23bad3bf3c9dfc46428a873a2363bd58efb4c959
[deliverable/linux.git] / include / linux / skbuff.h
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/config.h>
18 #include <linux/kernel.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/cache.h>
22
23 #include <asm/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/poll.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32 #include <linux/dmaengine.h>
33
34 #define HAVE_ALLOC_SKB /* For the drivers to know */
35 #define HAVE_ALIGNABLE_SKB /* Ditto 8) */
36
37 #define CHECKSUM_NONE 0
38 #define CHECKSUM_HW 1
39 #define CHECKSUM_UNNECESSARY 2
40
41 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
42 ~(SMP_CACHE_BYTES - 1))
43 #define SKB_MAX_ORDER(X, ORDER) (((PAGE_SIZE << (ORDER)) - (X) - \
44 sizeof(struct skb_shared_info)) & \
45 ~(SMP_CACHE_BYTES - 1))
46 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
47 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
48
49 /* A. Checksumming of received packets by device.
50 *
51 * NONE: device failed to checksum this packet.
52 * skb->csum is undefined.
53 *
54 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
55 * skb->csum is undefined.
56 * It is bad option, but, unfortunately, many of vendors do this.
57 * Apparently with secret goal to sell you new device, when you
58 * will add new protocol to your host. F.e. IPv6. 8)
59 *
60 * HW: the most generic way. Device supplied checksum of _all_
61 * the packet as seen by netif_rx in skb->csum.
62 * NOTE: Even if device supports only some protocols, but
63 * is able to produce some skb->csum, it MUST use HW,
64 * not UNNECESSARY.
65 *
66 * B. Checksumming on output.
67 *
68 * NONE: skb is checksummed by protocol or csum is not required.
69 *
70 * HW: device is required to csum packet as seen by hard_start_xmit
71 * from skb->h.raw to the end and to record the checksum
72 * at skb->h.raw+skb->csum.
73 *
74 * Device must show its capabilities in dev->features, set
75 * at device setup time.
76 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
77 * everything.
78 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
79 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
80 * TCP/UDP over IPv4. Sigh. Vendors like this
81 * way by an unknown reason. Though, see comment above
82 * about CHECKSUM_UNNECESSARY. 8)
83 *
84 * Any questions? No questions, good. --ANK
85 */
86
87 struct net_device;
88
89 #ifdef CONFIG_NETFILTER
90 struct nf_conntrack {
91 atomic_t use;
92 void (*destroy)(struct nf_conntrack *);
93 };
94
95 #ifdef CONFIG_BRIDGE_NETFILTER
96 struct nf_bridge_info {
97 atomic_t use;
98 struct net_device *physindev;
99 struct net_device *physoutdev;
100 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
101 struct net_device *netoutdev;
102 #endif
103 unsigned int mask;
104 unsigned long data[32 / sizeof(unsigned long)];
105 };
106 #endif
107
108 #endif
109
110 struct sk_buff_head {
111 /* These two members must be first. */
112 struct sk_buff *next;
113 struct sk_buff *prev;
114
115 __u32 qlen;
116 spinlock_t lock;
117 };
118
119 struct sk_buff;
120
121 /* To allow 64K frame to be packed as single skb without frag_list */
122 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
123
124 typedef struct skb_frag_struct skb_frag_t;
125
126 struct skb_frag_struct {
127 struct page *page;
128 __u16 page_offset;
129 __u16 size;
130 };
131
132 /* This data is invariant across clones and lives at
133 * the end of the header data, ie. at skb->end.
134 */
135 struct skb_shared_info {
136 atomic_t dataref;
137 unsigned short nr_frags;
138 unsigned short tso_size;
139 unsigned short tso_segs;
140 unsigned short ufo_size;
141 unsigned int ip6_frag_id;
142 struct sk_buff *frag_list;
143 skb_frag_t frags[MAX_SKB_FRAGS];
144 };
145
146 /* We divide dataref into two halves. The higher 16 bits hold references
147 * to the payload part of skb->data. The lower 16 bits hold references to
148 * the entire skb->data. It is up to the users of the skb to agree on
149 * where the payload starts.
150 *
151 * All users must obey the rule that the skb->data reference count must be
152 * greater than or equal to the payload reference count.
153 *
154 * Holding a reference to the payload part means that the user does not
155 * care about modifications to the header part of skb->data.
