nameidata *nd)
1479 {
1480 return security_ops->sb_check_sb (mnt, nd);
1481 }
1482
1483 static inline int security_sb_umount (struct vfsmount *mnt, int flags)
1484 {
1485 return security_ops->sb_umount (mnt, flags);
1486 }
1487
1488 static inline void security_sb_umount_close (struct vfsmount *mnt)
1489 {
1490 security_ops->sb_umount_close (mnt);
1491 }
1492
1493 static inline void security_sb_umount_busy (struct vfsmount *mnt)
1494 {
1495 security_ops->sb_umount_busy (mnt);
1496 }
1497
1498 static inline void security_sb_post_remount (struct vfsmount *mnt,
1499 unsigned long flags, void *data)
1500 {
1501 security_ops->sb_post_remount (mnt, flags, data);
1502 }
1503
1504 static inline void security_sb_post_mountroot (void)
1505 {
1506 security_ops->sb_post_mountroot ();
1507 }
1508
1509 static inline void security_sb_post_addmount (struct vfsmount *mnt,
1510 struct nameidata *mountpoint_nd)
1511 {
1512 security_ops->sb_post_addmount (mnt, mountpoint_nd);
1513 }
1514
1515 static inline int security_sb_pivotroot (struct nameidata *old_nd,
1516 struct nameidata *new_nd)
1517 {
1518 return security_ops->sb_pivotroot (old_nd, new_nd);
1519 }
1520
1521 static inline void security_sb_post_pivotroot (struct nameidata *old_nd,
1522 struct nameidata *new_nd)
1523 {
1524 security_ops->sb_post_pivotroot (old_nd, new_nd);
1525 }
1526
1527 static inline int security_inode_alloc (struct inode *inode)
1528 {
1529 return security_ops->inode_alloc_security (inode);
1530 }
1531
1532 static inline void security_inode_free (struct inode *inode)
1533 {
1534 security_ops->inode_free_security (inode);
1535 }
1536
1537 static inline int security_inode_init_security (struct inode *inode,
1538 struct inode *dir,
1539 char **name,
1540 void **value,
1541 size_t *len)
1542 {
1543 if (unlikely (IS_PRIVATE (inode)))
1544 return -EOPNOTSUPP;
1545 return security_ops->inode_init_security (inode, dir, name, value, len);
1546 }
1547
1548 static inline int security_inode_create (struct inode *dir,
1549 struct dentry *dentry,
1550 int mode)
1551 {
1552 if (unlikely (IS_PRIVATE (dir)))
1553 return 0;
1554 return security_ops->inode_create (dir, dentry, mode);
1555 }
1556
1557 static inline int security_inode_link (struct dentry *old_dentry,
1558 struct inode *dir,
1559 struct dentry *new_dentry)
1560 {
1561 if (unlikely (IS_PRIVATE (old_dentry->d_inode)))
1562 return 0;
1563 return security_ops->inode_link (old_dentry, dir, new_dentry);
1564 }
1565
1566 static inline int security_inode_unlink (struct inode *dir,
1567 struct dentry *dentry)
1568 {
1569 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1570 return 0;
1571 return security_ops->inode_unlink (dir, dentry);
1572 }
1573
1574 static inline int security_inode_symlink (struct inode *dir,
1575 struct dentry *dentry,
1576 const char *old_name)
1577 {
1578 if (unlikely (IS_PRIVATE (dir)))
1579 return 0;
1580 return security_ops->inode_symlink (dir, dentry, old_name);
1581 }
1582
1583 static inline int security_inode_mkdir (struct inode *dir,
1584 struct dentry *dentry,
1585 int mode)
1586 {
1587 if (unlikely (IS_PRIVATE (dir)))
1588 return 0;
1589 return security_ops->inode_mkdir (dir, dentry, mode);
1590 }
1591
1592 static inline int security_inode_rmdir (struct inode *dir,
1593 struct dentry *dentry)
1594 {
1595 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1596 return 0;
1597 return security_ops->inode_rmdir (dir, dentry);
1598 }
1599
1600 static inline int security_inode_mknod (struct inode *dir,
1601 struct dentry *dentry,
1602 int mode, dev_t dev)
1603 {
1604 if (unlikely (IS_PRIVATE (dir)))
1605 return 0;
1606 return security_ops->inode_mknod (dir, dentry, mode, dev);
1607 }
1608
1609 static inline int security_inode_rename (struct inode *old_dir,
1610 struct dentry *old_dentry,
1611 struct inode *new_dir,
1612 struct dentry *new_dentry)
1613 {
1614 if (unlikely (IS_PRIVATE (old_dentry->d_inode) ||
1615 (new_dentry->d_inode && IS_PRIVATE (new_dentry->d_inode))))
1616 return 0;
1617 return security_ops->inode_rename (old_dir, old_dentry,
1618 new_dir, new_dentry);
1619 }
1620
1621 static inline int security_inode_readlink (struct dentry *dentry)
1622 {
1623 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1624 return 0;
1625 return security_ops->inode_readlink (dentry);
1626 }
1627
1628 static inline int security_inode_follow_link (struct dentry *dentry,
1629 struct nameidata *nd)
1630 {
1631 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1632 return 0;
1633 return security_ops->inode_follow_link (dentry, nd);
1634 }
1635
1636 static inline int security_inode_permission (struct inode *inode, int mask,
1637 struct nameidata *nd)
1638 {
1639 if (unlikely (IS_PRIVATE (inode)))
1640 return 0;
1641 return security_ops->inode_permission (inode, mask, nd);
1642 }
1643
1644 static inline int security_inode_setattr (struct dentry *dentry,
1645 struct iattr *attr)
1646 {
1647 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1648 return 0;
1649 return security_ops->inode_setattr (dentry, attr);
1650 }
1651
1652 static inline int security_inode_getattr (struct vfsmount *mnt,
1653 struct dentry *dentry)
1654 {
1655 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1656 return 0;
1657 return security_ops->inode_getattr (mnt, dentry);
1658 }
1659
1660 static inline void security_inode_delete (struct inode *inode)
1661 {
1662 if (unlikely (IS_PRIVATE (inode)))
1663 return;
1664 security_ops->inode_delete (inode);
1665 }
1666
1667 static inline int security_inode_setxattr (struct dentry *dentry, char *name,
1668 void *value, size_t size, int flags)
1669 {
1670 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1671 return 0;
1672 return security_ops->inode_setxattr (dentry, name, value, size, flags);
1673 }
1674
1675 static inline void security_inode_post_setxattr (struct dentry *dentry, char *name,
