ipvlan: scrub skb before routing in L3 mode.
[deliverable/linux.git] / include / linux / skbuff.h
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/bug.h>
22 #include <linux/cache.h>
23 #include <linux/rbtree.h>
24 #include <linux/socket.h>
25
26 #include <linux/atomic.h>
27 #include <asm/types.h>
28 #include <linux/spinlock.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32 #include <linux/rcupdate.h>
33 #include <linux/hrtimer.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/netdev_features.h>
36 #include <linux/sched.h>
37 #include <net/flow_dissector.h>
38 #include <linux/splice.h>
39 #include <linux/in6.h>
40 #include <net/flow.h>
41
42 /* The interface for checksum offload between the stack and networking drivers
43 * is as follows...
44 *
45 * A. IP checksum related features
46 *
47 * Drivers advertise checksum offload capabilities in the features of a device.
48 * From the stack's point of view these are capabilities offered by the driver,
49 * a driver typically only advertises features that it is capable of offloading
50 * to its device.
51 *
52 * The checksum related features are:
53 *
54 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one
55 * IP (one's complement) checksum for any combination
56 * of protocols or protocol layering. The checksum is
57 * computed and set in a packet per the CHECKSUM_PARTIAL
58 * interface (see below).
59 *
60 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
61 * TCP or UDP packets over IPv4. These are specifically
62 * unencapsulated packets of the form IPv4|TCP or
63 * IPv4|UDP where the Protocol field in the IPv4 header
64 * is TCP or UDP. The IPv4 header may contain IP options
65 * This feature cannot be set in features for a device
66 * with NETIF_F_HW_CSUM also set. This feature is being
67 * DEPRECATED (see below).
68 *
69 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
70 * TCP or UDP packets over IPv6. These are specifically
71 * unencapsulated packets of the form IPv6|TCP or
72 * IPv4|UDP where the Next Header field in the IPv6
73 * header is either TCP or UDP. IPv6 extension headers
74 * are not supported with this feature. This feature
75 * cannot be set in features for a device with
76 * NETIF_F_HW_CSUM also set. This feature is being
77 * DEPRECATED (see below).
78 *
79 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
80 * This flag is used only used to disable the RX checksum
81 * feature for a device. The stack will accept receive
82 * checksum indication in packets received on a device
83 * regardless of whether NETIF_F_RXCSUM is set.
84 *
85 * B. Checksumming of received packets by device. Indication of checksum
86 * verification is in set skb->ip_summed. Possible values are:
87 *
88 * CHECKSUM_NONE:
89 *
90 * Device did not checksum this packet e.g. due to lack of capabilities.
91 * The packet contains full (though not verified) checksum in packet but
92 * not in skb->csum. Thus, skb->csum is undefined in this case.
93 *
94 * CHECKSUM_UNNECESSARY:
95 *
96 * The hardware you're dealing with doesn't calculate the full checksum
97 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
98 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
99 * if their checksums are okay. skb->csum is still undefined in this case
100 * though. A driver or device must never modify the checksum field in the
101 * packet even if checksum is verified.
102 *
103 * CHECKSUM_UNNECESSARY is applicable to following protocols:
104 * TCP: IPv6 and IPv4.
105 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
106 * zero UDP checksum for either IPv4 or IPv6, the networking stack
107 * may perform further validation in this case.
108 * GRE: only if the checksum is present in the header.
109 * SCTP: indicates the CRC in SCTP header has been validated.
110 *
111 * skb->csum_level indicates the number of consecutive checksums found in
112 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
113 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
114 * and a device is able to verify the checksums for UDP (possibly zero),
115 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
116 * two. If the device were only able to verify the UDP checksum and not
117 * GRE, either because it doesn't support GRE checksum of because GRE
118 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
119 * not considered in this case).
120 *
121 * CHECKSUM_COMPLETE:
122 *
123 * This is the most generic way. The device supplied checksum of the _whole_
124 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
125 * hardware doesn't need to parse L3/L4 headers to implement this.
126 *
127 * Note: Even if device supports only some protocols, but is able to produce
128 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
129 *
130 * CHECKSUM_PARTIAL:
131 *
132 * A checksum is set up to be offloaded to a device as described in the
133 * output description for CHECKSUM_PARTIAL. This may occur on a packet
134 * received directly from another Linux OS, e.g., a virtualized Linux kernel
135 * on the same host, or it may be set in the input path in GRO or remote
136 * checksum offload. For the purposes of checksum verification, the checksum
137 * referred to by skb->csum_start + skb->csum_offset and any preceding
138 * checksums in the packet are considered verified. Any checksums in the
139 * packet that are after the checksum being offloaded are not considered to
140 * be verified.
141 *
142 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
143 * in the skb->ip_summed for a packet. Values are:
144 *
145 * CHECKSUM_PARTIAL:
146 *
147 * The driver is required to checksum the packet as seen by hard_start_xmit()
148 * from skb->csum_start up to the end, and to record/write the checksum at
149 * offset skb->csum_start + skb->csum_offset. A driver may verify that the
150 * csum_start and csum_offset values are valid values given the length and
151 * offset of the packet, however they should not attempt to validate that the
152 * checksum refers to a legitimate transport layer checksum-- it is the
153 * purview of the stack to validate that csum_start and csum_offset are set
154 * correctly.
155 *
156 * When the stack requests checksum offload for a packet, the driver MUST
157 * ensure that the checksum is set correctly. A driver can either offload the
158 * checksum calculation to the device, or call skb_checksum_help (in the case
159 * that the device does not support offload for a particular checksum).
160 *
161 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
162 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
163 * checksum offload capability. If a device has limited checksum capabilities
164 * (for instance can only perform NETIF_F_IP_CSUM or NETIF_F_IPV6_CSUM as
165 * described above) a helper function can be called to resolve
166 * CHECKSUM_PARTIAL. The helper functions are skb_csum_off_chk*. The helper
167 * function takes a spec argument that describes the protocol layer that is
168 * supported for checksum offload and can be called for each packet. If a
169 * packet does not match the specification for offload, skb_checksum_help
170 * is called to resolve the checksum.
171 *
172 * CHECKSUM_NONE:
173 *
174 * The skb was already checksummed by the protocol, or a checksum is not
175 * required.
176 *
177 * CHECKSUM_UNNECESSARY:
178 *
179 * This has the same meaning on as CHECKSUM_NONE for checksum offload on
180 * output.
181 *
182 * CHECKSUM_COMPLETE:
183 * Not used in checksum output. If a driver observes a packet with this value
184 * set in skbuff, if should treat as CHECKSUM_NONE being set.
185 *
186 * D. Non-IP checksum (CRC) offloads
187 *
188 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
189 * offloading the SCTP CRC in a packet. To perform this offload the stack
190 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
191 * accordingly. Note the there is no indication in the skbuff that the
192 * CHECKSUM_PARTIAL refers to an SCTP checksum, a driver that supports
193 * both IP checksum offload and SCTP CRC offload must verify which offload
194 * is configured for a packet presumably by inspecting packet headers.
