Merge branch 'x86-debug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / include / linux / skbuff.h
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/bug.h>
22 #include <linux/cache.h>
23
24 #include <linux/atomic.h>
25 #include <asm/types.h>
26 #include <linux/spinlock.h>
27 #include <linux/net.h>
28 #include <linux/textsearch.h>
29 #include <net/checksum.h>
30 #include <linux/rcupdate.h>
31 #include <linux/dmaengine.h>
32 #include <linux/hrtimer.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/netdev_features.h>
35
36 /* Don't change this without changing skb_csum_unnecessary! */
37 #define CHECKSUM_NONE 0
38 #define CHECKSUM_UNNECESSARY 1
39 #define CHECKSUM_COMPLETE 2
40 #define CHECKSUM_PARTIAL 3
41
42 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
43 ~(SMP_CACHE_BYTES - 1))
44 #define SKB_WITH_OVERHEAD(X) \
45 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
46 #define SKB_MAX_ORDER(X, ORDER) \
47 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
48 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
49 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
50
51 /* return minimum truesize of one skb containing X bytes of data */
52 #define SKB_TRUESIZE(X) ((X) + \
53 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
54 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
55
56 /* A. Checksumming of received packets by device.
57 *
58 * NONE: device failed to checksum this packet.
59 * skb->csum is undefined.
60 *
61 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
62 * skb->csum is undefined.
63 * It is bad option, but, unfortunately, many of vendors do this.
64 * Apparently with secret goal to sell you new device, when you
65 * will add new protocol to your host. F.e. IPv6. 8)
66 *
67 * COMPLETE: the most generic way. Device supplied checksum of _all_
68 * the packet as seen by netif_rx in skb->csum.
69 * NOTE: Even if device supports only some protocols, but
70 * is able to produce some skb->csum, it MUST use COMPLETE,
71 * not UNNECESSARY.
72 *
73 * PARTIAL: identical to the case for output below. This may occur
74 * on a packet received directly from another Linux OS, e.g.,
75 * a virtualised Linux kernel on the same host. The packet can
76 * be treated in the same way as UNNECESSARY except that on
77 * output (i.e., forwarding) the checksum must be filled in
78 * by the OS or the hardware.
79 *
80 * B. Checksumming on output.
81 *
82 * NONE: skb is checksummed by protocol or csum is not required.
83 *
84 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
85 * from skb->csum_start to the end and to record the checksum
86 * at skb->csum_start + skb->csum_offset.
87 *
88 * Device must show its capabilities in dev->features, set
89 * at device setup time.
90 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
91 * everything.
92 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
93 * TCP/UDP over IPv4. Sigh. Vendors like this
94 * way by an unknown reason. Though, see comment above
95 * about CHECKSUM_UNNECESSARY. 8)
96 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
97 *
98 * UNNECESSARY: device will do per protocol specific csum. Protocol drivers
99 * that do not want net to perform the checksum calculation should use
100 * this flag in their outgoing skbs.
101 * NETIF_F_FCOE_CRC this indicates the device can do FCoE FC CRC
102 * offload. Correspondingly, the FCoE protocol driver
103 * stack should use CHECKSUM_UNNECESSARY.
104 *
105 * Any questions? No questions, good. --ANK
106 */
107
108 struct net_device;
109 struct scatterlist;
110 struct pipe_inode_info;
111
112 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
113 struct nf_conntrack {
114 atomic_t use;
115 };
116 #endif
117
118 #ifdef CONFIG_BRIDGE_NETFILTER
119 struct nf_bridge_info {
120 atomic_t use;
121 unsigned int mask;
122 struct net_device *physindev;
123 struct net_device *physoutdev;
124 unsigned long data[32 / sizeof(unsigned long)];
125 };
126 #endif
127
128 struct sk_buff_head {
129 /* These two members must be first. */
130 struct sk_buff *next;
131 struct sk_buff *prev;
132
133 __u32 qlen;
134 spinlock_t lock;
135 };
136
137 struct sk_buff;
138
139 /* To allow 64K frame to be packed as single skb without frag_list we
140 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
141 * buffers which do not start on a page boundary.
142 *
143 * Since GRO uses frags we allocate at least 16 regardless of page
144 * size.
145 */
146 #if (65536/PAGE_SIZE + 1) < 16
147 #define MAX_SKB_FRAGS 16UL
148 #else
149 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
150 #endif
151
152 typedef struct skb_frag_struct skb_frag_t;
153
154 struct skb_frag_struct {
155 struct {
156 struct page *p;
157 } page;
158 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
159 __u32 page_offset;
160 __u32 size;
161 #else
162 __u16 page_offset;
163 __u16 size;
164 #endif
165 };
166
167 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
168 {
169 return frag->size;
170 }
171
172 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
173 {
174 frag->size = size;
175 }
176
177 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
178 {
179 frag->size += delta;
180 }
181
182 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
183 {
184 frag->size -= delta;
185 }
186
187 #define HAVE_HW_TIME_STAMP
188
189 /**
190 * struct skb_shared_hwtstamps - hardware time stamps
191 * @hwtstamp: hardware time stamp transformed into duration
192 * since arbitrary point in time
193 * @syststamp: hwtstamp transformed to system time base
194 *
195 * Software time stamps generated by ktime_get_real() are stored in
196 * skb->tstamp. The relation between the different kinds of time
197 * stamps is as follows:
198 *
199 * syststamp and tstamp can be compared against each other in
200 * arbitrary combinations. The accuracy of a
201 * syststamp/tstamp/"syststamp from other device" comparison is
202 * limited by the accuracy of the transformation into system time
203 * base. This depends on the device driver and its underlying
204 * hardware.
205 *
206 * hwtstamps can only be compared against other hwtstamps from
207 * the same device.
208 *
209 * This structure is attached to packets as part of the
210 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
211 */
212 struct skb_shared_hwtstamps {
213 ktime_t hwtstamp;
214 ktime_t syststamp;
215 };
216
217 /* Definitions for tx_flags in struct skb_shared_info */
218 enum {
219 /* generate hardware time stamp */
220 SKBTX_HW_TSTAMP = 1 << 0,
221
222 /* generate software time stamp */
223 SKBTX_SW_TSTAMP = 1 << 1,
224
225 /* device driver is going to provide hardware time stamp */
226 SKBTX_IN_PROGRESS = 1 << 2,
227
228 /* device driver supports TX zero-copy buffers */
229 SKBTX_DEV_ZEROCOPY = 1 << 3,
230
231 /* generate wifi status information (where possible) */
232 SKBTX_WIFI_STATUS = 1 << 4,
233 };
234
235 /*
236 * The callback notifies userspace to release buffers when skb DMA is done in
237 * lower device, the skb last reference should be 0 when calling this.
238 * The ctx field is used to track device context.
239 * The desc field is used to track userspace buffer index.
240 */
241 struct ubuf_info {
242 void (*callback)(struct ubuf_info *);
243 void *ctx;
244 unsigned long desc;
245 };
246
247 /* This data is invariant across clones and lives at
248 * the end of the header data, ie. at skb->end.
249 */
250 struct skb_shared_info {
251 unsigned char nr_frags;
252 __u8 tx_flags;
253 unsigned short gso_size;
254 /* Warning: this field is not always filled in (UFO)! */
255 unsigned short gso_segs;
256 unsigned short gso_type;
257 struct sk_buff *frag_list;
258 struct skb_shared_hwtstamps hwtstamps;
259 __be32 ip6_frag_id;
260
261 /*
262 * Warning : all fields before dataref are cleared in __alloc_skb()
263 */
264 atomic_t dataref;
265
266 /* Intermediate layers must ensure that destructor_arg
267 * remains valid until skb destructor */
268 void * destructor_arg;
269
270 /* must be last field, see pskb_expand_head() */
271 skb_frag_t frags[MAX_SKB_FRAGS];
272 };
273
274 /* We divide dataref into two halves. The higher 16 bits hold references
275 * to the payload part of skb->data. The lower 16 bits hold references to
276 * the entire skb->data. A clone of a headerless skb holds the length of
277 * the header in skb->hdr_len.
278 *
279 * All users must obey the rule that the skb->data reference count must be
280 * greater than or equal to the payload reference count.
281 *
282 * Holding a reference to the payload part means that the user does not
283 * care about modifications to the header part of skb->data.
