ipip: add GSO/TSO support
[deliverable/linux.git] / include / linux / skbuff.h
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/bug.h>
22 #include <linux/cache.h>
23
24 #include <linux/atomic.h>
25 #include <asm/types.h>
26 #include <linux/spinlock.h>
27 #include <linux/net.h>
28 #include <linux/textsearch.h>
29 #include <net/checksum.h>
30 #include <linux/rcupdate.h>
31 #include <linux/dmaengine.h>
32 #include <linux/hrtimer.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/netdev_features.h>
35 #include <net/flow_keys.h>
36
37 /* Don't change this without changing skb_csum_unnecessary! */
38 #define CHECKSUM_NONE 0
39 #define CHECKSUM_UNNECESSARY 1
40 #define CHECKSUM_COMPLETE 2
41 #define CHECKSUM_PARTIAL 3
42
43 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
44 ~(SMP_CACHE_BYTES - 1))
45 #define SKB_WITH_OVERHEAD(X) \
46 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
47 #define SKB_MAX_ORDER(X, ORDER) \
48 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
49 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
50 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
51
52 /* return minimum truesize of one skb containing X bytes of data */
53 #define SKB_TRUESIZE(X) ((X) + \
54 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
55 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
56
57 /* A. Checksumming of received packets by device.
58 *
59 * NONE: device failed to checksum this packet.
60 * skb->csum is undefined.
61 *
62 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
63 * skb->csum is undefined.
64 * It is bad option, but, unfortunately, many of vendors do this.
65 * Apparently with secret goal to sell you new device, when you
66 * will add new protocol to your host. F.e. IPv6. 8)
67 *
68 * COMPLETE: the most generic way. Device supplied checksum of _all_
69 * the packet as seen by netif_rx in skb->csum.
70 * NOTE: Even if device supports only some protocols, but
71 * is able to produce some skb->csum, it MUST use COMPLETE,
72 * not UNNECESSARY.
73 *
74 * PARTIAL: identical to the case for output below. This may occur
75 * on a packet received directly from another Linux OS, e.g.,
76 * a virtualised Linux kernel on the same host. The packet can
77 * be treated in the same way as UNNECESSARY except that on
78 * output (i.e., forwarding) the checksum must be filled in
79 * by the OS or the hardware.
80 *
81 * B. Checksumming on output.
82 *
83 * NONE: skb is checksummed by protocol or csum is not required.
84 *
85 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
86 * from skb->csum_start to the end and to record the checksum
87 * at skb->csum_start + skb->csum_offset.
88 *
89 * Device must show its capabilities in dev->features, set
90 * at device setup time.
91 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
92 * everything.
93 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
94 * TCP/UDP over IPv4. Sigh. Vendors like this
95 * way by an unknown reason. Though, see comment above
96 * about CHECKSUM_UNNECESSARY. 8)
97 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
98 *
99 * UNNECESSARY: device will do per protocol specific csum. Protocol drivers
100 * that do not want net to perform the checksum calculation should use
101 * this flag in their outgoing skbs.
102 * NETIF_F_FCOE_CRC this indicates the device can do FCoE FC CRC
103 * offload. Correspondingly, the FCoE protocol driver
104 * stack should use CHECKSUM_UNNECESSARY.
105 *
106 * Any questions? No questions, good. --ANK
107 */
108
109 struct net_device;
110 struct scatterlist;
111 struct pipe_inode_info;
112
113 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
114 struct nf_conntrack {
115 atomic_t use;
116 };
117 #endif
118
119 #ifdef CONFIG_BRIDGE_NETFILTER
120 struct nf_bridge_info {
121 atomic_t use;
122 unsigned int mask;
123 struct net_device *physindev;
124 struct net_device *physoutdev;
125 unsigned long data[32 / sizeof(unsigned long)];
126 };
127 #endif
128
129 struct sk_buff_head {
130 /* These two members must be first. */
131 struct sk_buff *next;
132 struct sk_buff *prev;
133
134 __u32 qlen;
135 spinlock_t lock;
136 };
137
138 struct sk_buff;
139
140 /* To allow 64K frame to be packed as single skb without frag_list we
141 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
142 * buffers which do not start on a page boundary.
143 *
144 * Since GRO uses frags we allocate at least 16 regardless of page
145 * size.
146 */
147 #if (65536/PAGE_SIZE + 1) < 16
148 #define MAX_SKB_FRAGS 16UL
149 #else
150 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
151 #endif
152
153 typedef struct skb_frag_struct skb_frag_t;
154
155 struct skb_frag_struct {
156 struct {
157 struct page *p;
158 } page;
159 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
160 __u32 page_offset;
161 __u32 size;
162 #else
163 __u16 page_offset;
164 __u16 size;
165 #endif
166 };
167
168 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
169 {
170 return frag->size;
171 }
172
173 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
174 {
175 frag->size = size;
176 }
177
178 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
179 {
180 frag->size += delta;
181 }
182
183 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
184 {
185 frag->size -= delta;
186 }
187
188 #define HAVE_HW_TIME_STAMP
189
190 /**
191 * struct skb_shared_hwtstamps - hardware time stamps
192 * @hwtstamp: hardware time stamp transformed into duration
193 * since arbitrary point in time
194 * @syststamp: hwtstamp transformed to system time base
195 *
196 * Software time stamps generated by ktime_get_real() are stored in
197 * skb->tstamp. The relation between the different kinds of time
198 * stamps is as follows:
199 *
200 * syststamp and tstamp can be compared against each other in
201 * arbitrary combinations. The accuracy of a
202 * syststamp/tstamp/"syststamp from other device" comparison is
203 * limited by the accuracy of the transformation into system time
204 * base. This depends on the device driver and its underlying
205 * hardware.
206 *
207 * hwtstamps can only be compared against other hwtstamps from
208 * the same device.
209 *
210 * This structure is attached to packets as part of the
211 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
212 */
213 struct skb_shared_hwtstamps {
214 ktime_t hwtstamp;
215 ktime_t syststamp;
216 };
217
218 /* Definitions for tx_flags in struct skb_shared_info */
219 enum {
220 /* generate hardware time stamp */
221 SKBTX_HW_TSTAMP = 1 << 0,
222
223 /* generate software time stamp */
224 SKBTX_SW_TSTAMP = 1 << 1,
225
226 /* device driver is going to provide hardware time stamp */
227 SKBTX_IN_PROGRESS = 1 << 2,
228
229 /* device driver supports TX zero-copy buffers */
230 SKBTX_DEV_ZEROCOPY = 1 << 3,
231
232 /* generate wifi status information (where possible) */
233 SKBTX_WIFI_STATUS = 1 << 4,
234
235 /* This indicates at least one fragment might be overwritten
236 * (as in vmsplice(), sendfile() ...)
237 * If we need to compute a TX checksum, we'll need to copy
238 * all frags to avoid possible bad checksum
239 */
240 SKBTX_SHARED_FRAG = 1 << 5,
241 };
242
243 /*
244 * The callback notifies userspace to release buffers when skb DMA is done in
245 * lower device, the skb last reference should be 0 when calling this.
246 * The zerocopy_success argument is true if zero copy transmit occurred,
247 * false on data copy or out of memory error caused by data copy attempt.
248 * The ctx field is used to track device context.
249 * The desc field is used to track userspace buffer index.
250 */
251 struct ubuf_info {
252 void (*callback)(struct ubuf_info *, bool zerocopy_success);
253 void *ctx;
254 unsigned long desc;
255 };
256
257 /* This data is invariant across clones and lives at
258 * the end of the header data, ie. at skb->end.
259 */
260 struct skb_shared_info {
261 unsigned char nr_frags;
262 __u8 tx_flags;
263 unsigned short gso_size;
264 /* Warning: this field is not always filled in (UFO)! */
265 unsigned short gso_segs;
266 unsigned short gso_type;
267 struct sk_buff *frag_list;
268 struct skb_shared_hwtstamps hwtstamps;
269 __be32 ip6_frag_id;
270
271 /*
272 * Warning : all fields before dataref are cleared in __alloc_skb()
273 */
274 atomic_t dataref;
275
276 /* Intermediate layers must ensure that destructor_arg
277 * remains valid until skb destructor */
278 void * destructor_arg;
279
280 /* must be last field, see pskb_expand_head() */
281 skb_frag_t frags[MAX_SKB_FRAGS];
282 };
283
284 /* We divide dataref into two halves. The higher 16 bits hold references
285 * to the payload part of skb->data. The lower 16 bits hold references to
286 * the entire skb->data. A clone of a headerless skb holds the length of
287 * the header in skb->hdr_len.
288 *
289 * All users must obey the rule that the skb->data reference count must be
290 * greater than or equal to the payload reference count.
291 *
292 * Holding a reference to the payload part means that the user does not
293 * care about modifications to the header part of skb->data.