195 *
196 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
197 * offloading the FCOE CRC in a packet. To perform this offload the stack
198 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
199 * accordingly. Note the there is no indication in the skbuff that the
200 * CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
201 * both IP checksum offload and FCOE CRC offload must verify which offload
202 * is configured for a packet presumably by inspecting packet headers.
203 *
204 * E. Checksumming on output with GSO.
205 *
206 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
207 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
208 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
209 * part of the GSO operation is implied. If a checksum is being offloaded
210 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
211 * are set to refer to the outermost checksum being offload (two offloaded
212 * checksums are possible with UDP encapsulation).
213 */
214
215 /* Don't change this without changing skb_csum_unnecessary! */
216 #define CHECKSUM_NONE 0
217 #define CHECKSUM_UNNECESSARY 1
218 #define CHECKSUM_COMPLETE 2
219 #define CHECKSUM_PARTIAL 3
220
221 /* Maximum value in skb->csum_level */
222 #define SKB_MAX_CSUM_LEVEL 3
223
224 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
225 #define SKB_WITH_OVERHEAD(X) \
226 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
227 #define SKB_MAX_ORDER(X, ORDER) \
228 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
229 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
230 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
231
232 /* return minimum truesize of one skb containing X bytes of data */
233 #define SKB_TRUESIZE(X) ((X) + \
234 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
235 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
236
237 struct net_device;
238 struct scatterlist;
239 struct pipe_inode_info;
240 struct iov_iter;
241 struct napi_struct;
242
243 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
244 struct nf_conntrack {
245 atomic_t use;
246 };
247 #endif
248
249 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
250 struct nf_bridge_info {
251 atomic_t use;
252 enum {
253 BRNF_PROTO_UNCHANGED,
254 BRNF_PROTO_8021Q,
255 BRNF_PROTO_PPPOE
256 } orig_proto:8;
257 u8 pkt_otherhost:1;
258 u8 in_prerouting:1;
259 u8 bridged_dnat:1;
260 __u16 frag_max_size;
261 struct net_device *physindev;
262
263 /* always valid & non-NULL from FORWARD on, for physdev match */
264 struct net_device *physoutdev;
265 union {
266 /* prerouting: detect dnat in orig/reply direction */
267 __be32 ipv4_daddr;
268 struct in6_addr ipv6_daddr;
269
270 /* after prerouting + nat detected: store original source
271 * mac since neigh resolution overwrites it, only used while
272 * skb is out in neigh layer.
273 */
274 char neigh_header[8];
275 };
276 };
277 #endif
278
279 struct sk_buff_head {
280 /* These two members must be first. */
281 struct sk_buff *next;
282 struct sk_buff *prev;
283
284 __u32 qlen;
285 spinlock_t lock;
286 };
287
288 struct sk_buff;
289
290 /* To allow 64K frame to be packed as single skb without frag_list we
291 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
292 * buffers which do not start on a page boundary.
293 *
294 * Since GRO uses frags we allocate at least 16 regardless of page
295 * size.
296 */
297 #if (65536/PAGE_SIZE + 1) < 16
298 #define MAX_SKB_FRAGS 16UL
299 #else
300 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
301 #endif
302
303 typedef struct skb_frag_struct skb_frag_t;
304
305 struct skb_frag_struct {
306 struct {
307 struct page *p;
308 } page;
309 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
310 __u32 page_offset;
311 __u32 size;
312 #else
313 __u16 page_offset;
314 __u16 size;
315 #endif
316 };
317
318 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
319 {
320 return frag->size;
321 }
322
323 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
324 {
325 frag->size = size;
326 }
327
328 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
329 {
330 frag->size += delta;
331 }
332
333 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
334 {
335 frag->size -= delta;
336 }
337
338 #define HAVE_HW_TIME_STAMP
339
340 /**
341 * struct skb_shared_hwtstamps - hardware time stamps
342 * @hwtstamp: hardware time stamp transformed into duration
343 * since arbitrary point in time
344 *
345 * Software time stamps generated by ktime_get_real() are stored in
346 * skb->tstamp.
347 *
348 * hwtstamps can only be compared against other hwtstamps from
349 * the same device.
350 *
351 * This structure is attached to packets as part of the
352 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
353 */
354 struct skb_shared_hwtstamps {
355 ktime_t hwtstamp;
356 };
357
358 /* Definitions for tx_flags in struct skb_shared_info */
359 enum {
360 /* generate hardware time stamp */
361 SKBTX_HW_TSTAMP = 1 << 0,
362
363 /* generate software time stamp when queueing packet to NIC */
364 SKBTX_SW_TSTAMP = 1 << 1,
365
366 /* device driver is going to provide hardware time stamp */
367 SKBTX_IN_PROGRESS = 1 << 2,
368
369 /* device driver supports TX zero-copy buffers */
370 SKBTX_DEV_ZEROCOPY = 1 << 3,
371
372 /* generate wifi status information (where possible) */
373 SKBTX_WIFI_STATUS = 1 << 4,
374
375 /* This indicates at least one fragment might be overwritten
376 * (as in vmsplice(), sendfile() ...)
377 * If we need to compute a TX checksum, we'll need to copy
378 * all frags to avoid possible bad checksum
379 */
380 SKBTX_SHARED_FRAG = 1 << 5,
381
382 /* generate software time stamp when entering packet scheduling */
383 SKBTX_SCHED_TSTAMP = 1 << 6,
384
385 /* generate software timestamp on peer data acknowledgment */
386 SKBTX_ACK_TSTAMP = 1 << 7,
387 };
388
389 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
390 SKBTX_SCHED_TSTAMP | \
391 SKBTX_ACK_TSTAMP)
392 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
393
394 /*
395 * The callback notifies userspace to release buffers when skb DMA is done in
396 * lower device, the skb last reference should be 0 when calling this.
397 * The zerocopy_success argument is true if zero copy transmit occurred,
398 * false on data copy or out of memory error caused by data copy attempt.
399 * The ctx field is used to track device context.
400 * The desc field is used to track userspace buffer index.
401 */
402 struct ubuf_info {
403 void (*callback)(struct ubuf_info *, bool zerocopy_success);
404 void *ctx;
405 unsigned long desc;
406 };
407
408 /* This data is invariant across clones and lives at
409 * the end of the header data, ie. at skb->end.
410 */
411 struct skb_shared_info {
412 unsigned char nr_frags;
413 __u8 tx_flags;
414 unsigned short gso_size;
415 /* Warning: this field is not always filled in (UFO)! */
416 unsigned short gso_segs;
417 unsigned short gso_type;
418 struct sk_buff *frag_list;
419 struct skb_shared_hwtstamps hwtstamps;
420 u32 tskey;
421 __be32 ip6_frag_id;
422
423 /*
424 * Warning : all fields before dataref are cleared in __alloc_skb()
425 */
426 atomic_t dataref;
427
428 /* Intermediate layers must ensure that destructor_arg
429 * remains valid until skb destructor */
430 void * destructor_arg;
431
432 /* must be last field, see pskb_expand_head() */
433 skb_frag_t frags[MAX_SKB_FRAGS];
434 };
435
436 /* We divide dataref into two halves. The higher 16 bits hold references
437 * to the payload part of skb->data. The lower 16 bits hold references to
438 * the entire skb->data. A clone of a headerless skb holds the length of
439 * the header in skb->hdr_len.
