be2net: Patch to flash redboot section while firmware update.
[deliverable/linux.git] / include / linux / skbuff.h
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/cache.h>
22
23 #include <asm/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/dmaengine.h>
31 #include <linux/hrtimer.h>
32
33 /* Don't change this without changing skb_csum_unnecessary! */
34 #define CHECKSUM_NONE 0
35 #define CHECKSUM_UNNECESSARY 1
36 #define CHECKSUM_COMPLETE 2
37 #define CHECKSUM_PARTIAL 3
38
39 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
40 ~(SMP_CACHE_BYTES - 1))
41 #define SKB_WITH_OVERHEAD(X) \
42 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
43 #define SKB_MAX_ORDER(X, ORDER) \
44 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
45 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
46 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
47
48 /* A. Checksumming of received packets by device.
49 *
50 * NONE: device failed to checksum this packet.
51 * skb->csum is undefined.
52 *
53 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
54 * skb->csum is undefined.
55 * It is bad option, but, unfortunately, many of vendors do this.
56 * Apparently with secret goal to sell you new device, when you
57 * will add new protocol to your host. F.e. IPv6. 8)
58 *
59 * COMPLETE: the most generic way. Device supplied checksum of _all_
60 * the packet as seen by netif_rx in skb->csum.
61 * NOTE: Even if device supports only some protocols, but
62 * is able to produce some skb->csum, it MUST use COMPLETE,
63 * not UNNECESSARY.
64 *
65 * PARTIAL: identical to the case for output below. This may occur
66 * on a packet received directly from another Linux OS, e.g.,
67 * a virtualised Linux kernel on the same host. The packet can
68 * be treated in the same way as UNNECESSARY except that on
69 * output (i.e., forwarding) the checksum must be filled in
70 * by the OS or the hardware.
71 *
72 * B. Checksumming on output.
73 *
74 * NONE: skb is checksummed by protocol or csum is not required.
75 *
76 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
77 * from skb->csum_start to the end and to record the checksum
78 * at skb->csum_start + skb->csum_offset.
79 *
80 * Device must show its capabilities in dev->features, set
81 * at device setup time.
82 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
83 * everything.
84 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
85 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
86 * TCP/UDP over IPv4. Sigh. Vendors like this
87 * way by an unknown reason. Though, see comment above
88 * about CHECKSUM_UNNECESSARY. 8)
89 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
90 *
91 * Any questions? No questions, good. --ANK
92 */
93
94 struct net_device;
95 struct scatterlist;
96 struct pipe_inode_info;
97
98 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
99 struct nf_conntrack {
100 atomic_t use;
101 };
102 #endif
103
104 #ifdef CONFIG_BRIDGE_NETFILTER
105 struct nf_bridge_info {
106 atomic_t use;
107 struct net_device *physindev;
108 struct net_device *physoutdev;
109 unsigned int mask;
110 unsigned long data[32 / sizeof(unsigned long)];
111 };
112 #endif
113
114 struct sk_buff_head {
115 /* These two members must be first. */
116 struct sk_buff *next;
117 struct sk_buff *prev;
118
119 __u32 qlen;
120 spinlock_t lock;
121 };
122
123 struct sk_buff;
124
125 /* To allow 64K frame to be packed as single skb without frag_list */
126 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
127
128 typedef struct skb_frag_struct skb_frag_t;
129
130 struct skb_frag_struct {
131 struct page *page;
132 __u32 page_offset;
133 __u32 size;
134 };
135
136 #define HAVE_HW_TIME_STAMP
137
138 /**
139 * struct skb_shared_hwtstamps - hardware time stamps
140 * @hwtstamp: hardware time stamp transformed into duration
141 * since arbitrary point in time
142 * @syststamp: hwtstamp transformed to system time base
143 *
144 * Software time stamps generated by ktime_get_real() are stored in
145 * skb->tstamp. The relation between the different kinds of time
146 * stamps is as follows:
147 *
148 * syststamp and tstamp can be compared against each other in
149 * arbitrary combinations. The accuracy of a
150 * syststamp/tstamp/"syststamp from other device" comparison is
151 * limited by the accuracy of the transformation into system time
152 * base. This depends on the device driver and its underlying
153 * hardware.
154 *
155 * hwtstamps can only be compared against other hwtstamps from
156 * the same device.
157 *
158 * This structure is attached to packets as part of the
159 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
160 */
161 struct skb_shared_hwtstamps {
162 ktime_t hwtstamp;
163 ktime_t syststamp;
164 };
165
166 /**
167 * struct skb_shared_tx - instructions for time stamping of outgoing packets
168 * @hardware: generate hardware time stamp
169 * @software: generate software time stamp
170 * @in_progress: device driver is going to provide
171 * hardware time stamp
172 * @flags: all shared_tx flags
173 *
174 * These flags are attached to packets as part of the
175 * &skb_shared_info. Use skb_tx() to get a pointer.
176 */
177 union skb_shared_tx {
178 struct {
179 __u8 hardware:1,
180 software:1,
181 in_progress:1;
182 };
183 __u8 flags;
184 };
185
186 /* This data is invariant across clones and lives at
187 * the end of the header data, ie. at skb->end.
188 */
189 struct skb_shared_info {
190 atomic_t dataref;
191 unsigned short nr_frags;
192 unsigned short gso_size;
193 #ifdef CONFIG_HAS_DMA
194 dma_addr_t dma_head;
195 #endif
196 /* Warning: this field is not always filled in (UFO)! */
197 unsigned short gso_segs;
198 unsigned short gso_type;
199 __be32 ip6_frag_id;
200 union skb_shared_tx tx_flags;
201 struct sk_buff *frag_list;
202 struct skb_shared_hwtstamps hwtstamps;
203 skb_frag_t frags[MAX_SKB_FRAGS];
204 #ifdef CONFIG_HAS_DMA
205 dma_addr_t dma_maps[MAX_SKB_FRAGS];
206 #endif
207 /* Intermediate layers must ensure that destructor_arg
208 * remains valid until skb destructor */
209 void * destructor_arg;
210 };
211
212 /* We divide dataref into two halves. The higher 16 bits hold references
213 * to the payload part of skb->data. The lower 16 bits hold references to
214 * the entire skb->data. A clone of a headerless skb holds the length of
215 * the header in skb->hdr_len.
216 *
217 * All users must obey the rule that the skb->data reference count must be
218 * greater than or equal to the payload reference count.
219 *
220 * Holding a reference to the payload part means that the user does not
221 * care about modifications to the header part of skb->data.