284 */
285 #define SKB_DATAREF_SHIFT 16
286 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
287
288
289 enum {
290 SKB_FCLONE_UNAVAILABLE,
291 SKB_FCLONE_ORIG,
292 SKB_FCLONE_CLONE,
293 };
294
295 enum {
296 SKB_GSO_TCPV4 = 1 << 0,
297 SKB_GSO_UDP = 1 << 1,
298
299 /* This indicates the skb is from an untrusted source. */
300 SKB_GSO_DODGY = 1 << 2,
301
302 /* This indicates the tcp segment has CWR set. */
303 SKB_GSO_TCP_ECN = 1 << 3,
304
305 SKB_GSO_TCPV6 = 1 << 4,
306
307 SKB_GSO_FCOE = 1 << 5,
308 };
309
310 #if BITS_PER_LONG > 32
311 #define NET_SKBUFF_DATA_USES_OFFSET 1
312 #endif
313
314 #ifdef NET_SKBUFF_DATA_USES_OFFSET
315 typedef unsigned int sk_buff_data_t;
316 #else
317 typedef unsigned char *sk_buff_data_t;
318 #endif
319
320 #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
321 defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
322 #define NET_SKBUFF_NF_DEFRAG_NEEDED 1
323 #endif
324
325 /**
326 * struct sk_buff - socket buffer
327 * @next: Next buffer in list
328 * @prev: Previous buffer in list
329 * @tstamp: Time we arrived
330 * @sk: Socket we are owned by
331 * @dev: Device we arrived on/are leaving by
332 * @cb: Control buffer. Free for use by every layer. Put private vars here
333 * @_skb_refdst: destination entry (with norefcount bit)
334 * @sp: the security path, used for xfrm
335 * @len: Length of actual data
336 * @data_len: Data length
337 * @mac_len: Length of link layer header
338 * @hdr_len: writable header length of cloned skb
339 * @csum: Checksum (must include start/offset pair)
340 * @csum_start: Offset from skb->head where checksumming should start
341 * @csum_offset: Offset from csum_start where checksum should be stored
342 * @priority: Packet queueing priority
343 * @local_df: allow local fragmentation
344 * @cloned: Head may be cloned (check refcnt to be sure)
345 * @ip_summed: Driver fed us an IP checksum
346 * @nohdr: Payload reference only, must not modify header
347 * @nfctinfo: Relationship of this skb to the connection
348 * @pkt_type: Packet class
349 * @fclone: skbuff clone status
350 * @ipvs_property: skbuff is owned by ipvs
351 * @peeked: this packet has been seen already, so stats have been
352 * done for it, don't do them again
353 * @nf_trace: netfilter packet trace flag
354 * @protocol: Packet protocol from driver
355 * @destructor: Destruct function
356 * @nfct: Associated connection, if any
357 * @nfct_reasm: netfilter conntrack re-assembly pointer
358 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
359 * @skb_iif: ifindex of device we arrived on
360 * @tc_index: Traffic control index
361 * @tc_verd: traffic control verdict
362 * @rxhash: the packet hash computed on receive
363 * @queue_mapping: Queue mapping for multiqueue devices
364 * @ndisc_nodetype: router type (from link layer)
365 * @ooo_okay: allow the mapping of a socket to a queue to be changed
366 * @l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport
367 * ports.
368 * @wifi_acked_valid: wifi_acked was set
369 * @wifi_acked: whether frame was acked on wifi or not
370 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
371 * @dma_cookie: a cookie to one of several possible DMA operations
372 * done by skb DMA functions
373 * @secmark: security marking
374 * @mark: Generic packet mark
375 * @dropcount: total number of sk_receive_queue overflows
376 * @vlan_tci: vlan tag control information
377 * @transport_header: Transport layer header
378 * @network_header: Network layer header
379 * @mac_header: Link layer header
380 * @tail: Tail pointer
381 * @end: End pointer
382 * @head: Head of buffer
383 * @data: Data head pointer
384 * @truesize: Buffer size
385 * @users: User count - see {datagram,tcp}.c
386 */
387
388 struct sk_buff {
389 /* These two members must be first. */
390 struct sk_buff *next;
391 struct sk_buff *prev;
392
393 ktime_t tstamp;
394
395 struct sock *sk;
396 struct net_device *dev;
397
398 /*
399 * This is the control buffer. It is free to use for every
400 * layer. Please put your private variables there. If you
401 * want to keep them across layers you have to do a skb_clone()
402 * first. This is owned by whoever has the skb queued ATM.
403 */
404 char cb[48] __aligned(8);
405
406 unsigned long _skb_refdst;
407 #ifdef CONFIG_XFRM
408 struct sec_path *sp;
409 #endif
410 unsigned int len,
411 data_len;
412 __u16 mac_len,
413 hdr_len;
414 union {
415 __wsum csum;
416 struct {
417 __u16 csum_start;
418 __u16 csum_offset;
419 };
420 };
421 __u32 priority;
422 kmemcheck_bitfield_begin(flags1);
423 __u8 local_df:1,
424 cloned:1,
425 ip_summed:2,
426 nohdr:1,
427 nfctinfo:3;
428 __u8 pkt_type:3,
429 fclone:2,
430 ipvs_property:1,
431 peeked:1,
432 nf_trace:1;
433 kmemcheck_bitfield_end(flags1);
434 __be16 protocol;
435
436 void (*destructor)(struct sk_buff *skb);
437 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
438 struct nf_conntrack *nfct;
439 #endif
440 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
441 struct sk_buff *nfct_reasm;
442 #endif
443 #ifdef CONFIG_BRIDGE_NETFILTER
444 struct nf_bridge_info *nf_bridge;
445 #endif
446
447 int skb_iif;
448
449 __u32 rxhash;
450
451 __u16 vlan_tci;
452
453 #ifdef CONFIG_NET_SCHED
454 __u16 tc_index; /* traffic control index */
455 #ifdef CONFIG_NET_CLS_ACT
456 __u16 tc_verd; /* traffic control verdict */
457 #endif
458 #endif
459
460 __u16 queue_mapping;
461 kmemcheck_bitfield_begin(flags2);
462 #ifdef CONFIG_IPV6_NDISC_NODETYPE
463 __u8 ndisc_nodetype:2;
464 #endif
465 __u8 ooo_okay:1;
466 __u8 l4_rxhash:1;
467 __u8 wifi_acked_valid:1;
468 __u8 wifi_acked:1;
469 __u8 no_fcs:1;
470 __u8 head_frag:1;
471 /* 8/10 bit hole (depending on ndisc_nodetype presence) */
472 kmemcheck_bitfield_end(flags2);
473
474 #ifdef CONFIG_NET_DMA
475 dma_cookie_t dma_cookie;
476 #endif
477 #ifdef CONFIG_NETWORK_SECMARK
478 __u32 secmark;
479 #endif
480 union {
481 __u32 mark;
482 __u32 dropcount;
483 __u32 avail_size;
484 };
485
486 sk_buff_data_t transport_header;
487 sk_buff_data_t network_header;
488 sk_buff_data_t mac_header;
489 /* These elements must be at the end, see alloc_skb() for details. */
490 sk_buff_data_t tail;
491 sk_buff_data_t end;
492 unsigned char *head,
493 *data;
494 unsigned int truesize;
495 atomic_t users;
496 };
497
498 #ifdef __KERNEL__
499 /*
500 * Handling routines are only of interest to the kernel
501 */
502 #include <linux/slab.h>
503
504
505 /*
506 * skb might have a dst pointer attached, refcounted or not.
507 * _skb_refdst low order bit is set if refcount was _not_ taken
508 */
509 #define SKB_DST_NOREF 1UL
510 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
511
512 /**
513 * skb_dst - returns skb dst_entry
514 * @skb: buffer
515 *
516 * Returns skb dst_entry, regardless of reference taken or not.
517 */
518 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
519 {
520 /* If refdst was not refcounted, check we still are in a
521 * rcu_read_lock section
522 */
523 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
524 !rcu_read_lock_held() &&
525 !rcu_read_lock_bh_held());
526 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
527 }
528
529 /**
530 * skb_dst_set - sets skb dst
531 * @skb: buffer
532 * @dst: dst entry
533 *
534 * Sets skb dst, assuming a reference was taken on dst and should
535 * be released by skb_dst_drop()
536 */
537 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
538 {
539 skb->_skb_refdst = (unsigned long)dst;
540 }
541
542 extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst);
543
544 /**
545 * skb_dst_is_noref - Test if skb dst isn't refcounted
546 * @skb: buffer
547 */
548 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
549 {
550 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
551 }
552
553 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
554 {
555 return (struct rtable *)skb_dst(skb);
556 }
557
558 extern void kfree_skb(struct sk_buff *skb);
559 extern void consume_skb(struct sk_buff *skb);
560 extern void __kfree_skb(struct sk_buff *skb);
561 extern struct kmem_cache *skbuff_head_cache;
562
563 extern void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
564 extern bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
565 bool *fragstolen, int *delta_truesize);
566
567 extern struct sk_buff *__alloc_skb(unsigned int size,
568 gfp_t priority, int fclone, int node);
569 extern struct sk_buff *build_skb(void *data, unsigned int frag_size);
570 static inline struct sk_buff *alloc_skb(unsigned int size,
571 gfp_t priority)
572 {
573 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
574 }
575
576 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
577 gfp_t priority)
578 {
579 return __alloc_skb(size, priority, 1, NUMA_NO_NODE);
580 }
581
582 extern void skb_recycle(struct sk_buff *skb);
583 extern bool skb_recycle_check(struct sk_buff *skb, int skb_size);
584
585 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
586 extern int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
587 extern struct sk_buff *skb_clone(struct sk_buff *skb,
588 gfp_t priority);
589 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
590 gfp_t priority);
591 extern struct sk_buff *__pskb_copy(struct sk_buff *skb,
592 int headroom, gfp_t gfp_mask);
593
594 extern int pskb_expand_head(struct sk_buff *skb,
595 int nhead, int ntail,
596 gfp_t gfp_mask);
597 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
598 unsigned int headroom);
599 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
600 int newheadroom, int newtailroom,
601 gfp_t priority);
602 extern int skb_to_sgvec(struct sk_buff *skb,
603 struct scatterlist *sg, int offset,
604 int len);
605 extern int skb_cow_data(struct sk_buff *skb, int tailbits,
606 struct sk_buff **trailer);
607 extern int skb_pad(struct sk_buff *skb, int pad);
608 #define dev_kfree_skb(a) consume_skb(a)
609
610 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
611 int getfrag(void *from, char *to, int offset,
612 int len,int odd, struct sk_buff *skb),
613 void *from, int length);
614
615 struct skb_seq_state {
616 __u32 lower_offset;
617 __u32 upper_offset;
618 __u32 frag_idx;
619 __u32 stepped_offset;
620 struct sk_buff *root_skb;
621 struct sk_buff *cur_skb;
622 __u8 *frag_data;
623 };
624
625 extern void skb_prepare_seq_read(struct sk_buff *skb,
626 unsigned int from, unsigned int to,
627 struct skb_seq_state *st);
628 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
629 struct skb_seq_state *st);
630 extern void skb_abort_seq_read(struct skb_seq_state *st);
631
632 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
633 unsigned int to, struct ts_config *config,
634 struct ts_state *state);
635
636 extern void __skb_get_rxhash(struct sk_buff *skb);
637 static inline __u32 skb_get_rxhash(struct sk_buff *skb)
638 {
639 if (!skb->rxhash)
640 __skb_get_rxhash(skb);
641
642 return skb->rxhash;
643 }
644
645 #ifdef NET_SKBUFF_DATA_USES_OFFSET
646 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
647 {
648 return skb->head + skb->end;
649 }
650
651 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
652 {
653 return skb->end;
654 }
655 #else
656 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
657 {
658 return skb->end;
659 }
660
661 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
662 {
663 return skb->end - skb->head;
664 }
665 #endif
666
667 /* Internal */
668 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
669
670 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
671 {
672 return &skb_shinfo(skb)->hwtstamps;
673 }
674
675 /**
676 * skb_queue_empty - check if a queue is empty
677 * @list: queue head
678 *
679 * Returns true if the queue is empty, false otherwise.