294 */
295 #define SKB_DATAREF_SHIFT 16
296 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
297
298
299 enum {
300 SKB_FCLONE_UNAVAILABLE,
301 SKB_FCLONE_ORIG,
302 SKB_FCLONE_CLONE,
303 };
304
305 enum {
306 SKB_GSO_TCPV4 = 1 << 0,
307 SKB_GSO_UDP = 1 << 1,
308
309 /* This indicates the skb is from an untrusted source. */
310 SKB_GSO_DODGY = 1 << 2,
311
312 /* This indicates the tcp segment has CWR set. */
313 SKB_GSO_TCP_ECN = 1 << 3,
314
315 SKB_GSO_TCPV6 = 1 << 4,
316
317 SKB_GSO_FCOE = 1 << 5,
318
319 SKB_GSO_GRE = 1 << 6,
320
321 SKB_GSO_IPIP = 1 << 7,
322
323 SKB_GSO_UDP_TUNNEL = 1 << 8,
324
325 SKB_GSO_MPLS = 1 << 9,
326 };
327
328 #if BITS_PER_LONG > 32
329 #define NET_SKBUFF_DATA_USES_OFFSET 1
330 #endif
331
332 #ifdef NET_SKBUFF_DATA_USES_OFFSET
333 typedef unsigned int sk_buff_data_t;
334 #else
335 typedef unsigned char *sk_buff_data_t;
336 #endif
337
338 #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
339 defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
340 #define NET_SKBUFF_NF_DEFRAG_NEEDED 1
341 #endif
342
343 /**
344 * struct sk_buff - socket buffer
345 * @next: Next buffer in list
346 * @prev: Previous buffer in list
347 * @tstamp: Time we arrived
348 * @sk: Socket we are owned by
349 * @dev: Device we arrived on/are leaving by
350 * @cb: Control buffer. Free for use by every layer. Put private vars here
351 * @_skb_refdst: destination entry (with norefcount bit)
352 * @sp: the security path, used for xfrm
353 * @len: Length of actual data
354 * @data_len: Data length
355 * @mac_len: Length of link layer header
356 * @hdr_len: writable header length of cloned skb
357 * @csum: Checksum (must include start/offset pair)
358 * @csum_start: Offset from skb->head where checksumming should start
359 * @csum_offset: Offset from csum_start where checksum should be stored
360 * @priority: Packet queueing priority
361 * @local_df: allow local fragmentation
362 * @cloned: Head may be cloned (check refcnt to be sure)
363 * @ip_summed: Driver fed us an IP checksum
364 * @nohdr: Payload reference only, must not modify header
365 * @nfctinfo: Relationship of this skb to the connection
366 * @pkt_type: Packet class
367 * @fclone: skbuff clone status
368 * @ipvs_property: skbuff is owned by ipvs
369 * @peeked: this packet has been seen already, so stats have been
370 * done for it, don't do them again
371 * @nf_trace: netfilter packet trace flag
372 * @protocol: Packet protocol from driver
373 * @destructor: Destruct function
374 * @nfct: Associated connection, if any
375 * @nfct_reasm: netfilter conntrack re-assembly pointer
376 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
377 * @skb_iif: ifindex of device we arrived on
378 * @tc_index: Traffic control index
379 * @tc_verd: traffic control verdict
380 * @rxhash: the packet hash computed on receive
381 * @queue_mapping: Queue mapping for multiqueue devices
382 * @ndisc_nodetype: router type (from link layer)
383 * @ooo_okay: allow the mapping of a socket to a queue to be changed
384 * @l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport
385 * ports.
386 * @wifi_acked_valid: wifi_acked was set
387 * @wifi_acked: whether frame was acked on wifi or not
388 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
389 * @dma_cookie: a cookie to one of several possible DMA operations
390 * done by skb DMA functions
391 * @napi_id: id of the NAPI struct this skb came from
392 * @secmark: security marking
393 * @mark: Generic packet mark
394 * @dropcount: total number of sk_receive_queue overflows
395 * @vlan_proto: vlan encapsulation protocol
396 * @vlan_tci: vlan tag control information
397 * @inner_protocol: Protocol (encapsulation)
398 * @inner_transport_header: Inner transport layer header (encapsulation)
399 * @inner_network_header: Network layer header (encapsulation)
400 * @inner_mac_header: Link layer header (encapsulation)
401 * @transport_header: Transport layer header
402 * @network_header: Network layer header
403 * @mac_header: Link layer header
404 * @tail: Tail pointer
405 * @end: End pointer
406 * @head: Head of buffer
407 * @data: Data head pointer
408 * @truesize: Buffer size
409 * @users: User count - see {datagram,tcp}.c
410 */
411
412 struct sk_buff {
413 /* These two members must be first. */
414 struct sk_buff *next;
415 struct sk_buff *prev;
416
417 ktime_t tstamp;
418
419 struct sock *sk;
420 struct net_device *dev;
421
422 /*
423 * This is the control buffer. It is free to use for every
424 * layer. Please put your private variables there. If you
425 * want to keep them across layers you have to do a skb_clone()
426 * first. This is owned by whoever has the skb queued ATM.
427 */
428 char cb[48] __aligned(8);
429
430 unsigned long _skb_refdst;
431 #ifdef CONFIG_XFRM
432 struct sec_path *sp;
433 #endif
434 unsigned int len,
435 data_len;
436 __u16 mac_len,
437 hdr_len;
438 union {
439 __wsum csum;
440 struct {
441 __u16 csum_start;
442 __u16 csum_offset;
443 };
444 };
445 __u32 priority;
446 kmemcheck_bitfield_begin(flags1);
447 __u8 local_df:1,
448 cloned:1,
449 ip_summed:2,
450 nohdr:1,
451 nfctinfo:3;
452 __u8 pkt_type:3,
453 fclone:2,
454 ipvs_property:1,
455 peeked:1,
456 nf_trace:1;
457 kmemcheck_bitfield_end(flags1);
458 __be16 protocol;
459
460 void (*destructor)(struct sk_buff *skb);
461 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
462 struct nf_conntrack *nfct;
463 #endif
464 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
465 struct sk_buff *nfct_reasm;
466 #endif
467 #ifdef CONFIG_BRIDGE_NETFILTER
468 struct nf_bridge_info *nf_bridge;
469 #endif
470
471 int skb_iif;
472
473 __u32 rxhash;
474
475 __be16 vlan_proto;
476 __u16 vlan_tci;
477
478 #ifdef CONFIG_NET_SCHED
479 __u16 tc_index; /* traffic control index */
480 #ifdef CONFIG_NET_CLS_ACT
481 __u16 tc_verd; /* traffic control verdict */
482 #endif
483 #endif
484
485 __u16 queue_mapping;
486 kmemcheck_bitfield_begin(flags2);
487 #ifdef CONFIG_IPV6_NDISC_NODETYPE
488 __u8 ndisc_nodetype:2;
489 #endif
490 __u8 pfmemalloc:1;
491 __u8 ooo_okay:1;
492 __u8 l4_rxhash:1;
493 __u8 wifi_acked_valid:1;
494 __u8 wifi_acked:1;
495 __u8 no_fcs:1;
496 __u8 head_frag:1;
497 /* Encapsulation protocol and NIC drivers should use
498 * this flag to indicate to each other if the skb contains
499 * encapsulated packet or not and maybe use the inner packet
500 * headers if needed
501 */
502 __u8 encapsulation:1;
503 /* 6/8 bit hole (depending on ndisc_nodetype presence) */
504 kmemcheck_bitfield_end(flags2);
505
506 #if defined CONFIG_NET_DMA || defined CONFIG_NET_RX_BUSY_POLL
507 union {
508 unsigned int napi_id;
509 dma_cookie_t dma_cookie;
510 };
511 #endif
512 #ifdef CONFIG_NETWORK_SECMARK
513 __u32 secmark;
514 #endif
515 union {
516 __u32 mark;
517 __u32 dropcount;
518 __u32 reserved_tailroom;
519 };
520
521 __be16 inner_protocol;
522 __u16 inner_transport_header;
523 __u16 inner_network_header;
524 __u16 inner_mac_header;
525 __u16 transport_header;
526 __u16 network_header;
527 __u16 mac_header;
528 /* These elements must be at the end, see alloc_skb() for details. */
529 sk_buff_data_t tail;
530 sk_buff_data_t end;
531 unsigned char *head,
532 *data;
533 unsigned int truesize;
534 atomic_t users;
535 };
536
537 #ifdef __KERNEL__
538 /*
539 * Handling routines are only of interest to the kernel
540 */
541 #include <linux/slab.h>
542
543
544 #define SKB_ALLOC_FCLONE 0x01
545 #define SKB_ALLOC_RX 0x02
546
547 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
548 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
549 {
550 return unlikely(skb->pfmemalloc);
551 }
552
553 /*
554 * skb might have a dst pointer attached, refcounted or not.
555 * _skb_refdst low order bit is set if refcount was _not_ taken
556 */
557 #define SKB_DST_NOREF 1UL
558 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
559
560 /**
561 * skb_dst - returns skb dst_entry
562 * @skb: buffer
563 *
564 * Returns skb dst_entry, regardless of reference taken or not.
565 */
566 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
567 {
568 /* If refdst was not refcounted, check we still are in a
569 * rcu_read_lock section
570 */
571 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
572 !rcu_read_lock_held() &&
573 !rcu_read_lock_bh_held());
574 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
575 }
576
577 /**
578 * skb_dst_set - sets skb dst
579 * @skb: buffer
580 * @dst: dst entry
581 *
582 * Sets skb dst, assuming a reference was taken on dst and should
583 * be released by skb_dst_drop()
584 */
585 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
586 {
587 skb->_skb_refdst = (unsigned long)dst;
588 }
589
590 void __skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst,
591 bool force);
592
593 /**
594 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
595 * @skb: buffer
596 * @dst: dst entry
597 *
598 * Sets skb dst, assuming a reference was not taken on dst.
599 * If dst entry is cached, we do not take reference and dst_release
600 * will be avoided by refdst_drop. If dst entry is not cached, we take
601 * reference, so that last dst_release can destroy the dst immediately.
602 */
603 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
604 {
605 __skb_dst_set_noref(skb, dst, false);
606 }
607
608 /**
609 * skb_dst_set_noref_force - sets skb dst, without taking reference
610 * @skb: buffer
611 * @dst: dst entry
612 *
613 * Sets skb dst, assuming a reference was not taken on dst.
614 * No reference is taken and no dst_release will be called. While for
615 * cached dsts deferred reclaim is a basic feature, for entries that are
616 * not cached it is caller's job to guarantee that last dst_release for
617 * provided dst happens when nobody uses it, eg. after a RCU grace period.