1676 void *value, size_t size, int flags)
1677 {
1678 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1679 return;
1680 security_ops->inode_post_setxattr (dentry, name, value, size, flags);
1681 }
1682
1683 static inline int security_inode_getxattr (struct dentry *dentry, char *name)
1684 {
1685 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1686 return 0;
1687 return security_ops->inode_getxattr (dentry, name);
1688 }
1689
1690 static inline int security_inode_listxattr (struct dentry *dentry)
1691 {
1692 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1693 return 0;
1694 return security_ops->inode_listxattr (dentry);
1695 }
1696
1697 static inline int security_inode_removexattr (struct dentry *dentry, char *name)
1698 {
1699 if (unlikely (IS_PRIVATE (dentry->d_inode)))
1700 return 0;
1701 return security_ops->inode_removexattr (dentry, name);
1702 }
1703
1704 static inline const char *security_inode_xattr_getsuffix(void)
1705 {
1706 return security_ops->inode_xattr_getsuffix();
1707 }
1708
1709 static inline int security_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err)
1710 {
1711 if (unlikely (IS_PRIVATE (inode)))
1712 return 0;
1713 return security_ops->inode_getsecurity(inode, name, buffer, size, err);
1714 }
1715
1716 static inline int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1717 {
1718 if (unlikely (IS_PRIVATE (inode)))
1719 return 0;
1720 return security_ops->inode_setsecurity(inode, name, value, size, flags);
1721 }
1722
1723 static inline int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1724 {
1725 if (unlikely (IS_PRIVATE (inode)))
1726 return 0;
1727 return security_ops->inode_listsecurity(inode, buffer, buffer_size);
1728 }
1729
1730 static inline int security_file_permission (struct file *file, int mask)
1731 {
1732 return security_ops->file_permission (file, mask);
1733 }
1734
1735 static inline int security_file_alloc (struct file *file)
1736 {
1737 return security_ops->file_alloc_security (file);
1738 }
1739
1740 static inline void security_file_free (struct file *file)
1741 {
1742 security_ops->file_free_security (file);
1743 }
1744
1745 static inline int security_file_ioctl (struct file *file, unsigned int cmd,
1746 unsigned long arg)
1747 {
1748 return security_ops->file_ioctl (file, cmd, arg);
1749 }
1750
1751 static inline int security_file_mmap (struct file *file, unsigned long reqprot,
1752 unsigned long prot,
1753 unsigned long flags)
1754 {
1755 return security_ops->file_mmap (file, reqprot, prot, flags);
1756 }
1757
1758 static inline int security_file_mprotect (struct vm_area_struct *vma,
1759 unsigned long reqprot,
1760 unsigned long prot)
1761 {
1762 return security_ops->file_mprotect (vma, reqprot, prot);
1763 }
1764
1765 static inline int security_file_lock (struct file *file, unsigned int cmd)
1766 {
1767 return security_ops->file_lock (file, cmd);
1768 }
1769
1770 static inline int security_file_fcntl (struct file *file, unsigned int cmd,
1771 unsigned long arg)
1772 {
1773 return security_ops->file_fcntl (file, cmd, arg);
1774 }
1775
1776 static inline int security_file_set_fowner (struct file *file)
1777 {
1778 return security_ops->file_set_fowner (file);
1779 }
1780
1781 static inline int security_file_send_sigiotask (struct task_struct *tsk,
1782 struct fown_struct *fown,
1783 int sig)
1784 {
1785 return security_ops->file_send_sigiotask (tsk, fown, sig);
1786 }
1787
1788 static inline int security_file_receive (struct file *file)
1789 {
1790 return security_ops->file_receive (file);
1791 }
1792
1793 static inline int security_task_create (unsigned long clone_flags)
1794 {
1795 return security_ops->task_create (clone_flags);
1796 }
1797
1798 static inline int security_task_alloc (struct task_struct *p)
1799 {
1800 return security_ops->task_alloc_security (p);
1801 }
1802
1803 static inline void security_task_free (struct task_struct *p)
1804 {
1805 security_ops->task_free_security (p);
1806 }
1807
1808 static inline int security_task_setuid (uid_t id0, uid_t id1, uid_t id2,
1809 int flags)
1810 {
1811 return security_ops->task_setuid (id0, id1, id2, flags);
1812 }
1813
1814 static inline int security_task_post_setuid (uid_t old_ruid, uid_t old_euid,
1815 uid_t old_suid, int flags)
1816 {
1817 return security_ops->task_post_setuid (old_ruid, old_euid, old_suid, flags);
1818 }
1819
1820 static inline int security_task_setgid (gid_t id0, gid_t id1, gid_t id2,
1821 int flags)
1822 {
1823 return security_ops->task_setgid (id0, id1, id2, flags);
1824 }
1825
1826 static inline int security_task_setpgid (struct task_struct *p, pid_t pgid)
1827 {
1828 return security_ops->task_setpgid (p, pgid);
1829 }
1830
1831 static inline int security_task_getpgid (struct task_struct *p)
1832 {
1833 return security_ops->task_getpgid (p);
1834 }
1835
1836 static inline int security_task_getsid (struct task_struct *p)
1837 {
1838 return security_ops->task_getsid (p);
1839 }
1840
1841 static inline int security_task_setgroups (struct group_info *group_info)
1842 {
1843 return security_ops->task_setgroups (group_info);
1844 }
1845
1846 static inline int security_task_setnice (struct task_struct *p, int nice)
1847 {
1848 return security_ops->task_setnice (p, nice);
1849 }
1850
1851 static inline int security_task_setioprio (struct task_struct *p, int ioprio)
1852 {
1853 return security_ops->task_setioprio (p, ioprio);
1854 }
1855
1856 static inline int security_task_setrlimit (unsigned int resource,
1857 struct rlimit *new_rlim)
1858 {
1859 return security_ops->task_setrlimit (resource, new_rlim);
1860 }
1861
1862 static inline int security_task_setscheduler (struct task_struct *p,
1863 int policy,
1864 struct sched_param *lp)
1865 {
1866 return security_ops->task_setscheduler (p, policy, lp);
1867 }
1868
1869 static inline int security_task_getscheduler (struct task_struct *p)