680 */
681 static inline int skb_queue_empty(const struct sk_buff_head *list)
682 {
683 return list->next == (struct sk_buff *)list;
684 }
685
686 /**
687 * skb_queue_is_last - check if skb is the last entry in the queue
688 * @list: queue head
689 * @skb: buffer
690 *
691 * Returns true if @skb is the last buffer on the list.
692 */
693 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
694 const struct sk_buff *skb)
695 {
696 return skb->next == (struct sk_buff *)list;
697 }
698
699 /**
700 * skb_queue_is_first - check if skb is the first entry in the queue
701 * @list: queue head
702 * @skb: buffer
703 *
704 * Returns true if @skb is the first buffer on the list.
705 */
706 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
707 const struct sk_buff *skb)
708 {
709 return skb->prev == (struct sk_buff *)list;
710 }
711
712 /**
713 * skb_queue_next - return the next packet in the queue
714 * @list: queue head
715 * @skb: current buffer
716 *
717 * Return the next packet in @list after @skb. It is only valid to
718 * call this if skb_queue_is_last() evaluates to false.
719 */
720 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
721 const struct sk_buff *skb)
722 {
723 /* This BUG_ON may seem severe, but if we just return then we
724 * are going to dereference garbage.
725 */
726 BUG_ON(skb_queue_is_last(list, skb));
727 return skb->next;
728 }
729
730 /**
731 * skb_queue_prev - return the prev packet in the queue
732 * @list: queue head
733 * @skb: current buffer
734 *
735 * Return the prev packet in @list before @skb. It is only valid to
736 * call this if skb_queue_is_first() evaluates to false.
737 */
738 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
739 const struct sk_buff *skb)
740 {
741 /* This BUG_ON may seem severe, but if we just return then we
742 * are going to dereference garbage.
743 */
744 BUG_ON(skb_queue_is_first(list, skb));
745 return skb->prev;
746 }
747
748 /**
749 * skb_get - reference buffer
750 * @skb: buffer to reference
751 *
752 * Makes another reference to a socket buffer and returns a pointer
753 * to the buffer.
754 */
755 static inline struct sk_buff *skb_get(struct sk_buff *skb)
756 {
757 atomic_inc(&skb->users);
758 return skb;
759 }
760
761 /*
762 * If users == 1, we are the only owner and are can avoid redundant
763 * atomic change.
764 */
765
766 /**
767 * skb_cloned - is the buffer a clone
768 * @skb: buffer to check
769 *
770 * Returns true if the buffer was generated with skb_clone() and is
771 * one of multiple shared copies of the buffer. Cloned buffers are
772 * shared data so must not be written to under normal circumstances.
773 */
774 static inline int skb_cloned(const struct sk_buff *skb)
775 {
776 return skb->cloned &&
777 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
778 }
779
780 /**
781 * skb_header_cloned - is the header a clone
782 * @skb: buffer to check
783 *
784 * Returns true if modifying the header part of the buffer requires
785 * the data to be copied.
786 */
787 static inline int skb_header_cloned(const struct sk_buff *skb)
788 {
789 int dataref;
790
791 if (!skb->cloned)
792 return 0;
793
794 dataref = atomic_read(&skb_shinfo(skb)->dataref);
795 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
796 return dataref != 1;
797 }
798
799 /**
800 * skb_header_release - release reference to header
801 * @skb: buffer to operate on
802 *
803 * Drop a reference to the header part of the buffer. This is done
804 * by acquiring a payload reference. You must not read from the header
805 * part of skb->data after this.
806 */
807 static inline void skb_header_release(struct sk_buff *skb)
808 {
809 BUG_ON(skb->nohdr);
810 skb->nohdr = 1;
811 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
812 }
813
814 /**
815 * skb_shared - is the buffer shared
816 * @skb: buffer to check
817 *
818 * Returns true if more than one person has a reference to this
819 * buffer.
820 */
821 static inline int skb_shared(const struct sk_buff *skb)
822 {
823 return atomic_read(&skb->users) != 1;
824 }
825
826 /**
827 * skb_share_check - check if buffer is shared and if so clone it
828 * @skb: buffer to check
829 * @pri: priority for memory allocation
830 *
831 * If the buffer is shared the buffer is cloned and the old copy
832 * drops a reference. A new clone with a single reference is returned.
833 * If the buffer is not shared the original buffer is returned. When
834 * being called from interrupt status or with spinlocks held pri must
835 * be GFP_ATOMIC.
836 *
837 * NULL is returned on a memory allocation failure.
838 */
839 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
840 gfp_t pri)
841 {
842 might_sleep_if(pri & __GFP_WAIT);
843 if (skb_shared(skb)) {
844 struct sk_buff *nskb = skb_clone(skb, pri);
845 kfree_skb(skb);
846 skb = nskb;
847 }
848 return skb;
849 }
850
851 /*
852 * Copy shared buffers into a new sk_buff. We effectively do COW on
853 * packets to handle cases where we have a local reader and forward
854 * and a couple of other messy ones. The normal one is tcpdumping
855 * a packet thats being forwarded.
856 */
857
858 /**
859 * skb_unshare - make a copy of a shared buffer
860 * @skb: buffer to check
861 * @pri: priority for memory allocation
862 *
863 * If the socket buffer is a clone then this function creates a new
864 * copy of the data, drops a reference count on the old copy and returns
865 * the new copy with the reference count at 1. If the buffer is not a clone
866 * the original buffer is returned. When called with a spinlock held or
867 * from interrupt state @pri must be %GFP_ATOMIC
868 *
869 * %NULL is returned on a memory allocation failure.
870 */
871 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
872 gfp_t pri)
873 {
874 might_sleep_if(pri & __GFP_WAIT);
875 if (skb_cloned(skb)) {
876 struct sk_buff *nskb = skb_copy(skb, pri);
877 kfree_skb(skb); /* Free our shared copy */
878 skb = nskb;
879 }
880 return skb;
881 }
882
883 /**
884 * skb_peek - peek at the head of an &sk_buff_head
885 * @list_: list to peek at
886 *
887 * Peek an &sk_buff. Unlike most other operations you _MUST_
888 * be careful with this one. A peek leaves the buffer on the
889 * list and someone else may run off with it. You must hold
890 * the appropriate locks or have a private queue to do this.
891 *
892 * Returns %NULL for an empty list or a pointer to the head element.
893 * The reference count is not incremented and the reference is therefore
894 * volatile. Use with caution.
895 */
896 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
897 {
898 struct sk_buff *skb = list_->next;
899
900 if (skb == (struct sk_buff *)list_)
901 skb = NULL;
902 return skb;
903 }
904
905 /**
906 * skb_peek_next - peek skb following the given one from a queue
907 * @skb: skb to start from
908 * @list_: list to peek at
909 *
910 * Returns %NULL when the end of the list is met or a pointer to the
911 * next element. The reference count is not incremented and the
912 * reference is therefore volatile. Use with caution.