156 */
157 #define SKB_DATAREF_SHIFT 16
158 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
159
160 struct skb_timeval {
161 u32 off_sec;
162 u32 off_usec;
163 };
164
165
166 enum {
167 SKB_FCLONE_UNAVAILABLE,
168 SKB_FCLONE_ORIG,
169 SKB_FCLONE_CLONE,
170 };
171
172 /**
173 * struct sk_buff - socket buffer
174 * @next: Next buffer in list
175 * @prev: Previous buffer in list
176 * @sk: Socket we are owned by
177 * @tstamp: Time we arrived
178 * @dev: Device we arrived on/are leaving by
179 * @input_dev: Device we arrived on
180 * @h: Transport layer header
181 * @nh: Network layer header
182 * @mac: Link layer header
183 * @dst: destination entry
184 * @sp: the security path, used for xfrm
185 * @cb: Control buffer. Free for use by every layer. Put private vars here
186 * @len: Length of actual data
187 * @data_len: Data length
188 * @mac_len: Length of link layer header
189 * @csum: Checksum
190 * @local_df: allow local fragmentation
191 * @cloned: Head may be cloned (check refcnt to be sure)
192 * @nohdr: Payload reference only, must not modify header
193 * @pkt_type: Packet class
194 * @fclone: skbuff clone status
195 * @ip_summed: Driver fed us an IP checksum
196 * @priority: Packet queueing priority
197 * @users: User count - see {datagram,tcp}.c
198 * @protocol: Packet protocol from driver
199 * @truesize: Buffer size
200 * @head: Head of buffer
201 * @data: Data head pointer
202 * @tail: Tail pointer
203 * @end: End pointer
204 * @destructor: Destruct function
205 * @nfmark: Can be used for communication between hooks
206 * @nfct: Associated connection, if any
207 * @ipvs_property: skbuff is owned by ipvs
208 * @nfctinfo: Relationship of this skb to the connection
209 * @nfct_reasm: netfilter conntrack re-assembly pointer
210 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
211 * @tc_index: Traffic control index
212 * @tc_verd: traffic control verdict
213 */
214
215 struct sk_buff {
216 /* These two members must be first. */
217 struct sk_buff *next;
218 struct sk_buff *prev;
219
220 struct sock *sk;
221 struct skb_timeval tstamp;
222 struct net_device *dev;
223 struct net_device *input_dev;
224
225 union {
226 struct tcphdr *th;
227 struct udphdr *uh;
228 struct icmphdr *icmph;
229 struct igmphdr *igmph;
230 struct iphdr *ipiph;
231 struct ipv6hdr *ipv6h;
232 unsigned char *raw;
233 } h;
234
235 union {
236 struct iphdr *iph;
237 struct ipv6hdr *ipv6h;
238 struct arphdr *arph;
239 unsigned char *raw;
240 } nh;
241
242 union {
243 unsigned char *raw;
244 } mac;
245
246 struct dst_entry *dst;
247 struct sec_path *sp;
248
249 /*
250 * This is the control buffer. It is free to use for every
251 * layer. Please put your private variables there. If you
252 * want to keep them across layers you have to do a skb_clone()
253 * first. This is owned by whoever has the skb queued ATM.
254 */
255 char cb[48];
256
257 unsigned int len,
258 data_len,
259 mac_len,
260 csum;
261 __u32 priority;
262 __u8 local_df:1,
263 cloned:1,
264 ip_summed:2,
265 nohdr:1,
266 nfctinfo:3;
267 __u8 pkt_type:3,
268 fclone:2,
269 ipvs_property:1;
270 __be16 protocol;
271
272 void (*destructor)(struct sk_buff *skb);
273 #ifdef CONFIG_NETFILTER
274 struct nf_conntrack *nfct;
275 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
276 struct sk_buff *nfct_reasm;
277 #endif
278 #ifdef CONFIG_BRIDGE_NETFILTER
279 struct nf_bridge_info *nf_bridge;
280 #endif
281 __u32 nfmark;
282 #endif /* CONFIG_NETFILTER */
283 #ifdef CONFIG_NET_SCHED
284 __u16 tc_index; /* traffic control index */
285 #ifdef CONFIG_NET_CLS_ACT
286 __u16 tc_verd; /* traffic control verdict */
287 #endif
288 #endif
289 #ifdef CONFIG_NET_DMA
290 dma_cookie_t dma_cookie;
291 #endif
292
293
294 /* These elements must be at the end, see alloc_skb() for details. */
295 unsigned int truesize;
296 atomic_t users;
297 unsigned char *head,
298 *data,
299 *tail,
300 *end;
301 };
302
303 #ifdef __KERNEL__
304 /*
305 * Handling routines are only of interest to the kernel
306 */
307 #include <linux/slab.h>
308
309 #include <asm/system.h>
310
311 extern void kfree_skb(struct sk_buff *skb);
312 extern void __kfree_skb(struct sk_buff *skb);
313 extern struct sk_buff *__alloc_skb(unsigned int size,
314 gfp_t priority, int fclone);
315 static inline struct sk_buff *alloc_skb(unsigned int size,
316 gfp_t priority)
317 {
318 return __alloc_skb(size, priority, 0);
319 }
320
321 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
322 gfp_t priority)
323 {
324 return __alloc_skb(size, priority, 1);
325 }
326
327 extern struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp,
328 unsigned int size,
329 gfp_t priority);
330 extern void kfree_skbmem(struct sk_buff *skb);
331 extern struct sk_buff *skb_clone(struct sk_buff *skb,
332 gfp_t priority);
333 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
334 gfp_t priority);
335 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
336 gfp_t gfp_mask);
337 extern int pskb_expand_head(struct sk_buff *skb,
338 int nhead, int ntail,
339 gfp_t gfp_mask);
340 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
341 unsigned int headroom);
342 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
343 int newheadroom, int newtailroom,
344 gfp_t priority);
345 extern struct sk_buff * skb_pad(struct sk_buff *skb, int pad);
346 #define dev_kfree_skb(a) kfree_skb(a)
347 extern void skb_over_panic(struct sk_buff *skb, int len,
348 void *here);
349 extern void skb_under_panic(struct sk_buff *skb, int len,
350 void *here);
351 extern void skb_truesize_bug(struct sk_buff *skb);
352
353 static inline void skb_truesize_check(struct sk_buff *skb)
354 {
355 if (unlikely((int)skb->truesize < sizeof(struct sk_buff) + skb->len))
356 skb_truesize_bug(skb);
357 }
358
359 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
360 int getfrag(void *from, char *to, int offset,
361 int len,int odd, struct sk_buff *skb),
362 void *from, int length);
363
364 struct skb_seq_state
365 {
366 __u32 lower_offset;
367 __u32 upper_offset;
368 __u32 frag_idx;
369 __u32 stepped_offset;
370 struct sk_buff *root_skb;
371 struct sk_buff *cur_skb;
372 __u8 *frag_data;
373 };
374
375 extern void skb_prepare_seq_read(struct sk_buff *skb,
376 unsigned int from, unsigned int to,
377 struct skb_seq_state *st);
378 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
379 struct skb_seq_state *st);
380 extern void skb_abort_seq_read(struct skb_seq_state *st);
381
382 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
383 unsigned int to, struct ts_config *config,
384 struct ts_state *state);
385
386 /* Internal */
387 #define skb_shinfo(SKB) ((struct skb_shared_info *)((SKB)->end))
388
389 /**
390 * skb_queue_empty - check if a queue is empty
391 * @list: queue head
392 *
393 * Returns true if the queue is empty, false otherwise.