618 */
619 static inline void skb_dst_set_noref_force(struct sk_buff *skb,
620 struct dst_entry *dst)
621 {
622 __skb_dst_set_noref(skb, dst, true);
623 }
624
625 /**
626 * skb_dst_is_noref - Test if skb dst isn't refcounted
627 * @skb: buffer
628 */
629 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
630 {
631 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
632 }
633
634 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
635 {
636 return (struct rtable *)skb_dst(skb);
637 }
638
639 void kfree_skb(struct sk_buff *skb);
640 void kfree_skb_list(struct sk_buff *segs);
641 void skb_tx_error(struct sk_buff *skb);
642 void consume_skb(struct sk_buff *skb);
643 void __kfree_skb(struct sk_buff *skb);
644 extern struct kmem_cache *skbuff_head_cache;
645
646 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
647 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
648 bool *fragstolen, int *delta_truesize);
649
650 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
651 int node);
652 struct sk_buff *build_skb(void *data, unsigned int frag_size);
653 static inline struct sk_buff *alloc_skb(unsigned int size,
654 gfp_t priority)
655 {
656 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
657 }
658
659 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
660 gfp_t priority)
661 {
662 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
663 }
664
665 struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
666 static inline struct sk_buff *alloc_skb_head(gfp_t priority)
667 {
668 return __alloc_skb_head(priority, -1);
669 }
670
671 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
672 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
673 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
674 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
675 struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask);
676
677 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
678 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
679 unsigned int headroom);
680 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
681 int newtailroom, gfp_t priority);
682 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
683 int len);
684 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
685 int skb_pad(struct sk_buff *skb, int pad);
686 #define dev_kfree_skb(a) consume_skb(a)
687
688 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
689 int getfrag(void *from, char *to, int offset,
690 int len, int odd, struct sk_buff *skb),
691 void *from, int length);
692
693 struct skb_seq_state {
694 __u32 lower_offset;
695 __u32 upper_offset;
696 __u32 frag_idx;
697 __u32 stepped_offset;
698 struct sk_buff *root_skb;
699 struct sk_buff *cur_skb;
700 __u8 *frag_data;
701 };
702
703 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
704 unsigned int to, struct skb_seq_state *st);
705 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
706 struct skb_seq_state *st);
707 void skb_abort_seq_read(struct skb_seq_state *st);
708
709 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
710 unsigned int to, struct ts_config *config,
711 struct ts_state *state);
712
713 void __skb_get_rxhash(struct sk_buff *skb);
714 static inline __u32 skb_get_rxhash(struct sk_buff *skb)
715 {
716 if (!skb->l4_rxhash)
717 __skb_get_rxhash(skb);
718
719 return skb->rxhash;
720 }
721
722 #ifdef NET_SKBUFF_DATA_USES_OFFSET
723 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
724 {
725 return skb->head + skb->end;
726 }
727
728 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
729 {
730 return skb->end;
731 }
732 #else
733 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
734 {
735 return skb->end;
736 }
737
738 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
739 {
740 return skb->end - skb->head;
741 }
742 #endif
743
744 /* Internal */
745 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
746
747 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
748 {
749 return &skb_shinfo(skb)->hwtstamps;
750 }
751
752 /**
753 * skb_queue_empty - check if a queue is empty
754 * @list: queue head
755 *
756 * Returns true if the queue is empty, false otherwise.
757 */
758 static inline int skb_queue_empty(const struct sk_buff_head *list)
759 {
760 return list->next == (struct sk_buff *)list;
761 }
762
763 /**
764 * skb_queue_is_last - check if skb is the last entry in the queue
765 * @list: queue head
766 * @skb: buffer
767 *
768 * Returns true if @skb is the last buffer on the list.
769 */
770 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
771 const struct sk_buff *skb)
772 {
773 return skb->next == (struct sk_buff *)list;
774 }
775
776 /**
777 * skb_queue_is_first - check if skb is the first entry in the queue
778 * @list: queue head
779 * @skb: buffer
780 *
781 * Returns true if @skb is the first buffer on the list.
782 */
783 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
784 const struct sk_buff *skb)
785 {
786 return skb->prev == (struct sk_buff *)list;
787 }
788
789 /**
790 * skb_queue_next - return the next packet in the queue
791 * @list: queue head
792 * @skb: current buffer
793 *
794 * Return the next packet in @list after @skb. It is only valid to
795 * call this if skb_queue_is_last() evaluates to false.
796 */
797 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
798 const struct sk_buff *skb)
799 {
800 /* This BUG_ON may seem severe, but if we just return then we
801 * are going to dereference garbage.
802 */
803 BUG_ON(skb_queue_is_last(list, skb));
804 return skb->next;
805 }
806
807 /**
808 * skb_queue_prev - return the prev packet in the queue
809 * @list: queue head
810 * @skb: current buffer
811 *
812 * Return the prev packet in @list before @skb. It is only valid to
813 * call this if skb_queue_is_first() evaluates to false.
814 */
815 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
816 const struct sk_buff *skb)
817 {
818 /* This BUG_ON may seem severe, but if we just return then we
819 * are going to dereference garbage.
820 */
821 BUG_ON(skb_queue_is_first(list, skb));
822 return skb->prev;
823 }
824
825 /**
826 * skb_get - reference buffer
827 * @skb: buffer to reference
828 *
829 * Makes another reference to a socket buffer and returns a pointer
830 * to the buffer.
831 */
832 static inline struct sk_buff *skb_get(struct sk_buff *skb)
833 {
834 atomic_inc(&skb->users);
835 return skb;
836 }
837
838 /*
839 * If users == 1, we are the only owner and are can avoid redundant
840 * atomic change.
841 */
842
843 /**
844 * skb_cloned - is the buffer a clone
845 * @skb: buffer to check
846 *
847 * Returns true if the buffer was generated with skb_clone() and is
848 * one of multiple shared copies of the buffer. Cloned buffers are
849 * shared data so must not be written to under normal circumstances.
850 */
851 static inline int skb_cloned(const struct sk_buff *skb)
852 {
853 return skb->cloned &&
854 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
855 }
856
857 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
858 {
859 might_sleep_if(pri & __GFP_WAIT);
860
861 if (skb_cloned(skb))
862 return pskb_expand_head(skb, 0, 0, pri);
863
864 return 0;
865 }
866
867 /**
868 * skb_header_cloned - is the header a clone
869 * @skb: buffer to check
870 *
871 * Returns true if modifying the header part of the buffer requires
872 * the data to be copied.
873 */
874 static inline int skb_header_cloned(const struct sk_buff *skb)
875 {
876 int dataref;
877
878 if (!skb->cloned)
879 return 0;
880
881 dataref = atomic_read(&skb_shinfo(skb)->dataref);
882 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
883 return dataref != 1;
884 }
885
886 /**
887 * skb_header_release - release reference to header
888 * @skb: buffer to operate on
889 *
890 * Drop a reference to the header part of the buffer. This is done
891 * by acquiring a payload reference. You must not read from the header
892 * part of skb->data after this.
893 */
894 static inline void skb_header_release(struct sk_buff *skb)
895 {
896 BUG_ON(skb->nohdr);
897 skb->nohdr = 1;
898 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
899 }
900
901 /**
902 * skb_shared - is the buffer shared
903 * @skb: buffer to check
904 *
905 * Returns true if more than one person has a reference to this
906 * buffer.
907 */
908 static inline int skb_shared(const struct sk_buff *skb)
909 {
910 return atomic_read(&skb->users) != 1;
911 }
912
913 /**
914 * skb_share_check - check if buffer is shared and if so clone it
915 * @skb: buffer to check
916 * @pri: priority for memory allocation
917 *
918 * If the buffer is shared the buffer is cloned and the old copy
919 * drops a reference. A new clone with a single reference is returned.
920 * If the buffer is not shared the original buffer is returned. When
921 * being called from interrupt status or with spinlocks held pri must
922 * be GFP_ATOMIC.
923 *
924 * NULL is returned on a memory allocation failure.
925 */
926 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
927 {
928 might_sleep_if(pri & __GFP_WAIT);
929 if (skb_shared(skb)) {
930 struct sk_buff *nskb = skb_clone(skb, pri);
931
932 if (likely(nskb))
933 consume_skb(skb);
934 else
935 kfree_skb(skb);
936 skb = nskb;
937 }
938 return skb;
939 }
940
941 /*
942 * Copy shared buffers into a new sk_buff. We effectively do COW on
943 * packets to handle cases where we have a local reader and forward
944 * and a couple of other messy ones. The normal one is tcpdumping
945 * a packet thats being forwarded.
946 */
947
948 /**
949 * skb_unshare - make a copy of a shared buffer
950 * @skb: buffer to check
951 * @pri: priority for memory allocation
952 *
953 * If the socket buffer is a clone then this function creates a new
954 * copy of the data, drops a reference count on the old copy and returns
955 * the new copy with the reference count at 1. If the buffer is not a clone
956 * the original buffer is returned. When called with a spinlock held or
957 * from interrupt state @pri must be %GFP_ATOMIC
958 *
959 * %NULL is returned on a memory allocation failure.
960 */
961 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
962 gfp_t pri)
963 {
964 might_sleep_if(pri & __GFP_WAIT);
965 if (skb_cloned(skb)) {
966 struct sk_buff *nskb = skb_copy(skb, pri);
967 kfree_skb(skb); /* Free our shared copy */
968 skb = nskb;
969 }
970 return skb;
971 }
972
973 /**
974 * skb_peek - peek at the head of an &sk_buff_head
975 * @list_: list to peek at
976 *
977 * Peek an &sk_buff. Unlike most other operations you _MUST_
978 * be careful with this one. A peek leaves the buffer on the
979 * list and someone else may run off with it. You must hold
980 * the appropriate locks or have a private queue to do this.
981 *
982 * Returns %NULL for an empty list or a pointer to the head element.
983 * The reference count is not incremented and the reference is therefore
984 * volatile. Use with caution.
985 */
986 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
987 {
988 struct sk_buff *skb = list_->next;
989
990 if (skb == (struct sk_buff *)list_)
991 skb = NULL;
992 return skb;
993 }
994
995 /**
996 * skb_peek_next - peek skb following the given one from a queue
997 * @skb: skb to start from
998 * @list_: list to peek at
999 *
1000 * Returns %NULL when the end of the list is met or a pointer to the
1001 * next element. The reference count is not incremented and the
1002 * reference is therefore volatile. Use with caution.
1003 */
1004 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1005 const struct sk_buff_head *list_)
1006 {
1007 struct sk_buff *next = skb->next;
1008
1009 if (next == (struct sk_buff *)list_)
1010 next = NULL;
1011 return next;
1012 }
1013
1014 /**
1015 * skb_peek_tail - peek at the tail of an &sk_buff_head
1016 * @list_: list to peek at
1017 *
1018 * Peek an &sk_buff. Unlike most other operations you _MUST_
1019 * be careful with this one. A peek leaves the buffer on the
1020 * list and someone else may run off with it. You must hold
1021 * the appropriate locks or have a private queue to do this.
1022 *
1023 * Returns %NULL for an empty list or a pointer to the tail element.