440 *
441 * All users must obey the rule that the skb->data reference count must be
442 * greater than or equal to the payload reference count.
443 *
444 * Holding a reference to the payload part means that the user does not
445 * care about modifications to the header part of skb->data.
446 */
447 #define SKB_DATAREF_SHIFT 16
448 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
449
450
451 enum {
452 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
453 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
454 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
455 };
456
457 enum {
458 SKB_GSO_TCPV4 = 1 << 0,
459 SKB_GSO_UDP = 1 << 1,
460
461 /* This indicates the skb is from an untrusted source. */
462 SKB_GSO_DODGY = 1 << 2,
463
464 /* This indicates the tcp segment has CWR set. */
465 SKB_GSO_TCP_ECN = 1 << 3,
466
467 SKB_GSO_TCPV6 = 1 << 4,
468
469 SKB_GSO_FCOE = 1 << 5,
470
471 SKB_GSO_GRE = 1 << 6,
472
473 SKB_GSO_GRE_CSUM = 1 << 7,
474
475 SKB_GSO_IPIP = 1 << 8,
476
477 SKB_GSO_SIT = 1 << 9,
478
479 SKB_GSO_UDP_TUNNEL = 1 << 10,
480
481 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
482
483 SKB_GSO_TUNNEL_REMCSUM = 1 << 12,
484 };
485
486 #if BITS_PER_LONG > 32
487 #define NET_SKBUFF_DATA_USES_OFFSET 1
488 #endif
489
490 #ifdef NET_SKBUFF_DATA_USES_OFFSET
491 typedef unsigned int sk_buff_data_t;
492 #else
493 typedef unsigned char *sk_buff_data_t;
494 #endif
495
496 /**
497 * struct skb_mstamp - multi resolution time stamps
498 * @stamp_us: timestamp in us resolution
499 * @stamp_jiffies: timestamp in jiffies
500 */
501 struct skb_mstamp {
502 union {
503 u64 v64;
504 struct {
505 u32 stamp_us;
506 u32 stamp_jiffies;
507 };
508 };
509 };
510
511 /**
512 * skb_mstamp_get - get current timestamp
513 * @cl: place to store timestamps
514 */
515 static inline void skb_mstamp_get(struct skb_mstamp *cl)
516 {
517 u64 val = local_clock();
518
519 do_div(val, NSEC_PER_USEC);
520 cl->stamp_us = (u32)val;
521 cl->stamp_jiffies = (u32)jiffies;
522 }
523
524 /**
525 * skb_mstamp_delta - compute the difference in usec between two skb_mstamp
526 * @t1: pointer to newest sample
527 * @t0: pointer to oldest sample
528 */
529 static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1,
530 const struct skb_mstamp *t0)
531 {
532 s32 delta_us = t1->stamp_us - t0->stamp_us;
533 u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies;
534
535 /* If delta_us is negative, this might be because interval is too big,
536 * or local_clock() drift is too big : fallback using jiffies.
537 */
538 if (delta_us <= 0 ||
539 delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ)))
540
541 delta_us = jiffies_to_usecs(delta_jiffies);
542
543 return delta_us;
544 }
545
546 static inline bool skb_mstamp_after(const struct skb_mstamp *t1,
547 const struct skb_mstamp *t0)
548 {
549 s32 diff = t1->stamp_jiffies - t0->stamp_jiffies;
550
551 if (!diff)
552 diff = t1->stamp_us - t0->stamp_us;
553 return diff > 0;
554 }
555
556 /**
557 * struct sk_buff - socket buffer
558 * @next: Next buffer in list
559 * @prev: Previous buffer in list
560 * @tstamp: Time we arrived/left
561 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
562 * @sk: Socket we are owned by
563 * @dev: Device we arrived on/are leaving by
564 * @cb: Control buffer. Free for use by every layer. Put private vars here
565 * @_skb_refdst: destination entry (with norefcount bit)
566 * @sp: the security path, used for xfrm
567 * @len: Length of actual data
568 * @data_len: Data length
569 * @mac_len: Length of link layer header
570 * @hdr_len: writable header length of cloned skb
571 * @csum: Checksum (must include start/offset pair)
572 * @csum_start: Offset from skb->head where checksumming should start
573 * @csum_offset: Offset from csum_start where checksum should be stored
574 * @priority: Packet queueing priority
575 * @ignore_df: allow local fragmentation
576 * @cloned: Head may be cloned (check refcnt to be sure)
577 * @ip_summed: Driver fed us an IP checksum
578 * @nohdr: Payload reference only, must not modify header
579 * @nfctinfo: Relationship of this skb to the connection
580 * @pkt_type: Packet class
581 * @fclone: skbuff clone status
582 * @ipvs_property: skbuff is owned by ipvs
583 * @peeked: this packet has been seen already, so stats have been
584 * done for it, don't do them again
585 * @nf_trace: netfilter packet trace flag
586 * @protocol: Packet protocol from driver
587 * @destructor: Destruct function
588 * @nfct: Associated connection, if any
589 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
590 * @skb_iif: ifindex of device we arrived on
591 * @tc_index: Traffic control index
592 * @tc_verd: traffic control verdict
593 * @hash: the packet hash
594 * @queue_mapping: Queue mapping for multiqueue devices
595 * @xmit_more: More SKBs are pending for this queue
596 * @ndisc_nodetype: router type (from link layer)
597 * @ooo_okay: allow the mapping of a socket to a queue to be changed
598 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
599 * ports.
600 * @sw_hash: indicates hash was computed in software stack
601 * @wifi_acked_valid: wifi_acked was set
602 * @wifi_acked: whether frame was acked on wifi or not
603 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
604 * @napi_id: id of the NAPI struct this skb came from
605 * @secmark: security marking
606 * @offload_fwd_mark: fwding offload mark
607 * @mark: Generic packet mark
608 * @vlan_proto: vlan encapsulation protocol
609 * @vlan_tci: vlan tag control information
610 * @inner_protocol: Protocol (encapsulation)
611 * @inner_transport_header: Inner transport layer header (encapsulation)
612 * @inner_network_header: Network layer header (encapsulation)
613 * @inner_mac_header: Link layer header (encapsulation)
614 * @transport_header: Transport layer header
615 * @network_header: Network layer header
616 * @mac_header: Link layer header
617 * @tail: Tail pointer
618 * @end: End pointer
619 * @head: Head of buffer
620 * @data: Data head pointer
621 * @truesize: Buffer size
622 * @users: User count - see {datagram,tcp}.c
623 */
624
625 struct sk_buff {
626 union {
627 struct {
628 /* These two members must be first. */
629 struct sk_buff *next;
630 struct sk_buff *prev;
631
632 union {
633 ktime_t tstamp;
634 struct skb_mstamp skb_mstamp;
635 };
636 };
637 struct rb_node rbnode; /* used in netem & tcp stack */
638 };
639 struct sock *sk;
640 struct net_device *dev;
641
642 /*
643 * This is the control buffer. It is free to use for every
644 * layer. Please put your private variables there. If you
645 * want to keep them across layers you have to do a skb_clone()
646 * first. This is owned by whoever has the skb queued ATM.
