Merge branch 'release' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux
[deliverable/linux.git] / include / linux / skbuff.h
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/bug.h>
22 #include <linux/cache.h>
23
24 #include <linux/atomic.h>
25 #include <asm/types.h>
26 #include <linux/spinlock.h>
27 #include <linux/net.h>
28 #include <linux/textsearch.h>
29 #include <net/checksum.h>
30 #include <linux/rcupdate.h>
31 #include <linux/dmaengine.h>
32 #include <linux/hrtimer.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/netdev_features.h>
35
36 /* Don't change this without changing skb_csum_unnecessary! */
37 #define CHECKSUM_NONE 0
38 #define CHECKSUM_UNNECESSARY 1
39 #define CHECKSUM_COMPLETE 2
40 #define CHECKSUM_PARTIAL 3
41
42 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
43 ~(SMP_CACHE_BYTES - 1))
44 #define SKB_WITH_OVERHEAD(X) \
45 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
46 #define SKB_MAX_ORDER(X, ORDER) \
47 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
48 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
49 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
50
51 /* return minimum truesize of one skb containing X bytes of data */
52 #define SKB_TRUESIZE(X) ((X) + \
53 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
54 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
55
56 /* A. Checksumming of received packets by device.
57 *
58 * NONE: device failed to checksum this packet.
59 * skb->csum is undefined.
60 *
61 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
62 * skb->csum is undefined.
63 * It is bad option, but, unfortunately, many of vendors do this.
64 * Apparently with secret goal to sell you new device, when you
65 * will add new protocol to your host. F.e. IPv6. 8)
66 *
67 * COMPLETE: the most generic way. Device supplied checksum of _all_
68 * the packet as seen by netif_rx in skb->csum.
69 * NOTE: Even if device supports only some protocols, but
70 * is able to produce some skb->csum, it MUST use COMPLETE,
71 * not UNNECESSARY.
72 *
73 * PARTIAL: identical to the case for output below. This may occur
74 * on a packet received directly from another Linux OS, e.g.,
75 * a virtualised Linux kernel on the same host. The packet can
76 * be treated in the same way as UNNECESSARY except that on
77 * output (i.e., forwarding) the checksum must be filled in
78 * by the OS or the hardware.
79 *
80 * B. Checksumming on output.
81 *
82 * NONE: skb is checksummed by protocol or csum is not required.
83 *
84 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
85 * from skb->csum_start to the end and to record the checksum
86 * at skb->csum_start + skb->csum_offset.
87 *
88 * Device must show its capabilities in dev->features, set
89 * at device setup time.
90 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
91 * everything.
92 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
93 * TCP/UDP over IPv4. Sigh. Vendors like this
94 * way by an unknown reason. Though, see comment above
95 * about CHECKSUM_UNNECESSARY. 8)
96 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
97 *
98 * UNNECESSARY: device will do per protocol specific csum. Protocol drivers
99 * that do not want net to perform the checksum calculation should use
100 * this flag in their outgoing skbs.
101 * NETIF_F_FCOE_CRC this indicates the device can do FCoE FC CRC
102 * offload. Correspondingly, the FCoE protocol driver
103 * stack should use CHECKSUM_UNNECESSARY.
104 *
105 * Any questions? No questions, good. --ANK
106 */
107
108 struct net_device;
109 struct scatterlist;
110 struct pipe_inode_info;
111
112 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
113 struct nf_conntrack {
114 atomic_t use;
115 };
116 #endif
117
118 #ifdef CONFIG_BRIDGE_NETFILTER
119 struct nf_bridge_info {
120 atomic_t use;
121 struct net_device *physindev;
122 struct net_device *physoutdev;
123 unsigned int mask;
124 unsigned long data[32 / sizeof(unsigned long)];
125 };
126 #endif
127
128 struct sk_buff_head {
129 /* These two members must be first. */
130 struct sk_buff *next;
131 struct sk_buff *prev;
132
133 __u32 qlen;
134 spinlock_t lock;
135 };
136
137 struct sk_buff;
138
139 /* To allow 64K frame to be packed as single skb without frag_list we
140 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
141 * buffers which do not start on a page boundary.
142 *
143 * Since GRO uses frags we allocate at least 16 regardless of page
144 * size.
145 */
146 #if (65536/PAGE_SIZE + 1) < 16
147 #define MAX_SKB_FRAGS 16UL
148 #else
149 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
150 #endif
151
152 typedef struct skb_frag_struct skb_frag_t;
153
154 struct skb_frag_struct {
155 struct {
156 struct page *p;
157 } page;
158 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
159 __u32 page_offset;
160 __u32 size;
161 #else
162 __u16 page_offset;
163 __u16 size;
164 #endif
165 };
166
167 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
168 {
169 return frag->size;
170 }
171
172 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
173 {
174 frag->size = size;
175 }
176
177 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
178 {
179 frag->size += delta;
180 }
181
182 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
183 {
184 frag->size -= delta;
185 }
186
187 #define HAVE_HW_TIME_STAMP
188
189 /**
190 * struct skb_shared_hwtstamps - hardware time stamps
191 * @hwtstamp: hardware time stamp transformed into duration
192 * since arbitrary point in time
193 * @syststamp: hwtstamp transformed to system time base
194 *
195 * Software time stamps generated by ktime_get_real() are stored in
196 * skb->tstamp. The relation between the different kinds of time
197 * stamps is as follows:
198 *
199 * syststamp and tstamp can be compared against each other in
200 * arbitrary combinations. The accuracy of a
201 * syststamp/tstamp/"syststamp from other device" comparison is
202 * limited by the accuracy of the transformation into system time
203 * base. This depends on the device driver and its underlying
204 * hardware.
205 *
206 * hwtstamps can only be compared against other hwtstamps from
207 * the same device.
208 *
209 * This structure is attached to packets as part of the
210 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
211 */
212 struct skb_shared_hwtstamps {
213 ktime_t hwtstamp;
214 ktime_t syststamp;
215 };
216
217 /* Definitions for tx_flags in struct skb_shared_info */
218 enum {
219 /* generate hardware time stamp */
220 SKBTX_HW_TSTAMP = 1 << 0,
221
222 /* generate software time stamp */
223 SKBTX_SW_TSTAMP = 1 << 1,
224
225 /* device driver is going to provide hardware time stamp */
226 SKBTX_IN_PROGRESS = 1 << 2,
227
228 /* ensure the originating sk reference is available on driver level */
229 SKBTX_DRV_NEEDS_SK_REF = 1 << 3,
230
231 /* device driver supports TX zero-copy buffers */
232 SKBTX_DEV_ZEROCOPY = 1 << 4,
233
234 /* generate wifi status information (where possible) */
235 SKBTX_WIFI_STATUS = 1 << 5,
236 };
237
238 /*
239 * The callback notifies userspace to release buffers when skb DMA is done in
240 * lower device, the skb last reference should be 0 when calling this.
241 * The ctx field is used to track device context.
242 * The desc field is used to track userspace buffer index.
243 */
244 struct ubuf_info {
245 void (*callback)(struct ubuf_info *);
246 void *ctx;
247 unsigned long desc;
248 };
249
250 /* This data is invariant across clones and lives at
251 * the end of the header data, ie. at skb->end.
252 */
253 struct skb_shared_info {
254 unsigned char nr_frags;
255 __u8 tx_flags;
256 unsigned short gso_size;
257 /* Warning: this field is not always filled in (UFO)! */
258 unsigned short gso_segs;
259 unsigned short gso_type;
260 struct sk_buff *frag_list;
261 struct skb_shared_hwtstamps hwtstamps;
262 __be32 ip6_frag_id;
263
264 /*
265 * Warning : all fields before dataref are cleared in __alloc_skb()
266 */
267 atomic_t dataref;
268
269 /* Intermediate layers must ensure that destructor_arg
270 * remains valid until skb destructor */
271 void * destructor_arg;
272
273 /* must be last field, see pskb_expand_head() */
274 skb_frag_t frags[MAX_SKB_FRAGS];
275 };
276
277 /* We divide dataref into two halves. The higher 16 bits hold references
278 * to the payload part of skb->data. The lower 16 bits hold references to
279 * the entire skb->data. A clone of a headerless skb holds the length of
280 * the header in skb->hdr_len.
281 *
282 * All users must obey the rule that the skb->data reference count must be
283 * greater than or equal to the payload reference count.
284 *
285 * Holding a reference to the payload part means that the user does not
286 * care about modifications to the header part of skb->data.
