[PATCH] spinlock consolidation
[deliverable/linux.git] / include / linux / skbuff.h
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/config.h>
18 #include <linux/kernel.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/cache.h>
22
23 #include <asm/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/poll.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32
33 #define HAVE_ALLOC_SKB /* For the drivers to know */
34 #define HAVE_ALIGNABLE_SKB /* Ditto 8) */
35 #define SLAB_SKB /* Slabified skbuffs */
36
37 #define CHECKSUM_NONE 0
38 #define CHECKSUM_HW 1
39 #define CHECKSUM_UNNECESSARY 2
40
41 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
42 ~(SMP_CACHE_BYTES - 1))
43 #define SKB_MAX_ORDER(X, ORDER) (((PAGE_SIZE << (ORDER)) - (X) - \
44 sizeof(struct skb_shared_info)) & \
45 ~(SMP_CACHE_BYTES - 1))
46 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
47 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
48
49 /* A. Checksumming of received packets by device.
50 *
51 * NONE: device failed to checksum this packet.
52 * skb->csum is undefined.
53 *
54 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
55 * skb->csum is undefined.
56 * It is bad option, but, unfortunately, many of vendors do this.
57 * Apparently with secret goal to sell you new device, when you
58 * will add new protocol to your host. F.e. IPv6. 8)
59 *
60 * HW: the most generic way. Device supplied checksum of _all_
61 * the packet as seen by netif_rx in skb->csum.
62 * NOTE: Even if device supports only some protocols, but
63 * is able to produce some skb->csum, it MUST use HW,
64 * not UNNECESSARY.
65 *
66 * B. Checksumming on output.
67 *
68 * NONE: skb is checksummed by protocol or csum is not required.
69 *
70 * HW: device is required to csum packet as seen by hard_start_xmit
71 * from skb->h.raw to the end and to record the checksum
72 * at skb->h.raw+skb->csum.
73 *
74 * Device must show its capabilities in dev->features, set
75 * at device setup time.
76 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
77 * everything.
78 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
79 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
80 * TCP/UDP over IPv4. Sigh. Vendors like this
81 * way by an unknown reason. Though, see comment above
82 * about CHECKSUM_UNNECESSARY. 8)
83 *
84 * Any questions? No questions, good. --ANK
85 */
86
87 struct net_device;
88
89 #ifdef CONFIG_NETFILTER
90 struct nf_conntrack {
91 atomic_t use;
92 void (*destroy)(struct nf_conntrack *);
93 };
94
95 #ifdef CONFIG_BRIDGE_NETFILTER
96 struct nf_bridge_info {
97 atomic_t use;
98 struct net_device *physindev;
99 struct net_device *physoutdev;
100 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
101 struct net_device *netoutdev;
102 #endif
103 unsigned int mask;
104 unsigned long data[32 / sizeof(unsigned long)];
105 };
106 #endif
107
108 #endif
109
110 struct sk_buff_head {
111 /* These two members must be first. */
112 struct sk_buff *next;
113 struct sk_buff *prev;
114
115 __u32 qlen;
116 spinlock_t lock;
117 };
118
119 struct sk_buff;
120
121 /* To allow 64K frame to be packed as single skb without frag_list */
122 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
123
124 typedef struct skb_frag_struct skb_frag_t;
125
126 struct skb_frag_struct {
127 struct page *page;
128 __u16 page_offset;
129 __u16 size;
130 };
131
132 /* This data is invariant across clones and lives at
133 * the end of the header data, ie. at skb->end.
134 */
135 struct skb_shared_info {
136 atomic_t dataref;
137 unsigned int nr_frags;
138 unsigned short tso_size;
139 unsigned short tso_segs;
140 struct sk_buff *frag_list;
141 skb_frag_t frags[MAX_SKB_FRAGS];
142 };
143
144 /* We divide dataref into two halves. The higher 16 bits hold references
145 * to the payload part of skb->data. The lower 16 bits hold references to
146 * the entire skb->data. It is up to the users of the skb to agree on
147 * where the payload starts.
148 *
149 * All users must obey the rule that the skb->data reference count must be
150 * greater than or equal to the payload reference count.
151 *
152 * Holding a reference to the payload part means that the user does not
153 * care about modifications to the header part of skb->data.