913 */
914 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
915 const struct sk_buff_head *list_)
916 {
917 struct sk_buff *next = skb->next;
918
919 if (next == (struct sk_buff *)list_)
920 next = NULL;
921 return next;
922 }
923
924 /**
925 * skb_peek_tail - peek at the tail of an &sk_buff_head
926 * @list_: list to peek at
927 *
928 * Peek an &sk_buff. Unlike most other operations you _MUST_
929 * be careful with this one. A peek leaves the buffer on the
930 * list and someone else may run off with it. You must hold
931 * the appropriate locks or have a private queue to do this.
932 *
933 * Returns %NULL for an empty list or a pointer to the tail element.
934 * The reference count is not incremented and the reference is therefore
935 * volatile. Use with caution.
936 */
937 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
938 {
939 struct sk_buff *skb = list_->prev;
940
941 if (skb == (struct sk_buff *)list_)
942 skb = NULL;
943 return skb;
944
945 }
946
947 /**
948 * skb_queue_len - get queue length
949 * @list_: list to measure
950 *
951 * Return the length of an &sk_buff queue.
952 */
953 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
954 {
955 return list_->qlen;
956 }
957
958 /**
959 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
960 * @list: queue to initialize
961 *
962 * This initializes only the list and queue length aspects of
963 * an sk_buff_head object. This allows to initialize the list
964 * aspects of an sk_buff_head without reinitializing things like
965 * the spinlock. It can also be used for on-stack sk_buff_head
966 * objects where the spinlock is known to not be used.
967 */
968 static inline void __skb_queue_head_init(struct sk_buff_head *list)
969 {
970 list->prev = list->next = (struct sk_buff *)list;
971 list->qlen = 0;
972 }
973
974 /*
975 * This function creates a split out lock class for each invocation;
976 * this is needed for now since a whole lot of users of the skb-queue
977 * infrastructure in drivers have different locking usage (in hardirq)
978 * than the networking core (in softirq only). In the long run either the
979 * network layer or drivers should need annotation to consolidate the
980 * main types of usage into 3 classes.
981 */
982 static inline void skb_queue_head_init(struct sk_buff_head *list)
983 {
984 spin_lock_init(&list->lock);
985 __skb_queue_head_init(list);
986 }
987
988 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
989 struct lock_class_key *class)
990 {
991 skb_queue_head_init(list);
992 lockdep_set_class(&list->lock, class);
993 }
994
995 /*
996 * Insert an sk_buff on a list.
997 *
998 * The "__skb_xxxx()" functions are the non-atomic ones that
999 * can only be called with interrupts disabled.
1000 */
1001 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
1002 static inline void __skb_insert(struct sk_buff *newsk,
1003 struct sk_buff *prev, struct sk_buff *next,
1004 struct sk_buff_head *list)
1005 {
1006 newsk->next = next;
1007 newsk->prev = prev;
1008 next->prev = prev->next = newsk;
1009 list->qlen++;
1010 }
1011
1012 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1013 struct sk_buff *prev,
1014 struct sk_buff *next)
1015 {
1016 struct sk_buff *first = list->next;
1017 struct sk_buff *last = list->prev;
1018
1019 first->prev = prev;
1020 prev->next = first;
1021
1022 last->next = next;
1023 next->prev = last;
1024 }
1025
1026 /**
1027 * skb_queue_splice - join two skb lists, this is designed for stacks
1028 * @list: the new list to add
1029 * @head: the place to add it in the first list
1030 */
1031 static inline void skb_queue_splice(const struct sk_buff_head *list,
1032 struct sk_buff_head *head)
1033 {
1034 if (!skb_queue_empty(list)) {
1035 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1036 head->qlen += list->qlen;
1037 }
1038 }
1039
1040 /**
1041 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1042 * @list: the new list to add
1043 * @head: the place to add it in the first list
1044 *
1045 * The list at @list is reinitialised
1046 */
1047 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1048 struct sk_buff_head *head)
1049 {
1050 if (!skb_queue_empty(list)) {
1051 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1052 head->qlen += list->qlen;
1053 __skb_queue_head_init(list);
1054 }
1055 }
1056
1057 /**
1058 * skb_queue_splice_tail - join two skb lists, each list being a queue
1059 * @list: the new list to add
1060 * @head: the place to add it in the first list
1061 */
1062 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1063 struct sk_buff_head *head)
1064 {
1065 if (!skb_queue_empty(list)) {
1066 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1067 head->qlen += list->qlen;
1068 }
1069 }
1070
1071 /**
1072 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1073 * @list: the new list to add
1074 * @head: the place to add it in the first list
1075 *
1076 * Each of the lists is a queue.
1077 * The list at @list is reinitialised
1078 */
1079 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1080 struct sk_buff_head *head)
1081 {
1082 if (!skb_queue_empty(list)) {
1083 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1084 head->qlen += list->qlen;
1085 __skb_queue_head_init(list);
1086 }
1087 }
1088
1089 /**
1090 * __skb_queue_after - queue a buffer at the list head
1091 * @list: list to use
1092 * @prev: place after this buffer
1093 * @newsk: buffer to queue
1094 *
1095 * Queue a buffer int the middle of a list. This function takes no locks
1096 * and you must therefore hold required locks before calling it.
1097 *
1098 * A buffer cannot be placed on two lists at the same time.
1099 */
1100 static inline void __skb_queue_after(struct sk_buff_head *list,
1101 struct sk_buff *prev,
1102 struct sk_buff *newsk)
1103 {
1104 __skb_insert(newsk, prev, prev->next, list);
1105 }
1106
1107 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1108 struct sk_buff_head *list);
1109
1110 static inline void __skb_queue_before(struct sk_buff_head *list,
1111 struct sk_buff *next,
1112 struct sk_buff *newsk)
1113 {
1114 __skb_insert(newsk, next->prev, next, list);
1115 }
1116
1117 /**
1118 * __skb_queue_head - queue a buffer at the list head
1119 * @list: list to use
1120 * @newsk: buffer to queue
1121 *
1122 * Queue a buffer at the start of a list. This function takes no locks
1123 * and you must therefore hold required locks before calling it.
1124 *
1125 * A buffer cannot be placed on two lists at the same time.
1126 */
1127 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1128 static inline void __skb_queue_head(struct sk_buff_head *list,
1129 struct sk_buff *newsk)
1130 {
1131 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1132 }
1133
1134 /**
1135 * __skb_queue_tail - queue a buffer at the list tail
1136 * @list: list to use
1137 * @newsk: buffer to queue
1138 *
1139 * Queue a buffer at the end of a list. This function takes no locks
1140 * and you must therefore hold required locks before calling it.
1141 *
1142 * A buffer cannot be placed on two lists at the same time.
1143 */
1144 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1145 static inline void __skb_queue_tail(struct sk_buff_head *list,
1146 struct sk_buff *newsk)
1147 {
1148 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1149 }
1150
1151 /*
1152 * remove sk_buff from list. _Must_ be called atomically, and with
1153 * the list known..
1154 */
1155 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1156 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1157 {
1158 struct sk_buff *next, *prev;
1159
1160 list->qlen--;
1161 next = skb->next;
1162 prev = skb->prev;
1163 skb->next = skb->prev = NULL;
1164 next->prev = prev;
1165 prev->next = next;
1166 }
1167
1168 /**
1169 * __skb_dequeue - remove from the head of the queue
1170 * @list: list to dequeue from
1171 *
1172 * Remove the head of the list. This function does not take any locks
1173 * so must be used with appropriate locks held only. The head item is
1174 * returned or %NULL if the list is empty.
1175 */
1176 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1177 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1178 {
1179 struct sk_buff *skb = skb_peek(list);
1180 if (skb)
1181 __skb_unlink(skb, list);
1182 return skb;
1183 }
1184
1185 /**
1186 * __skb_dequeue_tail - remove from the tail of the queue
1187 * @list: list to dequeue from
1188 *
1189 * Remove the tail of the list. This function does not take any locks
1190 * so must be used with appropriate locks held only. The tail item is
1191 * returned or %NULL if the list is empty.
1192 */
1193 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1194 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1195 {
1196 struct sk_buff *skb = skb_peek_tail(list);
1197 if (skb)
1198 __skb_unlink(skb, list);
1199 return skb;
1200 }
1201
1202
1203 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1204 {
1205 return skb->data_len;
1206 }
1207
1208 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1209 {
1210 return skb->len - skb->data_len;
1211 }
1212
1213 static inline int skb_pagelen(const struct sk_buff *skb)
1214 {
1215 int i, len = 0;
1216
1217 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1218 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1219 return len + skb_headlen(skb);
1220 }
1221
1222 /**
1223 * __skb_fill_page_desc - initialise a paged fragment in an skb
1224 * @skb: buffer containing fragment to be initialised
1225 * @i: paged fragment index to initialise
1226 * @page: the page to use for this fragment
1227 * @off: the offset to the data with @page
1228 * @size: the length of the data
1229 *
1230 * Initialises the @i'th fragment of @skb to point to &size bytes at
1231 * offset @off within @page.
1232 *
1233 * Does not take any additional reference on the fragment.
1234 */
1235 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1236 struct page *page, int off, int size)
1237 {
1238 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1239
1240 frag->page.p = page;
1241 frag->page_offset = off;
1242 skb_frag_size_set(frag, size);
1243 }
1244
1245 /**
1246 * skb_fill_page_desc - initialise a paged fragment in an skb
1247 * @skb: buffer containing fragment to be initialised
1248 * @i: paged fragment index to initialise
1249 * @page: the page to use for this fragment
1250 * @off: the offset to the data with @page
1251 * @size: the length of the data
1252 *
1253 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1254 * @skb to point to &size bytes at offset @off within @page. In
1255 * addition updates @skb such that @i is the last fragment.