1870 {
1871 return security_ops->task_getscheduler (p);
1872 }
1873
1874 static inline int security_task_movememory (struct task_struct *p)
1875 {
1876 return security_ops->task_movememory (p);
1877 }
1878
1879 static inline int security_task_kill (struct task_struct *p,
1880 struct siginfo *info, int sig)
1881 {
1882 return security_ops->task_kill (p, info, sig);
1883 }
1884
1885 static inline int security_task_wait (struct task_struct *p)
1886 {
1887 return security_ops->task_wait (p);
1888 }
1889
1890 static inline int security_task_prctl (int option, unsigned long arg2,
1891 unsigned long arg3,
1892 unsigned long arg4,
1893 unsigned long arg5)
1894 {
1895 return security_ops->task_prctl (option, arg2, arg3, arg4, arg5);
1896 }
1897
1898 static inline void security_task_reparent_to_init (struct task_struct *p)
1899 {
1900 security_ops->task_reparent_to_init (p);
1901 }
1902
1903 static inline void security_task_to_inode(struct task_struct *p, struct inode *inode)
1904 {
1905 security_ops->task_to_inode(p, inode);
1906 }
1907
1908 static inline int security_ipc_permission (struct kern_ipc_perm *ipcp,
1909 short flag)
1910 {
1911 return security_ops->ipc_permission (ipcp, flag);
1912 }
1913
1914 static inline int security_msg_msg_alloc (struct msg_msg * msg)
1915 {
1916 return security_ops->msg_msg_alloc_security (msg);
1917 }
1918
1919 static inline void security_msg_msg_free (struct msg_msg * msg)
1920 {
1921 security_ops->msg_msg_free_security(msg);
1922 }
1923
1924 static inline int security_msg_queue_alloc (struct msg_queue *msq)
1925 {
1926 return security_ops->msg_queue_alloc_security (msq);
1927 }
1928
1929 static inline void security_msg_queue_free (struct msg_queue *msq)
1930 {
1931 security_ops->msg_queue_free_security (msq);
1932 }
1933
1934 static inline int security_msg_queue_associate (struct msg_queue * msq,
1935 int msqflg)
1936 {
1937 return security_ops->msg_queue_associate (msq, msqflg);
1938 }
1939
1940 static inline int security_msg_queue_msgctl (struct msg_queue * msq, int cmd)
1941 {
1942 return security_ops->msg_queue_msgctl (msq, cmd);
1943 }
1944
1945 static inline int security_msg_queue_msgsnd (struct msg_queue * msq,
1946 struct msg_msg * msg, int msqflg)
1947 {
1948 return security_ops->msg_queue_msgsnd (msq, msg, msqflg);
1949 }
1950
1951 static inline int security_msg_queue_msgrcv (struct msg_queue * msq,
1952 struct msg_msg * msg,
1953 struct task_struct * target,
1954 long type, int mode)
1955 {
1956 return security_ops->msg_queue_msgrcv (msq, msg, target, type, mode);
1957 }
1958
1959 static inline int security_shm_alloc (struct shmid_kernel *shp)
1960 {
1961 return security_ops->shm_alloc_security (shp);
1962 }
1963
1964 static inline void security_shm_free (struct shmid_kernel *shp)
1965 {
1966 security_ops->shm_free_security (shp);
1967 }
1968
1969 static inline int security_shm_associate (struct shmid_kernel * shp,
1970 int shmflg)
1971 {
1972 return security_ops->shm_associate(shp, shmflg);
1973 }
1974
1975 static inline int security_shm_shmctl (struct shmid_kernel * shp, int cmd)
1976 {
1977 return security_ops->shm_shmctl (shp, cmd);
1978 }
1979
1980 static inline int security_shm_shmat (struct shmid_kernel * shp,
1981 char __user *shmaddr, int shmflg)
1982 {
1983 return security_ops->shm_shmat(shp, shmaddr, shmflg);
1984 }
1985
1986 static inline int security_sem_alloc (struct sem_array *sma)
1987 {
1988 return security_ops->sem_alloc_security (sma);
1989 }
1990
1991 static inline void security_sem_free (struct sem_array *sma)
1992 {
1993 security_ops->sem_free_security (sma);
1994 }
1995
1996 static inline int security_sem_associate (struct sem_array * sma, int semflg)
1997 {
1998 return security_ops->sem_associate (sma, semflg);
1999 }
2000
2001 static inline int security_sem_semctl (struct sem_array * sma, int cmd)
2002 {
2003 return security_ops->sem_semctl(sma, cmd);
2004 }
2005
2006 static inline int security_sem_semop (struct sem_array * sma,
2007 struct sembuf * sops, unsigned nsops,
2008 int alter)
2009 {
2010 return security_ops->sem_semop(sma, sops, nsops, alter);
2011 }
2012
2013 static inline void security_d_instantiate (struct dentry *dentry, struct inode *inode)
2014 {
2015 if (unlikely (inode && IS_PRIVATE (inode)))
2016 return;
2017 security_ops->d_instantiate (dentry, inode);
2018 }
2019
2020 static inline int security_getprocattr(struct task_struct *p, char *name, void *value, size_t size)
2021 {
2022 return security_ops->getprocattr(p, name, value, size);
2023 }
2024
2025 static inline int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
2026 {
2027 return security_ops->setprocattr(p, name, value, size);
2028 }
2029
2030 static inline int security_netlink_send(struct sock *sk, struct sk_buff * skb)
2031 {
2032 return security_ops->netlink_send(sk, skb);
2033 }
2034
2035 static inline int security_netlink_recv(struct sk_buff * skb)
2036 {
2037 return security_ops->netlink_recv(skb);
2038 }
2039
2040 /* prototypes */
2041 extern int security_init (void);
2042 extern int register_security (struct security_operations *ops);
2043 extern int unregister_security (struct security_operations *ops);
2044 extern int mod_reg_security (const char *name, struct security_operations *ops);
2045 extern int mod_unreg_security (const char *name, struct security_operations *ops);
2046 extern struct dentry *securityfs_create_file(const char *name, mode_t mode,
2047 struct dentry *parent, void *data,
2048 struct file_operations *fops);
2049 extern struct dentry *securityfs_create_dir(const char *name, struct dentry *parent);
2050 extern void securityfs_remove(struct dentry *dentry);
2051
2052
2053 #else /* CONFIG_SECURITY */
2054
2055 /*
2056 * This is the default capabilities functionality. Most of these functions
2057 * are just stubbed out, but a few must call the proper capable code.