287 */
288 #define SKB_DATAREF_SHIFT 16
289 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
290
291
292 enum {
293 SKB_FCLONE_UNAVAILABLE,
294 SKB_FCLONE_ORIG,
295 SKB_FCLONE_CLONE,
296 };
297
298 enum {
299 SKB_GSO_TCPV4 = 1 << 0,
300 SKB_GSO_UDP = 1 << 1,
301
302 /* This indicates the skb is from an untrusted source. */
303 SKB_GSO_DODGY = 1 << 2,
304
305 /* This indicates the tcp segment has CWR set. */
306 SKB_GSO_TCP_ECN = 1 << 3,
307
308 SKB_GSO_TCPV6 = 1 << 4,
309
310 SKB_GSO_FCOE = 1 << 5,
311 };
312
313 #if BITS_PER_LONG > 32
314 #define NET_SKBUFF_DATA_USES_OFFSET 1
315 #endif
316
317 #ifdef NET_SKBUFF_DATA_USES_OFFSET
318 typedef unsigned int sk_buff_data_t;
319 #else
320 typedef unsigned char *sk_buff_data_t;
321 #endif
322
323 #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
324 defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
325 #define NET_SKBUFF_NF_DEFRAG_NEEDED 1
326 #endif
327
328 /**
329 * struct sk_buff - socket buffer
330 * @next: Next buffer in list
331 * @prev: Previous buffer in list
332 * @tstamp: Time we arrived
333 * @sk: Socket we are owned by
334 * @dev: Device we arrived on/are leaving by
335 * @cb: Control buffer. Free for use by every layer. Put private vars here
336 * @_skb_refdst: destination entry (with norefcount bit)
337 * @sp: the security path, used for xfrm
338 * @len: Length of actual data
339 * @data_len: Data length
340 * @mac_len: Length of link layer header
341 * @hdr_len: writable header length of cloned skb
342 * @csum: Checksum (must include start/offset pair)
343 * @csum_start: Offset from skb->head where checksumming should start
344 * @csum_offset: Offset from csum_start where checksum should be stored
345 * @priority: Packet queueing priority
346 * @local_df: allow local fragmentation
347 * @cloned: Head may be cloned (check refcnt to be sure)
348 * @ip_summed: Driver fed us an IP checksum
349 * @nohdr: Payload reference only, must not modify header
350 * @nfctinfo: Relationship of this skb to the connection
351 * @pkt_type: Packet class
352 * @fclone: skbuff clone status
353 * @ipvs_property: skbuff is owned by ipvs
354 * @peeked: this packet has been seen already, so stats have been
355 * done for it, don't do them again
356 * @nf_trace: netfilter packet trace flag
357 * @protocol: Packet protocol from driver
358 * @destructor: Destruct function
359 * @nfct: Associated connection, if any
360 * @nfct_reasm: netfilter conntrack re-assembly pointer
361 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
362 * @skb_iif: ifindex of device we arrived on
363 * @tc_index: Traffic control index
364 * @tc_verd: traffic control verdict
365 * @rxhash: the packet hash computed on receive
366 * @queue_mapping: Queue mapping for multiqueue devices
367 * @ndisc_nodetype: router type (from link layer)
368 * @ooo_okay: allow the mapping of a socket to a queue to be changed
369 * @l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport
370 * ports.
371 * @wifi_acked_valid: wifi_acked was set
372 * @wifi_acked: whether frame was acked on wifi or not
373 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
374 * @dma_cookie: a cookie to one of several possible DMA operations
375 * done by skb DMA functions
376 * @secmark: security marking
377 * @mark: Generic packet mark
378 * @dropcount: total number of sk_receive_queue overflows
379 * @vlan_tci: vlan tag control information
380 * @transport_header: Transport layer header
381 * @network_header: Network layer header
382 * @mac_header: Link layer header
383 * @tail: Tail pointer
384 * @end: End pointer
385 * @head: Head of buffer
386 * @data: Data head pointer
387 * @truesize: Buffer size
388 * @users: User count - see {datagram,tcp}.c
389 */
390
391 struct sk_buff {
392 /* These two members must be first. */
393 struct sk_buff *next;
394 struct sk_buff *prev;
395
396 ktime_t tstamp;
397
398 struct sock *sk;
399 struct net_device *dev;
400
401 /*
402 * This is the control buffer. It is free to use for every
403 * layer. Please put your private variables there. If you
404 * want to keep them across layers you have to do a skb_clone()
405 * first. This is owned by whoever has the skb queued ATM.
406 */
407 char cb[48] __aligned(8);
408
409 unsigned long _skb_refdst;
410 #ifdef CONFIG_XFRM
411 struct sec_path *sp;
412 #endif
413 unsigned int len,
414 data_len;
415 __u16 mac_len,
416 hdr_len;
417 union {
418 __wsum csum;
419 struct {
420 __u16 csum_start;
421 __u16 csum_offset;
422 };
423 };
424 __u32 priority;
425 kmemcheck_bitfield_begin(flags1);
426 __u8 local_df:1,
427 cloned:1,
428 ip_summed:2,
429 nohdr:1,
430 nfctinfo:3;
431 __u8 pkt_type:3,
432 fclone:2,
433 ipvs_property:1,
434 peeked:1,
435 nf_trace:1;
436 kmemcheck_bitfield_end(flags1);
437 __be16 protocol;
438
439 void (*destructor)(struct sk_buff *skb);
440 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
441 struct nf_conntrack *nfct;
442 #endif
443 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
444 struct sk_buff *nfct_reasm;
445 #endif
446 #ifdef CONFIG_BRIDGE_NETFILTER
447 struct nf_bridge_info *nf_bridge;
448 #endif
449
450 int skb_iif;
451
452 __u32 rxhash;
453
454 __u16 vlan_tci;
455
456 #ifdef CONFIG_NET_SCHED
457 __u16 tc_index; /* traffic control index */
458 #ifdef CONFIG_NET_CLS_ACT
459 __u16 tc_verd; /* traffic control verdict */
460 #endif
461 #endif
462
463 __u16 queue_mapping;
464 kmemcheck_bitfield_begin(flags2);
465 #ifdef CONFIG_IPV6_NDISC_NODETYPE
466 __u8 ndisc_nodetype:2;
467 #endif
468 __u8 ooo_okay:1;
469 __u8 l4_rxhash:1;
470 __u8 wifi_acked_valid:1;
471 __u8 wifi_acked:1;
472 __u8 no_fcs:1;
473 /* 9/11 bit hole (depending on ndisc_nodetype presence) */
474 kmemcheck_bitfield_end(flags2);
475
476 #ifdef CONFIG_NET_DMA
477 dma_cookie_t dma_cookie;
478 #endif
479 #ifdef CONFIG_NETWORK_SECMARK
480 __u32 secmark;
481 #endif
482 union {
483 __u32 mark;
484 __u32 dropcount;
485 __u32 avail_size;
486 };
487
488 sk_buff_data_t transport_header;
489 sk_buff_data_t network_header;
490 sk_buff_data_t mac_header;
491 /* These elements must be at the end, see alloc_skb() for details. */
492 sk_buff_data_t tail;
493 sk_buff_data_t end;
494 unsigned char *head,
495 *data;
496 unsigned int truesize;
497 atomic_t users;
498 };
499
500 #ifdef __KERNEL__
501 /*
502 * Handling routines are only of interest to the kernel
503 */
504 #include <linux/slab.h>
505
506
507 /*
508 * skb might have a dst pointer attached, refcounted or not.
509 * _skb_refdst low order bit is set if refcount was _not_ taken
510 */
511 #define SKB_DST_NOREF 1UL
512 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
513
514 /**
515 * skb_dst - returns skb dst_entry
516 * @skb: buffer
517 *
518 * Returns skb dst_entry, regardless of reference taken or not.
519 */
520 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
521 {
522 /* If refdst was not refcounted, check we still are in a
523 * rcu_read_lock section
524 */
525 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
526 !rcu_read_lock_held() &&
527 !rcu_read_lock_bh_held());
528 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
529 }
530
531 /**
532 * skb_dst_set - sets skb dst
533 * @skb: buffer
534 * @dst: dst entry
535 *
536 * Sets skb dst, assuming a reference was taken on dst and should
537 * be released by skb_dst_drop()
538 */
539 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
540 {
541 skb->_skb_refdst = (unsigned long)dst;
542 }
543
544 extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst);
545
546 /**
547 * skb_dst_is_noref - Test if skb dst isn't refcounted
548 * @skb: buffer
549 */
550 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
551 {
552 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
553 }
554
555 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
556 {
557 return (struct rtable *)skb_dst(skb);
558 }
559
560 extern void kfree_skb(struct sk_buff *skb);
561 extern void consume_skb(struct sk_buff *skb);
562 extern void __kfree_skb(struct sk_buff *skb);
563 extern struct sk_buff *__alloc_skb(unsigned int size,
564 gfp_t priority, int fclone, int node);
565 extern struct sk_buff *build_skb(void *data);
566 static inline struct sk_buff *alloc_skb(unsigned int size,
567 gfp_t priority)
568 {
569 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
570 }
571
572 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
573 gfp_t priority)
574 {
575 return __alloc_skb(size, priority, 1, NUMA_NO_NODE);
576 }
577
578 extern void skb_recycle(struct sk_buff *skb);
579 extern bool skb_recycle_check(struct sk_buff *skb, int skb_size);
580
581 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
582 extern int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
583 extern struct sk_buff *skb_clone(struct sk_buff *skb,
584 gfp_t priority);
585 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
586 gfp_t priority);
587 extern struct sk_buff *__pskb_copy(struct sk_buff *skb,
588 int headroom, gfp_t gfp_mask);
589
590 extern int pskb_expand_head(struct sk_buff *skb,
591 int nhead, int ntail,
592 gfp_t gfp_mask);
593 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
594 unsigned int headroom);
595 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
596 int newheadroom, int newtailroom,
597 gfp_t priority);
598 extern int skb_to_sgvec(struct sk_buff *skb,
599 struct scatterlist *sg, int offset,
600 int len);
601 extern int skb_cow_data(struct sk_buff *skb, int tailbits,
602 struct sk_buff **trailer);
603 extern int skb_pad(struct sk_buff *skb, int pad);
604 #define dev_kfree_skb(a) consume_skb(a)
605
606 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
607 int getfrag(void *from, char *to, int offset,
608 int len,int odd, struct sk_buff *skb),
609 void *from, int length);
610
611 struct skb_seq_state {
612 __u32 lower_offset;
613 __u32 upper_offset;
614 __u32 frag_idx;
615 __u32 stepped_offset;
616 struct sk_buff *root_skb;
617 struct sk_buff *cur_skb;
618 __u8 *frag_data;
619 };
620
621 extern void skb_prepare_seq_read(struct sk_buff *skb,
622 unsigned int from, unsigned int to,
623 struct skb_seq_state *st);
624 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
625 struct skb_seq_state *st);
626 extern void skb_abort_seq_read(struct skb_seq_state *st);
627
628 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
629 unsigned int to, struct ts_config *config,
630 struct ts_state *state);
631
632 extern void __skb_get_rxhash(struct sk_buff *skb);
633 static inline __u32 skb_get_rxhash(struct sk_buff *skb)
634 {
635 if (!skb->rxhash)
636 __skb_get_rxhash(skb);
637
638 return skb->rxhash;
639 }
640
641 #ifdef NET_SKBUFF_DATA_USES_OFFSET
642 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
643 {
644 return skb->head + skb->end;
645 }
646 #else
647 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
648 {
649 return skb->end;
650 }
651 #endif
652
653 /* Internal */
654 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
655
656 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
657 {
658 return &skb_shinfo(skb)->hwtstamps;
659 }
660
661 /**
662 * skb_queue_empty - check if a queue is empty
663 * @list: queue head
664 *
665 * Returns true if the queue is empty, false otherwise.