154 */
155 #define SKB_DATAREF_SHIFT 16
156 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
157
158 extern struct timeval skb_tv_base;
159
160 struct skb_timeval {
161 u32 off_sec;
162 u32 off_usec;
163 };
164
165
166 enum {
167 SKB_FCLONE_UNAVAILABLE,
168 SKB_FCLONE_ORIG,
169 SKB_FCLONE_CLONE,
170 };
171
172 /**
173 * struct sk_buff - socket buffer
174 * @next: Next buffer in list
175 * @prev: Previous buffer in list
176 * @list: List we are on
177 * @sk: Socket we are owned by
178 * @tstamp: Time we arrived stored as offset to skb_tv_base
179 * @dev: Device we arrived on/are leaving by
180 * @input_dev: Device we arrived on
181 * @h: Transport layer header
182 * @nh: Network layer header
183 * @mac: Link layer header
184 * @dst: destination entry
185 * @sp: the security path, used for xfrm
186 * @cb: Control buffer. Free for use by every layer. Put private vars here
187 * @len: Length of actual data
188 * @data_len: Data length
189 * @mac_len: Length of link layer header
190 * @csum: Checksum
191 * @local_df: allow local fragmentation
192 * @cloned: Head may be cloned (check refcnt to be sure)
193 * @nohdr: Payload reference only, must not modify header
194 * @pkt_type: Packet class
195 * @ip_summed: Driver fed us an IP checksum
196 * @priority: Packet queueing priority
197 * @users: User count - see {datagram,tcp}.c
198 * @protocol: Packet protocol from driver
199 * @truesize: Buffer size
200 * @head: Head of buffer
201 * @data: Data head pointer
202 * @tail: Tail pointer
203 * @end: End pointer
204 * @destructor: Destruct function
205 * @nfmark: Can be used for communication between hooks
206 * @nfct: Associated connection, if any
207 * @nfctinfo: Relationship of this skb to the connection
208 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
209 * @tc_index: Traffic control index
210 * @tc_verd: traffic control verdict
211 */
212
213 struct sk_buff {
214 /* These two members must be first. */
215 struct sk_buff *next;
216 struct sk_buff *prev;
217
218 struct sock *sk;
219 struct skb_timeval tstamp;
220 struct net_device *dev;
221 struct net_device *input_dev;
222
223 union {
224 struct tcphdr *th;
225 struct udphdr *uh;
226 struct icmphdr *icmph;
227 struct igmphdr *igmph;
228 struct iphdr *ipiph;
229 struct ipv6hdr *ipv6h;
230 unsigned char *raw;
231 } h;
232
233 union {
234 struct iphdr *iph;
235 struct ipv6hdr *ipv6h;
236 struct arphdr *arph;
237 unsigned char *raw;
238 } nh;
239
240 union {
241 unsigned char *raw;
242 } mac;
243
244 struct dst_entry *dst;
245 struct sec_path *sp;
246
247 /*
248 * This is the control buffer. It is free to use for every
249 * layer. Please put your private variables there. If you
250 * want to keep them across layers you have to do a skb_clone()
251 * first. This is owned by whoever has the skb queued ATM.
252 */
253 char cb[40];
254
255 unsigned int len,
256 data_len,
257 mac_len,
258 csum;
259 __u32 priority;
260 __u8 local_df:1,
261 cloned:1,
262 ip_summed:2,
263 nohdr:1,
264 nfctinfo:3;
265 __u8 pkt_type:3,
266 fclone:2;
267 __be16 protocol;
268
269 void (*destructor)(struct sk_buff *skb);
270 #ifdef CONFIG_NETFILTER
271 __u32 nfmark;
272 struct nf_conntrack *nfct;
273 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
274 __u8 ipvs_property:1;
275 #endif
276 #ifdef CONFIG_BRIDGE_NETFILTER
277 struct nf_bridge_info *nf_bridge;
278 #endif
279 #endif /* CONFIG_NETFILTER */
280 #ifdef CONFIG_NET_SCHED
281 __u16 tc_index; /* traffic control index */
282 #ifdef CONFIG_NET_CLS_ACT
283 __u16 tc_verd; /* traffic control verdict */
284 #endif
285 #endif
286
287
288 /* These elements must be at the end, see alloc_skb() for details. */
289 unsigned int truesize;
290 atomic_t users;
291 unsigned char *head,
292 *data,
293 *tail,
294 *end;
295 };
296
297 #ifdef __KERNEL__
298 /*
299 * Handling routines are only of interest to the kernel
300 */
301 #include <linux/slab.h>
302
303 #include <asm/system.h>
304
305 extern void __kfree_skb(struct sk_buff *skb);
306 extern struct sk_buff *__alloc_skb(unsigned int size,
307 unsigned int __nocast priority, int fclone);
308 static inline struct sk_buff *alloc_skb(unsigned int size,
309 unsigned int __nocast priority)
310 {
311 return __alloc_skb(size, priority, 0);
312 }
313
314 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
315 unsigned int __nocast priority)
316 {
317 return __alloc_skb(size, priority, 1);
318 }
319
320 extern struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp,
321 unsigned int size,
322 unsigned int __nocast priority);
323 extern void kfree_skbmem(struct sk_buff *skb);
324 extern struct sk_buff *skb_clone(struct sk_buff *skb,
325 unsigned int __nocast priority);
326 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
327 unsigned int __nocast priority);
328 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
329 unsigned int __nocast gfp_mask);
330 extern int pskb_expand_head(struct sk_buff *skb,
331 int nhead, int ntail,
332 unsigned int __nocast gfp_mask);
333 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
334 unsigned int headroom);
335 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
336 int newheadroom, int newtailroom,
337 unsigned int __nocast priority);
338 extern struct sk_buff * skb_pad(struct sk_buff *skb, int pad);
339 #define dev_kfree_skb(a) kfree_skb(a)
340 extern void skb_over_panic(struct sk_buff *skb, int len,
341 void *here);
342 extern void skb_under_panic(struct sk_buff *skb, int len,
343 void *here);
344
345 struct skb_seq_state
346 {
347 __u32 lower_offset;
348 __u32 upper_offset;
349 __u32 frag_idx;
350 __u32 stepped_offset;
351 struct sk_buff *root_skb;
352 struct sk_buff *cur_skb;
353 __u8 *frag_data;
354 };
355
356 extern void skb_prepare_seq_read(struct sk_buff *skb,
357 unsigned int from, unsigned int to,
358 struct skb_seq_state *st);
359 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
360 struct skb_seq_state *st);
361 extern void skb_abort_seq_read(struct skb_seq_state *st);
362
363 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
364 unsigned int to, struct ts_config *config,
365 struct ts_state *state);
366
367 /* Internal */
368 #define skb_shinfo(SKB) ((struct skb_shared_info *)((SKB)->end))
369
370 /**
371 * skb_queue_empty - check if a queue is empty
372 * @list: queue head
373 *
374 * Returns true if the queue is empty, false otherwise.