222 */
223 #define SKB_DATAREF_SHIFT 16
224 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
225
226
227 enum {
228 SKB_FCLONE_UNAVAILABLE,
229 SKB_FCLONE_ORIG,
230 SKB_FCLONE_CLONE,
231 };
232
233 enum {
234 SKB_GSO_TCPV4 = 1 << 0,
235 SKB_GSO_UDP = 1 << 1,
236
237 /* This indicates the skb is from an untrusted source. */
238 SKB_GSO_DODGY = 1 << 2,
239
240 /* This indicates the tcp segment has CWR set. */
241 SKB_GSO_TCP_ECN = 1 << 3,
242
243 SKB_GSO_TCPV6 = 1 << 4,
244
245 SKB_GSO_FCOE = 1 << 5,
246 };
247
248 #if BITS_PER_LONG > 32
249 #define NET_SKBUFF_DATA_USES_OFFSET 1
250 #endif
251
252 #ifdef NET_SKBUFF_DATA_USES_OFFSET
253 typedef unsigned int sk_buff_data_t;
254 #else
255 typedef unsigned char *sk_buff_data_t;
256 #endif
257
258 /**
259 * struct sk_buff - socket buffer
260 * @next: Next buffer in list
261 * @prev: Previous buffer in list
262 * @sk: Socket we are owned by
263 * @tstamp: Time we arrived
264 * @dev: Device we arrived on/are leaving by
265 * @transport_header: Transport layer header
266 * @network_header: Network layer header
267 * @mac_header: Link layer header
268 * @_skb_dst: destination entry
269 * @sp: the security path, used for xfrm
270 * @cb: Control buffer. Free for use by every layer. Put private vars here
271 * @len: Length of actual data
272 * @data_len: Data length
273 * @mac_len: Length of link layer header
274 * @hdr_len: writable header length of cloned skb
275 * @csum: Checksum (must include start/offset pair)
276 * @csum_start: Offset from skb->head where checksumming should start
277 * @csum_offset: Offset from csum_start where checksum should be stored
278 * @local_df: allow local fragmentation
279 * @cloned: Head may be cloned (check refcnt to be sure)
280 * @nohdr: Payload reference only, must not modify header
281 * @pkt_type: Packet class
282 * @fclone: skbuff clone status
283 * @ip_summed: Driver fed us an IP checksum
284 * @priority: Packet queueing priority
285 * @users: User count - see {datagram,tcp}.c
286 * @protocol: Packet protocol from driver
287 * @truesize: Buffer size
288 * @head: Head of buffer
289 * @data: Data head pointer
290 * @tail: Tail pointer
291 * @end: End pointer
292 * @destructor: Destruct function
293 * @mark: Generic packet mark
294 * @nfct: Associated connection, if any
295 * @ipvs_property: skbuff is owned by ipvs
296 * @peeked: this packet has been seen already, so stats have been
297 * done for it, don't do them again
298 * @nf_trace: netfilter packet trace flag
299 * @nfctinfo: Relationship of this skb to the connection
300 * @nfct_reasm: netfilter conntrack re-assembly pointer
301 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
302 * @iif: ifindex of device we arrived on
303 * @queue_mapping: Queue mapping for multiqueue devices
304 * @tc_index: Traffic control index
305 * @tc_verd: traffic control verdict
306 * @ndisc_nodetype: router type (from link layer)
307 * @dma_cookie: a cookie to one of several possible DMA operations
308 * done by skb DMA functions
309 * @secmark: security marking
310 * @vlan_tci: vlan tag control information
311 */
312
313 struct sk_buff {
314 /* These two members must be first. */
315 struct sk_buff *next;
316 struct sk_buff *prev;
317
318 struct sock *sk;
319 ktime_t tstamp;
320 struct net_device *dev;
321
322 unsigned long _skb_dst;
323 #ifdef CONFIG_XFRM
324 struct sec_path *sp;
325 #endif
326 /*
327 * This is the control buffer. It is free to use for every
328 * layer. Please put your private variables there. If you
329 * want to keep them across layers you have to do a skb_clone()
330 * first. This is owned by whoever has the skb queued ATM.
331 */
332 char cb[48];
333
334 unsigned int len,
335 data_len;
336 __u16 mac_len,
337 hdr_len;
338 union {
339 __wsum csum;
340 struct {
341 __u16 csum_start;
342 __u16 csum_offset;
343 };
344 };
345 __u32 priority;
346 kmemcheck_bitfield_begin(flags1);
347 __u8 local_df:1,
348 cloned:1,
349 ip_summed:2,
350 nohdr:1,
351 nfctinfo:3;
352 __u8 pkt_type:3,
353 fclone:2,
354 ipvs_property:1,
355 peeked:1,
356 nf_trace:1;
357 __be16 protocol:16;
358 kmemcheck_bitfield_end(flags1);
359
360 void (*destructor)(struct sk_buff *skb);
361 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
362 struct nf_conntrack *nfct;
363 struct sk_buff *nfct_reasm;
364 #endif
365 #ifdef CONFIG_BRIDGE_NETFILTER
366 struct nf_bridge_info *nf_bridge;
367 #endif
368
369 int iif;
370 #ifdef CONFIG_NET_SCHED
371 __u16 tc_index; /* traffic control index */
372 #ifdef CONFIG_NET_CLS_ACT
373 __u16 tc_verd; /* traffic control verdict */
374 #endif
375 #endif
376
377 kmemcheck_bitfield_begin(flags2);
378 __u16 queue_mapping:16;
379 #ifdef CONFIG_IPV6_NDISC_NODETYPE
380 __u8 ndisc_nodetype:2;
381 #endif
382 kmemcheck_bitfield_end(flags2);
383
384 /* 0/14 bit hole */
385
386 #ifdef CONFIG_NET_DMA
387 dma_cookie_t dma_cookie;
388 #endif
389 #ifdef CONFIG_NETWORK_SECMARK
390 __u32 secmark;
391 #endif
392 union {
393 __u32 mark;
394 __u32 dropcount;
395 };
396
397 __u16 vlan_tci;
398
399 sk_buff_data_t transport_header;
400 sk_buff_data_t network_header;
401 sk_buff_data_t mac_header;
402 /* These elements must be at the end, see alloc_skb() for details. */
403 sk_buff_data_t tail;
404 sk_buff_data_t end;
405 unsigned char *head,
406 *data;
407 unsigned int truesize;
408 atomic_t users;
409 };
410
411 #ifdef __KERNEL__
412 /*
413 * Handling routines are only of interest to the kernel
414 */
415 #include <linux/slab.h>
416
417 #include <asm/system.h>
418
419 #ifdef CONFIG_HAS_DMA
420 #include <linux/dma-mapping.h>
421 extern int skb_dma_map(struct device *dev, struct sk_buff *skb,
422 enum dma_data_direction dir);
423 extern void skb_dma_unmap(struct device *dev, struct sk_buff *skb,
424 enum dma_data_direction dir);
425 #endif
426
427 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
428 {
429 return (struct dst_entry *)skb->_skb_dst;
430 }
431
432 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
433 {
434 skb->_skb_dst = (unsigned long)dst;
435 }
436
437 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
438 {
439 return (struct rtable *)skb_dst(skb);
440 }
441
442 extern void kfree_skb(struct sk_buff *skb);
443 extern void consume_skb(struct sk_buff *skb);
444 extern void __kfree_skb(struct sk_buff *skb);
445 extern struct sk_buff *__alloc_skb(unsigned int size,
446 gfp_t priority, int fclone, int node);
447 static inline struct sk_buff *alloc_skb(unsigned int size,
448 gfp_t priority)
449 {
450 return __alloc_skb(size, priority, 0, -1);
451 }
452
453 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
454 gfp_t priority)
455 {
456 return __alloc_skb(size, priority, 1, -1);
457 }
458
459 extern int skb_recycle_check(struct sk_buff *skb, int skb_size);
460
461 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
462 extern struct sk_buff *skb_clone(struct sk_buff *skb,
463 gfp_t priority);
464 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
465 gfp_t priority);
466 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
467 gfp_t gfp_mask);
468 extern int pskb_expand_head(struct sk_buff *skb,
469 int nhead, int ntail,
470 gfp_t gfp_mask);
471 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
472 unsigned int headroom);
473 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
474 int newheadroom, int newtailroom,
475 gfp_t priority);
476 extern int skb_to_sgvec(struct sk_buff *skb,
477 struct scatterlist *sg, int offset,
478 int len);
479 extern int skb_cow_data(struct sk_buff *skb, int tailbits,
480 struct sk_buff **trailer);
481 extern int skb_pad(struct sk_buff *skb, int pad);
482 #define dev_kfree_skb(a) consume_skb(a)
483 #define dev_consume_skb(a) kfree_skb_clean(a)
484 extern void skb_over_panic(struct sk_buff *skb, int len,
485 void *here);
486 extern void skb_under_panic(struct sk_buff *skb, int len,
487 void *here);
488
489 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
490 int getfrag(void *from, char *to, int offset,
491 int len,int odd, struct sk_buff *skb),
492 void *from, int length);
493
494 struct skb_seq_state {
495 __u32 lower_offset;
496 __u32 upper_offset;
497 __u32 frag_idx;
498 __u32 stepped_offset;
499 struct sk_buff *root_skb;
500 struct sk_buff *cur_skb;
501 __u8 *frag_data;
502 };
503
504 extern void skb_prepare_seq_read(struct sk_buff *skb,
505 unsigned int from, unsigned int to,
506 struct skb_seq_state *st);
507 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
508 struct skb_seq_state *st);
509 extern void skb_abort_seq_read(struct skb_seq_state *st);
510
511 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
512 unsigned int to, struct ts_config *config,
513 struct ts_state *state);
514
515 #ifdef NET_SKBUFF_DATA_USES_OFFSET
516 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
517 {
518 return skb->head + skb->end;
519 }
520 #else
521 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
522 {
523 return skb->end;
524 }
525 #endif
526
527 /* Internal */
528 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
529
530 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
531 {
532 return &skb_shinfo(skb)->hwtstamps;
533 }
534
535 static inline union skb_shared_tx *skb_tx(struct sk_buff *skb)
536 {
537 return &skb_shinfo(skb)->tx_flags;
538 }
539
540 /**
541 * skb_queue_empty - check if a queue is empty
542 * @list: queue head
543 *
544 * Returns true if the queue is empty, false otherwise.