647 */
648 char cb[48] __aligned(8);
649
650 unsigned long _skb_refdst;
651 void (*destructor)(struct sk_buff *skb);
652 #ifdef CONFIG_XFRM
653 struct sec_path *sp;
654 #endif
655 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
656 struct nf_conntrack *nfct;
657 #endif
658 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
659 struct nf_bridge_info *nf_bridge;
660 #endif
661 unsigned int len,
662 data_len;
663 __u16 mac_len,
664 hdr_len;
665
666 /* Following fields are _not_ copied in __copy_skb_header()
667 * Note that queue_mapping is here mostly to fill a hole.
668 */
669 kmemcheck_bitfield_begin(flags1);
670 __u16 queue_mapping;
671 __u8 cloned:1,
672 nohdr:1,
673 fclone:2,
674 peeked:1,
675 head_frag:1,
676 xmit_more:1;
677 /* one bit hole */
678 kmemcheck_bitfield_end(flags1);
679
680 /* fields enclosed in headers_start/headers_end are copied
681 * using a single memcpy() in __copy_skb_header()
682 */
683 /* private: */
684 __u32 headers_start[0];
685 /* public: */
686
687 /* if you move pkt_type around you also must adapt those constants */
688 #ifdef __BIG_ENDIAN_BITFIELD
689 #define PKT_TYPE_MAX (7 << 5)
690 #else
691 #define PKT_TYPE_MAX 7
692 #endif
693 #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset)
694
695 __u8 __pkt_type_offset[0];
696 __u8 pkt_type:3;
697 __u8 pfmemalloc:1;
698 __u8 ignore_df:1;
699 __u8 nfctinfo:3;
700
701 __u8 nf_trace:1;
702 __u8 ip_summed:2;
703 __u8 ooo_okay:1;
704 __u8 l4_hash:1;
705 __u8 sw_hash:1;
706 __u8 wifi_acked_valid:1;
707 __u8 wifi_acked:1;
708
709 __u8 no_fcs:1;
710 /* Indicates the inner headers are valid in the skbuff. */
711 __u8 encapsulation:1;
712 __u8 encap_hdr_csum:1;
713 __u8 csum_valid:1;
714 __u8 csum_complete_sw:1;
715 __u8 csum_level:2;
716 __u8 csum_bad:1;
717
718 #ifdef CONFIG_IPV6_NDISC_NODETYPE
719 __u8 ndisc_nodetype:2;
720 #endif
721 __u8 ipvs_property:1;
722 __u8 inner_protocol_type:1;
723 __u8 remcsum_offload:1;
724 /* 3 or 5 bit hole */
725
726 #ifdef CONFIG_NET_SCHED
727 __u16 tc_index; /* traffic control index */
728 #ifdef CONFIG_NET_CLS_ACT
729 __u16 tc_verd; /* traffic control verdict */
730 #endif
731 #endif
732
733 union {
734 __wsum csum;
735 struct {
736 __u16 csum_start;
737 __u16 csum_offset;
738 };
739 };
740 __u32 priority;
741 int skb_iif;
742 __u32 hash;
743 __be16 vlan_proto;
744 __u16 vlan_tci;
745 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
746 union {
747 unsigned int napi_id;
748 unsigned int sender_cpu;
749 };
750 #endif
751 union {
752 #ifdef CONFIG_NETWORK_SECMARK
753 __u32 secmark;
754 #endif
755 #ifdef CONFIG_NET_SWITCHDEV
756 __u32 offload_fwd_mark;
757 #endif
758 };
759
760 union {
761 __u32 mark;
762 __u32 reserved_tailroom;
763 };
764
765 union {
766 __be16 inner_protocol;
767 __u8 inner_ipproto;
768 };
769
770 __u16 inner_transport_header;
771 __u16 inner_network_header;
772 __u16 inner_mac_header;
773
774 __be16 protocol;
775 __u16 transport_header;
776 __u16 network_header;
777 __u16 mac_header;
778
779 /* private: */
780 __u32 headers_end[0];
781 /* public: */
782
783 /* These elements must be at the end, see alloc_skb() for details. */
784 sk_buff_data_t tail;
785 sk_buff_data_t end;
786 unsigned char *head,
787 *data;
788 unsigned int truesize;
789 atomic_t users;
790 };
791
792 #ifdef __KERNEL__
793 /*
794 * Handling routines are only of interest to the kernel
795 */
796 #include <linux/slab.h>
797
798
799 #define SKB_ALLOC_FCLONE 0x01
800 #define SKB_ALLOC_RX 0x02
801 #define SKB_ALLOC_NAPI 0x04
802
803 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
804 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
805 {
806 return unlikely(skb->pfmemalloc);
807 }
808
809 /*
810 * skb might have a dst pointer attached, refcounted or not.
811 * _skb_refdst low order bit is set if refcount was _not_ taken
812 */
813 #define SKB_DST_NOREF 1UL
814 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
815
816 /**
817 * skb_dst - returns skb dst_entry
818 * @skb: buffer
819 *
820 * Returns skb dst_entry, regardless of reference taken or not.
821 */
822 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
823 {
824 /* If refdst was not refcounted, check we still are in a
825 * rcu_read_lock section
826 */
827 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
828 !rcu_read_lock_held() &&
829 !rcu_read_lock_bh_held());
830 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
831 }
832
833 /**
834 * skb_dst_set - sets skb dst
835 * @skb: buffer
836 * @dst: dst entry
837 *
838 * Sets skb dst, assuming a reference was taken on dst and should
839 * be released by skb_dst_drop()
840 */
841 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
842 {
843 skb->_skb_refdst = (unsigned long)dst;
844 }
845
846 /**
847 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
848 * @skb: buffer
849 * @dst: dst entry
850 *
851 * Sets skb dst, assuming a reference was not taken on dst.
852 * If dst entry is cached, we do not take reference and dst_release
853 * will be avoided by refdst_drop. If dst entry is not cached, we take
854 * reference, so that last dst_release can destroy the dst immediately.
855 */
856 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
857 {
858 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
859 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
860 }
861
862 /**
863 * skb_dst_is_noref - Test if skb dst isn't refcounted
864 * @skb: buffer
865 */
866 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
867 {
868 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
869 }
870
871 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
872 {
873 return (struct rtable *)skb_dst(skb);
874 }
875
876 void kfree_skb(struct sk_buff *skb);
877 void kfree_skb_list(struct sk_buff *segs);
878 void skb_tx_error(struct sk_buff *skb);
879 void consume_skb(struct sk_buff *skb);
880 void __kfree_skb(struct sk_buff *skb);
881 extern struct kmem_cache *skbuff_head_cache;
882
883 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
884 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
885 bool *fragstolen, int *delta_truesize);
886
887 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
888 int node);
889 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
890 struct sk_buff *build_skb(void *data, unsigned int frag_size);
891 static inline struct sk_buff *alloc_skb(unsigned int size,
892 gfp_t priority)
893 {
894 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
895 }
896
897 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
898 unsigned long data_len,
899 int max_page_order,
900 int *errcode,
901 gfp_t gfp_mask);
902
903 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
904 struct sk_buff_fclones {
905 struct sk_buff skb1;
906
907 struct sk_buff skb2;
908
909 atomic_t fclone_ref;
910 };
911
912 /**
913 * skb_fclone_busy - check if fclone is busy
914 * @skb: buffer
915 *
916 * Returns true if skb is a fast clone, and its clone is not freed.