375 */
376 static inline int skb_queue_empty(const struct sk_buff_head *list)
377 {
378 return list->next == (struct sk_buff *)list;
379 }
380
381 /**
382 * skb_get - reference buffer
383 * @skb: buffer to reference
384 *
385 * Makes another reference to a socket buffer and returns a pointer
386 * to the buffer.
387 */
388 static inline struct sk_buff *skb_get(struct sk_buff *skb)
389 {
390 atomic_inc(&skb->users);
391 return skb;
392 }
393
394 /*
395 * If users == 1, we are the only owner and are can avoid redundant
396 * atomic change.
397 */
398
399 /**
400 * kfree_skb - free an sk_buff
401 * @skb: buffer to free
402 *
403 * Drop a reference to the buffer and free it if the usage count has
404 * hit zero.
405 */
406 static inline void kfree_skb(struct sk_buff *skb)
407 {
408 if (likely(atomic_read(&skb->users) == 1))
409 smp_rmb();
410 else if (likely(!atomic_dec_and_test(&skb->users)))
411 return;
412 __kfree_skb(skb);
413 }
414
415 /**
416 * skb_cloned - is the buffer a clone
417 * @skb: buffer to check
418 *
419 * Returns true if the buffer was generated with skb_clone() and is
420 * one of multiple shared copies of the buffer. Cloned buffers are
421 * shared data so must not be written to under normal circumstances.
422 */
423 static inline int skb_cloned(const struct sk_buff *skb)
424 {
425 return skb->cloned &&
426 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
427 }
428
429 /**
430 * skb_header_cloned - is the header a clone
431 * @skb: buffer to check
432 *
433 * Returns true if modifying the header part of the buffer requires
434 * the data to be copied.
435 */
436 static inline int skb_header_cloned(const struct sk_buff *skb)
437 {
438 int dataref;
439
440 if (!skb->cloned)
441 return 0;
442
443 dataref = atomic_read(&skb_shinfo(skb)->dataref);
444 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
445 return dataref != 1;
446 }
447
448 /**
449 * skb_header_release - release reference to header
450 * @skb: buffer to operate on
451 *
452 * Drop a reference to the header part of the buffer. This is done
453 * by acquiring a payload reference. You must not read from the header
454 * part of skb->data after this.
455 */
456 static inline void skb_header_release(struct sk_buff *skb)
457 {
458 BUG_ON(skb->nohdr);
459 skb->nohdr = 1;
460 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
461 }
462
463 /**
464 * skb_shared - is the buffer shared
465 * @skb: buffer to check
466 *
467 * Returns true if more than one person has a reference to this
468 * buffer.
469 */
470 static inline int skb_shared(const struct sk_buff *skb)
471 {
472 return atomic_read(&skb->users) != 1;
473 }
474
475 /**
476 * skb_share_check - check if buffer is shared and if so clone it
477 * @skb: buffer to check
478 * @pri: priority for memory allocation
479 *
480 * If the buffer is shared the buffer is cloned and the old copy
481 * drops a reference. A new clone with a single reference is returned.
482 * If the buffer is not shared the original buffer is returned. When
483 * being called from interrupt status or with spinlocks held pri must
484 * be GFP_ATOMIC.
485 *
486 * NULL is returned on a memory allocation failure.