545 */
546 static inline int skb_queue_empty(const struct sk_buff_head *list)
547 {
548 return list->next == (struct sk_buff *)list;
549 }
550
551 /**
552 * skb_queue_is_last - check if skb is the last entry in the queue
553 * @list: queue head
554 * @skb: buffer
555 *
556 * Returns true if @skb is the last buffer on the list.
557 */
558 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
559 const struct sk_buff *skb)
560 {
561 return (skb->next == (struct sk_buff *) list);
562 }
563
564 /**
565 * skb_queue_is_first - check if skb is the first entry in the queue
566 * @list: queue head
567 * @skb: buffer
568 *
569 * Returns true if @skb is the first buffer on the list.
570 */
571 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
572 const struct sk_buff *skb)
573 {
574 return (skb->prev == (struct sk_buff *) list);
575 }
576
577 /**
578 * skb_queue_next - return the next packet in the queue
579 * @list: queue head
580 * @skb: current buffer
581 *
582 * Return the next packet in @list after @skb. It is only valid to
583 * call this if skb_queue_is_last() evaluates to false.
584 */
585 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
586 const struct sk_buff *skb)
587 {
588 /* This BUG_ON may seem severe, but if we just return then we
589 * are going to dereference garbage.
590 */
591 BUG_ON(skb_queue_is_last(list, skb));
592 return skb->next;
593 }
594
595 /**
596 * skb_queue_prev - return the prev packet in the queue
597 * @list: queue head
598 * @skb: current buffer
599 *
600 * Return the prev packet in @list before @skb. It is only valid to
601 * call this if skb_queue_is_first() evaluates to false.
602 */
603 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
604 const struct sk_buff *skb)
605 {
606 /* This BUG_ON may seem severe, but if we just return then we
607 * are going to dereference garbage.
608 */
609 BUG_ON(skb_queue_is_first(list, skb));
610 return skb->prev;
611 }
612
613 /**
614 * skb_get - reference buffer
615 * @skb: buffer to reference
616 *
617 * Makes another reference to a socket buffer and returns a pointer
618 * to the buffer.
619 */
620 static inline struct sk_buff *skb_get(struct sk_buff *skb)
621 {
622 atomic_inc(&skb->users);
623 return skb;
624 }
625
626 /*
627 * If users == 1, we are the only owner and are can avoid redundant
628 * atomic change.
629 */
630
631 /**
632 * skb_cloned - is the buffer a clone
633 * @skb: buffer to check
634 *
635 * Returns true if the buffer was generated with skb_clone() and is
636 * one of multiple shared copies of the buffer. Cloned buffers are
637 * shared data so must not be written to under normal circumstances.
638 */
639 static inline int skb_cloned(const struct sk_buff *skb)
640 {
641 return skb->cloned &&
642 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
643 }
644
645 /**
646 * skb_header_cloned - is the header a clone
647 * @skb: buffer to check
648 *
649 * Returns true if modifying the header part of the buffer requires
650 * the data to be copied.
651 */
652 static inline int skb_header_cloned(const struct sk_buff *skb)
653 {
654 int dataref;
655
656 if (!skb->cloned)
657 return 0;
658
659 dataref = atomic_read(&skb_shinfo(skb)->dataref);
660 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
661 return dataref != 1;
662 }
663
664 /**
665 * skb_header_release - release reference to header
666 * @skb: buffer to operate on
667 *
668 * Drop a reference to the header part of the buffer. This is done
669 * by acquiring a payload reference. You must not read from the header
670 * part of skb->data after this.
671 */
672 static inline void skb_header_release(struct sk_buff *skb)
673 {
674 BUG_ON(skb->nohdr);
675 skb->nohdr = 1;
676 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
677 }
678
679 /**
680 * skb_shared - is the buffer shared
681 * @skb: buffer to check
682 *
683 * Returns true if more than one person has a reference to this
684 * buffer.
685 */
686 static inline int skb_shared(const struct sk_buff *skb)
687 {
688 return atomic_read(&skb->users) != 1;
689 }
690
691 /**
692 * skb_share_check - check if buffer is shared and if so clone it
693 * @skb: buffer to check
694 * @pri: priority for memory allocation
695 *
696 * If the buffer is shared the buffer is cloned and the old copy
697 * drops a reference. A new clone with a single reference is returned.
698 * If the buffer is not shared the original buffer is returned. When
699 * being called from interrupt status or with spinlocks held pri must
700 * be GFP_ATOMIC.
701 *
702 * NULL is returned on a memory allocation failure.
703 */
704 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
705 gfp_t pri)
706 {
707 might_sleep_if(pri & __GFP_WAIT);
708 if (skb_shared(skb)) {
709 struct sk_buff *nskb = skb_clone(skb, pri);
710 kfree_skb(skb);
711 skb = nskb;
712 }
713 return skb;
714 }
715
716 /*
717 * Copy shared buffers into a new sk_buff. We effectively do COW on
718 * packets to handle cases where we have a local reader and forward
719 * and a couple of other messy ones. The normal one is tcpdumping
720 * a packet thats being forwarded.
721 */
722
723 /**
724 * skb_unshare - make a copy of a shared buffer
725 * @skb: buffer to check
726 * @pri: priority for memory allocation
727 *
728 * If the socket buffer is a clone then this function creates a new
729 * copy of the data, drops a reference count on the old copy and returns
730 * the new copy with the reference count at 1. If the buffer is not a clone
731 * the original buffer is returned. When called with a spinlock held or
732 * from interrupt state @pri must be %GFP_ATOMIC
733 *
734 * %NULL is returned on a memory allocation failure.