666 */
667 static inline int skb_queue_empty(const struct sk_buff_head *list)
668 {
669 return list->next == (struct sk_buff *)list;
670 }
671
672 /**
673 * skb_queue_is_last - check if skb is the last entry in the queue
674 * @list: queue head
675 * @skb: buffer
676 *
677 * Returns true if @skb is the last buffer on the list.
678 */
679 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
680 const struct sk_buff *skb)
681 {
682 return skb->next == (struct sk_buff *)list;
683 }
684
685 /**
686 * skb_queue_is_first - check if skb is the first entry in the queue
687 * @list: queue head
688 * @skb: buffer
689 *
690 * Returns true if @skb is the first buffer on the list.
691 */
692 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
693 const struct sk_buff *skb)
694 {
695 return skb->prev == (struct sk_buff *)list;
696 }
697
698 /**
699 * skb_queue_next - return the next packet in the queue
700 * @list: queue head
701 * @skb: current buffer
702 *
703 * Return the next packet in @list after @skb. It is only valid to
704 * call this if skb_queue_is_last() evaluates to false.
705 */
706 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
707 const struct sk_buff *skb)
708 {
709 /* This BUG_ON may seem severe, but if we just return then we
710 * are going to dereference garbage.
711 */
712 BUG_ON(skb_queue_is_last(list, skb));
713 return skb->next;
714 }
715
716 /**
717 * skb_queue_prev - return the prev packet in the queue
718 * @list: queue head
719 * @skb: current buffer
720 *
721 * Return the prev packet in @list before @skb. It is only valid to
722 * call this if skb_queue_is_first() evaluates to false.
723 */
724 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
725 const struct sk_buff *skb)
726 {
727 /* This BUG_ON may seem severe, but if we just return then we
728 * are going to dereference garbage.
729 */
730 BUG_ON(skb_queue_is_first(list, skb));
731 return skb->prev;
732 }
733
734 /**
735 * skb_get - reference buffer
736 * @skb: buffer to reference
737 *
738 * Makes another reference to a socket buffer and returns a pointer
739 * to the buffer.
740 */
741 static inline struct sk_buff *skb_get(struct sk_buff *skb)
742 {
743 atomic_inc(&skb->users);
744 return skb;
745 }
746
747 /*
748 * If users == 1, we are the only owner and are can avoid redundant
749 * atomic change.
750 */
751
752 /**
753 * skb_cloned - is the buffer a clone
754 * @skb: buffer to check
755 *
756 * Returns true if the buffer was generated with skb_clone() and is
757 * one of multiple shared copies of the buffer. Cloned buffers are
758 * shared data so must not be written to under normal circumstances.
759 */
760 static inline int skb_cloned(const struct sk_buff *skb)
761 {
762 return skb->cloned &&
763 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
764 }
765
766 /**
767 * skb_header_cloned - is the header a clone
768 * @skb: buffer to check
769 *
770 * Returns true if modifying the header part of the buffer requires
771 * the data to be copied.
772 */
773 static inline int skb_header_cloned(const struct sk_buff *skb)
774 {
775 int dataref;
776
777 if (!skb->cloned)
778 return 0;
779
780 dataref = atomic_read(&skb_shinfo(skb)->dataref);
781 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
782 return dataref != 1;
783 }
784
785 /**
786 * skb_header_release - release reference to header
787 * @skb: buffer to operate on
788 *
789 * Drop a reference to the header part of the buffer. This is done
790 * by acquiring a payload reference. You must not read from the header
791 * part of skb->data after this.
792 */
793 static inline void skb_header_release(struct sk_buff *skb)
794 {
795 BUG_ON(skb->nohdr);
796 skb->nohdr = 1;
797 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
798 }
799
800 /**
801 * skb_shared - is the buffer shared
802 * @skb: buffer to check
803 *
804 * Returns true if more than one person has a reference to this
805 * buffer.
806 */
807 static inline int skb_shared(const struct sk_buff *skb)
808 {
809 return atomic_read(&skb->users) != 1;
810 }
811
812 /**
813 * skb_share_check - check if buffer is shared and if so clone it
814 * @skb: buffer to check
815 * @pri: priority for memory allocation
816 *
817 * If the buffer is shared the buffer is cloned and the old copy
818 * drops a reference. A new clone with a single reference is returned.
819 * If the buffer is not shared the original buffer is returned. When
820 * being called from interrupt status or with spinlocks held pri must
821 * be GFP_ATOMIC.
822 *
823 * NULL is returned on a memory allocation failure.
824 */
825 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
826 gfp_t pri)
827 {
828 might_sleep_if(pri & __GFP_WAIT);
829 if (skb_shared(skb)) {
830 struct sk_buff *nskb = skb_clone(skb, pri);
831 kfree_skb(skb);
832 skb = nskb;
833 }
834 return skb;
835 }
836
837 /*
838 * Copy shared buffers into a new sk_buff. We effectively do COW on
839 * packets to handle cases where we have a local reader and forward
840 * and a couple of other messy ones. The normal one is tcpdumping
841 * a packet thats being forwarded.
842 */
843
844 /**
845 * skb_unshare - make a copy of a shared buffer
846 * @skb: buffer to check
847 * @pri: priority for memory allocation
848 *
849 * If the socket buffer is a clone then this function creates a new
850 * copy of the data, drops a reference count on the old copy and returns
851 * the new copy with the reference count at 1. If the buffer is not a clone
852 * the original buffer is returned. When called with a spinlock held or
853 * from interrupt state @pri must be %GFP_ATOMIC
854 *
855 * %NULL is returned on a memory allocation failure.
856 */
857 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
858 gfp_t pri)
859 {
860 might_sleep_if(pri & __GFP_WAIT);
861 if (skb_cloned(skb)) {
862 struct sk_buff *nskb = skb_copy(skb, pri);
863 kfree_skb(skb); /* Free our shared copy */
864 skb = nskb;
865 }
866 return skb;
867 }
868
869 /**
870 * skb_peek - peek at the head of an &sk_buff_head
871 * @list_: list to peek at
872 *
873 * Peek an &sk_buff. Unlike most other operations you _MUST_
874 * be careful with this one. A peek leaves the buffer on the
875 * list and someone else may run off with it. You must hold
876 * the appropriate locks or have a private queue to do this.
877 *
878 * Returns %NULL for an empty list or a pointer to the head element.
879 * The reference count is not incremented and the reference is therefore
880 * volatile. Use with caution.
881 */
882 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
883 {
884 struct sk_buff *list = ((const struct sk_buff *)list_)->next;
885 if (list == (struct sk_buff *)list_)
886 list = NULL;
887 return list;
888 }
889
890 /**
891 * skb_peek_next - peek skb following the given one from a queue
892 * @skb: skb to start from
893 * @list_: list to peek at
894 *
895 * Returns %NULL when the end of the list is met or a pointer to the
896 * next element. The reference count is not incremented and the
897 * reference is therefore volatile. Use with caution.
898 */
899 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
900 const struct sk_buff_head *list_)
901 {
902 struct sk_buff *next = skb->next;
903 if (next == (struct sk_buff *)list_)
904 next = NULL;
905 return next;
906 }
907
908 /**
909 * skb_peek_tail - peek at the tail of an &sk_buff_head
910 * @list_: list to peek at
911 *
912 * Peek an &sk_buff. Unlike most other operations you _MUST_
913 * be careful with this one. A peek leaves the buffer on the
914 * list and someone else may run off with it. You must hold
915 * the appropriate locks or have a private queue to do this.