2058 */
2059
2060 static inline int security_init(void)
2061 {
2062 return 0;
2063 }
2064
2065 static inline int security_ptrace (struct task_struct *parent, struct task_struct * child)
2066 {
2067 return cap_ptrace (parent, child);
2068 }
2069
2070 static inline int security_capget (struct task_struct *target,
2071 kernel_cap_t *effective,
2072 kernel_cap_t *inheritable,
2073 kernel_cap_t *permitted)
2074 {
2075 return cap_capget (target, effective, inheritable, permitted);
2076 }
2077
2078 static inline int security_capset_check (struct task_struct *target,
2079 kernel_cap_t *effective,
2080 kernel_cap_t *inheritable,
2081 kernel_cap_t *permitted)
2082 {
2083 return cap_capset_check (target, effective, inheritable, permitted);
2084 }
2085
2086 static inline void security_capset_set (struct task_struct *target,
2087 kernel_cap_t *effective,
2088 kernel_cap_t *inheritable,
2089 kernel_cap_t *permitted)
2090 {
2091 cap_capset_set (target, effective, inheritable, permitted);
2092 }
2093
2094 static inline int security_capable(struct task_struct *tsk, int cap)
2095 {
2096 return cap_capable(tsk, cap);
2097 }
2098
2099 static inline int security_acct (struct file *file)
2100 {
2101 return 0;
2102 }
2103
2104 static inline int security_sysctl(struct ctl_table *table, int op)
2105 {
2106 return 0;
2107 }
2108
2109 static inline int security_quotactl (int cmds, int type, int id,
2110 struct super_block * sb)
2111 {
2112 return 0;
2113 }
2114
2115 static inline int security_quota_on (struct dentry * dentry)
2116 {
2117 return 0;
2118 }
2119
2120 static inline int security_syslog(int type)
2121 {
2122 return cap_syslog(type);
2123 }
2124
2125 static inline int security_settime(struct timespec *ts, struct timezone *tz)
2126 {
2127 return cap_settime(ts, tz);
2128 }
2129
2130 static inline int security_vm_enough_memory(long pages)
2131 {
2132 return cap_vm_enough_memory(pages);
2133 }
2134
2135 static inline int security_bprm_alloc (struct linux_binprm *bprm)
2136 {
2137 return 0;
2138 }
2139
2140 static inline void security_bprm_free (struct linux_binprm *bprm)
2141 { }
2142
2143 static inline void security_bprm_apply_creds (struct linux_binprm *bprm, int unsafe)
2144 {
2145 cap_bprm_apply_creds (bprm, unsafe);
2146 }
2147
2148 static inline void security_bprm_post_apply_creds (struct linux_binprm *bprm)
2149 {
2150 return;
2151 }
2152
2153 static inline int security_bprm_set (struct linux_binprm *bprm)
2154 {
2155 return cap_bprm_set_security (bprm);
2156 }
2157
2158 static inline int security_bprm_check (struct linux_binprm *bprm)
2159 {
2160 return 0;
2161 }
2162
2163 static inline int security_bprm_secureexec (struct linux_binprm *bprm)
2164 {
2165 return cap_bprm_secureexec(bprm);
2166 }
2167
2168 static inline int security_sb_alloc (struct super_block *sb)
2169 {
2170 return 0;
2171 }
2172
2173 static inline void security_sb_free (struct super_block *sb)
2174 { }
2175
2176 static inline int security_sb_copy_data (struct file_system_type *type,
2177 void *orig, void *copy)
2178 {
2179 return 0;
2180 }
2181
2182 static inline int security_sb_kern_mount (struct super_block *sb, void *data)
2183 {
2184 return 0;
2185 }
2186
2187 static inline int security_sb_statfs (struct dentry *dentry)
2188 {
2189 return 0;
2190 }
2191
2192 static inline int security_sb_mount (char *dev_name, struct nameidata *nd,
2193 char *type, unsigned long flags,
2194 void *data)
2195 {
2196 return 0;
2197 }
2198
2199 static inline int security_sb_check_sb (struct vfsmount *mnt,
2200 struct nameidata *nd)
2201 {
2202 return 0;
2203 }
2204
2205 static inline int security_sb_umount (struct vfsmount *mnt, int flags)
2206 {
2207 return 0;
2208 }
2209
2210 static inline void security_sb_umount_close (struct vfsmount *mnt)
2211 { }
2212
2213 static inline void security_sb_umount_busy (struct vfsmount *mnt)
2214 { }
2215
2216 static inline void security_sb_post_remount (struct vfsmount *mnt,
2217 unsigned long flags, void *data)
2218 { }
2219
2220 static inline void security_sb_post_mountroot (void)
2221 { }
2222
2223 static inline void security_sb_post_addmount (struct vfsmount *mnt,
2224 struct nameidata *mountpoint_nd)
2225 { }
2226
2227 static inline int security_sb_pivotroot (struct nameidata *old_nd,
2228 struct nameidata *new_nd)
2229 {
2230 return 0;
2231 }
2232
2233 static inline void security_sb_post_pivotroot (struct nameidata *old_nd,
2234 struct nameidata *new_nd)
2235 { }
2236
2237 static inline int security_inode_alloc (struct inode *inode)
2238 {
2239 return 0;
2240 }
2241
2242 static inline void security_inode_free (struct inode *inode)
2243 { }
2244
2245 static inline int security_inode_init_security (struct inode *inode,
2246 struct inode *dir,
2247 char **name,
2248 void **value,
2249 size_t *len)
2250 {
2251 return -EOPNOTSUPP;
2252 }
2253
2254 static inline int security_inode_create (struct inode *dir,
2255 struct dentry *dentry,
2256 int mode)
2257 {
2258 return 0;
2259 }
2260
2261 static inline int security_inode_link (struct dentry *old_dentry,
2262 struct inode *dir,
2263 struct dentry *new_dentry)
2264 {
2265 return 0;