394 */
395 static inline int skb_queue_empty(const struct sk_buff_head *list)
396 {
397 return list->next == (struct sk_buff *)list;
398 }
399
400 /**
401 * skb_get - reference buffer
402 * @skb: buffer to reference
403 *
404 * Makes another reference to a socket buffer and returns a pointer
405 * to the buffer.
406 */
407 static inline struct sk_buff *skb_get(struct sk_buff *skb)
408 {
409 atomic_inc(&skb->users);
410 return skb;
411 }
412
413 /*
414 * If users == 1, we are the only owner and are can avoid redundant
415 * atomic change.
416 */
417
418 /**
419 * skb_cloned - is the buffer a clone
420 * @skb: buffer to check
421 *
422 * Returns true if the buffer was generated with skb_clone() and is
423 * one of multiple shared copies of the buffer. Cloned buffers are
424 * shared data so must not be written to under normal circumstances.
425 */
426 static inline int skb_cloned(const struct sk_buff *skb)
427 {
428 return skb->cloned &&
429 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
430 }
431
432 /**
433 * skb_header_cloned - is the header a clone
434 * @skb: buffer to check
435 *
436 * Returns true if modifying the header part of the buffer requires
437 * the data to be copied.
438 */
439 static inline int skb_header_cloned(const struct sk_buff *skb)
440 {
441 int dataref;
442
443 if (!skb->cloned)
444 return 0;
445
446 dataref = atomic_read(&skb_shinfo(skb)->dataref);
447 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
448 return dataref != 1;
449 }
450
451 /**
452 * skb_header_release - release reference to header
453 * @skb: buffer to operate on
454 *
455 * Drop a reference to the header part of the buffer. This is done
456 * by acquiring a payload reference. You must not read from the header
457 * part of skb->data after this.
458 */
459 static inline void skb_header_release(struct sk_buff *skb)
460 {
461 BUG_ON(skb->nohdr);
462 skb->nohdr = 1;
463 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
464 }
465
466 /**
467 * skb_shared - is the buffer shared
468 * @skb: buffer to check
469 *
470 * Returns true if more than one person has a reference to this
471 * buffer.
472 */
473 static inline int skb_shared(const struct sk_buff *skb)
474 {
475 return atomic_read(&skb->users) != 1;
476 }
477
478 /**
479 * skb_share_check - check if buffer is shared and if so clone it
480 * @skb: buffer to check
481 * @pri: priority for memory allocation
482 *
483 * If the buffer is shared the buffer is cloned and the old copy
484 * drops a reference. A new clone with a single reference is returned.
485 * If the buffer is not shared the original buffer is returned. When
486 * being called from interrupt status or with spinlocks held pri must
487 * be GFP_ATOMIC.
488 *
489 * NULL is returned on a memory allocation failure.
490 */
491 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
492 gfp_t pri)
493 {
494 might_sleep_if(pri & __GFP_WAIT);
495 if (skb_shared(skb)) {
496 struct sk_buff *nskb = skb_clone(skb, pri);
497 kfree_skb(skb);
498 skb = nskb;
499 }
500 return skb;
501 }
502
503 /*
504 * Copy shared buffers into a new sk_buff. We effectively do COW on
505 * packets to handle cases where we have a local reader and forward
506 * and a couple of other messy ones. The normal one is tcpdumping
507 * a packet thats being forwarded.
508 */
509
510 /**
511 * skb_unshare - make a copy of a shared buffer
512 * @skb: buffer to check
513 * @pri: priority for memory allocation
514 *
515 * If the socket buffer is a clone then this function creates a new
516 * copy of the data, drops a reference count on the old copy and returns
517 * the new copy with the reference count at 1. If the buffer is not a clone
518 * the original buffer is returned. When called with a spinlock held or
519 * from interrupt state @pri must be %GFP_ATOMIC
520 *
521 * %NULL is returned on a memory allocation failure.