487 */
488 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
489 unsigned int __nocast pri)
490 {
491 might_sleep_if(pri & __GFP_WAIT);
492 if (skb_shared(skb)) {
493 struct sk_buff *nskb = skb_clone(skb, pri);
494 kfree_skb(skb);
495 skb = nskb;
496 }
497 return skb;
498 }
499
500 /*
501 * Copy shared buffers into a new sk_buff. We effectively do COW on
502 * packets to handle cases where we have a local reader and forward
503 * and a couple of other messy ones. The normal one is tcpdumping
504 * a packet thats being forwarded.
505 */
506
507 /**
508 * skb_unshare - make a copy of a shared buffer
509 * @skb: buffer to check
510 * @pri: priority for memory allocation
511 *
512 * If the socket buffer is a clone then this function creates a new
513 * copy of the data, drops a reference count on the old copy and returns
514 * the new copy with the reference count at 1. If the buffer is not a clone
515 * the original buffer is returned. When called with a spinlock held or
516 * from interrupt state @pri must be %GFP_ATOMIC
517 *
518 * %NULL is returned on a memory allocation failure.
519 */
520 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
521 unsigned int __nocast pri)
522 {
523 might_sleep_if(pri & __GFP_WAIT);
524 if (skb_cloned(skb)) {
525 struct sk_buff *nskb = skb_copy(skb, pri);
526 kfree_skb(skb); /* Free our shared copy */
527 skb = nskb;
528 }
529 return skb;
530 }
531
532 /**
533 * skb_peek
534 * @list_: list to peek at
535 *
536 * Peek an &sk_buff. Unlike most other operations you _MUST_
537 * be careful with this one. A peek leaves the buffer on the
538 * list and someone else may run off with it. You must hold
539 * the appropriate locks or have a private queue to do this.
540 *
541 * Returns %NULL for an empty list or a pointer to the head element.
542 * The reference count is not incremented and the reference is therefore
543 * volatile. Use with caution.
544 */
545 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
546 {
547 struct sk_buff *list = ((struct sk_buff *)list_)->next;
548 if (list == (struct sk_buff *)list_)
549 list = NULL;
550 return list;
551 }
552
553 /**
554 * skb_peek_tail
555 * @list_: list to peek at
556 *
557 * Peek an &sk_buff. Unlike most other operations you _MUST_
558 * be careful with this one. A peek leaves the buffer on the
559 * list and someone else may run off with it. You must hold
560 * the appropriate locks or have a private queue to do this.
561 *
562 * Returns %NULL for an empty list or a pointer to the tail element.
563 * The reference count is not incremented and the reference is therefore
564 * volatile. Use with caution.
565 */
566 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
567 {
568 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
569 if (list == (struct sk_buff *)list_)
570 list = NULL;
571 return list;
572 }
573
574 /**
575 * skb_queue_len - get queue length
576 * @list_: list to measure
577 *
578 * Return the length of an &sk_buff queue.
579 */
580 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
581 {
582 return list_->qlen;
583 }
584
585 static inline void skb_queue_head_init(struct sk_buff_head *list)
586 {
587 spin_lock_init(&list->lock);
588 list->prev = list->next = (struct sk_buff *)list;
589 list->qlen = 0;
590 }
591
592 /*
593 * Insert an sk_buff at the start of a list.
594 *
595 * The "__skb_xxxx()" functions are the non-atomic ones that
596 * can only be called with interrupts disabled.
597 */
598
599 /**
600 * __skb_queue_head - queue a buffer at the list head
601 * @list: list to use
602 * @newsk: buffer to queue
603 *
604 * Queue a buffer at the start of a list. This function takes no locks
605 * and you must therefore hold required locks before calling it.
606 *
607 * A buffer cannot be placed on two lists at the same time.
608 */
609 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
610 static inline void __skb_queue_head(struct sk_buff_head *list,
611 struct sk_buff *newsk)
612 {
613 struct sk_buff *prev, *next;
614
615 list->qlen++;
616 prev = (struct sk_buff *)list;
617 next = prev->next;
618 newsk->next = next;
619 newsk->prev = prev;
620 next->prev = prev->next = newsk;
621 }
622
623 /**
624 * __skb_queue_tail - queue a buffer at the list tail
625 * @list: list to use
626 * @newsk: buffer to queue
627 *
628 * Queue a buffer at the end of a list. This function takes no locks
629 * and you must therefore hold required locks before calling it.
630 *
631 * A buffer cannot be placed on two lists at the same time.
632 */
633 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
634 static inline void __skb_queue_tail(struct sk_buff_head *list,
635 struct sk_buff *newsk)
636 {
637 struct sk_buff *prev, *next;
638
639 list->qlen++;
640 next = (struct sk_buff *)list;
641 prev = next->prev;
642 newsk->next = next;
643 newsk->prev = prev;
644 next->prev = prev->next = newsk;
645 }
646
647
648 /**
649 * __skb_dequeue - remove from the head of the queue
650 * @list: list to dequeue from
651 *
652 * Remove the head of the list. This function does not take any locks
653 * so must be used with appropriate locks held only. The head item is
654 * returned or %NULL if the list is empty.