735 */
736 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
737 gfp_t pri)
738 {
739 might_sleep_if(pri & __GFP_WAIT);
740 if (skb_cloned(skb)) {
741 struct sk_buff *nskb = skb_copy(skb, pri);
742 kfree_skb(skb); /* Free our shared copy */
743 skb = nskb;
744 }
745 return skb;
746 }
747
748 /**
749 * skb_peek
750 * @list_: list to peek at
751 *
752 * Peek an &sk_buff. Unlike most other operations you _MUST_
753 * be careful with this one. A peek leaves the buffer on the
754 * list and someone else may run off with it. You must hold
755 * the appropriate locks or have a private queue to do this.
756 *
757 * Returns %NULL for an empty list or a pointer to the head element.
758 * The reference count is not incremented and the reference is therefore
759 * volatile. Use with caution.
760 */
761 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
762 {
763 struct sk_buff *list = ((struct sk_buff *)list_)->next;
764 if (list == (struct sk_buff *)list_)
765 list = NULL;
766 return list;
767 }
768
769 /**
770 * skb_peek_tail
771 * @list_: list to peek at
772 *
773 * Peek an &sk_buff. Unlike most other operations you _MUST_
774 * be careful with this one. A peek leaves the buffer on the
775 * list and someone else may run off with it. You must hold
776 * the appropriate locks or have a private queue to do this.
777 *
778 * Returns %NULL for an empty list or a pointer to the tail element.
779 * The reference count is not incremented and the reference is therefore
780 * volatile. Use with caution.
781 */
782 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
783 {
784 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
785 if (list == (struct sk_buff *)list_)
786 list = NULL;
787 return list;
788 }
789
790 /**
791 * skb_queue_len - get queue length
792 * @list_: list to measure
793 *
794 * Return the length of an &sk_buff queue.
795 */
796 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
797 {
798 return list_->qlen;
799 }
800
801 /**
802 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
803 * @list: queue to initialize
804 *
805 * This initializes only the list and queue length aspects of
806 * an sk_buff_head object. This allows to initialize the list
807 * aspects of an sk_buff_head without reinitializing things like
808 * the spinlock. It can also be used for on-stack sk_buff_head
809 * objects where the spinlock is known to not be used.
810 */
811 static inline void __skb_queue_head_init(struct sk_buff_head *list)
812 {
813 list->prev = list->next = (struct sk_buff *)list;
814 list->qlen = 0;
815 }
816
817 /*
818 * This function creates a split out lock class for each invocation;
819 * this is needed for now since a whole lot of users of the skb-queue
820 * infrastructure in drivers have different locking usage (in hardirq)
821 * than the networking core (in softirq only). In the long run either the
822 * network layer or drivers should need annotation to consolidate the
823 * main types of usage into 3 classes.
824 */
825 static inline void skb_queue_head_init(struct sk_buff_head *list)
826 {
827 spin_lock_init(&list->lock);
828 __skb_queue_head_init(list);
829 }
830
831 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
832 struct lock_class_key *class)
833 {
834 skb_queue_head_init(list);
835 lockdep_set_class(&list->lock, class);
836 }
837
838 /*
839 * Insert an sk_buff on a list.
840 *
841 * The "__skb_xxxx()" functions are the non-atomic ones that
842 * can only be called with interrupts disabled.
843 */
844 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
845 static inline void __skb_insert(struct sk_buff *newsk,
846 struct sk_buff *prev, struct sk_buff *next,
847 struct sk_buff_head *list)
848 {
849 newsk->next = next;
850 newsk->prev = prev;
851 next->prev = prev->next = newsk;
852 list->qlen++;
853 }
854
855 static inline void __skb_queue_splice(const struct sk_buff_head *list,
856 struct sk_buff *prev,
857 struct sk_buff *next)
858 {
859 struct sk_buff *first = list->next;
860 struct sk_buff *last = list->prev;
861
862 first->prev = prev;
863 prev->next = first;
864
865 last->next = next;
866 next->prev = last;
867 }
868
869 /**
870 * skb_queue_splice - join two skb lists, this is designed for stacks
871 * @list: the new list to add
872 * @head: the place to add it in the first list
873 */
874 static inline void skb_queue_splice(const struct sk_buff_head *list,
875 struct sk_buff_head *head)
876 {
877 if (!skb_queue_empty(list)) {
878 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
879 head->qlen += list->qlen;
880 }
881 }
882
883 /**
884 * skb_queue_splice - join two skb lists and reinitialise the emptied list
885 * @list: the new list to add
886 * @head: the place to add it in the first list
887 *
888 * The list at @list is reinitialised
889 */
890 static inline void skb_queue_splice_init(struct sk_buff_head *list,
891 struct sk_buff_head *head)
892 {
893 if (!skb_queue_empty(list)) {
894 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
895 head->qlen += list->qlen;
896 __skb_queue_head_init(list);
897 }
898 }
899
900 /**
901 * skb_queue_splice_tail - join two skb lists, each list being a queue
902 * @list: the new list to add
903 * @head: the place to add it in the first list
904 */
905 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
906 struct sk_buff_head *head)
907 {
908 if (!skb_queue_empty(list)) {
909 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
910 head->qlen += list->qlen;
911 }
912 }
913
914 /**
915 * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
916 * @list: the new list to add
917 * @head: the place to add it in the first list
918 *
919 * Each of the lists is a queue.
920 * The list at @list is reinitialised
921 */
922 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
923 struct sk_buff_head *head)
924 {
925 if (!skb_queue_empty(list)) {
926 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
927 head->qlen += list->qlen;
928 __skb_queue_head_init(list);
929 }
930 }
931
932 /**
933 * __skb_queue_after - queue a buffer at the list head
934 * @list: list to use
935 * @prev: place after this buffer
936 * @newsk: buffer to queue
937 *
938 * Queue a buffer int the middle of a list. This function takes no locks
939 * and you must therefore hold required locks before calling it.
940 *
941 * A buffer cannot be placed on two lists at the same time.
942 */
943 static inline void __skb_queue_after(struct sk_buff_head *list,
944 struct sk_buff *prev,
945 struct sk_buff *newsk)
946 {
947 __skb_insert(newsk, prev, prev->next, list);
948 }
949
950 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
951 struct sk_buff_head *list);
952
953 static inline void __skb_queue_before(struct sk_buff_head *list,
954 struct sk_buff *next,
955 struct sk_buff *newsk)
956 {
957 __skb_insert(newsk, next->prev, next, list);
958 }
959
960 /**
961 * __skb_queue_head - queue a buffer at the list head
962 * @list: list to use
963 * @newsk: buffer to queue
964 *
965 * Queue a buffer at the start of a list. This function takes no locks
966 * and you must therefore hold required locks before calling it.
967 *
968 * A buffer cannot be placed on two lists at the same time.
969 */
970 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
971 static inline void __skb_queue_head(struct sk_buff_head *list,
972 struct sk_buff *newsk)
973 {
974 __skb_queue_after(list, (struct sk_buff *)list, newsk);
975 }
976
977 /**
978 * __skb_queue_tail - queue a buffer at the list tail
979 * @list: list to use
980 * @newsk: buffer to queue
981 *
982 * Queue a buffer at the end of a list. This function takes no locks
983 * and you must therefore hold required locks before calling it.
984 *
985 * A buffer cannot be placed on two lists at the same time.
986 */
987 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
988 static inline void __skb_queue_tail(struct sk_buff_head *list,
989 struct sk_buff *newsk)
990 {
991 __skb_queue_before(list, (struct sk_buff *)list, newsk);
992 }
993
994 /*
995 * remove sk_buff from list. _Must_ be called atomically, and with
996 * the list known..