522 */
523 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
524 gfp_t pri)
525 {
526 might_sleep_if(pri & __GFP_WAIT);
527 if (skb_cloned(skb)) {
528 struct sk_buff *nskb = skb_copy(skb, pri);
529 kfree_skb(skb); /* Free our shared copy */
530 skb = nskb;
531 }
532 return skb;
533 }
534
535 /**
536 * skb_peek
537 * @list_: list to peek at
538 *
539 * Peek an &sk_buff. Unlike most other operations you _MUST_
540 * be careful with this one. A peek leaves the buffer on the
541 * list and someone else may run off with it. You must hold
542 * the appropriate locks or have a private queue to do this.
543 *
544 * Returns %NULL for an empty list or a pointer to the head element.
545 * The reference count is not incremented and the reference is therefore
546 * volatile. Use with caution.
547 */
548 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
549 {
550 struct sk_buff *list = ((struct sk_buff *)list_)->next;
551 if (list == (struct sk_buff *)list_)
552 list = NULL;
553 return list;
554 }
555
556 /**
557 * skb_peek_tail
558 * @list_: list to peek at
559 *
560 * Peek an &sk_buff. Unlike most other operations you _MUST_
561 * be careful with this one. A peek leaves the buffer on the
562 * list and someone else may run off with it. You must hold
563 * the appropriate locks or have a private queue to do this.
564 *
565 * Returns %NULL for an empty list or a pointer to the tail element.
566 * The reference count is not incremented and the reference is therefore
567 * volatile. Use with caution.
568 */
569 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
570 {
571 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
572 if (list == (struct sk_buff *)list_)
573 list = NULL;
574 return list;
575 }
576
577 /**
578 * skb_queue_len - get queue length
579 * @list_: list to measure
580 *
581 * Return the length of an &sk_buff queue.
582 */
583 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
584 {
585 return list_->qlen;
586 }
587
588 static inline void skb_queue_head_init(struct sk_buff_head *list)
589 {
590 spin_lock_init(&list->lock);
591 list->prev = list->next = (struct sk_buff *)list;
592 list->qlen = 0;
593 }
594
595 /*
596 * Insert an sk_buff at the start of a list.
597 *
598 * The "__skb_xxxx()" functions are the non-atomic ones that
599 * can only be called with interrupts disabled.
600 */
601
602 /**
603 * __skb_queue_after - queue a buffer at the list head
604 * @list: list to use
605 * @prev: place after this buffer
606 * @newsk: buffer to queue
607 *
608 * Queue a buffer int the middle of a list. This function takes no locks
609 * and you must therefore hold required locks before calling it.
610 *
611 * A buffer cannot be placed on two lists at the same time.
612 */
613 static inline void __skb_queue_after(struct sk_buff_head *list,
614 struct sk_buff *prev,
615 struct sk_buff *newsk)
616 {
617 struct sk_buff *next;
618 list->qlen++;
619
620 next = prev->next;
621 newsk->next = next;
622 newsk->prev = prev;
623 next->prev = prev->next = newsk;
624 }
625
626 /**
627 * __skb_queue_head - queue a buffer at the list head
628 * @list: list to use
629 * @newsk: buffer to queue
630 *
631 * Queue a buffer at the start of a list. This function takes no locks
632 * and you must therefore hold required locks before calling it.
633 *
634 * A buffer cannot be placed on two lists at the same time.
635 */
636 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
637 static inline void __skb_queue_head(struct sk_buff_head *list,
638 struct sk_buff *newsk)
639 {
640 __skb_queue_after(list, (struct sk_buff *)list, newsk);
641 }
642
643 /**
644 * __skb_queue_tail - queue a buffer at the list tail
645 * @list: list to use
646 * @newsk: buffer to queue
647 *
648 * Queue a buffer at the end of a list. This function takes no locks
649 * and you must therefore hold required locks before calling it.
650 *
651 * A buffer cannot be placed on two lists at the same time.
652 */
653 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
654 static inline void __skb_queue_tail(struct sk_buff_head *list,
655 struct sk_buff *newsk)
656 {
657 struct sk_buff *prev, *next;
658
659 list->qlen++;
660 next = (struct sk_buff *)list;
661 prev = next->prev;
662 newsk->next = next;
663 newsk->prev = prev;
664 next->prev = prev->next = newsk;
665 }
666
667
668 /**
669 * __skb_dequeue - remove from the head of the queue
670 * @list: list to dequeue from
671 *
672 * Remove the head of the list. This function does not take any locks
673 * so must be used with appropriate locks held only. The head item is
674 * returned or %NULL if the list is empty.
675 */
676 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
677 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
678 {
679 struct sk_buff *next, *prev, *result;
680
681 prev = (struct sk_buff *) list;
682 next = prev->next;
683 result = NULL;
684 if (next != prev) {
685 result = next;
686 next = next->next;
687 list->qlen--;
688 next->prev = prev;
689 prev->next = next;
690 result->next = result->prev = NULL;
691 }
692 return result;
693 }
694
695
696 /*
697 * Insert a packet on a list.