1256 *
1257 * Does not take any additional reference on the fragment.
1258 */
1259 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1260 struct page *page, int off, int size)
1261 {
1262 __skb_fill_page_desc(skb, i, page, off, size);
1263 skb_shinfo(skb)->nr_frags = i + 1;
1264 }
1265
1266 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1267 int off, int size, unsigned int truesize);
1268
1269 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1270 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1271 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1272
1273 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1274 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1275 {
1276 return skb->head + skb->tail;
1277 }
1278
1279 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1280 {
1281 skb->tail = skb->data - skb->head;
1282 }
1283
1284 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1285 {
1286 skb_reset_tail_pointer(skb);
1287 skb->tail += offset;
1288 }
1289 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1290 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1291 {
1292 return skb->tail;
1293 }
1294
1295 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1296 {
1297 skb->tail = skb->data;
1298 }
1299
1300 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1301 {
1302 skb->tail = skb->data + offset;
1303 }
1304
1305 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1306
1307 /*
1308 * Add data to an sk_buff
1309 */
1310 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1311 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1312 {
1313 unsigned char *tmp = skb_tail_pointer(skb);
1314 SKB_LINEAR_ASSERT(skb);
1315 skb->tail += len;
1316 skb->len += len;
1317 return tmp;
1318 }
1319
1320 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1321 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1322 {
1323 skb->data -= len;
1324 skb->len += len;
1325 return skb->data;
1326 }
1327
1328 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1329 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1330 {
1331 skb->len -= len;
1332 BUG_ON(skb->len < skb->data_len);
1333 return skb->data += len;
1334 }
1335
1336 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1337 {
1338 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1339 }
1340
1341 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1342
1343 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1344 {
1345 if (len > skb_headlen(skb) &&
1346 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1347 return NULL;
1348 skb->len -= len;
1349 return skb->data += len;
1350 }
1351
1352 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1353 {
1354 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1355 }
1356
1357 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1358 {
1359 if (likely(len <= skb_headlen(skb)))
1360 return 1;
1361 if (unlikely(len > skb->len))
1362 return 0;
1363 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1364 }
1365
1366 /**
1367 * skb_headroom - bytes at buffer head
1368 * @skb: buffer to check
1369 *
1370 * Return the number of bytes of free space at the head of an &sk_buff.
1371 */
1372 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1373 {
1374 return skb->data - skb->head;
1375 }
1376
1377 /**
1378 * skb_tailroom - bytes at buffer end
1379 * @skb: buffer to check
1380 *
1381 * Return the number of bytes of free space at the tail of an sk_buff
1382 */
1383 static inline int skb_tailroom(const struct sk_buff *skb)
1384 {
1385 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1386 }
1387
1388 /**
1389 * skb_availroom - bytes at buffer end
1390 * @skb: buffer to check
1391 *
1392 * Return the number of bytes of free space at the tail of an sk_buff
1393 * allocated by sk_stream_alloc()
1394 */
1395 static inline int skb_availroom(const struct sk_buff *skb)
1396 {
1397 return skb_is_nonlinear(skb) ? 0 : skb->avail_size - skb->len;
1398 }
1399
1400 /**
1401 * skb_reserve - adjust headroom
1402 * @skb: buffer to alter
1403 * @len: bytes to move
1404 *
1405 * Increase the headroom of an empty &sk_buff by reducing the tail
1406 * room. This is only allowed for an empty buffer.
1407 */
1408 static inline void skb_reserve(struct sk_buff *skb, int len)
1409 {
1410 skb->data += len;
1411 skb->tail += len;
1412 }
1413
1414 static inline void skb_reset_mac_len(struct sk_buff *skb)
1415 {
1416 skb->mac_len = skb->network_header - skb->mac_header;
1417 }
1418
1419 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1420 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1421 {
1422 return skb->head + skb->transport_header;
1423 }
1424
1425 static inline void skb_reset_transport_header(struct sk_buff *skb)
1426 {
1427 skb->transport_header = skb->data - skb->head;
1428 }
1429
1430 static inline void skb_set_transport_header(struct sk_buff *skb,
1431 const int offset)
1432 {
1433 skb_reset_transport_header(skb);
1434 skb->transport_header += offset;
1435 }
1436
1437 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1438 {
1439 return skb->head + skb->network_header;
1440 }
1441
1442 static inline void skb_reset_network_header(struct sk_buff *skb)
1443 {
1444 skb->network_header = skb->data - skb->head;
1445 }
1446
1447 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1448 {
1449 skb_reset_network_header(skb);
1450 skb->network_header += offset;
1451 }
1452
1453 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1454 {
1455 return skb->head + skb->mac_header;
1456 }
1457
1458 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1459 {
1460 return skb->mac_header != ~0U;
1461 }
1462
1463 static inline void skb_reset_mac_header(struct sk_buff *skb)
1464 {
1465 skb->mac_header = skb->data - skb->head;
1466 }
1467
1468 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1469 {
1470 skb_reset_mac_header(skb);
1471 skb->mac_header += offset;
1472 }
1473
1474 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1475
1476 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1477 {
1478 return skb->transport_header;
1479 }
1480
1481 static inline void skb_reset_transport_header(struct sk_buff *skb)
1482 {
1483 skb->transport_header = skb->data;
1484 }
1485
1486 static inline void skb_set_transport_header(struct sk_buff *skb,
1487 const int offset)
1488 {
1489 skb->transport_header = skb->data + offset;
1490 }
1491
1492 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1493 {
1494 return skb->network_header;
1495 }
1496
1497 static inline void skb_reset_network_header(struct sk_buff *skb)
1498 {
1499 skb->network_header = skb->data;
1500 }
1501
1502 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1503 {
1504 skb->network_header = skb->data + offset;
1505 }
1506
1507 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1508 {
1509 return skb->mac_header;
1510 }
1511
1512 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1513 {
1514 return skb->mac_header != NULL;
1515 }
1516
1517 static inline void skb_reset_mac_header(struct sk_buff *skb)
1518 {
1519 skb->mac_header = skb->data;
1520 }
1521
1522 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1523 {
1524 skb->mac_header = skb->data + offset;
1525 }
1526 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1527
1528 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
1529 {
1530 if (skb_mac_header_was_set(skb)) {
1531 const unsigned char *old_mac = skb_mac_header(skb);
1532
1533 skb_set_mac_header(skb, -skb->mac_len);
1534 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
1535 }
1536 }
1537
1538 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1539 {
1540 return skb->csum_start - skb_headroom(skb);
1541 }
1542
1543 static inline int skb_transport_offset(const struct sk_buff *skb)
1544 {
1545 return skb_transport_header(skb) - skb->data;
1546 }
1547
1548 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1549 {
1550 return skb->transport_header - skb->network_header;
1551 }
1552
1553 static inline int skb_network_offset(const struct sk_buff *skb)
1554 {
1555 return skb_network_header(skb) - skb->data;
1556 }
1557
1558 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1559 {
1560 return pskb_may_pull(skb, skb_network_offset(skb) + len);
1561 }
1562
1563 /*
1564 * CPUs often take a performance hit when accessing unaligned memory
1565 * locations. The actual performance hit varies, it can be small if the
1566 * hardware handles it or large if we have to take an exception and fix it
1567 * in software.
1568 *
1569 * Since an ethernet header is 14 bytes network drivers often end up with
1570 * the IP header at an unaligned offset. The IP header can be aligned by
1571 * shifting the start of the packet by 2 bytes. Drivers should do this
1572 * with:
1573 *
1574 * skb_reserve(skb, NET_IP_ALIGN);
1575 *
1576 * The downside to this alignment of the IP header is that the DMA is now
1577 * unaligned. On some architectures the cost of an unaligned DMA is high
1578 * and this cost outweighs the gains made by aligning the IP header.
1579 *
1580 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1581 * to be overridden.
1582 */
1583 #ifndef NET_IP_ALIGN
1584 #define NET_IP_ALIGN 2
1585 #endif
1586
1587 /*
1588 * The networking layer reserves some headroom in skb data (via
1589 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1590 * the header has to grow. In the default case, if the header has to grow
1591 * 32 bytes or less we avoid the reallocation.
1592 *
1593 * Unfortunately this headroom changes the DMA alignment of the resulting
1594 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1595 * on some architectures. An architecture can override this value,
1596 * perhaps setting it to a cacheline in size (since that will maintain
1597 * cacheline alignment of the DMA). It must be a power of 2.
1598 *
1599 * Various parts of the networking layer expect at least 32 bytes of
1600 * headroom, you should not reduce this.
1601 *
1602 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
1603 * to reduce average number of cache lines per packet.