2266 }
2267
2268 static inline int security_inode_unlink (struct inode *dir,
2269 struct dentry *dentry)
2270 {
2271 return 0;
2272 }
2273
2274 static inline int security_inode_symlink (struct inode *dir,
2275 struct dentry *dentry,
2276 const char *old_name)
2277 {
2278 return 0;
2279 }
2280
2281 static inline int security_inode_mkdir (struct inode *dir,
2282 struct dentry *dentry,
2283 int mode)
2284 {
2285 return 0;
2286 }
2287
2288 static inline int security_inode_rmdir (struct inode *dir,
2289 struct dentry *dentry)
2290 {
2291 return 0;
2292 }
2293
2294 static inline int security_inode_mknod (struct inode *dir,
2295 struct dentry *dentry,
2296 int mode, dev_t dev)
2297 {
2298 return 0;
2299 }
2300
2301 static inline int security_inode_rename (struct inode *old_dir,
2302 struct dentry *old_dentry,
2303 struct inode *new_dir,
2304 struct dentry *new_dentry)
2305 {
2306 return 0;
2307 }
2308
2309 static inline int security_inode_readlink (struct dentry *dentry)
2310 {
2311 return 0;
2312 }
2313
2314 static inline int security_inode_follow_link (struct dentry *dentry,
2315 struct nameidata *nd)
2316 {
2317 return 0;
2318 }
2319
2320 static inline int security_inode_permission (struct inode *inode, int mask,
2321 struct nameidata *nd)
2322 {
2323 return 0;
2324 }
2325
2326 static inline int security_inode_setattr (struct dentry *dentry,
2327 struct iattr *attr)
2328 {
2329 return 0;
2330 }
2331
2332 static inline int security_inode_getattr (struct vfsmount *mnt,
2333 struct dentry *dentry)
2334 {
2335 return 0;
2336 }
2337
2338 static inline void security_inode_delete (struct inode *inode)
2339 { }
2340
2341 static inline int security_inode_setxattr (struct dentry *dentry, char *name,
2342 void *value, size_t size, int flags)
2343 {
2344 return cap_inode_setxattr(dentry, name, value, size, flags);
2345 }
2346
2347 static inline void security_inode_post_setxattr (struct dentry *dentry, char *name,
2348 void *value, size_t size, int flags)
2349 { }
2350
2351 static inline int security_inode_getxattr (struct dentry *dentry, char *name)
2352 {
2353 return 0;
2354 }
2355
2356 static inline int security_inode_listxattr (struct dentry *dentry)
2357 {
2358 return 0;
2359 }
2360
2361 static inline int security_inode_removexattr (struct dentry *dentry, char *name)
2362 {
2363 return cap_inode_removexattr(dentry, name);
2364 }
2365
2366 static inline const char *security_inode_xattr_getsuffix (void)
2367 {
2368 return NULL ;
2369 }
2370
2371 static inline int security_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err)
2372 {
2373 return -EOPNOTSUPP;
2374 }
2375
2376 static inline int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
2377 {
2378 return -EOPNOTSUPP;
2379 }
2380
2381 static inline int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2382 {
2383 return 0;
2384 }
2385
2386 static inline int security_file_permission (struct file *file, int mask)
2387 {
2388 return 0;
2389 }
2390
2391 static inline int security_file_alloc (struct file *file)
2392 {
2393 return 0;
2394 }
2395
2396 static inline void security_file_free (struct file *file)
2397 { }
2398
2399 static inline int security_file_ioctl (struct file *file, unsigned int cmd,
2400 unsigned long arg)
2401 {
2402 return 0;
2403 }
2404
2405 static inline int security_file_mmap (struct file *file, unsigned long reqprot,
2406 unsigned long prot,
2407 unsigned long flags)
2408 {
2409 return 0;
2410 }
2411
2412 static inline int security_file_mprotect (struct vm_area_struct *vma,
2413 unsigned long reqprot,
2414 unsigned long prot)
2415 {
2416 return 0;
2417 }
2418
2419 static inline int security_file_lock (struct file *file, unsigned int cmd)
2420 {
2421 return 0;
2422 }
2423
2424 static inline int security_file_fcntl (struct file *file, unsigned int cmd,
2425 unsigned long arg)
2426 {
2427 return 0;
2428 }
2429
2430 static inline int security_file_set_fowner (struct file *file)
2431 {
2432 return 0;
2433 }
2434
2435 static inline int security_file_send_sigiotask (struct task_struct *tsk,
2436 struct fown_struct *fown,
2437 int sig)
2438 {
2439 return 0;
2440 }
2441
2442 static inline int security_file_receive (struct file *file)
2443 {
2444 return 0;
2445 }
2446
2447 static inline int security_task_create (unsigned long clone_flags)
2448 {
2449 return 0;
2450 }
2451
2452 static inline int security_task_alloc (struct task_struct *p)
2453 {
2454 return 0;
2455 }
2456
2457 static inline void security_task_free (struct task_struct *p)
2458 { }
2459
2460 static inline int security_task_setuid (uid_t id0, uid_t id1, uid_t id2,
2461 int flags)
2462 {
2463 return 0;
2464 }
2465
2466 static inline int security_task_post_setuid (uid_t old_ruid, uid_t old_euid,
2467 uid_t old_suid, int flags)
2468 {
2469 return cap_task_post_setuid (old_ruid, old_euid, old_suid, flags);
2470 }
2471
2472 static inline int security_task_setgid (gid_t id0, gid_t id1, gid_t id2,
2473 int flags)
2474 {
2475 return 0;
2476 }
2477
2478 static inline int security_task_setpgid (struct task_struct *p, pid_t pgid)
2479 {
2480 return 0;
2481 }
2482
2483 static inline int security_task_getpgid (struct task_struct *p)