698 */
699 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
700 static inline void __skb_insert(struct sk_buff *newsk,
701 struct sk_buff *prev, struct sk_buff *next,
702 struct sk_buff_head *list)
703 {
704 newsk->next = next;
705 newsk->prev = prev;
706 next->prev = prev->next = newsk;
707 list->qlen++;
708 }
709
710 /*
711 * Place a packet after a given packet in a list.
712 */
713 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
714 static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
715 {
716 __skb_insert(newsk, old, old->next, list);
717 }
718
719 /*
720 * remove sk_buff from list. _Must_ be called atomically, and with
721 * the list known..
722 */
723 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
724 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
725 {
726 struct sk_buff *next, *prev;
727
728 list->qlen--;
729 next = skb->next;
730 prev = skb->prev;
731 skb->next = skb->prev = NULL;
732 next->prev = prev;
733 prev->next = next;
734 }
735
736
737 /* XXX: more streamlined implementation */
738
739 /**
740 * __skb_dequeue_tail - remove from the tail of the queue
741 * @list: list to dequeue from
742 *
743 * Remove the tail of the list. This function does not take any locks
744 * so must be used with appropriate locks held only. The tail item is
745 * returned or %NULL if the list is empty.
746 */
747 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
748 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
749 {
750 struct sk_buff *skb = skb_peek_tail(list);
751 if (skb)
752 __skb_unlink(skb, list);
753 return skb;
754 }
755
756
757 static inline int skb_is_nonlinear(const struct sk_buff *skb)
758 {
759 return skb->data_len;
760 }
761
762 static inline unsigned int skb_headlen(const struct sk_buff *skb)
763 {
764 return skb->len - skb->data_len;
765 }
766
767 static inline int skb_pagelen(const struct sk_buff *skb)
768 {
769 int i, len = 0;
770
771 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
772 len += skb_shinfo(skb)->frags[i].size;
773 return len + skb_headlen(skb);
774 }
775
776 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
777 struct page *page, int off, int size)
778 {
779 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
780
781 frag->page = page;
782 frag->page_offset = off;
783 frag->size = size;
784 skb_shinfo(skb)->nr_frags = i + 1;
785 }
786
787 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
788 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
789 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
790
791 /*
792 * Add data to an sk_buff
793 */
794 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
795 {
796 unsigned char *tmp = skb->tail;
797 SKB_LINEAR_ASSERT(skb);
798 skb->tail += len;
799 skb->len += len;
800 return tmp;
801 }
802
803 /**
804 * skb_put - add data to a buffer
805 * @skb: buffer to use
806 * @len: amount of data to add
807 *
808 * This function extends the used data area of the buffer. If this would
809 * exceed the total buffer size the kernel will panic. A pointer to the
810 * first byte of the extra data is returned.
811 */
812 static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
813 {
814 unsigned char *tmp = skb->tail;
815 SKB_LINEAR_ASSERT(skb);
816 skb->tail += len;
817 skb->len += len;
818 if (unlikely(skb->tail>skb->end))
819 skb_over_panic(skb, len, current_text_addr());
820 return tmp;
821 }
822
823 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
824 {
825 skb->data -= len;
826 skb->len += len;
827 return skb->data;
828 }
829
830 /**
831 * skb_push - add data to the start of a buffer
832 * @skb: buffer to use
833 * @len: amount of data to add
834 *
835 * This function extends the used data area of the buffer at the buffer
836 * start. If this would exceed the total buffer headroom the kernel will
837 * panic. A pointer to the first byte of the extra data is returned.
838 */
839 static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
840 {
841 skb->data -= len;
842 skb->len += len;
843 if (unlikely(skb->data<skb->head))
844 skb_under_panic(skb, len, current_text_addr());
845 return skb->data;
846 }
847
848 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
849 {
850 skb->len -= len;
851 BUG_ON(skb->len < skb->data_len);
852 return skb->data += len;
853 }
854
855 /**
856 * skb_pull - remove data from the start of a buffer
857 * @skb: buffer to use
858 * @len: amount of data to remove
859 *
860 * This function removes data from the start of a buffer, returning
861 * the memory to the headroom. A pointer to the next data in the buffer
862 * is returned. Once the data has been pulled future pushes will overwrite
863 * the old data.
864 */
865 static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
866 {
867 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
868 }
869
870 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
871
872 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
873 {
874 if (len > skb_headlen(skb) &&
875 !__pskb_pull_tail(skb, len-skb_headlen(skb)))
876 return NULL;
877 skb->len -= len;
878 return skb->data += len;
879 }
880
881 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
882 {
883 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
884 }
885
886 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
887 {
888 if (likely(len <= skb_headlen(skb)))
889 return 1;
890 if (unlikely(len > skb->len))
891 return 0;
892 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
893 }
894
895 /**
896 * skb_headroom - bytes at buffer head
897 * @skb: buffer to check
898 *
899 * Return the number of bytes of free space at the head of an &sk_buff.
900 */
901 static inline int skb_headroom(const struct sk_buff *skb)
902 {
903 return skb->data - skb->head;
904 }
905
906 /**
907 * skb_tailroom - bytes at buffer end
908 * @skb: buffer to check
909 *
910 * Return the number of bytes of free space at the tail of an sk_buff
911 */
912 static inline int skb_tailroom(const struct sk_buff *skb)
913 {
914 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
915 }
916
917 /**
918 * skb_reserve - adjust headroom
919 * @skb: buffer to alter
920 * @len: bytes to move
921 *
922 * Increase the headroom of an empty &sk_buff by reducing the tail
923 * room. This is only allowed for an empty buffer.