1024 * The reference count is not incremented and the reference is therefore
1025 * volatile. Use with caution.
1026 */
1027 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1028 {
1029 struct sk_buff *skb = list_->prev;
1030
1031 if (skb == (struct sk_buff *)list_)
1032 skb = NULL;
1033 return skb;
1034
1035 }
1036
1037 /**
1038 * skb_queue_len - get queue length
1039 * @list_: list to measure
1040 *
1041 * Return the length of an &sk_buff queue.
1042 */
1043 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1044 {
1045 return list_->qlen;
1046 }
1047
1048 /**
1049 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1050 * @list: queue to initialize
1051 *
1052 * This initializes only the list and queue length aspects of
1053 * an sk_buff_head object. This allows to initialize the list
1054 * aspects of an sk_buff_head without reinitializing things like
1055 * the spinlock. It can also be used for on-stack sk_buff_head
1056 * objects where the spinlock is known to not be used.
1057 */
1058 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1059 {
1060 list->prev = list->next = (struct sk_buff *)list;
1061 list->qlen = 0;
1062 }
1063
1064 /*
1065 * This function creates a split out lock class for each invocation;
1066 * this is needed for now since a whole lot of users of the skb-queue
1067 * infrastructure in drivers have different locking usage (in hardirq)
1068 * than the networking core (in softirq only). In the long run either the
1069 * network layer or drivers should need annotation to consolidate the
1070 * main types of usage into 3 classes.
1071 */
1072 static inline void skb_queue_head_init(struct sk_buff_head *list)
1073 {
1074 spin_lock_init(&list->lock);
1075 __skb_queue_head_init(list);
1076 }
1077
1078 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1079 struct lock_class_key *class)
1080 {
1081 skb_queue_head_init(list);
1082 lockdep_set_class(&list->lock, class);
1083 }
1084
1085 /*
1086 * Insert an sk_buff on a list.
1087 *
1088 * The "__skb_xxxx()" functions are the non-atomic ones that
1089 * can only be called with interrupts disabled.
1090 */
1091 void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1092 struct sk_buff_head *list);
1093 static inline void __skb_insert(struct sk_buff *newsk,
1094 struct sk_buff *prev, struct sk_buff *next,
1095 struct sk_buff_head *list)
1096 {
1097 newsk->next = next;
1098 newsk->prev = prev;
1099 next->prev = prev->next = newsk;
1100 list->qlen++;
1101 }
1102
1103 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1104 struct sk_buff *prev,
1105 struct sk_buff *next)
1106 {
1107 struct sk_buff *first = list->next;
1108 struct sk_buff *last = list->prev;
1109
1110 first->prev = prev;
1111 prev->next = first;
1112
1113 last->next = next;
1114 next->prev = last;
1115 }
1116
1117 /**
1118 * skb_queue_splice - join two skb lists, this is designed for stacks
1119 * @list: the new list to add
1120 * @head: the place to add it in the first list
1121 */
1122 static inline void skb_queue_splice(const struct sk_buff_head *list,
1123 struct sk_buff_head *head)
1124 {
1125 if (!skb_queue_empty(list)) {
1126 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1127 head->qlen += list->qlen;
1128 }
1129 }
1130
1131 /**
1132 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1133 * @list: the new list to add
1134 * @head: the place to add it in the first list
1135 *
1136 * The list at @list is reinitialised
1137 */
1138 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1139 struct sk_buff_head *head)
1140 {
1141 if (!skb_queue_empty(list)) {
1142 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1143 head->qlen += list->qlen;
1144 __skb_queue_head_init(list);
1145 }
1146 }
1147
1148 /**
1149 * skb_queue_splice_tail - join two skb lists, each list being a queue
1150 * @list: the new list to add
1151 * @head: the place to add it in the first list
1152 */
1153 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1154 struct sk_buff_head *head)
1155 {
1156 if (!skb_queue_empty(list)) {
1157 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1158 head->qlen += list->qlen;
1159 }
1160 }
1161
1162 /**
1163 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1164 * @list: the new list to add
1165 * @head: the place to add it in the first list
1166 *
1167 * Each of the lists is a queue.
1168 * The list at @list is reinitialised
1169 */
1170 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1171 struct sk_buff_head *head)
1172 {
1173 if (!skb_queue_empty(list)) {
1174 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1175 head->qlen += list->qlen;
1176 __skb_queue_head_init(list);
1177 }
1178 }
1179
1180 /**
1181 * __skb_queue_after - queue a buffer at the list head
1182 * @list: list to use
1183 * @prev: place after this buffer
1184 * @newsk: buffer to queue
1185 *
1186 * Queue a buffer int the middle of a list. This function takes no locks
1187 * and you must therefore hold required locks before calling it.
1188 *
1189 * A buffer cannot be placed on two lists at the same time.
1190 */
1191 static inline void __skb_queue_after(struct sk_buff_head *list,
1192 struct sk_buff *prev,
1193 struct sk_buff *newsk)
1194 {
1195 __skb_insert(newsk, prev, prev->next, list);
1196 }
1197
1198 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1199 struct sk_buff_head *list);
1200
1201 static inline void __skb_queue_before(struct sk_buff_head *list,
1202 struct sk_buff *next,
1203 struct sk_buff *newsk)
1204 {
1205 __skb_insert(newsk, next->prev, next, list);
1206 }
1207
1208 /**
1209 * __skb_queue_head - queue a buffer at the list head
1210 * @list: list to use
1211 * @newsk: buffer to queue
1212 *
1213 * Queue a buffer at the start of a list. This function takes no locks
1214 * and you must therefore hold required locks before calling it.
1215 *
1216 * A buffer cannot be placed on two lists at the same time.
1217 */
1218 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1219 static inline void __skb_queue_head(struct sk_buff_head *list,
1220 struct sk_buff *newsk)
1221 {
1222 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1223 }
1224
1225 /**
1226 * __skb_queue_tail - queue a buffer at the list tail
1227 * @list: list to use
1228 * @newsk: buffer to queue
1229 *
1230 * Queue a buffer at the end of a list. This function takes no locks
1231 * and you must therefore hold required locks before calling it.
1232 *
1233 * A buffer cannot be placed on two lists at the same time.
1234 */
1235 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1236 static inline void __skb_queue_tail(struct sk_buff_head *list,
1237 struct sk_buff *newsk)
1238 {
1239 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1240 }
1241
1242 /*
1243 * remove sk_buff from list. _Must_ be called atomically, and with
1244 * the list known..
1245 */
1246 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1247 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1248 {
1249 struct sk_buff *next, *prev;
1250
1251 list->qlen--;
1252 next = skb->next;
1253 prev = skb->prev;
1254 skb->next = skb->prev = NULL;
1255 next->prev = prev;
1256 prev->next = next;
1257 }
1258
1259 /**
1260 * __skb_dequeue - remove from the head of the queue
1261 * @list: list to dequeue from
1262 *
1263 * Remove the head of the list. This function does not take any locks
1264 * so must be used with appropriate locks held only. The head item is
1265 * returned or %NULL if the list is empty.
1266 */
1267 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1268 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1269 {
1270 struct sk_buff *skb = skb_peek(list);
1271 if (skb)
1272 __skb_unlink(skb, list);
1273 return skb;
1274 }
1275
1276 /**
1277 * __skb_dequeue_tail - remove from the tail of the queue
1278 * @list: list to dequeue from
1279 *
1280 * Remove the tail of the list. This function does not take any locks
1281 * so must be used with appropriate locks held only. The tail item is
1282 * returned or %NULL if the list is empty.
1283 */
1284 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1285 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1286 {
1287 struct sk_buff *skb = skb_peek_tail(list);
1288 if (skb)
1289 __skb_unlink(skb, list);
1290 return skb;
1291 }
1292
1293
1294 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1295 {
1296 return skb->data_len;
1297 }
1298
1299 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1300 {
1301 return skb->len - skb->data_len;
1302 }
1303
1304 static inline int skb_pagelen(const struct sk_buff *skb)
1305 {
1306 int i, len = 0;
1307
1308 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1309 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1310 return len + skb_headlen(skb);
1311 }
1312
1313 /**
1314 * __skb_fill_page_desc - initialise a paged fragment in an skb
1315 * @skb: buffer containing fragment to be initialised
1316 * @i: paged fragment index to initialise
1317 * @page: the page to use for this fragment
1318 * @off: the offset to the data with @page
1319 * @size: the length of the data
1320 *
1321 * Initialises the @i'th fragment of @skb to point to &size bytes at
1322 * offset @off within @page.
1323 *
1324 * Does not take any additional reference on the fragment.
1325 */
1326 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1327 struct page *page, int off, int size)
1328 {
1329 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1330
1331 /*
1332 * Propagate page->pfmemalloc to the skb if we can. The problem is
1333 * that not all callers have unique ownership of the page. If
1334 * pfmemalloc is set, we check the mapping as a mapping implies
1335 * page->index is set (index and pfmemalloc share space).
1336 * If it's a valid mapping, we cannot use page->pfmemalloc but we
1337 * do not lose pfmemalloc information as the pages would not be
1338 * allocated using __GFP_MEMALLOC.
1339 */
1340 frag->page.p = page;
1341 frag->page_offset = off;
1342 skb_frag_size_set(frag, size);
1343
1344 page = compound_head(page);
1345 if (page->pfmemalloc && !page->mapping)
1346 skb->pfmemalloc = true;
1347 }
1348
1349 /**
1350 * skb_fill_page_desc - initialise a paged fragment in an skb
1351 * @skb: buffer containing fragment to be initialised
1352 * @i: paged fragment index to initialise
1353 * @page: the page to use for this fragment
1354 * @off: the offset to the data with @page
1355 * @size: the length of the data
1356 *
1357 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1358 * @skb to point to &size bytes at offset @off within @page. In
1359 * addition updates @skb such that @i is the last fragment.
1360 *
1361 * Does not take any additional reference on the fragment.