2484 {
2485 return 0;
2486 }
2487
2488 static inline int security_task_getsid (struct task_struct *p)
2489 {
2490 return 0;
2491 }
2492
2493 static inline int security_task_setgroups (struct group_info *group_info)
2494 {
2495 return 0;
2496 }
2497
2498 static inline int security_task_setnice (struct task_struct *p, int nice)
2499 {
2500 return 0;
2501 }
2502
2503 static inline int security_task_setioprio (struct task_struct *p, int ioprio)
2504 {
2505 return 0;
2506 }
2507
2508 static inline int security_task_setrlimit (unsigned int resource,
2509 struct rlimit *new_rlim)
2510 {
2511 return 0;
2512 }
2513
2514 static inline int security_task_setscheduler (struct task_struct *p,
2515 int policy,
2516 struct sched_param *lp)
2517 {
2518 return 0;
2519 }
2520
2521 static inline int security_task_getscheduler (struct task_struct *p)
2522 {
2523 return 0;
2524 }
2525
2526 static inline int security_task_movememory (struct task_struct *p)
2527 {
2528 return 0;
2529 }
2530
2531 static inline int security_task_kill (struct task_struct *p,
2532 struct siginfo *info, int sig)
2533 {
2534 return 0;
2535 }
2536
2537 static inline int security_task_wait (struct task_struct *p)
2538 {
2539 return 0;
2540 }
2541
2542 static inline int security_task_prctl (int option, unsigned long arg2,
2543 unsigned long arg3,
2544 unsigned long arg4,
2545 unsigned long arg5)
2546 {
2547 return 0;
2548 }
2549
2550 static inline void security_task_reparent_to_init (struct task_struct *p)
2551 {
2552 cap_task_reparent_to_init (p);
2553 }
2554
2555 static inline void security_task_to_inode(struct task_struct *p, struct inode *inode)
2556 { }
2557
2558 static inline int security_ipc_permission (struct kern_ipc_perm *ipcp,
2559 short flag)
2560 {
2561 return 0;
2562 }
2563
2564 static inline int security_msg_msg_alloc (struct msg_msg * msg)
2565 {
2566 return 0;
2567 }
2568
2569 static inline void security_msg_msg_free (struct msg_msg * msg)
2570 { }
2571
2572 static inline int security_msg_queue_alloc (struct msg_queue *msq)
2573 {
2574 return 0;
2575 }
2576
2577 static inline void security_msg_queue_free (struct msg_queue *msq)
2578 { }
2579
2580 static inline int security_msg_queue_associate (struct msg_queue * msq,
2581 int msqflg)
2582 {
2583 return 0;
2584 }
2585
2586 static inline int security_msg_queue_msgctl (struct msg_queue * msq, int cmd)
2587 {
2588 return 0;
2589 }
2590
2591 static inline int security_msg_queue_msgsnd (struct msg_queue * msq,
2592 struct msg_msg * msg, int msqflg)
2593 {
2594 return 0;
2595 }
2596
2597 static inline int security_msg_queue_msgrcv (struct msg_queue * msq,
2598 struct msg_msg * msg,
2599 struct task_struct * target,
2600 long type, int mode)
2601 {
2602 return 0;
2603 }
2604
2605 static inline int security_shm_alloc (struct shmid_kernel *shp)
2606 {
2607 return 0;
2608 }
2609
2610 static inline void security_shm_free (struct shmid_kernel *shp)
2611 { }
2612
2613 static inline int security_shm_associate (struct shmid_kernel * shp,
2614 int shmflg)
2615 {
2616 return 0;
2617 }
2618
2619 static inline int security_shm_shmctl (struct shmid_kernel * shp, int cmd)
2620 {
2621 return 0;
2622 }
2623
2624 static inline int security_shm_shmat (struct shmid_kernel * shp,
2625 char __user *shmaddr, int shmflg)
2626 {
2627 return 0;
2628 }
2629
2630 static inline int security_sem_alloc (struct sem_array *sma)
2631 {
2632 return 0;
2633 }
2634
2635 static inline void security_sem_free (struct sem_array *sma)
2636 { }
2637
2638 static inline int security_sem_associate (struct sem_array * sma, int semflg)
2639 {
2640 return 0;
2641 }
2642
2643 static inline int security_sem_semctl (struct sem_array * sma, int cmd)
2644 {
2645 return 0;
2646 }
2647
2648 static inline int security_sem_semop (struct sem_array * sma,
2649 struct sembuf * sops, unsigned nsops,
2650 int alter)
2651 {
2652 return 0;
2653 }
2654
2655 static inline void security_d_instantiate (struct dentry *dentry, struct inode *inode)
2656 { }
2657
2658 static inline int security_getprocattr(struct task_struct *p, char *name, void *value, size_t size)
2659 {
2660 return -EINVAL;
2661 }
2662
2663 static inline int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
2664 {
2665 return -EINVAL;
2666 }
2667
2668 static inline int security_netlink_send (struct sock *sk, struct sk_buff *skb)
2669 {
2670 return cap_netlink_send (sk, skb);
2671 }
2672
2673 static inline int security_netlink_recv (struct sk_buff *skb)
2674 {
2675 return cap_netlink_recv (skb);
2676 }
2677
2678 static inline struct dentry *securityfs_create_dir(const char *name,
2679 struct dentry *parent)
2680 {
2681 return ERR_PTR(-ENODEV);
2682 }
2683
2684 static inline struct dentry *securityfs_create_file(const char *name,
2685 mode_t mode,
2686 struct dentry *parent,
2687 void *data,
2688 struct file_operations *fops)
2689 {
2690 return ERR_PTR(-ENODEV);
2691 }
2692
2693 static inline void securityfs_remove(struct dentry *dentry)
2694 {
2695 }
2696
2697 #endif /* CONFIG_SECURITY */
2698
2699 #ifdef CONFIG_SECURITY_NETWORK