917 * Some drivers call skb_orphan() in their ndo_start_xmit(),
918 * so we also check that this didnt happen.
919 */
920 static inline bool skb_fclone_busy(const struct sock *sk,
921 const struct sk_buff *skb)
922 {
923 const struct sk_buff_fclones *fclones;
924
925 fclones = container_of(skb, struct sk_buff_fclones, skb1);
926
927 return skb->fclone == SKB_FCLONE_ORIG &&
928 atomic_read(&fclones->fclone_ref) > 1 &&
929 fclones->skb2.sk == sk;
930 }
931
932 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
933 gfp_t priority)
934 {
935 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
936 }
937
938 struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
939 static inline struct sk_buff *alloc_skb_head(gfp_t priority)
940 {
941 return __alloc_skb_head(priority, -1);
942 }
943
944 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
945 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
946 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
947 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
948 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
949 gfp_t gfp_mask, bool fclone);
950 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
951 gfp_t gfp_mask)
952 {
953 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
954 }
955
956 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
957 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
958 unsigned int headroom);
959 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
960 int newtailroom, gfp_t priority);
961 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
962 int offset, int len);
963 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
964 int len);
965 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
966 int skb_pad(struct sk_buff *skb, int pad);
967 #define dev_kfree_skb(a) consume_skb(a)
968
969 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
970 int getfrag(void *from, char *to, int offset,
971 int len, int odd, struct sk_buff *skb),
972 void *from, int length);
973
974 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
975 int offset, size_t size);
976
977 struct skb_seq_state {
978 __u32 lower_offset;
979 __u32 upper_offset;
980 __u32 frag_idx;
981 __u32 stepped_offset;
982 struct sk_buff *root_skb;
983 struct sk_buff *cur_skb;
984 __u8 *frag_data;
985 };
986
987 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
988 unsigned int to, struct skb_seq_state *st);
989 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
990 struct skb_seq_state *st);
991 void skb_abort_seq_read(struct skb_seq_state *st);
992
993 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
994 unsigned int to, struct ts_config *config);
995
996 /*
997 * Packet hash types specify the type of hash in skb_set_hash.
998 *
999 * Hash types refer to the protocol layer addresses which are used to
1000 * construct a packet's hash. The hashes are used to differentiate or identify
1001 * flows of the protocol layer for the hash type. Hash types are either
1002 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1003 *
1004 * Properties of hashes:
1005 *
1006 * 1) Two packets in different flows have different hash values
1007 * 2) Two packets in the same flow should have the same hash value
1008 *
1009 * A hash at a higher layer is considered to be more specific. A driver should
1010 * set the most specific hash possible.
1011 *
1012 * A driver cannot indicate a more specific hash than the layer at which a hash
1013 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1014 *
1015 * A driver may indicate a hash level which is less specific than the
1016 * actual layer the hash was computed on. For instance, a hash computed
1017 * at L4 may be considered an L3 hash. This should only be done if the
1018 * driver can't unambiguously determine that the HW computed the hash at
1019 * the higher layer. Note that the "should" in the second property above
1020 * permits this.
1021 */
1022 enum pkt_hash_types {
1023 PKT_HASH_TYPE_NONE, /* Undefined type */
1024 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
1025 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
1026 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
1027 };
1028
1029 static inline void skb_clear_hash(struct sk_buff *skb)
1030 {
1031 skb->hash = 0;
1032 skb->sw_hash = 0;
1033 skb->l4_hash = 0;
1034 }
1035
1036 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1037 {
1038 if (!skb->l4_hash)
1039 skb_clear_hash(skb);
1040 }
1041
1042 static inline void
1043 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1044 {
1045 skb->l4_hash = is_l4;
1046 skb->sw_hash = is_sw;
1047 skb->hash = hash;
1048 }
1049
1050 static inline void
1051 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1052 {
1053 /* Used by drivers to set hash from HW */
1054 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1055 }
1056
1057 static inline void
1058 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1059 {
1060 __skb_set_hash(skb, hash, true, is_l4);
1061 }
1062
1063 void __skb_get_hash(struct sk_buff *skb);
1064 u32 skb_get_poff(const struct sk_buff *skb);
1065 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1066 const struct flow_keys *keys, int hlen);
1067 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1068 void *data, int hlen_proto);
1069
1070 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1071 int thoff, u8 ip_proto)
1072 {
1073 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1074 }
1075
1076 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1077 const struct flow_dissector_key *key,
1078 unsigned int key_count);
1079
1080 bool __skb_flow_dissect(const struct sk_buff *skb,
1081 struct flow_dissector *flow_dissector,
1082 void *target_container,
1083 void *data, __be16 proto, int nhoff, int hlen,
1084 unsigned int flags);
1085
1086 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1087 struct flow_dissector *flow_dissector,
1088 void *target_container, unsigned int flags)
1089 {
1090 return __skb_flow_dissect(skb, flow_dissector, target_container,
1091 NULL, 0, 0, 0, flags);
1092 }
1093
1094 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1095 struct flow_keys *flow,
1096 unsigned int flags)
1097 {
1098 memset(flow, 0, sizeof(*flow));
1099 return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1100 NULL, 0, 0, 0, flags);
1101 }
1102
1103 static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow,
1104 void *data, __be16 proto,
1105 int nhoff, int hlen,
1106 unsigned int flags)
1107 {
1108 memset(flow, 0, sizeof(*flow));
1109 return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow,
1110 data, proto, nhoff, hlen, flags);
1111 }
1112
1113 static inline __u32 skb_get_hash(struct sk_buff *skb)
1114 {
1115 if (!skb->l4_hash && !skb->sw_hash)
1116 __skb_get_hash(skb);
1117
1118 return skb->hash;
1119 }
1120
1121 __u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6);
1122
1123 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1124 {
1125 if (!skb->l4_hash && !skb->sw_hash) {
1126 struct flow_keys keys;
1127 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
1128
1129 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1130 }
1131
1132 return skb->hash;
1133 }
1134
1135 __u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl);
1136
1137 static inline __u32 skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4)
1138 {
1139 if (!skb->l4_hash && !skb->sw_hash) {
1140 struct flow_keys keys;
1141 __u32 hash = __get_hash_from_flowi4(fl4, &keys);
1142
1143 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1144 }
1145
1146 return skb->hash;
1147 }
1148
1149 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1150
1151 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1152 {
1153 return skb->hash;
1154 }
1155
1156 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1157 {
1158 to->hash = from->hash;
1159 to->sw_hash = from->sw_hash;
1160 to->l4_hash = from->l4_hash;
1161 };
1162
1163 static inline void skb_sender_cpu_clear(struct sk_buff *skb)
1164 {
1165 }
1166
1167 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1168 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1169 {
1170 return skb->head + skb->end;
1171 }
1172
1173 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1174 {
1175 return skb->end;
1176 }
1177 #else
1178 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1179 {
1180 return skb->end;
1181 }
1182
1183 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1184 {
1185 return skb->end - skb->head;
1186 }
1187 #endif
1188
1189 /* Internal */
1190 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1191
1192 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1193 {
1194 return &skb_shinfo(skb)->hwtstamps;
1195 }
1196
1197 /**
1198 * skb_queue_empty - check if a queue is empty
1199 * @list: queue head
1200 *
1201 * Returns true if the queue is empty, false otherwise.