1362 */
1363 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1364 struct page *page, int off, int size)
1365 {
1366 __skb_fill_page_desc(skb, i, page, off, size);
1367 skb_shinfo(skb)->nr_frags = i + 1;
1368 }
1369
1370 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1371 int size, unsigned int truesize);
1372
1373 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1374 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1375 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1376
1377 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1378 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1379 {
1380 return skb->head + skb->tail;
1381 }
1382
1383 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1384 {
1385 skb->tail = skb->data - skb->head;
1386 }
1387
1388 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1389 {
1390 skb_reset_tail_pointer(skb);
1391 skb->tail += offset;
1392 }
1393
1394 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1395 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1396 {
1397 return skb->tail;
1398 }
1399
1400 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1401 {
1402 skb->tail = skb->data;
1403 }
1404
1405 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1406 {
1407 skb->tail = skb->data + offset;
1408 }
1409
1410 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1411
1412 /*
1413 * Add data to an sk_buff
1414 */
1415 unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1416 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1417 {
1418 unsigned char *tmp = skb_tail_pointer(skb);
1419 SKB_LINEAR_ASSERT(skb);
1420 skb->tail += len;
1421 skb->len += len;
1422 return tmp;
1423 }
1424
1425 unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1426 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1427 {
1428 skb->data -= len;
1429 skb->len += len;
1430 return skb->data;
1431 }
1432
1433 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1434 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1435 {
1436 skb->len -= len;
1437 BUG_ON(skb->len < skb->data_len);
1438 return skb->data += len;
1439 }
1440
1441 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1442 {
1443 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1444 }
1445
1446 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1447
1448 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1449 {
1450 if (len > skb_headlen(skb) &&
1451 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1452 return NULL;
1453 skb->len -= len;
1454 return skb->data += len;
1455 }
1456
1457 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1458 {
1459 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1460 }
1461
1462 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1463 {
1464 if (likely(len <= skb_headlen(skb)))
1465 return 1;
1466 if (unlikely(len > skb->len))
1467 return 0;
1468 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1469 }
1470
1471 /**
1472 * skb_headroom - bytes at buffer head
1473 * @skb: buffer to check
1474 *
1475 * Return the number of bytes of free space at the head of an &sk_buff.
1476 */
1477 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1478 {
1479 return skb->data - skb->head;
1480 }
1481
1482 /**
1483 * skb_tailroom - bytes at buffer end
1484 * @skb: buffer to check
1485 *
1486 * Return the number of bytes of free space at the tail of an sk_buff
1487 */
1488 static inline int skb_tailroom(const struct sk_buff *skb)
1489 {
1490 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1491 }
1492
1493 /**
1494 * skb_availroom - bytes at buffer end
1495 * @skb: buffer to check
1496 *
1497 * Return the number of bytes of free space at the tail of an sk_buff
1498 * allocated by sk_stream_alloc()
1499 */
1500 static inline int skb_availroom(const struct sk_buff *skb)
1501 {
1502 if (skb_is_nonlinear(skb))
1503 return 0;
1504
1505 return skb->end - skb->tail - skb->reserved_tailroom;
1506 }
1507
1508 /**
1509 * skb_reserve - adjust headroom
1510 * @skb: buffer to alter
1511 * @len: bytes to move
1512 *
1513 * Increase the headroom of an empty &sk_buff by reducing the tail
1514 * room. This is only allowed for an empty buffer.
1515 */
1516 static inline void skb_reserve(struct sk_buff *skb, int len)
1517 {
1518 skb->data += len;
1519 skb->tail += len;
1520 }
1521
1522 static inline void skb_reset_inner_headers(struct sk_buff *skb)
1523 {
1524 skb->inner_mac_header = skb->mac_header;
1525 skb->inner_network_header = skb->network_header;
1526 skb->inner_transport_header = skb->transport_header;
1527 }
1528
1529 static inline void skb_reset_mac_len(struct sk_buff *skb)
1530 {
1531 skb->mac_len = skb->network_header - skb->mac_header;
1532 }
1533
1534 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
1535 *skb)
1536 {
1537 return skb->head + skb->inner_transport_header;
1538 }
1539
1540 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
1541 {
1542 skb->inner_transport_header = skb->data - skb->head;
1543 }
1544
1545 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
1546 const int offset)
1547 {
1548 skb_reset_inner_transport_header(skb);
1549 skb->inner_transport_header += offset;
1550 }
1551
1552 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
1553 {
1554 return skb->head + skb->inner_network_header;
1555 }
1556
1557 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
1558 {
1559 skb->inner_network_header = skb->data - skb->head;
1560 }
1561
1562 static inline void skb_set_inner_network_header(struct sk_buff *skb,
1563 const int offset)
1564 {
1565 skb_reset_inner_network_header(skb);
1566 skb->inner_network_header += offset;
1567 }
1568
1569 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
1570 {
1571 return skb->head + skb->inner_mac_header;
1572 }
1573
1574 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
1575 {
1576 skb->inner_mac_header = skb->data - skb->head;
1577 }
1578
1579 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
1580 const int offset)
1581 {
1582 skb_reset_inner_mac_header(skb);
1583 skb->inner_mac_header += offset;
1584 }
1585 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
1586 {
1587 return skb->transport_header != (typeof(skb->transport_header))~0U;
1588 }
1589
1590 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1591 {
1592 return skb->head + skb->transport_header;
1593 }
1594
1595 static inline void skb_reset_transport_header(struct sk_buff *skb)
1596 {
1597 skb->transport_header = skb->data - skb->head;
1598 }
1599
1600 static inline void skb_set_transport_header(struct sk_buff *skb,
1601 const int offset)
1602 {
1603 skb_reset_transport_header(skb);
1604 skb->transport_header += offset;
1605 }
1606
1607 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1608 {
1609 return skb->head + skb->network_header;
1610 }
1611
1612 static inline void skb_reset_network_header(struct sk_buff *skb)
1613 {
1614 skb->network_header = skb->data - skb->head;
1615 }
1616
1617 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1618 {
1619 skb_reset_network_header(skb);
1620 skb->network_header += offset;
1621 }
1622
1623 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1624 {
1625 return skb->head + skb->mac_header;
1626 }
1627
1628 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1629 {
1630 return skb->mac_header != (typeof(skb->mac_header))~0U;
1631 }
1632
1633 static inline void skb_reset_mac_header(struct sk_buff *skb)
1634 {
1635 skb->mac_header = skb->data - skb->head;
1636 }
1637
1638 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1639 {
1640 skb_reset_mac_header(skb);
1641 skb->mac_header += offset;
1642 }
1643
1644 static inline void skb_probe_transport_header(struct sk_buff *skb,
1645 const int offset_hint)
1646 {
1647 struct flow_keys keys;
1648
1649 if (skb_transport_header_was_set(skb))
1650 return;
1651 else if (skb_flow_dissect(skb, &keys))
1652 skb_set_transport_header(skb, keys.thoff);
1653 else
1654 skb_set_transport_header(skb, offset_hint);
1655 }
1656
1657 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
1658 {
1659 if (skb_mac_header_was_set(skb)) {
1660 const unsigned char *old_mac = skb_mac_header(skb);
1661
1662 skb_set_mac_header(skb, -skb->mac_len);
1663 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
1664 }
1665 }
1666
1667 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1668 {
1669 return skb->csum_start - skb_headroom(skb);
1670 }
1671
1672 static inline int skb_transport_offset(const struct sk_buff *skb)
1673 {
1674 return skb_transport_header(skb) - skb->data;
1675 }
1676
1677 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1678 {
1679 return skb->transport_header - skb->network_header;
1680 }
1681
1682 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
1683 {
1684 return skb->inner_transport_header - skb->inner_network_header;
1685 }
1686
1687 static inline int skb_network_offset(const struct sk_buff *skb)
1688 {
1689 return skb_network_header(skb) - skb->data;
1690 }
1691
1692 static inline int skb_inner_network_offset(const struct sk_buff *skb)
1693 {
1694 return skb_inner_network_header(skb) - skb->data;
1695 }
1696
1697 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1698 {
1699 return pskb_may_pull(skb, skb_network_offset(skb) + len);
1700 }
1701
1702 /*
1703 * CPUs often take a performance hit when accessing unaligned memory
1704 * locations. The actual performance hit varies, it can be small if the
1705 * hardware handles it or large if we have to take an exception and fix it
1706 * in software.
1707 *
1708 * Since an ethernet header is 14 bytes network drivers often end up with
1709 * the IP header at an unaligned offset. The IP header can be aligned by
1710 * shifting the start of the packet by 2 bytes. Drivers should do this
1711 * with:
1712 *
1713 * skb_reserve(skb, NET_IP_ALIGN);
1714 *
1715 * The downside to this alignment of the IP header is that the DMA is now
1716 * unaligned. On some architectures the cost of an unaligned DMA is high
1717 * and this cost outweighs the gains made by aligning the IP header.
1718 *
1719 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1720 * to be overridden.
1721 */
1722 #ifndef NET_IP_ALIGN
1723 #define NET_IP_ALIGN 2
1724 #endif
1725
1726 /*
1727 * The networking layer reserves some headroom in skb data (via
1728 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1729 * the header has to grow. In the default case, if the header has to grow
1730 * 32 bytes or less we avoid the reallocation.
1731 *
1732 * Unfortunately this headroom changes the DMA alignment of the resulting
1733 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1734 * on some architectures. An architecture can override this value,
1735 * perhaps setting it to a cacheline in size (since that will maintain
1736 * cacheline alignment of the DMA). It must be a power of 2.
1737 *
1738 * Various parts of the networking layer expect at least 32 bytes of
1739 * headroom, you should not reduce this.
1740 *
1741 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
1742 * to reduce average number of cache lines per packet.
1743 * get_rps_cpus() for example only access one 64 bytes aligned block :
1744 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
1745 */
1746 #ifndef NET_SKB_PAD
1747 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
1748 #endif
1749
1750 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1751
1752 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1753 {
1754 if (unlikely(skb_is_nonlinear(skb))) {
1755 WARN_ON(1);
1756 return;
1757 }
1758 skb->len = len;
1759 skb_set_tail_pointer(skb, len);
1760 }
1761
1762 void skb_trim(struct sk_buff *skb, unsigned int len);
1763
1764 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1765 {
1766 if (skb->data_len)
1767 return ___pskb_trim(skb, len);
1768 __skb_trim(skb, len);
1769 return 0;
1770 }
1771
1772 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1773 {
1774 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1775 }
1776
1777 /**
1778 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1779 * @skb: buffer to alter
1780 * @len: new length
1781 *
1782 * This is identical to pskb_trim except that the caller knows that
1783 * the skb is not cloned so we should never get an error due to out-
1784 * of-memory.