924 */
925 static inline void skb_reserve(struct sk_buff *skb, int len)
926 {
927 skb->data += len;
928 skb->tail += len;
929 }
930
931 /*
932 * CPUs often take a performance hit when accessing unaligned memory
933 * locations. The actual performance hit varies, it can be small if the
934 * hardware handles it or large if we have to take an exception and fix it
935 * in software.
936 *
937 * Since an ethernet header is 14 bytes network drivers often end up with
938 * the IP header at an unaligned offset. The IP header can be aligned by
939 * shifting the start of the packet by 2 bytes. Drivers should do this
940 * with:
941 *
942 * skb_reserve(NET_IP_ALIGN);
943 *
944 * The downside to this alignment of the IP header is that the DMA is now
945 * unaligned. On some architectures the cost of an unaligned DMA is high
946 * and this cost outweighs the gains made by aligning the IP header.
947 *
948 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
949 * to be overridden.
950 */
951 #ifndef NET_IP_ALIGN
952 #define NET_IP_ALIGN 2
953 #endif
954
955 /*
956 * The networking layer reserves some headroom in skb data (via
957 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
958 * the header has to grow. In the default case, if the header has to grow
959 * 16 bytes or less we avoid the reallocation.
960 *
961 * Unfortunately this headroom changes the DMA alignment of the resulting
962 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
963 * on some architectures. An architecture can override this value,
964 * perhaps setting it to a cacheline in size (since that will maintain
965 * cacheline alignment of the DMA). It must be a power of 2.
966 *
967 * Various parts of the networking layer expect at least 16 bytes of
968 * headroom, you should not reduce this.
969 */
970 #ifndef NET_SKB_PAD
971 #define NET_SKB_PAD 16
972 #endif
973
974 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len, int realloc);
975
976 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
977 {
978 if (!skb->data_len) {
979 skb->len = len;
980 skb->tail = skb->data + len;
981 } else
982 ___pskb_trim(skb, len, 0);
983 }
984
985 /**
986 * skb_trim - remove end from a buffer
987 * @skb: buffer to alter
988 * @len: new length
989 *
990 * Cut the length of a buffer down by removing data from the tail. If
991 * the buffer is already under the length specified it is not modified.
992 */
993 static inline void skb_trim(struct sk_buff *skb, unsigned int len)
994 {
995 if (skb->len > len)
996 __skb_trim(skb, len);
997 }
998
999
1000 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1001 {
1002 if (!skb->data_len) {
1003 skb->len = len;
1004 skb->tail = skb->data+len;
1005 return 0;
1006 }
1007 return ___pskb_trim(skb, len, 1);
1008 }
1009
1010 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1011 {
1012 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1013 }
1014
1015 /**
1016 * skb_orphan - orphan a buffer
1017 * @skb: buffer to orphan
1018 *
1019 * If a buffer currently has an owner then we call the owner's
1020 * destructor function and make the @skb unowned. The buffer continues
1021 * to exist but is no longer charged to its former owner.
1022 */
1023 static inline void skb_orphan(struct sk_buff *skb)
1024 {
1025 if (skb->destructor)
1026 skb->destructor(skb);
1027 skb->destructor = NULL;
1028 skb->sk = NULL;
1029 }
1030
1031 /**
1032 * __skb_queue_purge - empty a list
1033 * @list: list to empty
1034 *
1035 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1036 * the list and one reference dropped. This function does not take the
1037 * list lock and the caller must hold the relevant locks to use it.
1038 */
1039 extern void skb_queue_purge(struct sk_buff_head *list);
1040 static inline void __skb_queue_purge(struct sk_buff_head *list)
1041 {
1042 struct sk_buff *skb;
1043 while ((skb = __skb_dequeue(list)) != NULL)
1044 kfree_skb(skb);
1045 }
1046
1047 #ifndef CONFIG_HAVE_ARCH_DEV_ALLOC_SKB
1048 /**
1049 * __dev_alloc_skb - allocate an skbuff for sending
1050 * @length: length to allocate
1051 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1052 *
1053 * Allocate a new &sk_buff and assign it a usage count of one. The
1054 * buffer has unspecified headroom built in. Users should allocate
1055 * the headroom they think they need without accounting for the
1056 * built in space. The built in space is used for optimisations.
1057 *
1058 * %NULL is returned in there is no free memory.
1059 */
1060 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1061 gfp_t gfp_mask)
1062 {
1063 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1064 if (likely(skb))
1065 skb_reserve(skb, NET_SKB_PAD);
1066 return skb;
1067 }
1068 #else
1069 extern struct sk_buff *__dev_alloc_skb(unsigned int length, int gfp_mask);
1070 #endif
1071
1072 /**
1073 * dev_alloc_skb - allocate an skbuff for sending
1074 * @length: length to allocate
1075 *
1076 * Allocate a new &sk_buff and assign it a usage count of one. The
1077 * buffer has unspecified headroom built in. Users should allocate
1078 * the headroom they think they need without accounting for the
1079 * built in space. The built in space is used for optimisations.
1080 *
1081 * %NULL is returned in there is no free memory. Although this function
1082 * allocates memory it can be called from an interrupt.