1604 * get_rps_cpus() for example only access one 64 bytes aligned block :
1605 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
1606 */
1607 #ifndef NET_SKB_PAD
1608 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
1609 #endif
1610
1611 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1612
1613 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1614 {
1615 if (unlikely(skb_is_nonlinear(skb))) {
1616 WARN_ON(1);
1617 return;
1618 }
1619 skb->len = len;
1620 skb_set_tail_pointer(skb, len);
1621 }
1622
1623 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1624
1625 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1626 {
1627 if (skb->data_len)
1628 return ___pskb_trim(skb, len);
1629 __skb_trim(skb, len);
1630 return 0;
1631 }
1632
1633 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1634 {
1635 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1636 }
1637
1638 /**
1639 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1640 * @skb: buffer to alter
1641 * @len: new length
1642 *
1643 * This is identical to pskb_trim except that the caller knows that
1644 * the skb is not cloned so we should never get an error due to out-
1645 * of-memory.
1646 */
1647 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1648 {
1649 int err = pskb_trim(skb, len);
1650 BUG_ON(err);
1651 }
1652
1653 /**
1654 * skb_orphan - orphan a buffer
1655 * @skb: buffer to orphan
1656 *
1657 * If a buffer currently has an owner then we call the owner's
1658 * destructor function and make the @skb unowned. The buffer continues
1659 * to exist but is no longer charged to its former owner.
1660 */
1661 static inline void skb_orphan(struct sk_buff *skb)
1662 {
1663 if (skb->destructor)
1664 skb->destructor(skb);
1665 skb->destructor = NULL;
1666 skb->sk = NULL;
1667 }
1668
1669 /**
1670 * __skb_queue_purge - empty a list
1671 * @list: list to empty
1672 *
1673 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1674 * the list and one reference dropped. This function does not take the
1675 * list lock and the caller must hold the relevant locks to use it.
1676 */
1677 extern void skb_queue_purge(struct sk_buff_head *list);
1678 static inline void __skb_queue_purge(struct sk_buff_head *list)
1679 {
1680 struct sk_buff *skb;
1681 while ((skb = __skb_dequeue(list)) != NULL)
1682 kfree_skb(skb);
1683 }
1684
1685 extern void *netdev_alloc_frag(unsigned int fragsz);
1686
1687 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1688 unsigned int length,
1689 gfp_t gfp_mask);
1690
1691 /**
1692 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1693 * @dev: network device to receive on
1694 * @length: length to allocate
1695 *
1696 * Allocate a new &sk_buff and assign it a usage count of one. The
1697 * buffer has unspecified headroom built in. Users should allocate
1698 * the headroom they think they need without accounting for the
1699 * built in space. The built in space is used for optimisations.
1700 *
1701 * %NULL is returned if there is no free memory. Although this function
1702 * allocates memory it can be called from an interrupt.
1703 */
1704 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1705 unsigned int length)
1706 {
1707 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1708 }
1709
1710 /* legacy helper around __netdev_alloc_skb() */
1711 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1712 gfp_t gfp_mask)
1713 {
1714 return __netdev_alloc_skb(NULL, length, gfp_mask);
1715 }
1716
1717 /* legacy helper around netdev_alloc_skb() */
1718 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1719 {
1720 return netdev_alloc_skb(NULL, length);
1721 }
1722
1723
1724 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
1725 unsigned int length, gfp_t gfp)
1726 {
1727 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
1728
1729 if (NET_IP_ALIGN && skb)
1730 skb_reserve(skb, NET_IP_ALIGN);
1731 return skb;
1732 }
1733
1734 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
1735 unsigned int length)
1736 {
1737 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
1738 }
1739
1740 /**
1741 * skb_frag_page - retrieve the page refered to by a paged fragment
1742 * @frag: the paged fragment
1743 *
1744 * Returns the &struct page associated with @frag.
1745 */
1746 static inline struct page *skb_frag_page(const skb_frag_t *frag)
1747 {
1748 return frag->page.p;
1749 }
1750
1751 /**
1752 * __skb_frag_ref - take an addition reference on a paged fragment.
1753 * @frag: the paged fragment
1754 *
1755 * Takes an additional reference on the paged fragment @frag.
1756 */
1757 static inline void __skb_frag_ref(skb_frag_t *frag)
1758 {
1759 get_page(skb_frag_page(frag));
1760 }
1761
1762 /**
1763 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
1764 * @skb: the buffer
1765 * @f: the fragment offset.
1766 *
1767 * Takes an additional reference on the @f'th paged fragment of @skb.
1768 */
1769 static inline void skb_frag_ref(struct sk_buff *skb, int f)
1770 {
1771 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
1772 }
1773
1774 /**
1775 * __skb_frag_unref - release a reference on a paged fragment.
1776 * @frag: the paged fragment
1777 *
1778 * Releases a reference on the paged fragment @frag.
1779 */
1780 static inline void __skb_frag_unref(skb_frag_t *frag)
1781 {
1782 put_page(skb_frag_page(frag));
1783 }
1784
1785 /**
1786 * skb_frag_unref - release a reference on a paged fragment of an skb.
1787 * @skb: the buffer
1788 * @f: the fragment offset
1789 *
1790 * Releases a reference on the @f'th paged fragment of @skb.
1791 */
1792 static inline void skb_frag_unref(struct sk_buff *skb, int f)
1793 {
1794 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
1795 }
1796
1797 /**
1798 * skb_frag_address - gets the address of the data contained in a paged fragment
1799 * @frag: the paged fragment buffer
1800 *
1801 * Returns the address of the data within @frag. The page must already
1802 * be mapped.
1803 */
1804 static inline void *skb_frag_address(const skb_frag_t *frag)
1805 {
1806 return page_address(skb_frag_page(frag)) + frag->page_offset;
1807 }
1808
1809 /**
1810 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
1811 * @frag: the paged fragment buffer
1812 *
1813 * Returns the address of the data within @frag. Checks that the page
1814 * is mapped and returns %NULL otherwise.
1815 */
1816 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
1817 {
1818 void *ptr = page_address(skb_frag_page(frag));
1819 if (unlikely(!ptr))
1820 return NULL;
1821
1822 return ptr + frag->page_offset;
1823 }
1824
1825 /**
1826 * __skb_frag_set_page - sets the page contained in a paged fragment
1827 * @frag: the paged fragment
1828 * @page: the page to set
1829 *
1830 * Sets the fragment @frag to contain @page.
1831 */
1832 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
1833 {
1834 frag->page.p = page;
1835 }
1836
1837 /**
1838 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
1839 * @skb: the buffer
1840 * @f: the fragment offset
1841 * @page: the page to set
1842 *
1843 * Sets the @f'th fragment of @skb to contain @page.
1844 */
1845 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
1846 struct page *page)
1847 {
1848 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
1849 }
1850
1851 /**
1852 * skb_frag_dma_map - maps a paged fragment via the DMA API
1853 * @dev: the device to map the fragment to
1854 * @frag: the paged fragment to map
1855 * @offset: the offset within the fragment (starting at the
1856 * fragment's own offset)
1857 * @size: the number of bytes to map
1858 * @dir: the direction of the mapping (%PCI_DMA_*)
1859 *
1860 * Maps the page associated with @frag to @device.
1861 */
1862 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
1863 const skb_frag_t *frag,
1864 size_t offset, size_t size,
1865 enum dma_data_direction dir)
1866 {
1867 return dma_map_page(dev, skb_frag_page(frag),
1868 frag->page_offset + offset, size, dir);
1869 }
1870
1871 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
1872 gfp_t gfp_mask)
1873 {
1874 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
1875 }
1876
1877 /**
1878 * skb_clone_writable - is the header of a clone writable
1879 * @skb: buffer to check
1880 * @len: length up to which to write
1881 *
1882 * Returns true if modifying the header part of the cloned buffer
1883 * does not requires the data to be copied.
1884 */
1885 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
1886 {
1887 return !skb_header_cloned(skb) &&
1888 skb_headroom(skb) + len <= skb->hdr_len;
1889 }
1890
1891 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1892 int cloned)
1893 {
1894 int delta = 0;
1895
1896 if (headroom > skb_headroom(skb))
1897 delta = headroom - skb_headroom(skb);
1898
1899 if (delta || cloned)
1900 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1901 GFP_ATOMIC);
1902 return 0;
1903 }
1904
1905 /**
1906 * skb_cow - copy header of skb when it is required
1907 * @skb: buffer to cow
1908 * @headroom: needed headroom
1909 *
1910 * If the skb passed lacks sufficient headroom or its data part
1911 * is shared, data is reallocated. If reallocation fails, an error
1912 * is returned and original skb is not changed.
1913 *
1914 * The result is skb with writable area skb->head...skb->tail
1915 * and at least @headroom of space at head.
1916 */
1917 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1918 {
1919 return __skb_cow(skb, headroom, skb_cloned(skb));
1920 }
1921
1922 /**
1923 * skb_cow_head - skb_cow but only making the head writable
1924 * @skb: buffer to cow
1925 * @headroom: needed headroom
1926 *
1927 * This function is identical to skb_cow except that we replace the
1928 * skb_cloned check by skb_header_cloned. It should be used when
1929 * you only need to push on some header and do not need to modify
1930 * the data.
1931 */
1932 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1933 {
1934 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1935 }
1936
1937 /**
1938 * skb_padto - pad an skbuff up to a minimal size
1939 * @skb: buffer to pad
1940 * @len: minimal length
1941 *
1942 * Pads up a buffer to ensure the trailing bytes exist and are
1943 * blanked. If the buffer already contains sufficient data it
1944 * is untouched. Otherwise it is extended. Returns zero on
1945 * success. The skb is freed on error.