655 */
656 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
657 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
658 {
659 struct sk_buff *next, *prev, *result;
660
661 prev = (struct sk_buff *) list;
662 next = prev->next;
663 result = NULL;
664 if (next != prev) {
665 result = next;
666 next = next->next;
667 list->qlen--;
668 next->prev = prev;
669 prev->next = next;
670 result->next = result->prev = NULL;
671 }
672 return result;
673 }
674
675
676 /*
677 * Insert a packet on a list.
678 */
679 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
680 static inline void __skb_insert(struct sk_buff *newsk,
681 struct sk_buff *prev, struct sk_buff *next,
682 struct sk_buff_head *list)
683 {
684 newsk->next = next;
685 newsk->prev = prev;
686 next->prev = prev->next = newsk;
687 list->qlen++;
688 }
689
690 /*
691 * Place a packet after a given packet in a list.
692 */
693 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
694 static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
695 {
696 __skb_insert(newsk, old, old->next, list);
697 }
698
699 /*
700 * remove sk_buff from list. _Must_ be called atomically, and with
701 * the list known..
702 */
703 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
704 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
705 {
706 struct sk_buff *next, *prev;
707
708 list->qlen--;
709 next = skb->next;
710 prev = skb->prev;
711 skb->next = skb->prev = NULL;
712 next->prev = prev;
713 prev->next = next;
714 }
715
716
717 /* XXX: more streamlined implementation */
718
719 /**
720 * __skb_dequeue_tail - remove from the tail of the queue
721 * @list: list to dequeue from
722 *
723 * Remove the tail of the list. This function does not take any locks
724 * so must be used with appropriate locks held only. The tail item is
725 * returned or %NULL if the list is empty.
726 */
727 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
728 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
729 {
730 struct sk_buff *skb = skb_peek_tail(list);
731 if (skb)
732 __skb_unlink(skb, list);
733 return skb;
734 }
735
736
737 static inline int skb_is_nonlinear(const struct sk_buff *skb)
738 {
739 return skb->data_len;
740 }
741
742 static inline unsigned int skb_headlen(const struct sk_buff *skb)
743 {
744 return skb->len - skb->data_len;
745 }
746
747 static inline int skb_pagelen(const struct sk_buff *skb)
748 {
749 int i, len = 0;
750
751 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
752 len += skb_shinfo(skb)->frags[i].size;
753 return len + skb_headlen(skb);
754 }
755
756 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
757 struct page *page, int off, int size)
758 {
759 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
760
761 frag->page = page;
762 frag->page_offset = off;
763 frag->size = size;
764 skb_shinfo(skb)->nr_frags = i + 1;
765 }
766
767 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
768 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
769 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
770
771 /*
772 * Add data to an sk_buff
773 */
774 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
775 {
776 unsigned char *tmp = skb->tail;
777 SKB_LINEAR_ASSERT(skb);
778 skb->tail += len;
779 skb->len += len;
780 return tmp;
781 }
782
783 /**
784 * skb_put - add data to a buffer
785 * @skb: buffer to use
786 * @len: amount of data to add
787 *
788 * This function extends the used data area of the buffer. If this would
789 * exceed the total buffer size the kernel will panic. A pointer to the
790 * first byte of the extra data is returned.
791 */
792 static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
793 {
794 unsigned char *tmp = skb->tail;
795 SKB_LINEAR_ASSERT(skb);
796 skb->tail += len;
797 skb->len += len;
798 if (unlikely(skb->tail>skb->end))
799 skb_over_panic(skb, len, current_text_addr());
800 return tmp;
801 }
802
803 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
804 {
805 skb->data -= len;
806 skb->len += len;
807 return skb->data;
808 }
809
810 /**
811 * skb_push - add data to the start of a buffer
812 * @skb: buffer to use
813 * @len: amount of data to add
814 *
815 * This function extends the used data area of the buffer at the buffer
816 * start. If this would exceed the total buffer headroom the kernel will
817 * panic. A pointer to the first byte of the extra data is returned.
818 */
819 static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
820 {
821 skb->data -= len;
822 skb->len += len;
823 if (unlikely(skb->data<skb->head))
824 skb_under_panic(skb, len, current_text_addr());
825 return skb->data;
826 }
827
828 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
829 {
830 skb->len -= len;
831 BUG_ON(skb->len < skb->data_len);
832 return skb->data += len;
833 }
834
835 /**
836 * skb_pull - remove data from the start of a buffer
837 * @skb: buffer to use
838 * @len: amount of data to remove
839 *
840 * This function removes data from the start of a buffer, returning
841 * the memory to the headroom. A pointer to the next data in the buffer
842 * is returned. Once the data has been pulled future pushes will overwrite
843 * the old data.