1083 */
1084 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1085 {
1086 return __dev_alloc_skb(length, GFP_ATOMIC);
1087 }
1088
1089 /**
1090 * skb_cow - copy header of skb when it is required
1091 * @skb: buffer to cow
1092 * @headroom: needed headroom
1093 *
1094 * If the skb passed lacks sufficient headroom or its data part
1095 * is shared, data is reallocated. If reallocation fails, an error
1096 * is returned and original skb is not changed.
1097 *
1098 * The result is skb with writable area skb->head...skb->tail
1099 * and at least @headroom of space at head.
1100 */
1101 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1102 {
1103 int delta = (headroom > NET_SKB_PAD ? headroom : NET_SKB_PAD) -
1104 skb_headroom(skb);
1105
1106 if (delta < 0)
1107 delta = 0;
1108
1109 if (delta || skb_cloned(skb))
1110 return pskb_expand_head(skb, (delta + (NET_SKB_PAD-1)) &
1111 ~(NET_SKB_PAD-1), 0, GFP_ATOMIC);
1112 return 0;
1113 }
1114
1115 /**
1116 * skb_padto - pad an skbuff up to a minimal size
1117 * @skb: buffer to pad
1118 * @len: minimal length
1119 *
1120 * Pads up a buffer to ensure the trailing bytes exist and are
1121 * blanked. If the buffer already contains sufficient data it
1122 * is untouched. Returns the buffer, which may be a replacement
1123 * for the original, or NULL for out of memory - in which case
1124 * the original buffer is still freed.
1125 */
1126
1127 static inline struct sk_buff *skb_padto(struct sk_buff *skb, unsigned int len)
1128 {
1129 unsigned int size = skb->len;
1130 if (likely(size >= len))
1131 return skb;
1132 return skb_pad(skb, len-size);
1133 }
1134
1135 static inline int skb_add_data(struct sk_buff *skb,
1136 char __user *from, int copy)
1137 {
1138 const int off = skb->len;
1139
1140 if (skb->ip_summed == CHECKSUM_NONE) {
1141 int err = 0;
1142 unsigned int csum = csum_and_copy_from_user(from,
1143 skb_put(skb, copy),
1144 copy, 0, &err);
1145 if (!err) {
1146 skb->csum = csum_block_add(skb->csum, csum, off);
1147 return 0;
1148 }
1149 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1150 return 0;
1151
1152 __skb_trim(skb, off);
1153 return -EFAULT;
1154 }
1155
1156 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1157 struct page *page, int off)
1158 {
1159 if (i) {
1160 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1161
1162 return page == frag->page &&
1163 off == frag->page_offset + frag->size;
1164 }
1165 return 0;
1166 }
1167
1168 /**
1169 * skb_linearize - convert paged skb to linear one
1170 * @skb: buffer to linarize
1171 * @gfp: allocation mode
1172 *
1173 * If there is no free memory -ENOMEM is returned, otherwise zero
1174 * is returned and the old skb data released.
1175 */
1176 extern int __skb_linearize(struct sk_buff *skb, gfp_t gfp);
1177 static inline int skb_linearize(struct sk_buff *skb, gfp_t gfp)
1178 {
1179 return __skb_linearize(skb, gfp);
1180 }
1181
1182 /**
1183 * skb_postpull_rcsum - update checksum for received skb after pull
1184 * @skb: buffer to update
1185 * @start: start of data before pull
1186 * @len: length of data pulled
1187 *
1188 * After doing a pull on a received packet, you need to call this to
1189 * update the CHECKSUM_HW checksum, or set ip_summed to CHECKSUM_NONE
1190 * so that it can be recomputed from scratch.
1191 */
1192
1193 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1194 const void *start, unsigned int len)
1195 {
1196 if (skb->ip_summed == CHECKSUM_HW)
1197 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1198 }
1199
1200 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1201
1202 /**
1203 * pskb_trim_rcsum - trim received skb and update checksum
1204 * @skb: buffer to trim
1205 * @len: new length
1206 *
1207 * This is exactly the same as pskb_trim except that it ensures the
1208 * checksum of received packets are still valid after the operation.