2700 static inline int security_unix_stream_connect(struct socket * sock,
2701 struct socket * other,
2702 struct sock * newsk)
2703 {
2704 return security_ops->unix_stream_connect(sock, other, newsk);
2705 }
2706
2707
2708 static inline int security_unix_may_send(struct socket * sock,
2709 struct socket * other)
2710 {
2711 return security_ops->unix_may_send(sock, other);
2712 }
2713
2714 static inline int security_socket_create (int family, int type,
2715 int protocol, int kern)
2716 {
2717 return security_ops->socket_create(family, type, protocol, kern);
2718 }
2719
2720 static inline void security_socket_post_create(struct socket * sock,
2721 int family,
2722 int type,
2723 int protocol, int kern)
2724 {
2725 security_ops->socket_post_create(sock, family, type,
2726 protocol, kern);
2727 }
2728
2729 static inline int security_socket_bind(struct socket * sock,
2730 struct sockaddr * address,
2731 int addrlen)
2732 {
2733 return security_ops->socket_bind(sock, address, addrlen);
2734 }
2735
2736 static inline int security_socket_connect(struct socket * sock,
2737 struct sockaddr * address,
2738 int addrlen)
2739 {
2740 return security_ops->socket_connect(sock, address, addrlen);
2741 }
2742
2743 static inline int security_socket_listen(struct socket * sock, int backlog)
2744 {
2745 return security_ops->socket_listen(sock, backlog);
2746 }
2747
2748 static inline int security_socket_accept(struct socket * sock,
2749 struct socket * newsock)
2750 {
2751 return security_ops->socket_accept(sock, newsock);
2752 }
2753
2754 static inline void security_socket_post_accept(struct socket * sock,
2755 struct socket * newsock)
2756 {
2757 security_ops->socket_post_accept(sock, newsock);
2758 }
2759
2760 static inline int security_socket_sendmsg(struct socket * sock,
2761 struct msghdr * msg, int size)
2762 {
2763 return security_ops->socket_sendmsg(sock, msg, size);
2764 }
2765
2766 static inline int security_socket_recvmsg(struct socket * sock,
2767 struct msghdr * msg, int size,
2768 int flags)
2769 {
2770 return security_ops->socket_recvmsg(sock, msg, size, flags);
2771 }
2772
2773 static inline int security_socket_getsockname(struct socket * sock)
2774 {
2775 return security_ops->socket_getsockname(sock);
2776 }
2777
2778 static inline int security_socket_getpeername(struct socket * sock)
2779 {
2780 return security_ops->socket_getpeername(sock);
2781 }
2782
2783 static inline int security_socket_getsockopt(struct socket * sock,
2784 int level, int optname)
2785 {
2786 return security_ops->socket_getsockopt(sock, level, optname);
2787 }
2788
2789 static inline int security_socket_setsockopt(struct socket * sock,
2790 int level, int optname)
2791 {
2792 return security_ops->socket_setsockopt(sock, level, optname);
2793 }
2794
2795 static inline int security_socket_shutdown(struct socket * sock, int how)
2796 {
2797 return security_ops->socket_shutdown(sock, how);
2798 }
2799
2800 static inline int security_sock_rcv_skb (struct sock * sk,
2801 struct sk_buff * skb)
2802 {
2803 return security_ops->socket_sock_rcv_skb (sk, skb);
2804 }
2805
2806 static inline int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2807 int __user *optlen, unsigned len)
2808 {
2809 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
2810 }
2811
2812 static inline int security_socket_getpeersec_dgram(struct sk_buff *skb, char **secdata,
2813 u32 *seclen)
2814 {
2815 return security_ops->socket_getpeersec_dgram(skb, secdata, seclen);
2816 }
2817
2818 static inline int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2819 {
2820 return security_ops->sk_alloc_security(sk, family, priority);
2821 }
2822
2823 static inline void security_sk_free(struct sock *sk)
2824 {
2825 return security_ops->sk_free_security(sk);
2826 }
2827
2828 static inline unsigned int security_sk_sid(struct sock *sk, struct flowi *fl, u8 dir)
2829 {
2830 return security_ops->sk_getsid(sk, fl, dir);
2831 }
2832 #else /* CONFIG_SECURITY_NETWORK */
2833 static inline int security_unix_stream_connect(struct socket * sock,
2834 struct socket * other,
2835 struct sock * newsk)
2836 {
2837 return 0;
2838 }
2839
2840 static inline int security_unix_may_send(struct socket * sock,
2841 struct socket * other)
2842 {
2843 return 0;
2844 }
2845
2846 static inline int security_socket_create (int family, int type,
2847 int protocol, int kern)
2848 {
2849 return 0;
2850 }
2851
2852 static inline void security_socket_post_create(struct socket * sock,
2853 int family,
2854 int type,
2855 int protocol, int kern)
2856 {
2857 }
2858
2859 static inline int security_socket_bind(struct socket * sock,
2860 struct sockaddr * address,
2861 int addrlen)
2862 {
2863 return 0;
2864 }
2865
2866 static inline int security_socket_connect(struct socket * sock,
2867 struct sockaddr * address,
2868 int addrlen)
2869 {
2870 return 0;
2871 }
2872
2873 static inline int security_socket_listen(struct socket * sock, int backlog)
2874 {
2875 return 0;
2876 }
2877
2878 static inline int security_socket_accept(struct socket * sock,
2879 struct socket * newsock)
2880 {
2881 return 0;
2882 }
2883
2884 static inline void security_socket_post_accept(struct socket * sock,