997 */
998 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
999 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1000 {
1001 struct sk_buff *next, *prev;
1002
1003 list->qlen--;
1004 next = skb->next;
1005 prev = skb->prev;
1006 skb->next = skb->prev = NULL;
1007 next->prev = prev;
1008 prev->next = next;
1009 }
1010
1011 /**
1012 * __skb_dequeue - remove from the head of the queue
1013 * @list: list to dequeue from
1014 *
1015 * Remove the head of the list. This function does not take any locks
1016 * so must be used with appropriate locks held only. The head item is
1017 * returned or %NULL if the list is empty.
1018 */
1019 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1020 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1021 {
1022 struct sk_buff *skb = skb_peek(list);
1023 if (skb)
1024 __skb_unlink(skb, list);
1025 return skb;
1026 }
1027
1028 /**
1029 * __skb_dequeue_tail - remove from the tail of the queue
1030 * @list: list to dequeue from
1031 *
1032 * Remove the tail of the list. This function does not take any locks
1033 * so must be used with appropriate locks held only. The tail item is
1034 * returned or %NULL if the list is empty.
1035 */
1036 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1037 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1038 {
1039 struct sk_buff *skb = skb_peek_tail(list);
1040 if (skb)
1041 __skb_unlink(skb, list);
1042 return skb;
1043 }
1044
1045
1046 static inline int skb_is_nonlinear(const struct sk_buff *skb)
1047 {
1048 return skb->data_len;
1049 }
1050
1051 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1052 {
1053 return skb->len - skb->data_len;
1054 }
1055
1056 static inline int skb_pagelen(const struct sk_buff *skb)
1057 {
1058 int i, len = 0;
1059
1060 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1061 len += skb_shinfo(skb)->frags[i].size;
1062 return len + skb_headlen(skb);
1063 }
1064
1065 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1066 struct page *page, int off, int size)
1067 {
1068 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1069
1070 frag->page = page;
1071 frag->page_offset = off;
1072 frag->size = size;
1073 skb_shinfo(skb)->nr_frags = i + 1;
1074 }
1075
1076 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1077 int off, int size);
1078
1079 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1080 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frags(skb))
1081 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1082
1083 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1084 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1085 {
1086 return skb->head + skb->tail;
1087 }
1088
1089 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1090 {
1091 skb->tail = skb->data - skb->head;
1092 }
1093
1094 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1095 {
1096 skb_reset_tail_pointer(skb);
1097 skb->tail += offset;
1098 }
1099 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1100 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1101 {
1102 return skb->tail;
1103 }
1104
1105 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1106 {
1107 skb->tail = skb->data;
1108 }
1109
1110 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1111 {
1112 skb->tail = skb->data + offset;
1113 }
1114
1115 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1116
1117 /*
1118 * Add data to an sk_buff
1119 */
1120 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1121 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1122 {
1123 unsigned char *tmp = skb_tail_pointer(skb);
1124 SKB_LINEAR_ASSERT(skb);
1125 skb->tail += len;
1126 skb->len += len;
1127 return tmp;
1128 }
1129
1130 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1131 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1132 {
1133 skb->data -= len;
1134 skb->len += len;
1135 return skb->data;
1136 }
1137
1138 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1139 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1140 {
1141 skb->len -= len;
1142 BUG_ON(skb->len < skb->data_len);
1143 return skb->data += len;
1144 }
1145
1146 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1147
1148 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1149 {
1150 if (len > skb_headlen(skb) &&
1151 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1152 return NULL;
1153 skb->len -= len;
1154 return skb->data += len;
1155 }
1156
1157 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1158 {
1159 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1160 }
1161
1162 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1163 {
1164 if (likely(len <= skb_headlen(skb)))
1165 return 1;
1166 if (unlikely(len > skb->len))
1167 return 0;
1168 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1169 }
1170
1171 /**
1172 * skb_headroom - bytes at buffer head
1173 * @skb: buffer to check
1174 *
1175 * Return the number of bytes of free space at the head of an &sk_buff.
1176 */
1177 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1178 {
1179 return skb->data - skb->head;
1180 }
1181
1182 /**
1183 * skb_tailroom - bytes at buffer end
1184 * @skb: buffer to check
1185 *
1186 * Return the number of bytes of free space at the tail of an sk_buff
1187 */
1188 static inline int skb_tailroom(const struct sk_buff *skb)
1189 {
1190 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1191 }
1192
1193 /**
1194 * skb_reserve - adjust headroom
1195 * @skb: buffer to alter
1196 * @len: bytes to move
1197 *
1198 * Increase the headroom of an empty &sk_buff by reducing the tail
1199 * room. This is only allowed for an empty buffer.
1200 */
1201 static inline void skb_reserve(struct sk_buff *skb, int len)
1202 {
1203 skb->data += len;
1204 skb->tail += len;
1205 }
1206
1207 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1208 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1209 {
1210 return skb->head + skb->transport_header;
1211 }
1212
1213 static inline void skb_reset_transport_header(struct sk_buff *skb)
1214 {
1215 skb->transport_header = skb->data - skb->head;
1216 }
1217
1218 static inline void skb_set_transport_header(struct sk_buff *skb,
1219 const int offset)
1220 {
1221 skb_reset_transport_header(skb);
1222 skb->transport_header += offset;
1223 }
1224
1225 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1226 {
1227 return skb->head + skb->network_header;
1228 }
1229
1230 static inline void skb_reset_network_header(struct sk_buff *skb)
1231 {
1232 skb->network_header = skb->data - skb->head;
1233 }
1234
1235 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1236 {
1237 skb_reset_network_header(skb);
1238 skb->network_header += offset;
1239 }
1240
1241 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1242 {
1243 return skb->head + skb->mac_header;
1244 }
1245
1246 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1247 {
1248 return skb->mac_header != ~0U;
1249 }
1250
1251 static inline void skb_reset_mac_header(struct sk_buff *skb)
1252 {
1253 skb->mac_header = skb->data - skb->head;
1254 }
1255
1256 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1257 {
1258 skb_reset_mac_header(skb);
1259 skb->mac_header += offset;
1260 }
1261
1262 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1263
1264 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1265 {
1266 return skb->transport_header;
1267 }
1268
1269 static inline void skb_reset_transport_header(struct sk_buff *skb)
1270 {
1271 skb->transport_header = skb->data;
1272 }
1273
1274 static inline void skb_set_transport_header(struct sk_buff *skb,
1275 const int offset)
1276 {
1277 skb->transport_header = skb->data + offset;
1278 }
1279
1280 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1281 {
1282 return skb->network_header;
1283 }
1284
1285 static inline void skb_reset_network_header(struct sk_buff *skb)
1286 {
1287 skb->network_header = skb->data;
1288 }
1289
1290 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1291 {
1292 skb->network_header = skb->data + offset;
1293 }
1294
1295 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1296 {
1297 return skb->mac_header;
1298 }
1299
1300 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1301 {
1302 return skb->mac_header != NULL;
1303 }
1304
1305 static inline void skb_reset_mac_header(struct sk_buff *skb)
1306 {
1307 skb->mac_header = skb->data;
1308 }
1309
1310 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1311 {
1312 skb->mac_header = skb->data + offset;
1313 }
1314 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1315
1316 static inline int skb_transport_offset(const struct sk_buff *skb)
1317 {
1318 return skb_transport_header(skb) - skb->data;
1319 }
1320
1321 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1322 {
1323 return skb->transport_header - skb->network_header;
1324 }
1325
1326 static inline int skb_network_offset(const struct sk_buff *skb)
1327 {
1328 return skb_network_header(skb) - skb->data;
1329 }
1330
1331 /*
1332 * CPUs often take a performance hit when accessing unaligned memory
1333 * locations. The actual performance hit varies, it can be small if the
1334 * hardware handles it or large if we have to take an exception and fix it
1335 * in software.