1202 */
1203 static inline int skb_queue_empty(const struct sk_buff_head *list)
1204 {
1205 return list->next == (const struct sk_buff *) list;
1206 }
1207
1208 /**
1209 * skb_queue_is_last - check if skb is the last entry in the queue
1210 * @list: queue head
1211 * @skb: buffer
1212 *
1213 * Returns true if @skb is the last buffer on the list.
1214 */
1215 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1216 const struct sk_buff *skb)
1217 {
1218 return skb->next == (const struct sk_buff *) list;
1219 }
1220
1221 /**
1222 * skb_queue_is_first - check if skb is the first entry in the queue
1223 * @list: queue head
1224 * @skb: buffer
1225 *
1226 * Returns true if @skb is the first buffer on the list.
1227 */
1228 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1229 const struct sk_buff *skb)
1230 {
1231 return skb->prev == (const struct sk_buff *) list;
1232 }
1233
1234 /**
1235 * skb_queue_next - return the next packet in the queue
1236 * @list: queue head
1237 * @skb: current buffer
1238 *
1239 * Return the next packet in @list after @skb. It is only valid to
1240 * call this if skb_queue_is_last() evaluates to false.
1241 */
1242 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1243 const struct sk_buff *skb)
1244 {
1245 /* This BUG_ON may seem severe, but if we just return then we
1246 * are going to dereference garbage.
1247 */
1248 BUG_ON(skb_queue_is_last(list, skb));
1249 return skb->next;
1250 }
1251
1252 /**
1253 * skb_queue_prev - return the prev packet in the queue
1254 * @list: queue head
1255 * @skb: current buffer
1256 *
1257 * Return the prev packet in @list before @skb. It is only valid to
1258 * call this if skb_queue_is_first() evaluates to false.
1259 */
1260 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1261 const struct sk_buff *skb)
1262 {
1263 /* This BUG_ON may seem severe, but if we just return then we
1264 * are going to dereference garbage.
1265 */
1266 BUG_ON(skb_queue_is_first(list, skb));
1267 return skb->prev;
1268 }
1269
1270 /**
1271 * skb_get - reference buffer
1272 * @skb: buffer to reference
1273 *
1274 * Makes another reference to a socket buffer and returns a pointer
1275 * to the buffer.
1276 */
1277 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1278 {
1279 atomic_inc(&skb->users);
1280 return skb;
1281 }
1282
1283 /*
1284 * If users == 1, we are the only owner and are can avoid redundant
1285 * atomic change.
1286 */
1287
1288 /**
1289 * skb_cloned - is the buffer a clone
1290 * @skb: buffer to check
1291 *
1292 * Returns true if the buffer was generated with skb_clone() and is
1293 * one of multiple shared copies of the buffer. Cloned buffers are
1294 * shared data so must not be written to under normal circumstances.
1295 */
1296 static inline int skb_cloned(const struct sk_buff *skb)
1297 {
1298 return skb->cloned &&
1299 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1300 }
1301
1302 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1303 {
1304 might_sleep_if(gfpflags_allow_blocking(pri));
1305
1306 if (skb_cloned(skb))
1307 return pskb_expand_head(skb, 0, 0, pri);
1308
1309 return 0;
1310 }
1311
1312 /**
1313 * skb_header_cloned - is the header a clone
1314 * @skb: buffer to check
1315 *
1316 * Returns true if modifying the header part of the buffer requires
1317 * the data to be copied.
1318 */
1319 static inline int skb_header_cloned(const struct sk_buff *skb)
1320 {
1321 int dataref;
1322
1323 if (!skb->cloned)
1324 return 0;
1325
1326 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1327 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1328 return dataref != 1;
1329 }
1330
1331 /**
1332 * skb_header_release - release reference to header
1333 * @skb: buffer to operate on
1334 *
1335 * Drop a reference to the header part of the buffer. This is done
1336 * by acquiring a payload reference. You must not read from the header
1337 * part of skb->data after this.
1338 * Note : Check if you can use __skb_header_release() instead.
1339 */
1340 static inline void skb_header_release(struct sk_buff *skb)
1341 {
1342 BUG_ON(skb->nohdr);
1343 skb->nohdr = 1;
1344 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
1345 }
1346
1347 /**
1348 * __skb_header_release - release reference to header
1349 * @skb: buffer to operate on
1350 *
1351 * Variant of skb_header_release() assuming skb is private to caller.
1352 * We can avoid one atomic operation.
1353 */
1354 static inline void __skb_header_release(struct sk_buff *skb)
1355 {
1356 skb->nohdr = 1;
1357 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1358 }
1359
1360
1361 /**
1362 * skb_shared - is the buffer shared
1363 * @skb: buffer to check
1364 *
1365 * Returns true if more than one person has a reference to this
1366 * buffer.
1367 */
1368 static inline int skb_shared(const struct sk_buff *skb)
1369 {
1370 return atomic_read(&skb->users) != 1;
1371 }
1372
1373 /**
1374 * skb_share_check - check if buffer is shared and if so clone it
1375 * @skb: buffer to check
1376 * @pri: priority for memory allocation
1377 *
1378 * If the buffer is shared the buffer is cloned and the old copy
1379 * drops a reference. A new clone with a single reference is returned.
1380 * If the buffer is not shared the original buffer is returned. When
1381 * being called from interrupt status or with spinlocks held pri must
1382 * be GFP_ATOMIC.
1383 *
1384 * NULL is returned on a memory allocation failure.
1385 */
1386 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1387 {
1388 might_sleep_if(gfpflags_allow_blocking(pri));
1389 if (skb_shared(skb)) {
1390 struct sk_buff *nskb = skb_clone(skb, pri);
1391
1392 if (likely(nskb))
1393 consume_skb(skb);
1394 else
1395 kfree_skb(skb);
1396 skb = nskb;
1397 }
1398 return skb;
1399 }
1400
1401 /*
1402 * Copy shared buffers into a new sk_buff. We effectively do COW on
1403 * packets to handle cases where we have a local reader and forward
1404 * and a couple of other messy ones. The normal one is tcpdumping
1405 * a packet thats being forwarded.