916 *
917 * Returns %NULL for an empty list or a pointer to the tail element.
918 * The reference count is not incremented and the reference is therefore
919 * volatile. Use with caution.
920 */
921 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
922 {
923 struct sk_buff *list = ((const struct sk_buff *)list_)->prev;
924 if (list == (struct sk_buff *)list_)
925 list = NULL;
926 return list;
927 }
928
929 /**
930 * skb_queue_len - get queue length
931 * @list_: list to measure
932 *
933 * Return the length of an &sk_buff queue.
934 */
935 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
936 {
937 return list_->qlen;
938 }
939
940 /**
941 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
942 * @list: queue to initialize
943 *
944 * This initializes only the list and queue length aspects of
945 * an sk_buff_head object. This allows to initialize the list
946 * aspects of an sk_buff_head without reinitializing things like
947 * the spinlock. It can also be used for on-stack sk_buff_head
948 * objects where the spinlock is known to not be used.
949 */
950 static inline void __skb_queue_head_init(struct sk_buff_head *list)
951 {
952 list->prev = list->next = (struct sk_buff *)list;
953 list->qlen = 0;
954 }
955
956 /*
957 * This function creates a split out lock class for each invocation;
958 * this is needed for now since a whole lot of users of the skb-queue
959 * infrastructure in drivers have different locking usage (in hardirq)
960 * than the networking core (in softirq only). In the long run either the
961 * network layer or drivers should need annotation to consolidate the
962 * main types of usage into 3 classes.
963 */
964 static inline void skb_queue_head_init(struct sk_buff_head *list)
965 {
966 spin_lock_init(&list->lock);
967 __skb_queue_head_init(list);
968 }
969
970 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
971 struct lock_class_key *class)
972 {
973 skb_queue_head_init(list);
974 lockdep_set_class(&list->lock, class);
975 }
976
977 /*
978 * Insert an sk_buff on a list.
979 *
980 * The "__skb_xxxx()" functions are the non-atomic ones that
981 * can only be called with interrupts disabled.
982 */
983 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
984 static inline void __skb_insert(struct sk_buff *newsk,
985 struct sk_buff *prev, struct sk_buff *next,
986 struct sk_buff_head *list)
987 {
988 newsk->next = next;
989 newsk->prev = prev;
990 next->prev = prev->next = newsk;
991 list->qlen++;
992 }
993
994 static inline void __skb_queue_splice(const struct sk_buff_head *list,
995 struct sk_buff *prev,
996 struct sk_buff *next)
997 {
998 struct sk_buff *first = list->next;
999 struct sk_buff *last = list->prev;
1000
1001 first->prev = prev;
1002 prev->next = first;
1003
1004 last->next = next;
1005 next->prev = last;
1006 }
1007
1008 /**
1009 * skb_queue_splice - join two skb lists, this is designed for stacks
1010 * @list: the new list to add
1011 * @head: the place to add it in the first list
1012 */
1013 static inline void skb_queue_splice(const struct sk_buff_head *list,
1014 struct sk_buff_head *head)
1015 {
1016 if (!skb_queue_empty(list)) {
1017 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1018 head->qlen += list->qlen;
1019 }
1020 }
1021
1022 /**
1023 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1024 * @list: the new list to add
1025 * @head: the place to add it in the first list
1026 *
1027 * The list at @list is reinitialised
1028 */
1029 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1030 struct sk_buff_head *head)
1031 {
1032 if (!skb_queue_empty(list)) {
1033 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1034 head->qlen += list->qlen;
1035 __skb_queue_head_init(list);
1036 }
1037 }
1038
1039 /**
1040 * skb_queue_splice_tail - join two skb lists, each list being a queue
1041 * @list: the new list to add
1042 * @head: the place to add it in the first list
1043 */
1044 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1045 struct sk_buff_head *head)
1046 {
1047 if (!skb_queue_empty(list)) {
1048 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1049 head->qlen += list->qlen;
1050 }
1051 }
1052
1053 /**
1054 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1055 * @list: the new list to add
1056 * @head: the place to add it in the first list
1057 *
1058 * Each of the lists is a queue.
1059 * The list at @list is reinitialised
1060 */
1061 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1062 struct sk_buff_head *head)
1063 {
1064 if (!skb_queue_empty(list)) {
1065 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1066 head->qlen += list->qlen;
1067 __skb_queue_head_init(list);
1068 }
1069 }
1070
1071 /**
1072 * __skb_queue_after - queue a buffer at the list head
1073 * @list: list to use
1074 * @prev: place after this buffer
1075 * @newsk: buffer to queue
1076 *
1077 * Queue a buffer int the middle of a list. This function takes no locks
1078 * and you must therefore hold required locks before calling it.
1079 *
1080 * A buffer cannot be placed on two lists at the same time.
1081 */
1082 static inline void __skb_queue_after(struct sk_buff_head *list,
1083 struct sk_buff *prev,
1084 struct sk_buff *newsk)
1085 {
1086 __skb_insert(newsk, prev, prev->next, list);
1087 }
1088
1089 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1090 struct sk_buff_head *list);
1091
1092 static inline void __skb_queue_before(struct sk_buff_head *list,
1093 struct sk_buff *next,
1094 struct sk_buff *newsk)
1095 {
1096 __skb_insert(newsk, next->prev, next, list);
1097 }
1098
1099 /**
1100 * __skb_queue_head - queue a buffer at the list head
1101 * @list: list to use
1102 * @newsk: buffer to queue
1103 *
1104 * Queue a buffer at the start of a list. This function takes no locks
1105 * and you must therefore hold required locks before calling it.
1106 *
1107 * A buffer cannot be placed on two lists at the same time.
1108 */
1109 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1110 static inline void __skb_queue_head(struct sk_buff_head *list,
1111 struct sk_buff *newsk)
1112 {
1113 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1114 }
1115
1116 /**
1117 * __skb_queue_tail - queue a buffer at the list tail
1118 * @list: list to use
1119 * @newsk: buffer to queue
1120 *
1121 * Queue a buffer at the end of a list. This function takes no locks
1122 * and you must therefore hold required locks before calling it.
1123 *
1124 * A buffer cannot be placed on two lists at the same time.
1125 */
1126 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1127 static inline void __skb_queue_tail(struct sk_buff_head *list,
1128 struct sk_buff *newsk)
1129 {
1130 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1131 }
1132
1133 /*
1134 * remove sk_buff from list. _Must_ be called atomically, and with
1135 * the list known..
1136 */
1137 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1138 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1139 {
1140 struct sk_buff *next, *prev;
1141
1142 list->qlen--;
1143 next = skb->next;
1144 prev = skb->prev;
1145 skb->next = skb->prev = NULL;
1146 next->prev = prev;
1147 prev->next = next;
1148 }
1149
1150 /**
1151 * __skb_dequeue - remove from the head of the queue
1152 * @list: list to dequeue from
1153 *
1154 * Remove the head of the list. This function does not take any locks
1155 * so must be used with appropriate locks held only. The head item is
1156 * returned or %NULL if the list is empty.
1157 */
1158 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1159 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1160 {
1161 struct sk_buff *skb = skb_peek(list);
1162 if (skb)
1163 __skb_unlink(skb, list);
1164 return skb;
1165 }
1166
1167 /**
1168 * __skb_dequeue_tail - remove from the tail of the queue
1169 * @list: list to dequeue from
1170 *
1171 * Remove the tail of the list. This function does not take any locks
1172 * so must be used with appropriate locks held only. The tail item is
1173 * returned or %NULL if the list is empty.
1174 */
1175 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1176 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1177 {
1178 struct sk_buff *skb = skb_peek_tail(list);
1179 if (skb)
1180 __skb_unlink(skb, list);
1181 return skb;
1182 }
1183
1184
1185 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1186 {
1187 return skb->data_len;
1188 }
1189
1190 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1191 {
1192 return skb->len - skb->data_len;
1193 }
1194
1195 static inline int skb_pagelen(const struct sk_buff *skb)
1196 {
1197 int i, len = 0;
1198
1199 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1200 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1201 return len + skb_headlen(skb);
1202 }
1203
1204 /**
1205 * __skb_fill_page_desc - initialise a paged fragment in an skb
1206 * @skb: buffer containing fragment to be initialised
1207 * @i: paged fragment index to initialise
1208 * @page: the page to use for this fragment
1209 * @off: the offset to the data with @page
1210 * @size: the length of the data
1211 *
1212 * Initialises the @i'th fragment of @skb to point to &size bytes at
1213 * offset @off within @page.
1214 *
1215 * Does not take any additional reference on the fragment.
1216 */
1217 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1218 struct page *page, int off, int size)
1219 {
1220 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1221
1222 frag->page.p = page;
1223 frag->page_offset = off;
1224 skb_frag_size_set(frag, size);
1225 }
1226
1227 /**
1228 * skb_fill_page_desc - initialise a paged fragment in an skb
1229 * @skb: buffer containing fragment to be initialised
1230 * @i: paged fragment index to initialise
1231 * @page: the page to use for this fragment
1232 * @off: the offset to the data with @page
1233 * @size: the length of the data
1234 *
1235 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1236 * @skb to point to &size bytes at offset @off within @page. In
1237 * addition updates @skb such that @i is the last fragment.