1336 *
1337 * Since an ethernet header is 14 bytes network drivers often end up with
1338 * the IP header at an unaligned offset. The IP header can be aligned by
1339 * shifting the start of the packet by 2 bytes. Drivers should do this
1340 * with:
1341 *
1342 * skb_reserve(skb, NET_IP_ALIGN);
1343 *
1344 * The downside to this alignment of the IP header is that the DMA is now
1345 * unaligned. On some architectures the cost of an unaligned DMA is high
1346 * and this cost outweighs the gains made by aligning the IP header.
1347 *
1348 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1349 * to be overridden.
1350 */
1351 #ifndef NET_IP_ALIGN
1352 #define NET_IP_ALIGN 2
1353 #endif
1354
1355 /*
1356 * The networking layer reserves some headroom in skb data (via
1357 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1358 * the header has to grow. In the default case, if the header has to grow
1359 * 32 bytes or less we avoid the reallocation.
1360 *
1361 * Unfortunately this headroom changes the DMA alignment of the resulting
1362 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1363 * on some architectures. An architecture can override this value,
1364 * perhaps setting it to a cacheline in size (since that will maintain
1365 * cacheline alignment of the DMA). It must be a power of 2.
1366 *
1367 * Various parts of the networking layer expect at least 32 bytes of
1368 * headroom, you should not reduce this.
1369 */
1370 #ifndef NET_SKB_PAD
1371 #define NET_SKB_PAD 32
1372 #endif
1373
1374 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1375
1376 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1377 {
1378 if (unlikely(skb->data_len)) {
1379 WARN_ON(1);
1380 return;
1381 }
1382 skb->len = len;
1383 skb_set_tail_pointer(skb, len);
1384 }
1385
1386 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1387
1388 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1389 {
1390 if (skb->data_len)
1391 return ___pskb_trim(skb, len);
1392 __skb_trim(skb, len);
1393 return 0;
1394 }
1395
1396 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1397 {
1398 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1399 }
1400
1401 /**
1402 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1403 * @skb: buffer to alter
1404 * @len: new length
1405 *
1406 * This is identical to pskb_trim except that the caller knows that
1407 * the skb is not cloned so we should never get an error due to out-
1408 * of-memory.
1409 */
1410 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1411 {
1412 int err = pskb_trim(skb, len);
1413 BUG_ON(err);
1414 }
1415
1416 /**
1417 * skb_orphan - orphan a buffer
1418 * @skb: buffer to orphan
1419 *
1420 * If a buffer currently has an owner then we call the owner's
1421 * destructor function and make the @skb unowned. The buffer continues
1422 * to exist but is no longer charged to its former owner.
1423 */
1424 static inline void skb_orphan(struct sk_buff *skb)
1425 {
1426 if (skb->destructor)
1427 skb->destructor(skb);
1428 skb->destructor = NULL;
1429 skb->sk = NULL;
1430 }
1431
1432 /**
1433 * __skb_queue_purge - empty a list
1434 * @list: list to empty
1435 *
1436 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1437 * the list and one reference dropped. This function does not take the
1438 * list lock and the caller must hold the relevant locks to use it.
1439 */
1440 extern void skb_queue_purge(struct sk_buff_head *list);
1441 static inline void __skb_queue_purge(struct sk_buff_head *list)
1442 {
1443 struct sk_buff *skb;
1444 while ((skb = __skb_dequeue(list)) != NULL)
1445 kfree_skb(skb);
1446 }
1447
1448 /**
1449 * __dev_alloc_skb - allocate an skbuff for receiving
1450 * @length: length to allocate
1451 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1452 *
1453 * Allocate a new &sk_buff and assign it a usage count of one. The
1454 * buffer has unspecified headroom built in. Users should allocate
1455 * the headroom they think they need without accounting for the
1456 * built in space. The built in space is used for optimisations.
1457 *
1458 * %NULL is returned if there is no free memory.
1459 */
1460 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1461 gfp_t gfp_mask)
1462 {
1463 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1464 if (likely(skb))
1465 skb_reserve(skb, NET_SKB_PAD);
1466 return skb;
1467 }
1468
1469 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1470
1471 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1472 unsigned int length, gfp_t gfp_mask);
1473
1474 /**
1475 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1476 * @dev: network device to receive on
1477 * @length: length to allocate
1478 *
1479 * Allocate a new &sk_buff and assign it a usage count of one. The
1480 * buffer has unspecified headroom built in. Users should allocate
1481 * the headroom they think they need without accounting for the
1482 * built in space. The built in space is used for optimisations.
1483 *
1484 * %NULL is returned if there is no free memory. Although this function
1485 * allocates memory it can be called from an interrupt.
1486 */
1487 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1488 unsigned int length)
1489 {
1490 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1491 }
1492
1493 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
1494 unsigned int length)
1495 {
1496 struct sk_buff *skb = netdev_alloc_skb(dev, length + NET_IP_ALIGN);
1497
1498 if (NET_IP_ALIGN && skb)
1499 skb_reserve(skb, NET_IP_ALIGN);
1500 return skb;
1501 }
1502
1503 extern struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask);
1504
1505 /**
1506 * netdev_alloc_page - allocate a page for ps-rx on a specific device
1507 * @dev: network device to receive on
1508 *
1509 * Allocate a new page node local to the specified device.
1510 *
1511 * %NULL is returned if there is no free memory.
1512 */
1513 static inline struct page *netdev_alloc_page(struct net_device *dev)
1514 {
1515 return __netdev_alloc_page(dev, GFP_ATOMIC);
1516 }
1517
1518 static inline void netdev_free_page(struct net_device *dev, struct page *page)
1519 {
1520 __free_page(page);
1521 }
1522
1523 /**
1524 * skb_clone_writable - is the header of a clone writable
1525 * @skb: buffer to check
1526 * @len: length up to which to write
1527 *
1528 * Returns true if modifying the header part of the cloned buffer
1529 * does not requires the data to be copied.
1530 */
1531 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1532 {
1533 return !skb_header_cloned(skb) &&
1534 skb_headroom(skb) + len <= skb->hdr_len;
1535 }
1536
1537 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1538 int cloned)
1539 {
1540 int delta = 0;
1541
1542 if (headroom < NET_SKB_PAD)
1543 headroom = NET_SKB_PAD;
1544 if (headroom > skb_headroom(skb))
1545 delta = headroom - skb_headroom(skb);
1546
1547 if (delta || cloned)
1548 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1549 GFP_ATOMIC);
1550 return 0;
1551 }
1552
1553 /**
1554 * skb_cow - copy header of skb when it is required
1555 * @skb: buffer to cow
1556 * @headroom: needed headroom
1557 *
1558 * If the skb passed lacks sufficient headroom or its data part
1559 * is shared, data is reallocated. If reallocation fails, an error
1560 * is returned and original skb is not changed.
1561 *
1562 * The result is skb with writable area skb->head...skb->tail
1563 * and at least @headroom of space at head.
1564 */
1565 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1566 {
1567 return __skb_cow(skb, headroom, skb_cloned(skb));
1568 }
1569
1570 /**
1571 * skb_cow_head - skb_cow but only making the head writable
1572 * @skb: buffer to cow
1573 * @headroom: needed headroom
1574 *
1575 * This function is identical to skb_cow except that we replace the
1576 * skb_cloned check by skb_header_cloned. It should be used when
1577 * you only need to push on some header and do not need to modify
1578 * the data.