1406 */
1407
1408 /**
1409 * skb_unshare - make a copy of a shared buffer
1410 * @skb: buffer to check
1411 * @pri: priority for memory allocation
1412 *
1413 * If the socket buffer is a clone then this function creates a new
1414 * copy of the data, drops a reference count on the old copy and returns
1415 * the new copy with the reference count at 1. If the buffer is not a clone
1416 * the original buffer is returned. When called with a spinlock held or
1417 * from interrupt state @pri must be %GFP_ATOMIC
1418 *
1419 * %NULL is returned on a memory allocation failure.
1420 */
1421 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1422 gfp_t pri)
1423 {
1424 might_sleep_if(gfpflags_allow_blocking(pri));
1425 if (skb_cloned(skb)) {
1426 struct sk_buff *nskb = skb_copy(skb, pri);
1427
1428 /* Free our shared copy */
1429 if (likely(nskb))
1430 consume_skb(skb);
1431 else
1432 kfree_skb(skb);
1433 skb = nskb;
1434 }
1435 return skb;
1436 }
1437
1438 /**
1439 * skb_peek - peek at the head of an &sk_buff_head
1440 * @list_: list to peek at
1441 *
1442 * Peek an &sk_buff. Unlike most other operations you _MUST_
1443 * be careful with this one. A peek leaves the buffer on the
1444 * list and someone else may run off with it. You must hold
1445 * the appropriate locks or have a private queue to do this.
1446 *
1447 * Returns %NULL for an empty list or a pointer to the head element.
1448 * The reference count is not incremented and the reference is therefore
1449 * volatile. Use with caution.
1450 */
1451 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1452 {
1453 struct sk_buff *skb = list_->next;
1454
1455 if (skb == (struct sk_buff *)list_)
1456 skb = NULL;
1457 return skb;
1458 }
1459
1460 /**
1461 * skb_peek_next - peek skb following the given one from a queue
1462 * @skb: skb to start from
1463 * @list_: list to peek at
1464 *
1465 * Returns %NULL when the end of the list is met or a pointer to the
1466 * next element. The reference count is not incremented and the
1467 * reference is therefore volatile. Use with caution.
1468 */
1469 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1470 const struct sk_buff_head *list_)
1471 {
1472 struct sk_buff *next = skb->next;
1473
1474 if (next == (struct sk_buff *)list_)
1475 next = NULL;
1476 return next;
1477 }
1478
1479 /**
1480 * skb_peek_tail - peek at the tail of an &sk_buff_head
1481 * @list_: list to peek at
1482 *
1483 * Peek an &sk_buff. Unlike most other operations you _MUST_
1484 * be careful with this one. A peek leaves the buffer on the
1485 * list and someone else may run off with it. You must hold
1486 * the appropriate locks or have a private queue to do this.
1487 *
1488 * Returns %NULL for an empty list or a pointer to the tail element.
1489 * The reference count is not incremented and the reference is therefore
1490 * volatile. Use with caution.
1491 */
1492 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1493 {
1494 struct sk_buff *skb = list_->prev;
1495
1496 if (skb == (struct sk_buff *)list_)
1497 skb = NULL;
1498 return skb;
1499
1500 }
1501
1502 /**
1503 * skb_queue_len - get queue length
1504 * @list_: list to measure
1505 *
1506 * Return the length of an &sk_buff queue.
1507 */
1508 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1509 {
1510 return list_->qlen;
1511 }
1512
1513 /**
1514 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1515 * @list: queue to initialize
1516 *
1517 * This initializes only the list and queue length aspects of
1518 * an sk_buff_head object. This allows to initialize the list
1519 * aspects of an sk_buff_head without reinitializing things like
1520 * the spinlock. It can also be used for on-stack sk_buff_head
1521 * objects where the spinlock is known to not be used.
1522 */
1523 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1524 {
1525 list->prev = list->next = (struct sk_buff *)list;
1526 list->qlen = 0;
1527 }
1528
1529 /*
1530 * This function creates a split out lock class for each invocation;
1531 * this is needed for now since a whole lot of users of the skb-queue
1532 * infrastructure in drivers have different locking usage (in hardirq)
1533 * than the networking core (in softirq only). In the long run either the
1534 * network layer or drivers should need annotation to consolidate the
1535 * main types of usage into 3 classes.
1536 */
1537 static inline void skb_queue_head_init(struct sk_buff_head *list)
1538 {
1539 spin_lock_init(&list->lock);
1540 __skb_queue_head_init(list);
1541 }
1542
1543 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1544 struct lock_class_key *class)
1545 {
1546 skb_queue_head_init(list);
1547 lockdep_set_class(&list->lock, class);
1548 }
1549
1550 /*
1551 * Insert an sk_buff on a list.
1552 *
1553 * The "__skb_xxxx()" functions are the non-atomic ones that
1554 * can only be called with interrupts disabled.
1555 */
1556 void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1557 struct sk_buff_head *list);
1558 static inline void __skb_insert(struct sk_buff *newsk,
1559 struct sk_buff *prev, struct sk_buff *next,
1560 struct sk_buff_head *list)
1561 {
1562 newsk->next = next;
1563 newsk->prev = prev;
1564 next->prev = prev->next = newsk;
1565 list->qlen++;
1566 }
1567
1568 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1569 struct sk_buff *prev,
1570 struct sk_buff *next)
1571 {
1572 struct sk_buff *first = list->next;
1573 struct sk_buff *last = list->prev;
1574
1575 first->prev = prev;
1576 prev->next = first;
1577
1578 last->next = next;
1579 next->prev = last;
1580 }
1581
1582 /**
1583 * skb_queue_splice - join two skb lists, this is designed for stacks
1584 * @list: the new list to add
1585 * @head: the place to add it in the first list
1586 */
1587 static inline void skb_queue_splice(const struct sk_buff_head *list,
1588 struct sk_buff_head *head)
1589 {
1590 if (!skb_queue_empty(list)) {
1591 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1592 head->qlen += list->qlen;
1593 }
1594 }
1595
1596 /**
1597 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1598 * @list: the new list to add
1599 * @head: the place to add it in the first list
1600 *
1601 * The list at @list is reinitialised
1602 */
1603 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1604 struct sk_buff_head *head)
1605 {
1606 if (!skb_queue_empty(list)) {
1607 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1608 head->qlen += list->qlen;
1609 __skb_queue_head_init(list);
1610 }
1611 }
1612
1613 /**
1614 * skb_queue_splice_tail - join two skb lists, each list being a queue
1615 * @list: the new list to add
1616 * @head: the place to add it in the first list
1617 */
1618 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1619 struct sk_buff_head *head)
1620 {
1621 if (!skb_queue_empty(list)) {
1622 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1623 head->qlen += list->qlen;
1624 }
1625 }
1626
1627 /**
1628 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1629 * @list: the new list to add
1630 * @head: the place to add it in the first list
1631 *
1632 * Each of the lists is a queue.
1633 * The list at @list is reinitialised
1634 */
1635 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1636 struct sk_buff_head *head)
1637 {
1638 if (!skb_queue_empty(list)) {
1639 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1640 head->qlen += list->qlen;
1641 __skb_queue_head_init(list);
1642 }
1643 }
1644
1645 /**
1646 * __skb_queue_after - queue a buffer at the list head
1647 * @list: list to use
1648 * @prev: place after this buffer
1649 * @newsk: buffer to queue
1650 *
1651 * Queue a buffer int the middle of a list. This function takes no locks
1652 * and you must therefore hold required locks before calling it.