844 */
845 static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
846 {
847 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
848 }
849
850 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
851
852 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
853 {
854 if (len > skb_headlen(skb) &&
855 !__pskb_pull_tail(skb, len-skb_headlen(skb)))
856 return NULL;
857 skb->len -= len;
858 return skb->data += len;
859 }
860
861 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
862 {
863 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
864 }
865
866 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
867 {
868 if (likely(len <= skb_headlen(skb)))
869 return 1;
870 if (unlikely(len > skb->len))
871 return 0;
872 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
873 }
874
875 /**
876 * skb_headroom - bytes at buffer head
877 * @skb: buffer to check
878 *
879 * Return the number of bytes of free space at the head of an &sk_buff.
880 */
881 static inline int skb_headroom(const struct sk_buff *skb)
882 {
883 return skb->data - skb->head;
884 }
885
886 /**
887 * skb_tailroom - bytes at buffer end
888 * @skb: buffer to check
889 *
890 * Return the number of bytes of free space at the tail of an sk_buff
891 */
892 static inline int skb_tailroom(const struct sk_buff *skb)
893 {
894 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
895 }
896
897 /**
898 * skb_reserve - adjust headroom
899 * @skb: buffer to alter
900 * @len: bytes to move
901 *
902 * Increase the headroom of an empty &sk_buff by reducing the tail
903 * room. This is only allowed for an empty buffer.
904 */
905 static inline void skb_reserve(struct sk_buff *skb, unsigned int len)
906 {
907 skb->data += len;
908 skb->tail += len;
909 }
910
911 /*
912 * CPUs often take a performance hit when accessing unaligned memory
913 * locations. The actual performance hit varies, it can be small if the
914 * hardware handles it or large if we have to take an exception and fix it
915 * in software.
916 *
917 * Since an ethernet header is 14 bytes network drivers often end up with
918 * the IP header at an unaligned offset. The IP header can be aligned by
919 * shifting the start of the packet by 2 bytes. Drivers should do this
920 * with:
921 *
922 * skb_reserve(NET_IP_ALIGN);
923 *
924 * The downside to this alignment of the IP header is that the DMA is now
925 * unaligned. On some architectures the cost of an unaligned DMA is high
926 * and this cost outweighs the gains made by aligning the IP header.
927 *
928 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
929 * to be overridden.
930 */
931 #ifndef NET_IP_ALIGN
932 #define NET_IP_ALIGN 2
933 #endif
934
935 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len, int realloc);
936
937 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
938 {
939 if (!skb->data_len) {
940 skb->len = len;
941 skb->tail = skb->data + len;
942 } else
943 ___pskb_trim(skb, len, 0);
944 }
945
946 /**
947 * skb_trim - remove end from a buffer
948 * @skb: buffer to alter
949 * @len: new length
950 *
951 * Cut the length of a buffer down by removing data from the tail. If
952 * the buffer is already under the length specified it is not modified.
953 */
954 static inline void skb_trim(struct sk_buff *skb, unsigned int len)
955 {
956 if (skb->len > len)
957 __skb_trim(skb, len);
958 }
959
960
961 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
962 {
963 if (!skb->data_len) {
964 skb->len = len;
965 skb->tail = skb->data+len;
966 return 0;
967 }
968 return ___pskb_trim(skb, len, 1);
969 }
970
971 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
972 {
973 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
974 }
975
976 /**
977 * skb_orphan - orphan a buffer
978 * @skb: buffer to orphan
979 *
980 * If a buffer currently has an owner then we call the owner's
981 * destructor function and make the @skb unowned. The buffer continues
982 * to exist but is no longer charged to its former owner.
983 */
984 static inline void skb_orphan(struct sk_buff *skb)
985 {
986 if (skb->destructor)
987 skb->destructor(skb);
988 skb->destructor = NULL;
989 skb->sk = NULL;
990 }
991
992 /**
993 * __skb_queue_purge - empty a list
994 * @list: list to empty
995 *
996 * Delete all buffers on an &sk_buff list. Each buffer is removed from
997 * the list and one reference dropped. This function does not take the
998 * list lock and the caller must hold the relevant locks to use it.
999 */
1000 extern void skb_queue_purge(struct sk_buff_head *list);
1001 static inline void __skb_queue_purge(struct sk_buff_head *list)
1002 {
1003 struct sk_buff *skb;
1004 while ((skb = __skb_dequeue(list)) != NULL)
1005 kfree_skb(skb);
1006 }
1007
1008 #ifndef CONFIG_HAVE_ARCH_DEV_ALLOC_SKB
1009 /**
1010 * __dev_alloc_skb - allocate an skbuff for sending
1011 * @length: length to allocate
1012 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1013 *
1014 * Allocate a new &sk_buff and assign it a usage count of one. The
1015 * buffer has unspecified headroom built in. Users should allocate
1016 * the headroom they think they need without accounting for the
1017 * built in space. The built in space is used for optimisations.
1018 *
1019 * %NULL is returned in there is no free memory.