1579 */
1580 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1581 {
1582 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1583 }
1584
1585 /**
1586 * skb_padto - pad an skbuff up to a minimal size
1587 * @skb: buffer to pad
1588 * @len: minimal length
1589 *
1590 * Pads up a buffer to ensure the trailing bytes exist and are
1591 * blanked. If the buffer already contains sufficient data it
1592 * is untouched. Otherwise it is extended. Returns zero on
1593 * success. The skb is freed on error.
1594 */
1595
1596 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1597 {
1598 unsigned int size = skb->len;
1599 if (likely(size >= len))
1600 return 0;
1601 return skb_pad(skb, len - size);
1602 }
1603
1604 static inline int skb_add_data(struct sk_buff *skb,
1605 char __user *from, int copy)
1606 {
1607 const int off = skb->len;
1608
1609 if (skb->ip_summed == CHECKSUM_NONE) {
1610 int err = 0;
1611 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1612 copy, 0, &err);
1613 if (!err) {
1614 skb->csum = csum_block_add(skb->csum, csum, off);
1615 return 0;
1616 }
1617 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1618 return 0;
1619
1620 __skb_trim(skb, off);
1621 return -EFAULT;
1622 }
1623
1624 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1625 struct page *page, int off)
1626 {
1627 if (i) {
1628 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1629
1630 return page == frag->page &&
1631 off == frag->page_offset + frag->size;
1632 }
1633 return 0;
1634 }
1635
1636 static inline int __skb_linearize(struct sk_buff *skb)
1637 {
1638 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1639 }
1640
1641 /**
1642 * skb_linearize - convert paged skb to linear one
1643 * @skb: buffer to linarize
1644 *
1645 * If there is no free memory -ENOMEM is returned, otherwise zero
1646 * is returned and the old skb data released.
1647 */
1648 static inline int skb_linearize(struct sk_buff *skb)
1649 {
1650 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1651 }
1652
1653 /**
1654 * skb_linearize_cow - make sure skb is linear and writable
1655 * @skb: buffer to process
1656 *
1657 * If there is no free memory -ENOMEM is returned, otherwise zero
1658 * is returned and the old skb data released.
1659 */
1660 static inline int skb_linearize_cow(struct sk_buff *skb)
1661 {
1662 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1663 __skb_linearize(skb) : 0;
1664 }
1665
1666 /**
1667 * skb_postpull_rcsum - update checksum for received skb after pull
1668 * @skb: buffer to update
1669 * @start: start of data before pull
1670 * @len: length of data pulled
1671 *
1672 * After doing a pull on a received packet, you need to call this to
1673 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1674 * CHECKSUM_NONE so that it can be recomputed from scratch.
1675 */
1676
1677 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1678 const void *start, unsigned int len)
1679 {
1680 if (skb->ip_summed == CHECKSUM_COMPLETE)
1681 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1682 }
1683
1684 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1685
1686 /**
1687 * pskb_trim_rcsum - trim received skb and update checksum
1688 * @skb: buffer to trim
1689 * @len: new length
1690 *
1691 * This is exactly the same as pskb_trim except that it ensures the
1692 * checksum of received packets are still valid after the operation.
1693 */
1694
1695 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1696 {
1697 if (likely(len >= skb->len))
1698 return 0;
1699 if (skb->ip_summed == CHECKSUM_COMPLETE)
1700 skb->ip_summed = CHECKSUM_NONE;
1701 return __pskb_trim(skb, len);
1702 }
1703
1704 #define skb_queue_walk(queue, skb) \
1705 for (skb = (queue)->next; \
1706 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1707 skb = skb->next)
1708
1709 #define skb_queue_walk_safe(queue, skb, tmp) \
1710 for (skb = (queue)->next, tmp = skb->next; \
1711 skb != (struct sk_buff *)(queue); \
1712 skb = tmp, tmp = skb->next)
1713
1714 #define skb_queue_walk_from(queue, skb) \
1715 for (; prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1716 skb = skb->next)
1717
1718 #define skb_queue_walk_from_safe(queue, skb, tmp) \
1719 for (tmp = skb->next; \
1720 skb != (struct sk_buff *)(queue); \
1721 skb = tmp, tmp = skb->next)
1722
1723 #define skb_queue_reverse_walk(queue, skb) \
1724 for (skb = (queue)->prev; \
1725 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1726 skb = skb->prev)
1727
1728
1729 static inline bool skb_has_frags(const struct sk_buff *skb)
1730 {
1731 return skb_shinfo(skb)->frag_list != NULL;
1732 }
1733
1734 static inline void skb_frag_list_init(struct sk_buff *skb)
1735 {
1736 skb_shinfo(skb)->frag_list = NULL;
1737 }
1738
1739 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
1740 {
1741 frag->next = skb_shinfo(skb)->frag_list;
1742 skb_shinfo(skb)->frag_list = frag;
1743 }
1744
1745 #define skb_walk_frags(skb, iter) \
1746 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
1747
1748 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
1749 int *peeked, int *err);
1750 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1751 int noblock, int *err);
1752 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1753 struct poll_table_struct *wait);
1754 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1755 int offset, struct iovec *to,
1756 int size);
1757 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1758 int hlen,
1759 struct iovec *iov);
1760 extern int skb_copy_datagram_from_iovec(struct sk_buff *skb,
1761 int offset,
1762 const struct iovec *from,
1763 int from_offset,
1764 int len);
1765 extern int skb_copy_datagram_const_iovec(const struct sk_buff *from,
1766 int offset,
1767 const struct iovec *to,
1768 int to_offset,
1769 int size);
1770 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1771 extern void skb_free_datagram_locked(struct sock *sk,
1772 struct sk_buff *skb);
1773 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1774 unsigned int flags);
1775 extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
1776 int len, __wsum csum);
1777 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1778 void *to, int len);
1779 extern int skb_store_bits(struct sk_buff *skb, int offset,
1780 const void *from, int len);
1781 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
1782 int offset, u8 *to, int len,
1783 __wsum csum);
1784 extern int skb_splice_bits(struct sk_buff *skb,
1785 unsigned int offset,
1786 struct pipe_inode_info *pipe,
1787 unsigned int len,
1788 unsigned int flags);
1789 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1790 extern void skb_split(struct sk_buff *skb,
1791 struct sk_buff *skb1, const u32 len);
1792 extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
1793 int shiftlen);
1794
1795 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1796
1797 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1798 int len, void *buffer)
1799 {
1800 int hlen = skb_headlen(skb);
1801
1802 if (hlen - offset >= len)
1803 return skb->data + offset;
1804
1805 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1806 return NULL;
1807
1808 return buffer;
1809 }
1810
1811 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1812 void *to,
1813 const unsigned int len)
1814 {
1815 memcpy(to, skb->data, len);
1816 }
1817
1818 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1819 const int offset, void *to,
1820 const unsigned int len)
1821 {
1822 memcpy(to, skb->data + offset, len);
1823 }
1824
1825 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1826 const void *from,
1827 const unsigned int len)
1828 {
1829 memcpy(skb->data, from, len);
1830 }
1831
1832 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1833 const int offset,
1834 const void *from,
1835 const unsigned int len)
1836 {
1837 memcpy(skb->data + offset, from, len);
1838 }
1839
1840 extern void skb_init(void);
1841
1842 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
1843 {
1844 return skb->tstamp;
1845 }
1846
1847 /**
1848 * skb_get_timestamp - get timestamp from a skb
1849 * @skb: skb to get stamp from
1850 * @stamp: pointer to struct timeval to store stamp in
1851 *
1852 * Timestamps are stored in the skb as offsets to a base timestamp.