1785 */
1786 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1787 {
1788 int err = pskb_trim(skb, len);
1789 BUG_ON(err);
1790 }
1791
1792 /**
1793 * skb_orphan - orphan a buffer
1794 * @skb: buffer to orphan
1795 *
1796 * If a buffer currently has an owner then we call the owner's
1797 * destructor function and make the @skb unowned. The buffer continues
1798 * to exist but is no longer charged to its former owner.
1799 */
1800 static inline void skb_orphan(struct sk_buff *skb)
1801 {
1802 if (skb->destructor) {
1803 skb->destructor(skb);
1804 skb->destructor = NULL;
1805 skb->sk = NULL;
1806 } else {
1807 BUG_ON(skb->sk);
1808 }
1809 }
1810
1811 /**
1812 * skb_orphan_frags - orphan the frags contained in a buffer
1813 * @skb: buffer to orphan frags from
1814 * @gfp_mask: allocation mask for replacement pages
1815 *
1816 * For each frag in the SKB which needs a destructor (i.e. has an
1817 * owner) create a copy of that frag and release the original
1818 * page by calling the destructor.
1819 */
1820 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
1821 {
1822 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
1823 return 0;
1824 return skb_copy_ubufs(skb, gfp_mask);
1825 }
1826
1827 /**
1828 * __skb_queue_purge - empty a list
1829 * @list: list to empty
1830 *
1831 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1832 * the list and one reference dropped. This function does not take the
1833 * list lock and the caller must hold the relevant locks to use it.
1834 */
1835 void skb_queue_purge(struct sk_buff_head *list);
1836 static inline void __skb_queue_purge(struct sk_buff_head *list)
1837 {
1838 struct sk_buff *skb;
1839 while ((skb = __skb_dequeue(list)) != NULL)
1840 kfree_skb(skb);
1841 }
1842
1843 #define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768)
1844 #define NETDEV_FRAG_PAGE_MAX_SIZE (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER)
1845 #define NETDEV_PAGECNT_MAX_BIAS NETDEV_FRAG_PAGE_MAX_SIZE
1846
1847 void *netdev_alloc_frag(unsigned int fragsz);
1848
1849 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
1850 gfp_t gfp_mask);
1851
1852 /**
1853 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1854 * @dev: network device to receive on
1855 * @length: length to allocate
1856 *
1857 * Allocate a new &sk_buff and assign it a usage count of one. The
1858 * buffer has unspecified headroom built in. Users should allocate
1859 * the headroom they think they need without accounting for the
1860 * built in space. The built in space is used for optimisations.
1861 *
1862 * %NULL is returned if there is no free memory. Although this function
1863 * allocates memory it can be called from an interrupt.
1864 */
1865 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1866 unsigned int length)
1867 {
1868 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1869 }
1870
1871 /* legacy helper around __netdev_alloc_skb() */
1872 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1873 gfp_t gfp_mask)
1874 {
1875 return __netdev_alloc_skb(NULL, length, gfp_mask);
1876 }
1877
1878 /* legacy helper around netdev_alloc_skb() */
1879 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1880 {
1881 return netdev_alloc_skb(NULL, length);
1882 }
1883
1884
1885 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
1886 unsigned int length, gfp_t gfp)
1887 {
1888 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
1889
1890 if (NET_IP_ALIGN && skb)
1891 skb_reserve(skb, NET_IP_ALIGN);
1892 return skb;
1893 }
1894
1895 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
1896 unsigned int length)
1897 {
1898 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
1899 }
1900
1901 /**
1902 * __skb_alloc_pages - allocate pages for ps-rx on a skb and preserve pfmemalloc data
1903 * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX
1904 * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used
1905 * @order: size of the allocation
1906 *
1907 * Allocate a new page.
1908 *
1909 * %NULL is returned if there is no free memory.
1910 */
1911 static inline struct page *__skb_alloc_pages(gfp_t gfp_mask,
1912 struct sk_buff *skb,
1913 unsigned int order)
1914 {
1915 struct page *page;
1916
1917 gfp_mask |= __GFP_COLD;
1918
1919 if (!(gfp_mask & __GFP_NOMEMALLOC))
1920 gfp_mask |= __GFP_MEMALLOC;
1921
1922 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
1923 if (skb && page && page->pfmemalloc)
1924 skb->pfmemalloc = true;
1925
1926 return page;
1927 }
1928
1929 /**
1930 * __skb_alloc_page - allocate a page for ps-rx for a given skb and preserve pfmemalloc data
1931 * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX
1932 * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used
1933 *
1934 * Allocate a new page.
1935 *
1936 * %NULL is returned if there is no free memory.
1937 */
1938 static inline struct page *__skb_alloc_page(gfp_t gfp_mask,
1939 struct sk_buff *skb)
1940 {
1941 return __skb_alloc_pages(gfp_mask, skb, 0);
1942 }
1943
1944 /**
1945 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
1946 * @page: The page that was allocated from skb_alloc_page
1947 * @skb: The skb that may need pfmemalloc set
1948 */
1949 static inline void skb_propagate_pfmemalloc(struct page *page,
1950 struct sk_buff *skb)
1951 {
1952 if (page && page->pfmemalloc)
1953 skb->pfmemalloc = true;
1954 }
1955
1956 /**
1957 * skb_frag_page - retrieve the page refered to by a paged fragment
1958 * @frag: the paged fragment
1959 *
1960 * Returns the &struct page associated with @frag.
1961 */
1962 static inline struct page *skb_frag_page(const skb_frag_t *frag)
1963 {
1964 return frag->page.p;
1965 }
1966
1967 /**
1968 * __skb_frag_ref - take an addition reference on a paged fragment.
1969 * @frag: the paged fragment
1970 *
1971 * Takes an additional reference on the paged fragment @frag.
1972 */
1973 static inline void __skb_frag_ref(skb_frag_t *frag)
1974 {
1975 get_page(skb_frag_page(frag));
1976 }
1977
1978 /**
1979 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
1980 * @skb: the buffer
1981 * @f: the fragment offset.
1982 *
1983 * Takes an additional reference on the @f'th paged fragment of @skb.
1984 */
1985 static inline void skb_frag_ref(struct sk_buff *skb, int f)
1986 {
1987 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
1988 }
1989
1990 /**
1991 * __skb_frag_unref - release a reference on a paged fragment.
1992 * @frag: the paged fragment
1993 *
1994 * Releases a reference on the paged fragment @frag.
1995 */
1996 static inline void __skb_frag_unref(skb_frag_t *frag)
1997 {
1998 put_page(skb_frag_page(frag));
1999 }
2000
2001 /**
2002 * skb_frag_unref - release a reference on a paged fragment of an skb.
2003 * @skb: the buffer
2004 * @f: the fragment offset
2005 *
2006 * Releases a reference on the @f'th paged fragment of @skb.
2007 */
2008 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2009 {
2010 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2011 }
2012
2013 /**
2014 * skb_frag_address - gets the address of the data contained in a paged fragment
2015 * @frag: the paged fragment buffer
2016 *
2017 * Returns the address of the data within @frag. The page must already
2018 * be mapped.
2019 */
2020 static inline void *skb_frag_address(const skb_frag_t *frag)
2021 {
2022 return page_address(skb_frag_page(frag)) + frag->page_offset;
2023 }
2024
2025 /**
2026 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2027 * @frag: the paged fragment buffer
2028 *
2029 * Returns the address of the data within @frag. Checks that the page
2030 * is mapped and returns %NULL otherwise.
2031 */
2032 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2033 {
2034 void *ptr = page_address(skb_frag_page(frag));
2035 if (unlikely(!ptr))
2036 return NULL;
2037
2038 return ptr + frag->page_offset;
2039 }
2040
2041 /**
2042 * __skb_frag_set_page - sets the page contained in a paged fragment
2043 * @frag: the paged fragment
2044 * @page: the page to set
2045 *
2046 * Sets the fragment @frag to contain @page.
2047 */
2048 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2049 {
2050 frag->page.p = page;
2051 }
2052
2053 /**
2054 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2055 * @skb: the buffer
2056 * @f: the fragment offset
2057 * @page: the page to set
2058 *
2059 * Sets the @f'th fragment of @skb to contain @page.
2060 */
2061 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2062 struct page *page)
2063 {
2064 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2065 }
2066
2067 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2068
2069 /**
2070 * skb_frag_dma_map - maps a paged fragment via the DMA API
2071 * @dev: the device to map the fragment to
2072 * @frag: the paged fragment to map
2073 * @offset: the offset within the fragment (starting at the
2074 * fragment's own offset)
2075 * @size: the number of bytes to map
2076 * @dir: the direction of the mapping (%PCI_DMA_*)
2077 *
2078 * Maps the page associated with @frag to @device.
2079 */
2080 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2081 const skb_frag_t *frag,
2082 size_t offset, size_t size,
2083 enum dma_data_direction dir)
2084 {
2085 return dma_map_page(dev, skb_frag_page(frag),
2086 frag->page_offset + offset, size, dir);
2087 }
2088
2089 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2090 gfp_t gfp_mask)
2091 {
2092 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2093 }
2094
2095 /**
2096 * skb_clone_writable - is the header of a clone writable
2097 * @skb: buffer to check
2098 * @len: length up to which to write
2099 *
2100 * Returns true if modifying the header part of the cloned buffer
2101 * does not requires the data to be copied.
2102 */
2103 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2104 {
2105 return !skb_header_cloned(skb) &&
2106 skb_headroom(skb) + len <= skb->hdr_len;
2107 }
2108
2109 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2110 int cloned)
2111 {
2112 int delta = 0;
2113
2114 if (headroom > skb_headroom(skb))
2115 delta = headroom - skb_headroom(skb);
2116
2117 if (delta || cloned)
2118 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2119 GFP_ATOMIC);
2120 return 0;
2121 }
2122
2123 /**
2124 * skb_cow - copy header of skb when it is required
2125 * @skb: buffer to cow
2126 * @headroom: needed headroom
2127 *
2128 * If the skb passed lacks sufficient headroom or its data part
2129 * is shared, data is reallocated. If reallocation fails, an error
2130 * is returned and original skb is not changed.