1946 */
1947
1948 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1949 {
1950 unsigned int size = skb->len;
1951 if (likely(size >= len))
1952 return 0;
1953 return skb_pad(skb, len - size);
1954 }
1955
1956 static inline int skb_add_data(struct sk_buff *skb,
1957 char __user *from, int copy)
1958 {
1959 const int off = skb->len;
1960
1961 if (skb->ip_summed == CHECKSUM_NONE) {
1962 int err = 0;
1963 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1964 copy, 0, &err);
1965 if (!err) {
1966 skb->csum = csum_block_add(skb->csum, csum, off);
1967 return 0;
1968 }
1969 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1970 return 0;
1971
1972 __skb_trim(skb, off);
1973 return -EFAULT;
1974 }
1975
1976 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
1977 const struct page *page, int off)
1978 {
1979 if (i) {
1980 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1981
1982 return page == skb_frag_page(frag) &&
1983 off == frag->page_offset + skb_frag_size(frag);
1984 }
1985 return false;
1986 }
1987
1988 static inline int __skb_linearize(struct sk_buff *skb)
1989 {
1990 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1991 }
1992
1993 /**
1994 * skb_linearize - convert paged skb to linear one
1995 * @skb: buffer to linarize
1996 *
1997 * If there is no free memory -ENOMEM is returned, otherwise zero
1998 * is returned and the old skb data released.
1999 */
2000 static inline int skb_linearize(struct sk_buff *skb)
2001 {
2002 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2003 }
2004
2005 /**
2006 * skb_linearize_cow - make sure skb is linear and writable
2007 * @skb: buffer to process
2008 *
2009 * If there is no free memory -ENOMEM is returned, otherwise zero
2010 * is returned and the old skb data released.
2011 */
2012 static inline int skb_linearize_cow(struct sk_buff *skb)
2013 {
2014 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2015 __skb_linearize(skb) : 0;
2016 }
2017
2018 /**
2019 * skb_postpull_rcsum - update checksum for received skb after pull
2020 * @skb: buffer to update
2021 * @start: start of data before pull
2022 * @len: length of data pulled
2023 *
2024 * After doing a pull on a received packet, you need to call this to
2025 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2026 * CHECKSUM_NONE so that it can be recomputed from scratch.
2027 */
2028
2029 static inline void skb_postpull_rcsum(struct sk_buff *skb,
2030 const void *start, unsigned int len)
2031 {
2032 if (skb->ip_summed == CHECKSUM_COMPLETE)
2033 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2034 }
2035
2036 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2037
2038 /**
2039 * pskb_trim_rcsum - trim received skb and update checksum
2040 * @skb: buffer to trim
2041 * @len: new length
2042 *
2043 * This is exactly the same as pskb_trim except that it ensures the
2044 * checksum of received packets are still valid after the operation.
2045 */
2046
2047 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2048 {
2049 if (likely(len >= skb->len))
2050 return 0;
2051 if (skb->ip_summed == CHECKSUM_COMPLETE)
2052 skb->ip_summed = CHECKSUM_NONE;
2053 return __pskb_trim(skb, len);
2054 }
2055
2056 #define skb_queue_walk(queue, skb) \
2057 for (skb = (queue)->next; \
2058 skb != (struct sk_buff *)(queue); \
2059 skb = skb->next)
2060
2061 #define skb_queue_walk_safe(queue, skb, tmp) \
2062 for (skb = (queue)->next, tmp = skb->next; \
2063 skb != (struct sk_buff *)(queue); \
2064 skb = tmp, tmp = skb->next)
2065
2066 #define skb_queue_walk_from(queue, skb) \
2067 for (; skb != (struct sk_buff *)(queue); \
2068 skb = skb->next)
2069
2070 #define skb_queue_walk_from_safe(queue, skb, tmp) \
2071 for (tmp = skb->next; \
2072 skb != (struct sk_buff *)(queue); \
2073 skb = tmp, tmp = skb->next)
2074
2075 #define skb_queue_reverse_walk(queue, skb) \
2076 for (skb = (queue)->prev; \
2077 skb != (struct sk_buff *)(queue); \
2078 skb = skb->prev)
2079
2080 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
2081 for (skb = (queue)->prev, tmp = skb->prev; \
2082 skb != (struct sk_buff *)(queue); \
2083 skb = tmp, tmp = skb->prev)
2084
2085 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
2086 for (tmp = skb->prev; \
2087 skb != (struct sk_buff *)(queue); \
2088 skb = tmp, tmp = skb->prev)
2089
2090 static inline bool skb_has_frag_list(const struct sk_buff *skb)
2091 {
2092 return skb_shinfo(skb)->frag_list != NULL;
2093 }
2094
2095 static inline void skb_frag_list_init(struct sk_buff *skb)
2096 {
2097 skb_shinfo(skb)->frag_list = NULL;
2098 }
2099
2100 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
2101 {
2102 frag->next = skb_shinfo(skb)->frag_list;
2103 skb_shinfo(skb)->frag_list = frag;
2104 }
2105
2106 #define skb_walk_frags(skb, iter) \
2107 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2108
2109 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2110 int *peeked, int *off, int *err);
2111 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
2112 int noblock, int *err);
2113 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
2114 struct poll_table_struct *wait);
2115 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
2116 int offset, struct iovec *to,
2117 int size);
2118 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
2119 int hlen,
2120 struct iovec *iov);
2121 extern int skb_copy_datagram_from_iovec(struct sk_buff *skb,
2122 int offset,
2123 const struct iovec *from,
2124 int from_offset,
2125 int len);
2126 extern int skb_copy_datagram_const_iovec(const struct sk_buff *from,
2127 int offset,
2128 const struct iovec *to,
2129 int to_offset,
2130 int size);
2131 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2132 extern void skb_free_datagram_locked(struct sock *sk,
2133 struct sk_buff *skb);
2134 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
2135 unsigned int flags);
2136 extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
2137 int len, __wsum csum);
2138 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
2139 void *to, int len);
2140 extern int skb_store_bits(struct sk_buff *skb, int offset,
2141 const void *from, int len);
2142 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
2143 int offset, u8 *to, int len,
2144 __wsum csum);
2145 extern int skb_splice_bits(struct sk_buff *skb,
2146 unsigned int offset,
2147 struct pipe_inode_info *pipe,
2148 unsigned int len,
2149 unsigned int flags);
2150 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2151 extern void skb_split(struct sk_buff *skb,
2152 struct sk_buff *skb1, const u32 len);
2153 extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
2154 int shiftlen);
2155
2156 extern struct sk_buff *skb_segment(struct sk_buff *skb,
2157 netdev_features_t features);
2158
2159 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
2160 int len, void *buffer)
2161 {
2162 int hlen = skb_headlen(skb);
2163
2164 if (hlen - offset >= len)
2165 return skb->data + offset;
2166
2167 if (skb_copy_bits(skb, offset, buffer, len) < 0)
2168 return NULL;
2169
2170 return buffer;
2171 }
2172
2173 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2174 void *to,
2175 const unsigned int len)
2176 {
2177 memcpy(to, skb->data, len);
2178 }
2179
2180 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2181 const int offset, void *to,
2182 const unsigned int len)
2183 {
2184 memcpy(to, skb->data + offset, len);
2185 }
2186
2187 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2188 const void *from,
2189 const unsigned int len)
2190 {
2191 memcpy(skb->data, from, len);
2192 }
2193
2194 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2195 const int offset,
2196 const void *from,
2197 const unsigned int len)
2198 {
2199 memcpy(skb->data + offset, from, len);
2200 }
2201
2202 extern void skb_init(void);
2203
2204 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2205 {
2206 return skb->tstamp;
2207 }
2208
2209 /**
2210 * skb_get_timestamp - get timestamp from a skb
2211 * @skb: skb to get stamp from
2212 * @stamp: pointer to struct timeval to store stamp in
2213 *
2214 * Timestamps are stored in the skb as offsets to a base timestamp.
2215 * This function converts the offset back to a struct timeval and stores
2216 * it in stamp.
2217 */
2218 static inline void skb_get_timestamp(const struct sk_buff *skb,
2219 struct timeval *stamp)
2220 {
2221 *stamp = ktime_to_timeval(skb->tstamp);
2222 }
2223
2224 static inline void skb_get_timestampns(const struct sk_buff *skb,
2225 struct timespec *stamp)
2226 {
2227 *stamp = ktime_to_timespec(skb->tstamp);
2228 }
2229
2230 static inline void __net_timestamp(struct sk_buff *skb)
2231 {
2232 skb->tstamp = ktime_get_real();
2233 }
2234
2235 static inline ktime_t net_timedelta(ktime_t t)
2236 {
2237 return ktime_sub(ktime_get_real(), t);
2238 }
2239
2240 static inline ktime_t net_invalid_timestamp(void)
2241 {
2242 return ktime_set(0, 0);
2243 }
2244
2245 extern void skb_timestamping_init(void);
2246
2247 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2248
2249 extern void skb_clone_tx_timestamp(struct sk_buff *skb);
2250 extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
2251
2252 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2253
2254 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2255 {
2256 }
2257
2258 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2259 {
2260 return false;
2261 }
2262
2263 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2264
2265 /**
2266 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2267 *
2268 * PHY drivers may accept clones of transmitted packets for
2269 * timestamping via their phy_driver.txtstamp method. These drivers
2270 * must call this function to return the skb back to the stack, with
2271 * or without a timestamp.