1853 * This function converts the offset back to a struct timeval and stores
1854 * it in stamp.
1855 */
1856 static inline void skb_get_timestamp(const struct sk_buff *skb,
1857 struct timeval *stamp)
1858 {
1859 *stamp = ktime_to_timeval(skb->tstamp);
1860 }
1861
1862 static inline void skb_get_timestampns(const struct sk_buff *skb,
1863 struct timespec *stamp)
1864 {
1865 *stamp = ktime_to_timespec(skb->tstamp);
1866 }
1867
1868 static inline void __net_timestamp(struct sk_buff *skb)
1869 {
1870 skb->tstamp = ktime_get_real();
1871 }
1872
1873 static inline ktime_t net_timedelta(ktime_t t)
1874 {
1875 return ktime_sub(ktime_get_real(), t);
1876 }
1877
1878 static inline ktime_t net_invalid_timestamp(void)
1879 {
1880 return ktime_set(0, 0);
1881 }
1882
1883 /**
1884 * skb_tstamp_tx - queue clone of skb with send time stamps
1885 * @orig_skb: the original outgoing packet
1886 * @hwtstamps: hardware time stamps, may be NULL if not available
1887 *
1888 * If the skb has a socket associated, then this function clones the
1889 * skb (thus sharing the actual data and optional structures), stores
1890 * the optional hardware time stamping information (if non NULL) or
1891 * generates a software time stamp (otherwise), then queues the clone
1892 * to the error queue of the socket. Errors are silently ignored.
1893 */
1894 extern void skb_tstamp_tx(struct sk_buff *orig_skb,
1895 struct skb_shared_hwtstamps *hwtstamps);
1896
1897 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1898 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1899
1900 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
1901 {
1902 return skb->ip_summed & CHECKSUM_UNNECESSARY;
1903 }
1904
1905 /**
1906 * skb_checksum_complete - Calculate checksum of an entire packet
1907 * @skb: packet to process
1908 *
1909 * This function calculates the checksum over the entire packet plus
1910 * the value of skb->csum. The latter can be used to supply the
1911 * checksum of a pseudo header as used by TCP/UDP. It returns the
1912 * checksum.
1913 *
1914 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
1915 * this function can be used to verify that checksum on received
1916 * packets. In that case the function should return zero if the
1917 * checksum is correct. In particular, this function will return zero
1918 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1919 * hardware has already verified the correctness of the checksum.
1920 */
1921 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
1922 {
1923 return skb_csum_unnecessary(skb) ?
1924 0 : __skb_checksum_complete(skb);
1925 }
1926
1927 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1928 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
1929 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1930 {
1931 if (nfct && atomic_dec_and_test(&nfct->use))
1932 nf_conntrack_destroy(nfct);
1933 }
1934 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1935 {
1936 if (nfct)
1937 atomic_inc(&nfct->use);
1938 }
1939 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1940 {
1941 if (skb)
1942 atomic_inc(&skb->users);
1943 }
1944 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1945 {
1946 if (skb)
1947 kfree_skb(skb);
1948 }
1949 #endif
1950 #ifdef CONFIG_BRIDGE_NETFILTER
1951 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1952 {
1953 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1954 kfree(nf_bridge);
1955 }
1956 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1957 {
1958 if (nf_bridge)
1959 atomic_inc(&nf_bridge->use);
1960 }
1961 #endif /* CONFIG_BRIDGE_NETFILTER */
1962 static inline void nf_reset(struct sk_buff *skb)
1963 {
1964 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1965 nf_conntrack_put(skb->nfct);
1966 skb->nfct = NULL;
1967 nf_conntrack_put_reasm(skb->nfct_reasm);
1968 skb->nfct_reasm = NULL;
1969 #endif
1970 #ifdef CONFIG_BRIDGE_NETFILTER
1971 nf_bridge_put(skb->nf_bridge);
1972 skb->nf_bridge = NULL;
1973 #endif
1974 }
1975
1976 /* Note: This doesn't put any conntrack and bridge info in dst. */
1977 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1978 {
1979 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1980 dst->nfct = src->nfct;
1981 nf_conntrack_get(src->nfct);
1982 dst->nfctinfo = src->nfctinfo;
1983 dst->nfct_reasm = src->nfct_reasm;
1984 nf_conntrack_get_reasm(src->nfct_reasm);
1985 #endif
1986 #ifdef CONFIG_BRIDGE_NETFILTER
1987 dst->nf_bridge = src->nf_bridge;
1988 nf_bridge_get(src->nf_bridge);
1989 #endif
1990 }
1991
1992 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1993 {
1994 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1995 nf_conntrack_put(dst->nfct);
1996 nf_conntrack_put_reasm(dst->nfct_reasm);
1997 #endif
1998 #ifdef CONFIG_BRIDGE_NETFILTER
1999 nf_bridge_put(dst->nf_bridge);
2000 #endif
2001 __nf_copy(dst, src);
2002 }
2003
2004 #ifdef CONFIG_NETWORK_SECMARK
2005 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2006 {
2007 to->secmark = from->secmark;
2008 }
2009
2010 static inline void skb_init_secmark(struct sk_buff *skb)
2011 {
2012 skb->secmark = 0;
2013 }
2014 #else
2015 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2016 { }
2017
2018 static inline void skb_init_secmark(struct sk_buff *skb)
2019 { }
2020 #endif
2021
2022 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2023 {
2024 skb->queue_mapping = queue_mapping;
2025 }
2026
2027 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2028 {
2029 return skb->queue_mapping;
2030 }
2031
2032 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2033 {
2034 to->queue_mapping = from->queue_mapping;
2035 }
2036
2037 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2038 {
2039 skb->queue_mapping = rx_queue + 1;
2040 }
2041
2042 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2043 {
2044 return skb->queue_mapping - 1;
2045 }
2046
2047 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2048 {
2049 return (skb->queue_mapping != 0);
2050 }
2051
2052 extern u16 skb_tx_hash(const struct net_device *dev,
2053 const struct sk_buff *skb);
2054
2055 #ifdef CONFIG_XFRM
2056 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2057 {
2058 return skb->sp;
2059 }
2060 #else
2061 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2062 {
2063 return NULL;
2064 }
2065 #endif
2066
2067 static inline int skb_is_gso(const struct sk_buff *skb)
2068 {
2069 return skb_shinfo(skb)->gso_size;
2070 }
2071
2072 static inline int skb_is_gso_v6(const struct sk_buff *skb)
2073 {
2074 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2075 }
2076
2077 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2078
2079 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2080 {
2081 /* LRO sets gso_size but not gso_type, whereas if GSO is really
2082 * wanted then gso_type will be set. */
2083 struct skb_shared_info *shinfo = skb_shinfo(skb);
2084 if (shinfo->gso_size != 0 && unlikely(shinfo->gso_type == 0)) {
2085 __skb_warn_lro_forwarding(skb);
2086 return true;
2087 }
2088 return false;
2089 }
2090
2091 static inline void skb_forward_csum(struct sk_buff *skb)
2092 {
2093 /* Unfortunately we don't support this one. Any brave souls? */
2094 if (skb->ip_summed == CHECKSUM_COMPLETE)
2095 skb->ip_summed = CHECKSUM_NONE;
2096 }
2097
2098 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2099 #endif /* __KERNEL__ */
2100 #endif /* _LINUX_SKBUFF_H */
This page took 0.10689 seconds and 5 git commands to generate.