1238 *
1239 * Does not take any additional reference on the fragment.
1240 */
1241 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1242 struct page *page, int off, int size)
1243 {
1244 __skb_fill_page_desc(skb, i, page, off, size);
1245 skb_shinfo(skb)->nr_frags = i + 1;
1246 }
1247
1248 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1249 int off, int size, unsigned int truesize);
1250
1251 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1252 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1253 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1254
1255 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1256 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1257 {
1258 return skb->head + skb->tail;
1259 }
1260
1261 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1262 {
1263 skb->tail = skb->data - skb->head;
1264 }
1265
1266 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1267 {
1268 skb_reset_tail_pointer(skb);
1269 skb->tail += offset;
1270 }
1271 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1272 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1273 {
1274 return skb->tail;
1275 }
1276
1277 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1278 {
1279 skb->tail = skb->data;
1280 }
1281
1282 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1283 {
1284 skb->tail = skb->data + offset;
1285 }
1286
1287 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1288
1289 /*
1290 * Add data to an sk_buff
1291 */
1292 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1293 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1294 {
1295 unsigned char *tmp = skb_tail_pointer(skb);
1296 SKB_LINEAR_ASSERT(skb);
1297 skb->tail += len;
1298 skb->len += len;
1299 return tmp;
1300 }
1301
1302 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1303 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1304 {
1305 skb->data -= len;
1306 skb->len += len;
1307 return skb->data;
1308 }
1309
1310 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1311 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1312 {
1313 skb->len -= len;
1314 BUG_ON(skb->len < skb->data_len);
1315 return skb->data += len;
1316 }
1317
1318 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1319 {
1320 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1321 }
1322
1323 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1324
1325 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1326 {
1327 if (len > skb_headlen(skb) &&
1328 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1329 return NULL;
1330 skb->len -= len;
1331 return skb->data += len;
1332 }
1333
1334 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1335 {
1336 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1337 }
1338
1339 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1340 {
1341 if (likely(len <= skb_headlen(skb)))
1342 return 1;
1343 if (unlikely(len > skb->len))
1344 return 0;
1345 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1346 }
1347
1348 /**
1349 * skb_headroom - bytes at buffer head
1350 * @skb: buffer to check
1351 *
1352 * Return the number of bytes of free space at the head of an &sk_buff.
1353 */
1354 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1355 {
1356 return skb->data - skb->head;
1357 }
1358
1359 /**
1360 * skb_tailroom - bytes at buffer end
1361 * @skb: buffer to check
1362 *
1363 * Return the number of bytes of free space at the tail of an sk_buff
1364 */
1365 static inline int skb_tailroom(const struct sk_buff *skb)
1366 {
1367 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1368 }
1369
1370 /**
1371 * skb_availroom - bytes at buffer end
1372 * @skb: buffer to check
1373 *
1374 * Return the number of bytes of free space at the tail of an sk_buff
1375 * allocated by sk_stream_alloc()
1376 */
1377 static inline int skb_availroom(const struct sk_buff *skb)
1378 {
1379 return skb_is_nonlinear(skb) ? 0 : skb->avail_size - skb->len;
1380 }
1381
1382 /**
1383 * skb_reserve - adjust headroom
1384 * @skb: buffer to alter
1385 * @len: bytes to move
1386 *
1387 * Increase the headroom of an empty &sk_buff by reducing the tail
1388 * room. This is only allowed for an empty buffer.
1389 */
1390 static inline void skb_reserve(struct sk_buff *skb, int len)
1391 {
1392 skb->data += len;
1393 skb->tail += len;
1394 }
1395
1396 static inline void skb_reset_mac_len(struct sk_buff *skb)
1397 {
1398 skb->mac_len = skb->network_header - skb->mac_header;
1399 }
1400
1401 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1402 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1403 {
1404 return skb->head + skb->transport_header;
1405 }
1406
1407 static inline void skb_reset_transport_header(struct sk_buff *skb)
1408 {
1409 skb->transport_header = skb->data - skb->head;
1410 }
1411
1412 static inline void skb_set_transport_header(struct sk_buff *skb,
1413 const int offset)
1414 {
1415 skb_reset_transport_header(skb);
1416 skb->transport_header += offset;
1417 }
1418
1419 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1420 {
1421 return skb->head + skb->network_header;
1422 }
1423
1424 static inline void skb_reset_network_header(struct sk_buff *skb)
1425 {
1426 skb->network_header = skb->data - skb->head;
1427 }
1428
1429 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1430 {
1431 skb_reset_network_header(skb);
1432 skb->network_header += offset;
1433 }
1434
1435 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1436 {
1437 return skb->head + skb->mac_header;
1438 }
1439
1440 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1441 {
1442 return skb->mac_header != ~0U;
1443 }
1444
1445 static inline void skb_reset_mac_header(struct sk_buff *skb)
1446 {
1447 skb->mac_header = skb->data - skb->head;
1448 }
1449
1450 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1451 {
1452 skb_reset_mac_header(skb);
1453 skb->mac_header += offset;
1454 }
1455
1456 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1457
1458 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1459 {
1460 return skb->transport_header;
1461 }
1462
1463 static inline void skb_reset_transport_header(struct sk_buff *skb)
1464 {
1465 skb->transport_header = skb->data;
1466 }
1467
1468 static inline void skb_set_transport_header(struct sk_buff *skb,
1469 const int offset)
1470 {
1471 skb->transport_header = skb->data + offset;
1472 }
1473
1474 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1475 {
1476 return skb->network_header;
1477 }
1478
1479 static inline void skb_reset_network_header(struct sk_buff *skb)
1480 {
1481 skb->network_header = skb->data;
1482 }
1483
1484 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1485 {
1486 skb->network_header = skb->data + offset;
1487 }
1488
1489 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1490 {
1491 return skb->mac_header;
1492 }
1493
1494 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1495 {
1496 return skb->mac_header != NULL;
1497 }
1498
1499 static inline void skb_reset_mac_header(struct sk_buff *skb)
1500 {
1501 skb->mac_header = skb->data;
1502 }
1503
1504 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1505 {
1506 skb->mac_header = skb->data + offset;
1507 }
1508 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1509
1510 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
1511 {
1512 if (skb_mac_header_was_set(skb)) {
1513 const unsigned char *old_mac = skb_mac_header(skb);
1514
1515 skb_set_mac_header(skb, -skb->mac_len);
1516 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
1517 }
1518 }
1519
1520 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1521 {
1522 return skb->csum_start - skb_headroom(skb);
1523 }
1524
1525 static inline int skb_transport_offset(const struct sk_buff *skb)
1526 {
1527 return skb_transport_header(skb) - skb->data;
1528 }
1529
1530 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1531 {
1532 return skb->transport_header - skb->network_header;
1533 }
1534
1535 static inline int skb_network_offset(const struct sk_buff *skb)
1536 {
1537 return skb_network_header(skb) - skb->data;
1538 }
1539
1540 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1541 {
1542 return pskb_may_pull(skb, skb_network_offset(skb) + len);
1543 }
1544
1545 /*
1546 * CPUs often take a performance hit when accessing unaligned memory
1547 * locations. The actual performance hit varies, it can be small if the
1548 * hardware handles it or large if we have to take an exception and fix it
1549 * in software.
1550 *
1551 * Since an ethernet header is 14 bytes network drivers often end up with
1552 * the IP header at an unaligned offset. The IP header can be aligned by
1553 * shifting the start of the packet by 2 bytes. Drivers should do this
1554 * with:
1555 *
1556 * skb_reserve(skb, NET_IP_ALIGN);
1557 *
1558 * The downside to this alignment of the IP header is that the DMA is now
1559 * unaligned. On some architectures the cost of an unaligned DMA is high
1560 * and this cost outweighs the gains made by aligning the IP header.
1561 *
1562 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1563 * to be overridden.
1564 */
1565 #ifndef NET_IP_ALIGN
1566 #define NET_IP_ALIGN 2
1567 #endif
1568
1569 /*
1570 * The networking layer reserves some headroom in skb data (via
1571 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1572 * the header has to grow. In the default case, if the header has to grow
1573 * 32 bytes or less we avoid the reallocation.
1574 *
1575 * Unfortunately this headroom changes the DMA alignment of the resulting
1576 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1577 * on some architectures. An architecture can override this value,
1578 * perhaps setting it to a cacheline in size (since that will maintain
1579 * cacheline alignment of the DMA). It must be a power of 2.
1580 *
1581 * Various parts of the networking layer expect at least 32 bytes of
1582 * headroom, you should not reduce this.
1583 *
1584 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
1585 * to reduce average number of cache lines per packet.