2131 *
2132 * The result is skb with writable area skb->head...skb->tail
2133 * and at least @headroom of space at head.
2134 */
2135 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2136 {
2137 return __skb_cow(skb, headroom, skb_cloned(skb));
2138 }
2139
2140 /**
2141 * skb_cow_head - skb_cow but only making the head writable
2142 * @skb: buffer to cow
2143 * @headroom: needed headroom
2144 *
2145 * This function is identical to skb_cow except that we replace the
2146 * skb_cloned check by skb_header_cloned. It should be used when
2147 * you only need to push on some header and do not need to modify
2148 * the data.
2149 */
2150 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2151 {
2152 return __skb_cow(skb, headroom, skb_header_cloned(skb));
2153 }
2154
2155 /**
2156 * skb_padto - pad an skbuff up to a minimal size
2157 * @skb: buffer to pad
2158 * @len: minimal length
2159 *
2160 * Pads up a buffer to ensure the trailing bytes exist and are
2161 * blanked. If the buffer already contains sufficient data it
2162 * is untouched. Otherwise it is extended. Returns zero on
2163 * success. The skb is freed on error.
2164 */
2165
2166 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2167 {
2168 unsigned int size = skb->len;
2169 if (likely(size >= len))
2170 return 0;
2171 return skb_pad(skb, len - size);
2172 }
2173
2174 static inline int skb_add_data(struct sk_buff *skb,
2175 char __user *from, int copy)
2176 {
2177 const int off = skb->len;
2178
2179 if (skb->ip_summed == CHECKSUM_NONE) {
2180 int err = 0;
2181 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
2182 copy, 0, &err);
2183 if (!err) {
2184 skb->csum = csum_block_add(skb->csum, csum, off);
2185 return 0;
2186 }
2187 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
2188 return 0;
2189
2190 __skb_trim(skb, off);
2191 return -EFAULT;
2192 }
2193
2194 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2195 const struct page *page, int off)
2196 {
2197 if (i) {
2198 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
2199
2200 return page == skb_frag_page(frag) &&
2201 off == frag->page_offset + skb_frag_size(frag);
2202 }
2203 return false;
2204 }
2205
2206 static inline int __skb_linearize(struct sk_buff *skb)
2207 {
2208 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2209 }
2210
2211 /**
2212 * skb_linearize - convert paged skb to linear one
2213 * @skb: buffer to linarize
2214 *
2215 * If there is no free memory -ENOMEM is returned, otherwise zero
2216 * is returned and the old skb data released.
2217 */
2218 static inline int skb_linearize(struct sk_buff *skb)
2219 {
2220 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2221 }
2222
2223 /**
2224 * skb_has_shared_frag - can any frag be overwritten
2225 * @skb: buffer to test
2226 *
2227 * Return true if the skb has at least one frag that might be modified
2228 * by an external entity (as in vmsplice()/sendfile())
2229 */
2230 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
2231 {
2232 return skb_is_nonlinear(skb) &&
2233 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2234 }
2235
2236 /**
2237 * skb_linearize_cow - make sure skb is linear and writable
2238 * @skb: buffer to process
2239 *
2240 * If there is no free memory -ENOMEM is returned, otherwise zero
2241 * is returned and the old skb data released.
2242 */
2243 static inline int skb_linearize_cow(struct sk_buff *skb)
2244 {
2245 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2246 __skb_linearize(skb) : 0;
2247 }
2248
2249 /**
2250 * skb_postpull_rcsum - update checksum for received skb after pull
2251 * @skb: buffer to update
2252 * @start: start of data before pull
2253 * @len: length of data pulled
2254 *
2255 * After doing a pull on a received packet, you need to call this to
2256 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2257 * CHECKSUM_NONE so that it can be recomputed from scratch.
2258 */
2259
2260 static inline void skb_postpull_rcsum(struct sk_buff *skb,
2261 const void *start, unsigned int len)
2262 {
2263 if (skb->ip_summed == CHECKSUM_COMPLETE)
2264 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2265 }
2266
2267 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2268
2269 /**
2270 * pskb_trim_rcsum - trim received skb and update checksum
2271 * @skb: buffer to trim
2272 * @len: new length
2273 *
2274 * This is exactly the same as pskb_trim except that it ensures the
2275 * checksum of received packets are still valid after the operation.
2276 */
2277
2278 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2279 {
2280 if (likely(len >= skb->len))
2281 return 0;
2282 if (skb->ip_summed == CHECKSUM_COMPLETE)
2283 skb->ip_summed = CHECKSUM_NONE;
2284 return __pskb_trim(skb, len);
2285 }
2286
2287 #define skb_queue_walk(queue, skb) \
2288 for (skb = (queue)->next; \
2289 skb != (struct sk_buff *)(queue); \
2290 skb = skb->next)
2291
2292 #define skb_queue_walk_safe(queue, skb, tmp) \
2293 for (skb = (queue)->next, tmp = skb->next; \
2294 skb != (struct sk_buff *)(queue); \
2295 skb = tmp, tmp = skb->next)
2296
2297 #define skb_queue_walk_from(queue, skb) \
2298 for (; skb != (struct sk_buff *)(queue); \
2299 skb = skb->next)
2300
2301 #define skb_queue_walk_from_safe(queue, skb, tmp) \
2302 for (tmp = skb->next; \
2303 skb != (struct sk_buff *)(queue); \
2304 skb = tmp, tmp = skb->next)
2305
2306 #define skb_queue_reverse_walk(queue, skb) \
2307 for (skb = (queue)->prev; \
2308 skb != (struct sk_buff *)(queue); \
2309 skb = skb->prev)
2310
2311 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
2312 for (skb = (queue)->prev, tmp = skb->prev; \
2313 skb != (struct sk_buff *)(queue); \
2314 skb = tmp, tmp = skb->prev)
2315
2316 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
2317 for (tmp = skb->prev; \
2318 skb != (struct sk_buff *)(queue); \
2319 skb = tmp, tmp = skb->prev)
2320
2321 static inline bool skb_has_frag_list(const struct sk_buff *skb)
2322 {
2323 return skb_shinfo(skb)->frag_list != NULL;
2324 }
2325
2326 static inline void skb_frag_list_init(struct sk_buff *skb)
2327 {
2328 skb_shinfo(skb)->frag_list = NULL;
2329 }
2330
2331 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
2332 {
2333 frag->next = skb_shinfo(skb)->frag_list;
2334 skb_shinfo(skb)->frag_list = frag;
2335 }
2336
2337 #define skb_walk_frags(skb, iter) \
2338 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2339
2340 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2341 int *peeked, int *off, int *err);
2342 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
2343 int *err);
2344 unsigned int datagram_poll(struct file *file, struct socket *sock,
2345 struct poll_table_struct *wait);
2346 int skb_copy_datagram_iovec(const struct sk_buff *from, int offset,
2347 struct iovec *to, int size);
2348 int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, int hlen,
2349 struct iovec *iov);
2350 int skb_copy_datagram_from_iovec(struct sk_buff *skb, int offset,
2351 const struct iovec *from, int from_offset,
2352 int len);
2353 int zerocopy_sg_from_iovec(struct sk_buff *skb, const struct iovec *frm,
2354 int offset, size_t count);
2355 int skb_copy_datagram_const_iovec(const struct sk_buff *from, int offset,
2356 const struct iovec *to, int to_offset,
2357 int size);
2358 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2359 void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb);
2360 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
2361 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
2362 __wsum csum);
2363 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
2364 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
2365 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
2366 int len, __wsum csum);
2367 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
2368 struct pipe_inode_info *pipe, unsigned int len,
2369 unsigned int flags);
2370 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2371 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
2372 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
2373 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
2374
2375 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
2376
2377 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
2378 int len, void *buffer)
2379 {
2380 int hlen = skb_headlen(skb);
2381
2382 if (hlen - offset >= len)
2383 return skb->data + offset;
2384
2385 if (skb_copy_bits(skb, offset, buffer, len) < 0)
2386 return NULL;
2387
2388 return buffer;
2389 }
2390
2391 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2392 void *to,
2393 const unsigned int len)
2394 {
2395 memcpy(to, skb->data, len);
2396 }
2397
2398 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2399 const int offset, void *to,
2400 const unsigned int len)
2401 {
2402 memcpy(to, skb->data + offset, len);
2403 }
2404
2405 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2406 const void *from,
2407 const unsigned int len)
2408 {
2409 memcpy(skb->data, from, len);
2410 }
2411
2412 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2413 const int offset,
2414 const void *from,
2415 const unsigned int len)
2416 {
2417 memcpy(skb->data + offset, from, len);
2418 }
2419
2420 void skb_init(void);
2421
2422 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2423 {
2424 return skb->tstamp;
2425 }
2426
2427 /**
2428 * skb_get_timestamp - get timestamp from a skb
2429 * @skb: skb to get stamp from
2430 * @stamp: pointer to struct timeval to store stamp in
2431 *
2432 * Timestamps are stored in the skb as offsets to a base timestamp.
2433 * This function converts the offset back to a struct timeval and stores
2434 * it in stamp.
2435 */
2436 static inline void skb_get_timestamp(const struct sk_buff *skb,
2437 struct timeval *stamp)
2438 {
2439 *stamp = ktime_to_timeval(skb->tstamp);
2440 }
2441
2442 static inline void skb_get_timestampns(const struct sk_buff *skb,
2443 struct timespec *stamp)
2444 {
2445 *stamp = ktime_to_timespec(skb->tstamp);
2446 }
2447
2448 static inline void __net_timestamp(struct sk_buff *skb)
2449 {
2450 skb->tstamp = ktime_get_real();
2451 }
2452
2453 static inline ktime_t net_timedelta(ktime_t t)
2454 {
2455 return ktime_sub(ktime_get_real(), t);
2456 }
2457
2458 static inline ktime_t net_invalid_timestamp(void)
2459 {
2460 return ktime_set(0, 0);
2461 }
2462
2463 void skb_timestamping_init(void);
2464
2465 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2466
2467 void skb_clone_tx_timestamp(struct sk_buff *skb);
2468 bool skb_defer_rx_timestamp(struct sk_buff *skb);
2469
2470 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2471
2472 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2473 {
2474 }
2475
2476 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2477 {
2478 return false;
2479 }
2480
2481 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2482
2483 /**
2484 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2485 *
2486 * PHY drivers may accept clones of transmitted packets for
2487 * timestamping via their phy_driver.txtstamp method. These drivers
2488 * must call this function to return the skb back to the stack, with
2489 * or without a timestamp.