1209 */
1210
1211 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1212 {
1213 if (likely(len >= skb->len))
1214 return 0;
1215 if (skb->ip_summed == CHECKSUM_HW)
1216 skb->ip_summed = CHECKSUM_NONE;
1217 return __pskb_trim(skb, len);
1218 }
1219
1220 static inline void *kmap_skb_frag(const skb_frag_t *frag)
1221 {
1222 #ifdef CONFIG_HIGHMEM
1223 BUG_ON(in_irq());
1224
1225 local_bh_disable();
1226 #endif
1227 return kmap_atomic(frag->page, KM_SKB_DATA_SOFTIRQ);
1228 }
1229
1230 static inline void kunmap_skb_frag(void *vaddr)
1231 {
1232 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
1233 #ifdef CONFIG_HIGHMEM
1234 local_bh_enable();
1235 #endif
1236 }
1237
1238 #define skb_queue_walk(queue, skb) \
1239 for (skb = (queue)->next; \
1240 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1241 skb = skb->next)
1242
1243 #define skb_queue_reverse_walk(queue, skb) \
1244 for (skb = (queue)->prev; \
1245 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1246 skb = skb->prev)
1247
1248
1249 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1250 int noblock, int *err);
1251 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1252 struct poll_table_struct *wait);
1253 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1254 int offset, struct iovec *to,
1255 int size);
1256 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1257 int hlen,
1258 struct iovec *iov);
1259 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1260 extern void skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1261 unsigned int flags);
1262 extern unsigned int skb_checksum(const struct sk_buff *skb, int offset,
1263 int len, unsigned int csum);
1264 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1265 void *to, int len);
1266 extern int skb_store_bits(const struct sk_buff *skb, int offset,
1267 void *from, int len);
1268 extern unsigned int skb_copy_and_csum_bits(const struct sk_buff *skb,
1269 int offset, u8 *to, int len,
1270 unsigned int csum);
1271 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1272 extern void skb_split(struct sk_buff *skb,
1273 struct sk_buff *skb1, const u32 len);
1274
1275 extern void skb_release_data(struct sk_buff *skb);
1276
1277 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1278 int len, void *buffer)
1279 {
1280 int hlen = skb_headlen(skb);
1281
1282 if (hlen - offset >= len)
1283 return skb->data + offset;
1284
1285 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1286 return NULL;
1287
1288 return buffer;
1289 }
1290
1291 extern void skb_init(void);
1292 extern void skb_add_mtu(int mtu);
1293
1294 /**
1295 * skb_get_timestamp - get timestamp from a skb
1296 * @skb: skb to get stamp from
1297 * @stamp: pointer to struct timeval to store stamp in
1298 *
1299 * Timestamps are stored in the skb as offsets to a base timestamp.
1300 * This function converts the offset back to a struct timeval and stores
1301 * it in stamp.
1302 */
1303 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1304 {
1305 stamp->tv_sec = skb->tstamp.off_sec;
1306 stamp->tv_usec = skb->tstamp.off_usec;
1307 }
1308
1309 /**
1310 * skb_set_timestamp - set timestamp of a skb
1311 * @skb: skb to set stamp of
1312 * @stamp: pointer to struct timeval to get stamp from
1313 *
1314 * Timestamps are stored in the skb as offsets to a base timestamp.
1315 * This function converts a struct timeval to an offset and stores
1316 * it in the skb.
1317 */
1318 static inline void skb_set_timestamp(struct sk_buff *skb, const struct timeval *stamp)
1319 {
1320 skb->tstamp.off_sec = stamp->tv_sec;
1321 skb->tstamp.off_usec = stamp->tv_usec;
1322 }
1323
1324 extern void __net_timestamp(struct sk_buff *skb);
1325
1326 extern unsigned int __skb_checksum_complete(struct sk_buff *skb);
1327
1328 /**
1329 * skb_checksum_complete - Calculate checksum of an entire packet
1330 * @skb: packet to process
1331 *
1332 * This function calculates the checksum over the entire packet plus
1333 * the value of skb->csum. The latter can be used to supply the
1334 * checksum of a pseudo header as used by TCP/UDP. It returns the
1335 * checksum.
1336 *
1337 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
1338 * this function can be used to verify that checksum on received
1339 * packets. In that case the function should return zero if the
1340 * checksum is correct. In particular, this function will return zero
1341 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1342 * hardware has already verified the correctness of the checksum.
1343 */
1344 static inline unsigned int skb_checksum_complete(struct sk_buff *skb)
1345 {
1346 return skb->ip_summed != CHECKSUM_UNNECESSARY &&
1347 __skb_checksum_complete(skb);
1348 }
1349
1350 #ifdef CONFIG_NETFILTER
1351 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1352 {
1353 if (nfct && atomic_dec_and_test(&nfct->use))
1354 nfct->destroy(nfct);
1355 }
1356 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1357 {
1358 if (nfct)
1359 atomic_inc(&nfct->use);
1360 }
1361 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1362 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1363 {
1364 if (skb)
1365 atomic_inc(&skb->users);
1366 }
1367 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1368 {
1369 if (skb)
1370 kfree_skb(skb);
1371 }
1372 #endif
1373 #ifdef CONFIG_BRIDGE_NETFILTER
1374 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1375 {
1376 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1377 kfree(nf_bridge);
1378 }
1379 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1380 {
1381 if (nf_bridge)
1382 atomic_inc(&nf_bridge->use);
1383 }
1384 #endif /* CONFIG_BRIDGE_NETFILTER */
1385 static inline void nf_reset(struct sk_buff *skb)
1386 {
1387 nf_conntrack_put(skb->nfct);
1388 skb->nfct = NULL;
1389 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1390 nf_conntrack_put_reasm(skb->nfct_reasm);
1391 skb->nfct_reasm = NULL;
1392 #endif
1393 #ifdef CONFIG_BRIDGE_NETFILTER
1394 nf_bridge_put(skb->nf_bridge);
1395 skb->nf_bridge = NULL;
1396 #endif
1397 }
1398
1399 #else /* CONFIG_NETFILTER */
1400 static inline void nf_reset(struct sk_buff *skb) {}
1401 #endif /* CONFIG_NETFILTER */
1402
1403 #endif /* __KERNEL__ */
1404 #endif /* _LINUX_SKBUFF_H */
This page took 0.063158 seconds and 5 git commands to generate.