1586 * get_rps_cpus() for example only access one 64 bytes aligned block :
1587 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
1588 */
1589 #ifndef NET_SKB_PAD
1590 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
1591 #endif
1592
1593 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1594
1595 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1596 {
1597 if (unlikely(skb_is_nonlinear(skb))) {
1598 WARN_ON(1);
1599 return;
1600 }
1601 skb->len = len;
1602 skb_set_tail_pointer(skb, len);
1603 }
1604
1605 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1606
1607 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1608 {
1609 if (skb->data_len)
1610 return ___pskb_trim(skb, len);
1611 __skb_trim(skb, len);
1612 return 0;
1613 }
1614
1615 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1616 {
1617 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1618 }
1619
1620 /**
1621 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1622 * @skb: buffer to alter
1623 * @len: new length
1624 *
1625 * This is identical to pskb_trim except that the caller knows that
1626 * the skb is not cloned so we should never get an error due to out-
1627 * of-memory.
1628 */
1629 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1630 {
1631 int err = pskb_trim(skb, len);
1632 BUG_ON(err);
1633 }
1634
1635 /**
1636 * skb_orphan - orphan a buffer
1637 * @skb: buffer to orphan
1638 *
1639 * If a buffer currently has an owner then we call the owner's
1640 * destructor function and make the @skb unowned. The buffer continues
1641 * to exist but is no longer charged to its former owner.
1642 */
1643 static inline void skb_orphan(struct sk_buff *skb)
1644 {
1645 if (skb->destructor)
1646 skb->destructor(skb);
1647 skb->destructor = NULL;
1648 skb->sk = NULL;
1649 }
1650
1651 /**
1652 * __skb_queue_purge - empty a list
1653 * @list: list to empty
1654 *
1655 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1656 * the list and one reference dropped. This function does not take the
1657 * list lock and the caller must hold the relevant locks to use it.
1658 */
1659 extern void skb_queue_purge(struct sk_buff_head *list);
1660 static inline void __skb_queue_purge(struct sk_buff_head *list)
1661 {
1662 struct sk_buff *skb;
1663 while ((skb = __skb_dequeue(list)) != NULL)
1664 kfree_skb(skb);
1665 }
1666
1667 /**
1668 * __dev_alloc_skb - allocate an skbuff for receiving
1669 * @length: length to allocate
1670 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1671 *
1672 * Allocate a new &sk_buff and assign it a usage count of one. The
1673 * buffer has unspecified headroom built in. Users should allocate
1674 * the headroom they think they need without accounting for the
1675 * built in space. The built in space is used for optimisations.
1676 *
1677 * %NULL is returned if there is no free memory.
1678 */
1679 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1680 gfp_t gfp_mask)
1681 {
1682 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1683 if (likely(skb))
1684 skb_reserve(skb, NET_SKB_PAD);
1685 return skb;
1686 }
1687
1688 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1689
1690 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1691 unsigned int length, gfp_t gfp_mask);
1692
1693 /**
1694 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1695 * @dev: network device to receive on
1696 * @length: length to allocate
1697 *
1698 * Allocate a new &sk_buff and assign it a usage count of one. The
1699 * buffer has unspecified headroom built in. Users should allocate
1700 * the headroom they think they need without accounting for the
1701 * built in space. The built in space is used for optimisations.
1702 *
1703 * %NULL is returned if there is no free memory. Although this function
1704 * allocates memory it can be called from an interrupt.
1705 */
1706 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1707 unsigned int length)
1708 {
1709 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1710 }
1711
1712 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
1713 unsigned int length, gfp_t gfp)
1714 {
1715 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
1716
1717 if (NET_IP_ALIGN && skb)
1718 skb_reserve(skb, NET_IP_ALIGN);
1719 return skb;
1720 }
1721
1722 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
1723 unsigned int length)
1724 {
1725 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
1726 }
1727
1728 /**
1729 * skb_frag_page - retrieve the page refered to by a paged fragment
1730 * @frag: the paged fragment
1731 *
1732 * Returns the &struct page associated with @frag.
1733 */
1734 static inline struct page *skb_frag_page(const skb_frag_t *frag)
1735 {
1736 return frag->page.p;
1737 }
1738
1739 /**
1740 * __skb_frag_ref - take an addition reference on a paged fragment.
1741 * @frag: the paged fragment
1742 *
1743 * Takes an additional reference on the paged fragment @frag.
1744 */
1745 static inline void __skb_frag_ref(skb_frag_t *frag)
1746 {
1747 get_page(skb_frag_page(frag));
1748 }
1749
1750 /**
1751 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
1752 * @skb: the buffer
1753 * @f: the fragment offset.
1754 *
1755 * Takes an additional reference on the @f'th paged fragment of @skb.
1756 */
1757 static inline void skb_frag_ref(struct sk_buff *skb, int f)
1758 {
1759 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
1760 }
1761
1762 /**
1763 * __skb_frag_unref - release a reference on a paged fragment.
1764 * @frag: the paged fragment
1765 *
1766 * Releases a reference on the paged fragment @frag.
1767 */
1768 static inline void __skb_frag_unref(skb_frag_t *frag)
1769 {
1770 put_page(skb_frag_page(frag));
1771 }
1772
1773 /**
1774 * skb_frag_unref - release a reference on a paged fragment of an skb.
1775 * @skb: the buffer
1776 * @f: the fragment offset
1777 *
1778 * Releases a reference on the @f'th paged fragment of @skb.
1779 */
1780 static inline void skb_frag_unref(struct sk_buff *skb, int f)
1781 {
1782 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
1783 }
1784
1785 /**
1786 * skb_frag_address - gets the address of the data contained in a paged fragment
1787 * @frag: the paged fragment buffer
1788 *
1789 * Returns the address of the data within @frag. The page must already
1790 * be mapped.
1791 */
1792 static inline void *skb_frag_address(const skb_frag_t *frag)
1793 {
1794 return page_address(skb_frag_page(frag)) + frag->page_offset;
1795 }
1796
1797 /**
1798 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
1799 * @frag: the paged fragment buffer
1800 *
1801 * Returns the address of the data within @frag. Checks that the page
1802 * is mapped and returns %NULL otherwise.
1803 */
1804 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
1805 {
1806 void *ptr = page_address(skb_frag_page(frag));
1807 if (unlikely(!ptr))
1808 return NULL;
1809
1810 return ptr + frag->page_offset;
1811 }
1812
1813 /**
1814 * __skb_frag_set_page - sets the page contained in a paged fragment
1815 * @frag: the paged fragment
1816 * @page: the page to set
1817 *
1818 * Sets the fragment @frag to contain @page.
1819 */
1820 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
1821 {
1822 frag->page.p = page;
1823 }
1824
1825 /**
1826 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
1827 * @skb: the buffer
1828 * @f: the fragment offset
1829 * @page: the page to set
1830 *
1831 * Sets the @f'th fragment of @skb to contain @page.
1832 */
1833 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
1834 struct page *page)
1835 {
1836 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
1837 }
1838
1839 /**
1840 * skb_frag_dma_map - maps a paged fragment via the DMA API
1841 * @dev: the device to map the fragment to
1842 * @frag: the paged fragment to map
1843 * @offset: the offset within the fragment (starting at the
1844 * fragment's own offset)
1845 * @size: the number of bytes to map
1846 * @dir: the direction of the mapping (%PCI_DMA_*)
1847 *
1848 * Maps the page associated with @frag to @device.
1849 */
1850 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
1851 const skb_frag_t *frag,
1852 size_t offset, size_t size,
1853 enum dma_data_direction dir)
1854 {
1855 return dma_map_page(dev, skb_frag_page(frag),
1856 frag->page_offset + offset, size, dir);
1857 }
1858
1859 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
1860 gfp_t gfp_mask)
1861 {
1862 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
1863 }
1864
1865 /**
1866 * skb_clone_writable - is the header of a clone writable
1867 * @skb: buffer to check
1868 * @len: length up to which to write
1869 *
1870 * Returns true if modifying the header part of the cloned buffer
1871 * does not requires the data to be copied.
1872 */
1873 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
1874 {
1875 return !skb_header_cloned(skb) &&
1876 skb_headroom(skb) + len <= skb->hdr_len;
1877 }
1878
1879 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1880 int cloned)
1881 {
1882 int delta = 0;
1883
1884 if (headroom < NET_SKB_PAD)
1885 headroom = NET_SKB_PAD;
1886 if (headroom > skb_headroom(skb))
1887 delta = headroom - skb_headroom(skb);
1888
1889 if (delta || cloned)
1890 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1891 GFP_ATOMIC);
1892 return 0;
1893 }
1894
1895 /**
1896 * skb_cow - copy header of skb when it is required
1897 * @skb: buffer to cow
1898 * @headroom: needed headroom
1899 *
1900 * If the skb passed lacks sufficient headroom or its data part
1901 * is shared, data is reallocated. If reallocation fails, an error
1902 * is returned and original skb is not changed.
1903 *
1904 * The result is skb with writable area skb->head...skb->tail
1905 * and at least @headroom of space at head.
1906 */
1907 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1908 {
1909 return __skb_cow(skb, headroom, skb_cloned(skb));
1910 }
1911
1912 /**
1913 * skb_cow_head - skb_cow but only making the head writable
1914 * @skb: buffer to cow
1915 * @headroom: needed headroom
1916 *
1917 * This function is identical to skb_cow except that we replace the
1918 * skb_cloned check by skb_header_cloned. It should be used when
1919 * you only need to push on some header and do not need to modify
1920 * the data.