2272 *
2273 * @skb: clone of the the original outgoing packet
2274 * @hwtstamps: hardware time stamps, may be NULL if not available
2275 *
2276 */
2277 void skb_complete_tx_timestamp(struct sk_buff *skb,
2278 struct skb_shared_hwtstamps *hwtstamps);
2279
2280 /**
2281 * skb_tstamp_tx - queue clone of skb with send time stamps
2282 * @orig_skb: the original outgoing packet
2283 * @hwtstamps: hardware time stamps, may be NULL if not available
2284 *
2285 * If the skb has a socket associated, then this function clones the
2286 * skb (thus sharing the actual data and optional structures), stores
2287 * the optional hardware time stamping information (if non NULL) or
2288 * generates a software time stamp (otherwise), then queues the clone
2289 * to the error queue of the socket. Errors are silently ignored.
2290 */
2291 extern void skb_tstamp_tx(struct sk_buff *orig_skb,
2292 struct skb_shared_hwtstamps *hwtstamps);
2293
2294 static inline void sw_tx_timestamp(struct sk_buff *skb)
2295 {
2296 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2297 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2298 skb_tstamp_tx(skb, NULL);
2299 }
2300
2301 /**
2302 * skb_tx_timestamp() - Driver hook for transmit timestamping
2303 *
2304 * Ethernet MAC Drivers should call this function in their hard_xmit()
2305 * function immediately before giving the sk_buff to the MAC hardware.
2306 *
2307 * @skb: A socket buffer.
2308 */
2309 static inline void skb_tx_timestamp(struct sk_buff *skb)
2310 {
2311 skb_clone_tx_timestamp(skb);
2312 sw_tx_timestamp(skb);
2313 }
2314
2315 /**
2316 * skb_complete_wifi_ack - deliver skb with wifi status
2317 *
2318 * @skb: the original outgoing packet
2319 * @acked: ack status
2320 *
2321 */
2322 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
2323
2324 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2325 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
2326
2327 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2328 {
2329 return skb->ip_summed & CHECKSUM_UNNECESSARY;
2330 }
2331
2332 /**
2333 * skb_checksum_complete - Calculate checksum of an entire packet
2334 * @skb: packet to process
2335 *
2336 * This function calculates the checksum over the entire packet plus
2337 * the value of skb->csum. The latter can be used to supply the
2338 * checksum of a pseudo header as used by TCP/UDP. It returns the
2339 * checksum.
2340 *
2341 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
2342 * this function can be used to verify that checksum on received
2343 * packets. In that case the function should return zero if the
2344 * checksum is correct. In particular, this function will return zero
2345 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2346 * hardware has already verified the correctness of the checksum.
2347 */
2348 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2349 {
2350 return skb_csum_unnecessary(skb) ?
2351 0 : __skb_checksum_complete(skb);
2352 }
2353
2354 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2355 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
2356 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
2357 {
2358 if (nfct && atomic_dec_and_test(&nfct->use))
2359 nf_conntrack_destroy(nfct);
2360 }
2361 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
2362 {
2363 if (nfct)
2364 atomic_inc(&nfct->use);
2365 }
2366 #endif
2367 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2368 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
2369 {
2370 if (skb)
2371 atomic_inc(&skb->users);
2372 }
2373 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
2374 {
2375 if (skb)
2376 kfree_skb(skb);
2377 }
2378 #endif
2379 #ifdef CONFIG_BRIDGE_NETFILTER
2380 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
2381 {
2382 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
2383 kfree(nf_bridge);
2384 }
2385 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
2386 {
2387 if (nf_bridge)
2388 atomic_inc(&nf_bridge->use);
2389 }
2390 #endif /* CONFIG_BRIDGE_NETFILTER */
2391 static inline void nf_reset(struct sk_buff *skb)
2392 {
2393 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2394 nf_conntrack_put(skb->nfct);
2395 skb->nfct = NULL;
2396 #endif
2397 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2398 nf_conntrack_put_reasm(skb->nfct_reasm);
2399 skb->nfct_reasm = NULL;
2400 #endif
2401 #ifdef CONFIG_BRIDGE_NETFILTER
2402 nf_bridge_put(skb->nf_bridge);
2403 skb->nf_bridge = NULL;
2404 #endif
2405 }
2406
2407 /* Note: This doesn't put any conntrack and bridge info in dst. */
2408 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2409 {
2410 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2411 dst->nfct = src->nfct;
2412 nf_conntrack_get(src->nfct);
2413 dst->nfctinfo = src->nfctinfo;
2414 #endif
2415 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2416 dst->nfct_reasm = src->nfct_reasm;
2417 nf_conntrack_get_reasm(src->nfct_reasm);
2418 #endif
2419 #ifdef CONFIG_BRIDGE_NETFILTER
2420 dst->nf_bridge = src->nf_bridge;
2421 nf_bridge_get(src->nf_bridge);
2422 #endif
2423 }
2424
2425 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2426 {
2427 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2428 nf_conntrack_put(dst->nfct);
2429 #endif
2430 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2431 nf_conntrack_put_reasm(dst->nfct_reasm);
2432 #endif
2433 #ifdef CONFIG_BRIDGE_NETFILTER
2434 nf_bridge_put(dst->nf_bridge);
2435 #endif
2436 __nf_copy(dst, src);
2437 }
2438
2439 #ifdef CONFIG_NETWORK_SECMARK
2440 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2441 {
2442 to->secmark = from->secmark;
2443 }
2444
2445 static inline void skb_init_secmark(struct sk_buff *skb)
2446 {
2447 skb->secmark = 0;
2448 }
2449 #else
2450 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2451 { }
2452
2453 static inline void skb_init_secmark(struct sk_buff *skb)
2454 { }
2455 #endif
2456
2457 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2458 {
2459 skb->queue_mapping = queue_mapping;
2460 }
2461
2462 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2463 {
2464 return skb->queue_mapping;
2465 }
2466
2467 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2468 {
2469 to->queue_mapping = from->queue_mapping;
2470 }
2471
2472 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2473 {
2474 skb->queue_mapping = rx_queue + 1;
2475 }
2476
2477 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2478 {
2479 return skb->queue_mapping - 1;
2480 }
2481
2482 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2483 {
2484 return skb->queue_mapping != 0;
2485 }
2486
2487 extern u16 __skb_tx_hash(const struct net_device *dev,
2488 const struct sk_buff *skb,
2489 unsigned int num_tx_queues);
2490
2491 #ifdef CONFIG_XFRM
2492 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2493 {
2494 return skb->sp;
2495 }
2496 #else
2497 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2498 {
2499 return NULL;
2500 }
2501 #endif
2502
2503 static inline bool skb_is_gso(const struct sk_buff *skb)
2504 {
2505 return skb_shinfo(skb)->gso_size;
2506 }
2507
2508 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
2509 {
2510 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2511 }
2512
2513 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2514
2515 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2516 {
2517 /* LRO sets gso_size but not gso_type, whereas if GSO is really
2518 * wanted then gso_type will be set. */
2519 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2520
2521 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
2522 unlikely(shinfo->gso_type == 0)) {
2523 __skb_warn_lro_forwarding(skb);
2524 return true;
2525 }
2526 return false;
2527 }
2528
2529 static inline void skb_forward_csum(struct sk_buff *skb)
2530 {
2531 /* Unfortunately we don't support this one. Any brave souls? */
2532 if (skb->ip_summed == CHECKSUM_COMPLETE)
2533 skb->ip_summed = CHECKSUM_NONE;
2534 }
2535
2536 /**
2537 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
2538 * @skb: skb to check
2539 *
2540 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
2541 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
2542 * use this helper, to document places where we make this assertion.
2543 */
2544 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
2545 {
2546 #ifdef DEBUG
2547 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
2548 #endif
2549 }
2550
2551 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2552
2553 static inline bool skb_is_recycleable(const struct sk_buff *skb, int skb_size)
2554 {
2555 if (irqs_disabled())
2556 return false;
2557
2558 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)
2559 return false;
2560
2561 if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
2562 return false;
2563
2564 skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
2565 if (skb_end_offset(skb) < skb_size)
2566 return false;
2567
2568 if (skb_shared(skb) || skb_cloned(skb))
2569 return false;
2570
2571 return true;
2572 }
2573
2574 /**
2575 * skb_head_is_locked - Determine if the skb->head is locked down
2576 * @skb: skb to check
2577 *
2578 * The head on skbs build around a head frag can be removed if they are
2579 * not cloned. This function returns true if the skb head is locked down
2580 * due to either being allocated via kmalloc, or by being a clone with
2581 * multiple references to the head.
2582 */
2583 static inline bool skb_head_is_locked(const struct sk_buff *skb)
2584 {
2585 return !skb->head_frag || skb_cloned(skb);
2586 }
2587 #endif /* __KERNEL__ */
2588 #endif /* _LINUX_SKBUFF_H */
This page took 0.138198 seconds and 5 git commands to generate.