2885 struct socket * newsock)
2886 {
2887 }
2888
2889 static inline int security_socket_sendmsg(struct socket * sock,
2890 struct msghdr * msg, int size)
2891 {
2892 return 0;
2893 }
2894
2895 static inline int security_socket_recvmsg(struct socket * sock,
2896 struct msghdr * msg, int size,
2897 int flags)
2898 {
2899 return 0;
2900 }
2901
2902 static inline int security_socket_getsockname(struct socket * sock)
2903 {
2904 return 0;
2905 }
2906
2907 static inline int security_socket_getpeername(struct socket * sock)
2908 {
2909 return 0;
2910 }
2911
2912 static inline int security_socket_getsockopt(struct socket * sock,
2913 int level, int optname)
2914 {
2915 return 0;
2916 }
2917
2918 static inline int security_socket_setsockopt(struct socket * sock,
2919 int level, int optname)
2920 {
2921 return 0;
2922 }
2923
2924 static inline int security_socket_shutdown(struct socket * sock, int how)
2925 {
2926 return 0;
2927 }
2928 static inline int security_sock_rcv_skb (struct sock * sk,
2929 struct sk_buff * skb)
2930 {
2931 return 0;
2932 }
2933
2934 static inline int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2935 int __user *optlen, unsigned len)
2936 {
2937 return -ENOPROTOOPT;
2938 }
2939
2940 static inline int security_socket_getpeersec_dgram(struct sk_buff *skb, char **secdata,
2941 u32 *seclen)
2942 {
2943 return -ENOPROTOOPT;
2944 }
2945
2946 static inline int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2947 {
2948 return 0;
2949 }
2950
2951 static inline void security_sk_free(struct sock *sk)
2952 {
2953 }
2954
2955 static inline unsigned int security_sk_sid(struct sock *sk, struct flowi *fl, u8 dir)
2956 {
2957 return 0;
2958 }
2959 #endif /* CONFIG_SECURITY_NETWORK */
2960
2961 #ifdef CONFIG_SECURITY_NETWORK_XFRM
2962 static inline int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx)
2963 {
2964 return security_ops->xfrm_policy_alloc_security(xp, sec_ctx);
2965 }
2966
2967 static inline int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new)
2968 {
2969 return security_ops->xfrm_policy_clone_security(old, new);
2970 }
2971
2972 static inline void security_xfrm_policy_free(struct xfrm_policy *xp)
2973 {
2974 security_ops->xfrm_policy_free_security(xp);
2975 }
2976
2977 static inline int security_xfrm_policy_delete(struct xfrm_policy *xp)
2978 {
2979 return security_ops->xfrm_policy_delete_security(xp);
2980 }
2981
2982 static inline int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
2983 {
2984 return security_ops->xfrm_state_alloc_security(x, sec_ctx);
2985 }
2986
2987 static inline int security_xfrm_state_delete(struct xfrm_state *x)
2988 {
2989 return security_ops->xfrm_state_delete_security(x);
2990 }
2991
2992 static inline void security_xfrm_state_free(struct xfrm_state *x)
2993 {
2994 security_ops->xfrm_state_free_security(x);
2995 }
2996
2997 static inline int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 sk_sid, u8 dir)
2998 {
2999 return security_ops->xfrm_policy_lookup(xp, sk_sid, dir);
3000 }
3001 #else /* CONFIG_SECURITY_NETWORK_XFRM */
3002 static inline int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx)
3003 {
3004 return 0;
3005 }
3006
3007 static inline int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new)
3008 {
3009 return 0;
3010 }
3011
3012 static inline void security_xfrm_policy_free(struct xfrm_policy *xp)
3013 {
3014 }
3015
3016 static inline int security_xfrm_policy_delete(struct xfrm_policy *xp)
3017 {
3018 return 0;
3019 }
3020
3021 static inline int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
3022 {
3023 return 0;
3024 }
3025
3026 static inline void security_xfrm_state_free(struct xfrm_state *x)
3027 {
3028 }
3029
3030 static inline int security_xfrm_state_delete(struct xfrm_state *x)
3031 {
3032 return 0;
3033 }
3034
3035 static inline int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 sk_sid, u8 dir)
3036 {
3037 return 0;
3038 }
3039 #endif /* CONFIG_SECURITY_NETWORK_XFRM */
3040
3041 #ifdef CONFIG_KEYS
3042 #ifdef CONFIG_SECURITY
3043 static inline int security_key_alloc(struct key *key,
3044 struct task_struct *tsk,
3045 unsigned long flags)
3046 {
3047 return security_ops->key_alloc(key, tsk, flags);
3048 }
3049
3050 static inline void security_key_free(struct key *key)
3051 {
3052 security_ops->key_free(key);
3053 }
3054
3055 static inline int security_key_permission(key_ref_t key_ref,
3056 struct task_struct *context,
3057 key_perm_t perm)
3058 {
3059 return security_ops->key_permission(key_ref, context, perm);
3060 }
3061
3062 #else
3063
3064 static inline int security_key_alloc(struct key *key,
3065 struct task_struct *tsk,
3066 unsigned long flags)
3067 {
3068 return 0;
3069 }
3070
3071 static inline void security_key_free(struct key *key)
3072 {
3073 }
3074
3075 static inline int security_key_permission(key_ref_t key_ref,
3076 struct task_struct *context,
3077 key_perm_t perm)
3078 {
3079 return 0;
3080 }
3081
3082 #endif
3083 #endif /* CONFIG_KEYS */
3084
3085 #endif /* ! __LINUX_SECURITY_H */
3086
This page took 0.09639 seconds and 6 git commands to generate.