1020 */
1021 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1022 unsigned int __nocast gfp_mask)
1023 {
1024 struct sk_buff *skb = alloc_skb(length + 16, gfp_mask);
1025 if (likely(skb))
1026 skb_reserve(skb, 16);
1027 return skb;
1028 }
1029 #else
1030 extern struct sk_buff *__dev_alloc_skb(unsigned int length, int gfp_mask);
1031 #endif
1032
1033 /**
1034 * dev_alloc_skb - allocate an skbuff for sending
1035 * @length: length to allocate
1036 *
1037 * Allocate a new &sk_buff and assign it a usage count of one. The
1038 * buffer has unspecified headroom built in. Users should allocate
1039 * the headroom they think they need without accounting for the
1040 * built in space. The built in space is used for optimisations.
1041 *
1042 * %NULL is returned in there is no free memory. Although this function
1043 * allocates memory it can be called from an interrupt.
1044 */
1045 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1046 {
1047 return __dev_alloc_skb(length, GFP_ATOMIC);
1048 }
1049
1050 /**
1051 * skb_cow - copy header of skb when it is required
1052 * @skb: buffer to cow
1053 * @headroom: needed headroom
1054 *
1055 * If the skb passed lacks sufficient headroom or its data part
1056 * is shared, data is reallocated. If reallocation fails, an error
1057 * is returned and original skb is not changed.
1058 *
1059 * The result is skb with writable area skb->head...skb->tail
1060 * and at least @headroom of space at head.
1061 */
1062 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1063 {
1064 int delta = (headroom > 16 ? headroom : 16) - skb_headroom(skb);
1065
1066 if (delta < 0)
1067 delta = 0;
1068
1069 if (delta || skb_cloned(skb))
1070 return pskb_expand_head(skb, (delta + 15) & ~15, 0, GFP_ATOMIC);
1071 return 0;
1072 }
1073
1074 /**
1075 * skb_padto - pad an skbuff up to a minimal size
1076 * @skb: buffer to pad
1077 * @len: minimal length
1078 *
1079 * Pads up a buffer to ensure the trailing bytes exist and are
1080 * blanked. If the buffer already contains sufficient data it
1081 * is untouched. Returns the buffer, which may be a replacement
1082 * for the original, or NULL for out of memory - in which case
1083 * the original buffer is still freed.
1084 */
1085
1086 static inline struct sk_buff *skb_padto(struct sk_buff *skb, unsigned int len)
1087 {
1088 unsigned int size = skb->len;
1089 if (likely(size >= len))
1090 return skb;
1091 return skb_pad(skb, len-size);
1092 }
1093
1094 static inline int skb_add_data(struct sk_buff *skb,
1095 char __user *from, int copy)
1096 {
1097 const int off = skb->len;
1098
1099 if (skb->ip_summed == CHECKSUM_NONE) {
1100 int err = 0;
1101 unsigned int csum = csum_and_copy_from_user(from,
1102 skb_put(skb, copy),
1103 copy, 0, &err);
1104 if (!err) {
1105 skb->csum = csum_block_add(skb->csum, csum, off);
1106 return 0;
1107 }
1108 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1109 return 0;
1110
1111 __skb_trim(skb, off);
1112 return -EFAULT;
1113 }
1114
1115 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1116 struct page *page, int off)
1117 {
1118 if (i) {
1119 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1120
1121 return page == frag->page &&
1122 off == frag->page_offset + frag->size;
1123 }
1124 return 0;
1125 }
1126
1127 /**
1128 * skb_linearize - convert paged skb to linear one
1129 * @skb: buffer to linarize
1130 * @gfp: allocation mode
1131 *
1132 * If there is no free memory -ENOMEM is returned, otherwise zero
1133 * is returned and the old skb data released.
1134 */
1135 extern int __skb_linearize(struct sk_buff *skb, unsigned int __nocast gfp);
1136 static inline int skb_linearize(struct sk_buff *skb, unsigned int __nocast gfp)
1137 {
1138 return __skb_linearize(skb, gfp);
1139 }
1140
1141 /**
1142 * skb_postpull_rcsum - update checksum for received skb after pull
1143 * @skb: buffer to update
1144 * @start: start of data before pull
1145 * @len: length of data pulled
1146 *
1147 * After doing a pull on a received packet, you need to call this to
1148 * update the CHECKSUM_HW checksum, or set ip_summed to CHECKSUM_NONE
1149 * so that it can be recomputed from scratch.
1150 */
1151
1152 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1153 const void *start, int len)
1154 {
1155 if (skb->ip_summed == CHECKSUM_HW)
1156 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1157 }
1158
1159 /**
1160 * pskb_trim_rcsum - trim received skb and update checksum
1161 * @skb: buffer to trim
1162 * @len: new length
1163 *
1164 * This is exactly the same as pskb_trim except that it ensures the
1165 * checksum of received packets are still valid after the operation.