2490 *
2491 * @skb: clone of the the original outgoing packet
2492 * @hwtstamps: hardware time stamps, may be NULL if not available
2493 *
2494 */
2495 void skb_complete_tx_timestamp(struct sk_buff *skb,
2496 struct skb_shared_hwtstamps *hwtstamps);
2497
2498 /**
2499 * skb_tstamp_tx - queue clone of skb with send time stamps
2500 * @orig_skb: the original outgoing packet
2501 * @hwtstamps: hardware time stamps, may be NULL if not available
2502 *
2503 * If the skb has a socket associated, then this function clones the
2504 * skb (thus sharing the actual data and optional structures), stores
2505 * the optional hardware time stamping information (if non NULL) or
2506 * generates a software time stamp (otherwise), then queues the clone
2507 * to the error queue of the socket. Errors are silently ignored.
2508 */
2509 void skb_tstamp_tx(struct sk_buff *orig_skb,
2510 struct skb_shared_hwtstamps *hwtstamps);
2511
2512 static inline void sw_tx_timestamp(struct sk_buff *skb)
2513 {
2514 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2515 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2516 skb_tstamp_tx(skb, NULL);
2517 }
2518
2519 /**
2520 * skb_tx_timestamp() - Driver hook for transmit timestamping
2521 *
2522 * Ethernet MAC Drivers should call this function in their hard_xmit()
2523 * function immediately before giving the sk_buff to the MAC hardware.
2524 *
2525 * @skb: A socket buffer.
2526 */
2527 static inline void skb_tx_timestamp(struct sk_buff *skb)
2528 {
2529 skb_clone_tx_timestamp(skb);
2530 sw_tx_timestamp(skb);
2531 }
2532
2533 /**
2534 * skb_complete_wifi_ack - deliver skb with wifi status
2535 *
2536 * @skb: the original outgoing packet
2537 * @acked: ack status
2538 *
2539 */
2540 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
2541
2542 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2543 __sum16 __skb_checksum_complete(struct sk_buff *skb);
2544
2545 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2546 {
2547 return skb->ip_summed & CHECKSUM_UNNECESSARY;
2548 }
2549
2550 /**
2551 * skb_checksum_complete - Calculate checksum of an entire packet
2552 * @skb: packet to process
2553 *
2554 * This function calculates the checksum over the entire packet plus
2555 * the value of skb->csum. The latter can be used to supply the
2556 * checksum of a pseudo header as used by TCP/UDP. It returns the
2557 * checksum.
2558 *
2559 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
2560 * this function can be used to verify that checksum on received
2561 * packets. In that case the function should return zero if the
2562 * checksum is correct. In particular, this function will return zero
2563 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2564 * hardware has already verified the correctness of the checksum.
2565 */
2566 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2567 {
2568 return skb_csum_unnecessary(skb) ?
2569 0 : __skb_checksum_complete(skb);
2570 }
2571
2572 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2573 void nf_conntrack_destroy(struct nf_conntrack *nfct);
2574 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
2575 {
2576 if (nfct && atomic_dec_and_test(&nfct->use))
2577 nf_conntrack_destroy(nfct);
2578 }
2579 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
2580 {
2581 if (nfct)
2582 atomic_inc(&nfct->use);
2583 }
2584 #endif
2585 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2586 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
2587 {
2588 if (skb)
2589 atomic_inc(&skb->users);
2590 }
2591 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
2592 {
2593 if (skb)
2594 kfree_skb(skb);
2595 }
2596 #endif
2597 #ifdef CONFIG_BRIDGE_NETFILTER
2598 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
2599 {
2600 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
2601 kfree(nf_bridge);
2602 }
2603 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
2604 {
2605 if (nf_bridge)
2606 atomic_inc(&nf_bridge->use);
2607 }
2608 #endif /* CONFIG_BRIDGE_NETFILTER */
2609 static inline void nf_reset(struct sk_buff *skb)
2610 {
2611 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2612 nf_conntrack_put(skb->nfct);
2613 skb->nfct = NULL;
2614 #endif
2615 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2616 nf_conntrack_put_reasm(skb->nfct_reasm);
2617 skb->nfct_reasm = NULL;
2618 #endif
2619 #ifdef CONFIG_BRIDGE_NETFILTER
2620 nf_bridge_put(skb->nf_bridge);
2621 skb->nf_bridge = NULL;
2622 #endif
2623 }
2624
2625 static inline void nf_reset_trace(struct sk_buff *skb)
2626 {
2627 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
2628 skb->nf_trace = 0;
2629 #endif
2630 }
2631
2632 /* Note: This doesn't put any conntrack and bridge info in dst. */
2633 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2634 {
2635 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2636 dst->nfct = src->nfct;
2637 nf_conntrack_get(src->nfct);
2638 dst->nfctinfo = src->nfctinfo;
2639 #endif
2640 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2641 dst->nfct_reasm = src->nfct_reasm;
2642 nf_conntrack_get_reasm(src->nfct_reasm);
2643 #endif
2644 #ifdef CONFIG_BRIDGE_NETFILTER
2645 dst->nf_bridge = src->nf_bridge;
2646 nf_bridge_get(src->nf_bridge);
2647 #endif
2648 }
2649
2650 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2651 {
2652 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2653 nf_conntrack_put(dst->nfct);
2654 #endif
2655 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2656 nf_conntrack_put_reasm(dst->nfct_reasm);
2657 #endif
2658 #ifdef CONFIG_BRIDGE_NETFILTER
2659 nf_bridge_put(dst->nf_bridge);
2660 #endif
2661 __nf_copy(dst, src);
2662 }
2663
2664 #ifdef CONFIG_NETWORK_SECMARK
2665 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2666 {
2667 to->secmark = from->secmark;
2668 }
2669
2670 static inline void skb_init_secmark(struct sk_buff *skb)
2671 {
2672 skb->secmark = 0;
2673 }
2674 #else
2675 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2676 { }
2677
2678 static inline void skb_init_secmark(struct sk_buff *skb)
2679 { }
2680 #endif
2681
2682 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2683 {
2684 skb->queue_mapping = queue_mapping;
2685 }
2686
2687 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2688 {
2689 return skb->queue_mapping;
2690 }
2691
2692 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2693 {
2694 to->queue_mapping = from->queue_mapping;
2695 }
2696
2697 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2698 {
2699 skb->queue_mapping = rx_queue + 1;
2700 }
2701
2702 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2703 {
2704 return skb->queue_mapping - 1;
2705 }
2706
2707 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2708 {
2709 return skb->queue_mapping != 0;
2710 }
2711
2712 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2713 unsigned int num_tx_queues);
2714
2715 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2716 {
2717 #ifdef CONFIG_XFRM
2718 return skb->sp;
2719 #else
2720 return NULL;
2721 #endif
2722 }
2723
2724 /* Keeps track of mac header offset relative to skb->head.
2725 * It is useful for TSO of Tunneling protocol. e.g. GRE.
2726 * For non-tunnel skb it points to skb_mac_header() and for
2727 * tunnel skb it points to outer mac header.
2728 * Keeps track of level of encapsulation of network headers.
2729 */
2730 struct skb_gso_cb {
2731 int mac_offset;
2732 int encap_level;
2733 };
2734 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb)
2735
2736 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
2737 {
2738 return (skb_mac_header(inner_skb) - inner_skb->head) -
2739 SKB_GSO_CB(inner_skb)->mac_offset;
2740 }
2741
2742 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
2743 {
2744 int new_headroom, headroom;
2745 int ret;
2746
2747 headroom = skb_headroom(skb);
2748 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
2749 if (ret)
2750 return ret;
2751
2752 new_headroom = skb_headroom(skb);
2753 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
2754 return 0;
2755 }
2756
2757 static inline bool skb_is_gso(const struct sk_buff *skb)
2758 {
2759 return skb_shinfo(skb)->gso_size;
2760 }
2761
2762 /* Note: Should be called only if skb_is_gso(skb) is true */
2763 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
2764 {
2765 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2766 }
2767
2768 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2769
2770 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2771 {
2772 /* LRO sets gso_size but not gso_type, whereas if GSO is really
2773 * wanted then gso_type will be set. */
2774 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2775
2776 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
2777 unlikely(shinfo->gso_type == 0)) {
2778 __skb_warn_lro_forwarding(skb);
2779 return true;
2780 }
2781 return false;
2782 }
2783
2784 static inline void skb_forward_csum(struct sk_buff *skb)
2785 {
2786 /* Unfortunately we don't support this one. Any brave souls? */
2787 if (skb->ip_summed == CHECKSUM_COMPLETE)
2788 skb->ip_summed = CHECKSUM_NONE;
2789 }
2790
2791 /**
2792 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
2793 * @skb: skb to check
2794 *
2795 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
2796 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
2797 * use this helper, to document places where we make this assertion.
2798 */
2799 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
2800 {
2801 #ifdef DEBUG
2802 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
2803 #endif
2804 }
2805
2806 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2807
2808 u32 __skb_get_poff(const struct sk_buff *skb);
2809
2810 /**
2811 * skb_head_is_locked - Determine if the skb->head is locked down
2812 * @skb: skb to check
2813 *
2814 * The head on skbs build around a head frag can be removed if they are
2815 * not cloned. This function returns true if the skb head is locked down
2816 * due to either being allocated via kmalloc, or by being a clone with
2817 * multiple references to the head.
2818 */
2819 static inline bool skb_head_is_locked(const struct sk_buff *skb)
2820 {
2821 return !skb->head_frag || skb_cloned(skb);
2822 }
2823 #endif /* __KERNEL__ */
2824 #endif /* _LINUX_SKBUFF_H */
This page took 0.150096 seconds and 5 git commands to generate.