1921 */
1922 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1923 {
1924 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1925 }
1926
1927 /**
1928 * skb_padto - pad an skbuff up to a minimal size
1929 * @skb: buffer to pad
1930 * @len: minimal length
1931 *
1932 * Pads up a buffer to ensure the trailing bytes exist and are
1933 * blanked. If the buffer already contains sufficient data it
1934 * is untouched. Otherwise it is extended. Returns zero on
1935 * success. The skb is freed on error.
1936 */
1937
1938 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1939 {
1940 unsigned int size = skb->len;
1941 if (likely(size >= len))
1942 return 0;
1943 return skb_pad(skb, len - size);
1944 }
1945
1946 static inline int skb_add_data(struct sk_buff *skb,
1947 char __user *from, int copy)
1948 {
1949 const int off = skb->len;
1950
1951 if (skb->ip_summed == CHECKSUM_NONE) {
1952 int err = 0;
1953 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1954 copy, 0, &err);
1955 if (!err) {
1956 skb->csum = csum_block_add(skb->csum, csum, off);
1957 return 0;
1958 }
1959 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1960 return 0;
1961
1962 __skb_trim(skb, off);
1963 return -EFAULT;
1964 }
1965
1966 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1967 const struct page *page, int off)
1968 {
1969 if (i) {
1970 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1971
1972 return page == skb_frag_page(frag) &&
1973 off == frag->page_offset + skb_frag_size(frag);
1974 }
1975 return 0;
1976 }
1977
1978 static inline int __skb_linearize(struct sk_buff *skb)
1979 {
1980 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1981 }
1982
1983 /**
1984 * skb_linearize - convert paged skb to linear one
1985 * @skb: buffer to linarize
1986 *
1987 * If there is no free memory -ENOMEM is returned, otherwise zero
1988 * is returned and the old skb data released.
1989 */
1990 static inline int skb_linearize(struct sk_buff *skb)
1991 {
1992 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1993 }
1994
1995 /**
1996 * skb_linearize_cow - make sure skb is linear and writable
1997 * @skb: buffer to process
1998 *
1999 * If there is no free memory -ENOMEM is returned, otherwise zero
2000 * is returned and the old skb data released.
2001 */
2002 static inline int skb_linearize_cow(struct sk_buff *skb)
2003 {
2004 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2005 __skb_linearize(skb) : 0;
2006 }
2007
2008 /**
2009 * skb_postpull_rcsum - update checksum for received skb after pull
2010 * @skb: buffer to update
2011 * @start: start of data before pull
2012 * @len: length of data pulled
2013 *
2014 * After doing a pull on a received packet, you need to call this to
2015 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2016 * CHECKSUM_NONE so that it can be recomputed from scratch.
2017 */
2018
2019 static inline void skb_postpull_rcsum(struct sk_buff *skb,
2020 const void *start, unsigned int len)
2021 {
2022 if (skb->ip_summed == CHECKSUM_COMPLETE)
2023 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2024 }
2025
2026 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2027
2028 /**
2029 * pskb_trim_rcsum - trim received skb and update checksum
2030 * @skb: buffer to trim
2031 * @len: new length
2032 *
2033 * This is exactly the same as pskb_trim except that it ensures the
2034 * checksum of received packets are still valid after the operation.
2035 */
2036
2037 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2038 {
2039 if (likely(len >= skb->len))
2040 return 0;
2041 if (skb->ip_summed == CHECKSUM_COMPLETE)
2042 skb->ip_summed = CHECKSUM_NONE;
2043 return __pskb_trim(skb, len);
2044 }
2045
2046 #define skb_queue_walk(queue, skb) \
2047 for (skb = (queue)->next; \
2048 skb != (struct sk_buff *)(queue); \
2049 skb = skb->next)
2050
2051 #define skb_queue_walk_safe(queue, skb, tmp) \
2052 for (skb = (queue)->next, tmp = skb->next; \
2053 skb != (struct sk_buff *)(queue); \
2054 skb = tmp, tmp = skb->next)
2055
2056 #define skb_queue_walk_from(queue, skb) \
2057 for (; skb != (struct sk_buff *)(queue); \
2058 skb = skb->next)
2059
2060 #define skb_queue_walk_from_safe(queue, skb, tmp) \
2061 for (tmp = skb->next; \
2062 skb != (struct sk_buff *)(queue); \
2063 skb = tmp, tmp = skb->next)
2064
2065 #define skb_queue_reverse_walk(queue, skb) \
2066 for (skb = (queue)->prev; \
2067 skb != (struct sk_buff *)(queue); \
2068 skb = skb->prev)
2069
2070 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
2071 for (skb = (queue)->prev, tmp = skb->prev; \
2072 skb != (struct sk_buff *)(queue); \
2073 skb = tmp, tmp = skb->prev)
2074
2075 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
2076 for (tmp = skb->prev; \
2077 skb != (struct sk_buff *)(queue); \
2078 skb = tmp, tmp = skb->prev)
2079
2080 static inline bool skb_has_frag_list(const struct sk_buff *skb)
2081 {
2082 return skb_shinfo(skb)->frag_list != NULL;
2083 }
2084
2085 static inline void skb_frag_list_init(struct sk_buff *skb)
2086 {
2087 skb_shinfo(skb)->frag_list = NULL;
2088 }
2089
2090 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
2091 {
2092 frag->next = skb_shinfo(skb)->frag_list;
2093 skb_shinfo(skb)->frag_list = frag;
2094 }
2095
2096 #define skb_walk_frags(skb, iter) \
2097 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2098
2099 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2100 int *peeked, int *off, int *err);
2101 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
2102 int noblock, int *err);
2103 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
2104 struct poll_table_struct *wait);
2105 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
2106 int offset, struct iovec *to,
2107 int size);
2108 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
2109 int hlen,
2110 struct iovec *iov);
2111 extern int skb_copy_datagram_from_iovec(struct sk_buff *skb,
2112 int offset,
2113 const struct iovec *from,
2114 int from_offset,
2115 int len);
2116 extern int skb_copy_datagram_const_iovec(const struct sk_buff *from,
2117 int offset,
2118 const struct iovec *to,
2119 int to_offset,
2120 int size);
2121 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2122 extern void skb_free_datagram_locked(struct sock *sk,
2123 struct sk_buff *skb);
2124 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
2125 unsigned int flags);
2126 extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
2127 int len, __wsum csum);
2128 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
2129 void *to, int len);
2130 extern int skb_store_bits(struct sk_buff *skb, int offset,
2131 const void *from, int len);
2132 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
2133 int offset, u8 *to, int len,
2134 __wsum csum);
2135 extern int skb_splice_bits(struct sk_buff *skb,
2136 unsigned int offset,
2137 struct pipe_inode_info *pipe,
2138 unsigned int len,
2139 unsigned int flags);
2140 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2141 extern void skb_split(struct sk_buff *skb,
2142 struct sk_buff *skb1, const u32 len);
2143 extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
2144 int shiftlen);
2145
2146 extern struct sk_buff *skb_segment(struct sk_buff *skb,
2147 netdev_features_t features);
2148
2149 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
2150 int len, void *buffer)
2151 {
2152 int hlen = skb_headlen(skb);
2153
2154 if (hlen - offset >= len)
2155 return skb->data + offset;
2156
2157 if (skb_copy_bits(skb, offset, buffer, len) < 0)
2158 return NULL;
2159
2160 return buffer;
2161 }
2162
2163 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2164 void *to,
2165 const unsigned int len)
2166 {
2167 memcpy(to, skb->data, len);
2168 }
2169
2170 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2171 const int offset, void *to,
2172 const unsigned int len)
2173 {
2174 memcpy(to, skb->data + offset, len);
2175 }
2176
2177 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2178 const void *from,
2179 const unsigned int len)
2180 {
2181 memcpy(skb->data, from, len);
2182 }
2183
2184 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2185 const int offset,
2186 const void *from,
2187 const unsigned int len)
2188 {
2189 memcpy(skb->data + offset, from, len);
2190 }
2191
2192 extern void skb_init(void);
2193
2194 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2195 {
2196 return skb->tstamp;
2197 }
2198
2199 /**
2200 * skb_get_timestamp - get timestamp from a skb
2201 * @skb: skb to get stamp from
2202 * @stamp: pointer to struct timeval to store stamp in
2203 *
2204 * Timestamps are stored in the skb as offsets to a base timestamp.
2205 * This function converts the offset back to a struct timeval and stores
2206 * it in stamp.