1166 */
1167
1168 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1169 {
1170 if (likely(len >= skb->len))
1171 return 0;
1172 if (skb->ip_summed == CHECKSUM_HW)
1173 skb->ip_summed = CHECKSUM_NONE;
1174 return __pskb_trim(skb, len);
1175 }
1176
1177 static inline void *kmap_skb_frag(const skb_frag_t *frag)
1178 {
1179 #ifdef CONFIG_HIGHMEM
1180 BUG_ON(in_irq());
1181
1182 local_bh_disable();
1183 #endif
1184 return kmap_atomic(frag->page, KM_SKB_DATA_SOFTIRQ);
1185 }
1186
1187 static inline void kunmap_skb_frag(void *vaddr)
1188 {
1189 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
1190 #ifdef CONFIG_HIGHMEM
1191 local_bh_enable();
1192 #endif
1193 }
1194
1195 #define skb_queue_walk(queue, skb) \
1196 for (skb = (queue)->next; \
1197 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1198 skb = skb->next)
1199
1200
1201 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1202 int noblock, int *err);
1203 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1204 struct poll_table_struct *wait);
1205 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1206 int offset, struct iovec *to,
1207 int size);
1208 extern int skb_copy_and_csum_datagram_iovec(const
1209 struct sk_buff *skb,
1210 int hlen,
1211 struct iovec *iov);
1212 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1213 extern unsigned int skb_checksum(const struct sk_buff *skb, int offset,
1214 int len, unsigned int csum);
1215 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1216 void *to, int len);
1217 extern int skb_store_bits(const struct sk_buff *skb, int offset,
1218 void *from, int len);
1219 extern unsigned int skb_copy_and_csum_bits(const struct sk_buff *skb,
1220 int offset, u8 *to, int len,
1221 unsigned int csum);
1222 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1223 extern void skb_split(struct sk_buff *skb,
1224 struct sk_buff *skb1, const u32 len);
1225
1226 extern void skb_release_data(struct sk_buff *skb);
1227
1228 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1229 int len, void *buffer)
1230 {
1231 int hlen = skb_headlen(skb);
1232
1233 if (hlen - offset >= len)
1234 return skb->data + offset;
1235
1236 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1237 return NULL;
1238
1239 return buffer;
1240 }
1241
1242 extern void skb_init(void);
1243 extern void skb_add_mtu(int mtu);
1244
1245 /**
1246 * skb_get_timestamp - get timestamp from a skb
1247 * @skb: skb to get stamp from
1248 * @stamp: pointer to struct timeval to store stamp in
1249 *
1250 * Timestamps are stored in the skb as offsets to a base timestamp.
1251 * This function converts the offset back to a struct timeval and stores
1252 * it in stamp.
1253 */
1254 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1255 {
1256 stamp->tv_sec = skb->tstamp.off_sec;
1257 stamp->tv_usec = skb->tstamp.off_usec;
1258 if (skb->tstamp.off_sec) {
1259 stamp->tv_sec += skb_tv_base.tv_sec;
1260 stamp->tv_usec += skb_tv_base.tv_usec;
1261 }
1262 }
1263
1264 /**
1265 * skb_set_timestamp - set timestamp of a skb
1266 * @skb: skb to set stamp of
1267 * @stamp: pointer to struct timeval to get stamp from
1268 *
1269 * Timestamps are stored in the skb as offsets to a base timestamp.
1270 * This function converts a struct timeval to an offset and stores
1271 * it in the skb.
1272 */
1273 static inline void skb_set_timestamp(struct sk_buff *skb, const struct timeval *stamp)
1274 {
1275 skb->tstamp.off_sec = stamp->tv_sec - skb_tv_base.tv_sec;
1276 skb->tstamp.off_usec = stamp->tv_usec - skb_tv_base.tv_usec;
1277 }
1278
1279 extern void __net_timestamp(struct sk_buff *skb);
1280
1281 #ifdef CONFIG_NETFILTER
1282 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1283 {
1284 if (nfct && atomic_dec_and_test(&nfct->use))
1285 nfct->destroy(nfct);
1286 }
1287 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1288 {
1289 if (nfct)
1290 atomic_inc(&nfct->use);
1291 }
1292 static inline void nf_reset(struct sk_buff *skb)
1293 {
1294 nf_conntrack_put(skb->nfct);
1295 skb->nfct = NULL;
1296 }
1297
1298 #ifdef CONFIG_BRIDGE_NETFILTER
1299 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1300 {
1301 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1302 kfree(nf_bridge);
1303 }
1304 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1305 {
1306 if (nf_bridge)
1307 atomic_inc(&nf_bridge->use);
1308 }
1309 #endif /* CONFIG_BRIDGE_NETFILTER */
1310 #else /* CONFIG_NETFILTER */
1311 static inline void nf_reset(struct sk_buff *skb) {}
1312 #endif /* CONFIG_NETFILTER */
1313
1314 #endif /* __KERNEL__ */
1315 #endif /* _LINUX_SKBUFF_H */
This page took 0.06047 seconds and 5 git commands to generate.