2207 */
2208 static inline void skb_get_timestamp(const struct sk_buff *skb,
2209 struct timeval *stamp)
2210 {
2211 *stamp = ktime_to_timeval(skb->tstamp);
2212 }
2213
2214 static inline void skb_get_timestampns(const struct sk_buff *skb,
2215 struct timespec *stamp)
2216 {
2217 *stamp = ktime_to_timespec(skb->tstamp);
2218 }
2219
2220 static inline void __net_timestamp(struct sk_buff *skb)
2221 {
2222 skb->tstamp = ktime_get_real();
2223 }
2224
2225 static inline ktime_t net_timedelta(ktime_t t)
2226 {
2227 return ktime_sub(ktime_get_real(), t);
2228 }
2229
2230 static inline ktime_t net_invalid_timestamp(void)
2231 {
2232 return ktime_set(0, 0);
2233 }
2234
2235 extern void skb_timestamping_init(void);
2236
2237 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2238
2239 extern void skb_clone_tx_timestamp(struct sk_buff *skb);
2240 extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
2241
2242 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2243
2244 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2245 {
2246 }
2247
2248 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2249 {
2250 return false;
2251 }
2252
2253 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2254
2255 /**
2256 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2257 *
2258 * PHY drivers may accept clones of transmitted packets for
2259 * timestamping via their phy_driver.txtstamp method. These drivers
2260 * must call this function to return the skb back to the stack, with
2261 * or without a timestamp.
2262 *
2263 * @skb: clone of the the original outgoing packet
2264 * @hwtstamps: hardware time stamps, may be NULL if not available
2265 *
2266 */
2267 void skb_complete_tx_timestamp(struct sk_buff *skb,
2268 struct skb_shared_hwtstamps *hwtstamps);
2269
2270 /**
2271 * skb_tstamp_tx - queue clone of skb with send time stamps
2272 * @orig_skb: the original outgoing packet
2273 * @hwtstamps: hardware time stamps, may be NULL if not available
2274 *
2275 * If the skb has a socket associated, then this function clones the
2276 * skb (thus sharing the actual data and optional structures), stores
2277 * the optional hardware time stamping information (if non NULL) or
2278 * generates a software time stamp (otherwise), then queues the clone
2279 * to the error queue of the socket. Errors are silently ignored.
2280 */
2281 extern void skb_tstamp_tx(struct sk_buff *orig_skb,
2282 struct skb_shared_hwtstamps *hwtstamps);
2283
2284 static inline void sw_tx_timestamp(struct sk_buff *skb)
2285 {
2286 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2287 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2288 skb_tstamp_tx(skb, NULL);
2289 }
2290
2291 /**
2292 * skb_tx_timestamp() - Driver hook for transmit timestamping
2293 *
2294 * Ethernet MAC Drivers should call this function in their hard_xmit()
2295 * function immediately before giving the sk_buff to the MAC hardware.
2296 *
2297 * @skb: A socket buffer.
2298 */
2299 static inline void skb_tx_timestamp(struct sk_buff *skb)
2300 {
2301 skb_clone_tx_timestamp(skb);
2302 sw_tx_timestamp(skb);
2303 }
2304
2305 /**
2306 * skb_complete_wifi_ack - deliver skb with wifi status
2307 *
2308 * @skb: the original outgoing packet
2309 * @acked: ack status
2310 *
2311 */
2312 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
2313
2314 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2315 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
2316
2317 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2318 {
2319 return skb->ip_summed & CHECKSUM_UNNECESSARY;
2320 }
2321
2322 /**
2323 * skb_checksum_complete - Calculate checksum of an entire packet
2324 * @skb: packet to process
2325 *
2326 * This function calculates the checksum over the entire packet plus
2327 * the value of skb->csum. The latter can be used to supply the
2328 * checksum of a pseudo header as used by TCP/UDP. It returns the
2329 * checksum.
2330 *
2331 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
2332 * this function can be used to verify that checksum on received
2333 * packets. In that case the function should return zero if the
2334 * checksum is correct. In particular, this function will return zero
2335 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2336 * hardware has already verified the correctness of the checksum.
2337 */
2338 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2339 {
2340 return skb_csum_unnecessary(skb) ?
2341 0 : __skb_checksum_complete(skb);
2342 }
2343
2344 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2345 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
2346 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
2347 {
2348 if (nfct && atomic_dec_and_test(&nfct->use))
2349 nf_conntrack_destroy(nfct);
2350 }
2351 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
2352 {
2353 if (nfct)
2354 atomic_inc(&nfct->use);
2355 }
2356 #endif
2357 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2358 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
2359 {
2360 if (skb)
2361 atomic_inc(&skb->users);
2362 }
2363 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
2364 {
2365 if (skb)
2366 kfree_skb(skb);
2367 }
2368 #endif
2369 #ifdef CONFIG_BRIDGE_NETFILTER
2370 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
2371 {
2372 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
2373 kfree(nf_bridge);
2374 }
2375 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
2376 {
2377 if (nf_bridge)
2378 atomic_inc(&nf_bridge->use);
2379 }
2380 #endif /* CONFIG_BRIDGE_NETFILTER */
2381 static inline void nf_reset(struct sk_buff *skb)
2382 {
2383 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2384 nf_conntrack_put(skb->nfct);
2385 skb->nfct = NULL;
2386 #endif
2387 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2388 nf_conntrack_put_reasm(skb->nfct_reasm);
2389 skb->nfct_reasm = NULL;
2390 #endif
2391 #ifdef CONFIG_BRIDGE_NETFILTER
2392 nf_bridge_put(skb->nf_bridge);
2393 skb->nf_bridge = NULL;
2394 #endif
2395 }
2396
2397 /* Note: This doesn't put any conntrack and bridge info in dst. */
2398 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2399 {
2400 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2401 dst->nfct = src->nfct;
2402 nf_conntrack_get(src->nfct);
2403 dst->nfctinfo = src->nfctinfo;
2404 #endif
2405 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2406 dst->nfct_reasm = src->nfct_reasm;
2407 nf_conntrack_get_reasm(src->nfct_reasm);
2408 #endif
2409 #ifdef CONFIG_BRIDGE_NETFILTER
2410 dst->nf_bridge = src->nf_bridge;
2411 nf_bridge_get(src->nf_bridge);
2412 #endif
2413 }
2414
2415 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2416 {
2417 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2418 nf_conntrack_put(dst->nfct);
2419 #endif
2420 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2421 nf_conntrack_put_reasm(dst->nfct_reasm);
2422 #endif
2423 #ifdef CONFIG_BRIDGE_NETFILTER
2424 nf_bridge_put(dst->nf_bridge);
2425 #endif
2426 __nf_copy(dst, src);
2427 }
2428
2429 #ifdef CONFIG_NETWORK_SECMARK
2430 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2431 {
2432 to->secmark = from->secmark;
2433 }
2434
2435 static inline void skb_init_secmark(struct sk_buff *skb)
2436 {
2437 skb->secmark = 0;
2438 }
2439 #else
2440 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2441 { }
2442
2443 static inline void skb_init_secmark(struct sk_buff *skb)
2444 { }
2445 #endif
2446
2447 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2448 {
2449 skb->queue_mapping = queue_mapping;
2450 }
2451
2452 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2453 {
2454 return skb->queue_mapping;
2455 }
2456
2457 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2458 {
2459 to->queue_mapping = from->queue_mapping;
2460 }
2461
2462 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2463 {
2464 skb->queue_mapping = rx_queue + 1;
2465 }
2466
2467 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2468 {
2469 return skb->queue_mapping - 1;
2470 }
2471
2472 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2473 {
2474 return skb->queue_mapping != 0;
2475 }
2476
2477 extern u16 __skb_tx_hash(const struct net_device *dev,
2478 const struct sk_buff *skb,
2479 unsigned int num_tx_queues);
2480
2481 #ifdef CONFIG_XFRM
2482 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2483 {
2484 return skb->sp;
2485 }
2486 #else
2487 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2488 {
2489 return NULL;
2490 }
2491 #endif
2492
2493 static inline bool skb_is_gso(const struct sk_buff *skb)
2494 {
2495 return skb_shinfo(skb)->gso_size;
2496 }
2497
2498 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
2499 {
2500 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2501 }
2502
2503 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2504
2505 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2506 {
2507 /* LRO sets gso_size but not gso_type, whereas if GSO is really
2508 * wanted then gso_type will be set. */
2509 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2510
2511 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
2512 unlikely(shinfo->gso_type == 0)) {
2513 __skb_warn_lro_forwarding(skb);
2514 return true;
2515 }
2516 return false;
2517 }
2518
2519 static inline void skb_forward_csum(struct sk_buff *skb)
2520 {
2521 /* Unfortunately we don't support this one. Any brave souls? */
2522 if (skb->ip_summed == CHECKSUM_COMPLETE)
2523 skb->ip_summed = CHECKSUM_NONE;
2524 }
2525
2526 /**
2527 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
2528 * @skb: skb to check
2529 *
2530 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
2531 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
2532 * use this helper, to document places where we make this assertion.
2533 */
2534 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
2535 {
2536 #ifdef DEBUG
2537 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
2538 #endif
2539 }
2540
2541 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2542
2543 static inline bool skb_is_recycleable(const struct sk_buff *skb, int skb_size)
2544 {
2545 if (irqs_disabled())
2546 return false;
2547
2548 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)
2549 return false;
2550
2551 if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
2552 return false;
2553
2554 skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
2555 if (skb_end_pointer(skb) - skb->head < skb_size)
2556 return false;
2557
2558 if (skb_shared(skb) || skb_cloned(skb))
2559 return false;
2560
2561 return true;
2562 }
2563 #endif /* __KERNEL__ */
2564 #endif /* _LINUX_SKBUFF_H */
This page took 0.084808 seconds and 5 git commands to generate.