1653 *
1654 * A buffer cannot be placed on two lists at the same time.
1655 */
1656 static inline void __skb_queue_after(struct sk_buff_head *list,
1657 struct sk_buff *prev,
1658 struct sk_buff *newsk)
1659 {
1660 __skb_insert(newsk, prev, prev->next, list);
1661 }
1662
1663 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1664 struct sk_buff_head *list);
1665
1666 static inline void __skb_queue_before(struct sk_buff_head *list,
1667 struct sk_buff *next,
1668 struct sk_buff *newsk)
1669 {
1670 __skb_insert(newsk, next->prev, next, list);
1671 }
1672
1673 /**
1674 * __skb_queue_head - queue a buffer at the list head
1675 * @list: list to use
1676 * @newsk: buffer to queue
1677 *
1678 * Queue a buffer at the start of a list. This function takes no locks
1679 * and you must therefore hold required locks before calling it.
1680 *
1681 * A buffer cannot be placed on two lists at the same time.
1682 */
1683 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1684 static inline void __skb_queue_head(struct sk_buff_head *list,
1685 struct sk_buff *newsk)
1686 {
1687 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1688 }
1689
1690 /**
1691 * __skb_queue_tail - queue a buffer at the list tail
1692 * @list: list to use
1693 * @newsk: buffer to queue
1694 *
1695 * Queue a buffer at the end of a list. This function takes no locks
1696 * and you must therefore hold required locks before calling it.
1697 *
1698 * A buffer cannot be placed on two lists at the same time.
1699 */
1700 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1701 static inline void __skb_queue_tail(struct sk_buff_head *list,
1702 struct sk_buff *newsk)
1703 {
1704 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1705 }
1706
1707 /*
1708 * remove sk_buff from list. _Must_ be called atomically, and with
1709 * the list known..
1710 */
1711 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1712 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1713 {
1714 struct sk_buff *next, *prev;
1715
1716 list->qlen--;
1717 next = skb->next;
1718 prev = skb->prev;
1719 skb->next = skb->prev = NULL;
1720 next->prev = prev;
1721 prev->next = next;
1722 }
1723
1724 /**
1725 * __skb_dequeue - remove from the head of the queue
1726 * @list: list to dequeue from
1727 *
1728 * Remove the head of the list. This function does not take any locks
1729 * so must be used with appropriate locks held only. The head item is
1730 * returned or %NULL if the list is empty.
1731 */
1732 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1733 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1734 {
1735 struct sk_buff *skb = skb_peek(list);
1736 if (skb)
1737 __skb_unlink(skb, list);
1738 return skb;
1739 }
1740
1741 /**
1742 * __skb_dequeue_tail - remove from the tail of the queue
1743 * @list: list to dequeue from
1744 *
1745 * Remove the tail of the list. This function does not take any locks
1746 * so must be used with appropriate locks held only. The tail item is
1747 * returned or %NULL if the list is empty.
1748 */
1749 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1750 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1751 {
1752 struct sk_buff *skb = skb_peek_tail(list);
1753 if (skb)
1754 __skb_unlink(skb, list);
1755 return skb;
1756 }
1757
1758
1759 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1760 {
1761 return skb->data_len;
1762 }
1763
1764 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1765 {
1766 return skb->len - skb->data_len;
1767 }
1768
1769 static inline int skb_pagelen(const struct sk_buff *skb)
1770 {
1771 int i, len = 0;
1772
1773 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1774 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1775 return len + skb_headlen(skb);
1776 }
1777
1778 /**
1779 * __skb_fill_page_desc - initialise a paged fragment in an skb
1780 * @skb: buffer containing fragment to be initialised
1781 * @i: paged fragment index to initialise
1782 * @page: the page to use for this fragment
1783 * @off: the offset to the data with @page
1784 * @size: the length of the data
1785 *
1786 * Initialises the @i'th fragment of @skb to point to &size bytes at
1787 * offset @off within @page.
1788 *
1789 * Does not take any additional reference on the fragment.
1790 */
1791 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1792 struct page *page, int off, int size)
1793 {
1794 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1795
1796 /*
1797 * Propagate page pfmemalloc to the skb if we can. The problem is
1798 * that not all callers have unique ownership of the page but rely
1799 * on page_is_pfmemalloc doing the right thing(tm).
1800 */
1801 frag->page.p = page;
1802 frag->page_offset = off;
1803 skb_frag_size_set(frag, size);
1804
1805 page = compound_head(page);
1806 if (page_is_pfmemalloc(page))
1807 skb->pfmemalloc = true;
1808 }
1809
1810 /**
1811 * skb_fill_page_desc - initialise a paged fragment in an skb
1812 * @skb: buffer containing fragment to be initialised
1813 * @i: paged fragment index to initialise
1814 * @page: the page to use for this fragment
1815 * @off: the offset to the data with @page
1816 * @size: the length of the data
1817 *
1818 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1819 * @skb to point to @size bytes at offset @off within @page. In
1820 * addition updates @skb such that @i is the last fragment.
1821 *
1822 * Does not take any additional reference on the fragment.
1823 */
1824 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1825 struct page *page, int off, int size)
1826 {
1827 __skb_fill_page_desc(skb, i, page, off, size);
1828 skb_shinfo(skb)->nr_frags = i + 1;
1829 }
1830
1831 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1832 int size, unsigned int truesize);
1833
1834 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1835 unsigned int truesize);
1836
1837 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1838 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1839 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1840
1841 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1842 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1843 {
1844 return skb->head + skb->tail;
1845 }
1846
1847 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1848 {
1849 skb->tail = skb->data - skb->head;
1850 }
1851
1852 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1853 {
1854 skb_reset_tail_pointer(skb);
1855 skb->tail += offset;
1856 }
1857
1858 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1859 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1860 {
1861 return skb->tail;
1862 }
1863
1864 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1865 {
1866 skb->tail = skb->data;
1867 }
1868
1869 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1870 {
1871 skb->tail = skb->data + offset;
1872 }
1873
1874 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1875
1876 /*
1877 * Add data to an sk_buff
1878 */
1879 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
1880 unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1881 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1882 {
1883 unsigned char *tmp = skb_tail_pointer(skb);
1884 SKB_LINEAR_ASSERT(skb);
1885 skb->tail += len;
1886 skb->len += len;
1887 return tmp;
1888 }
1889
1890 unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1891 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1892 {
1893 skb->data -= len;
1894 skb->len += len;
1895 return skb->data;
1896 }
1897
1898 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1899 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1900 {
1901 skb->len -= len;
1902 BUG_ON(skb->len < skb->data_len);
1903 return skb->data += len;
1904 }
1905
1906 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1907 {
1908 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1909 }
1910
1911 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1912
1913 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1914 {
1915 if (len > skb_headlen(skb) &&
1916 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1917 return NULL;
1918 skb->len -= len;
1919 return skb->data += len;
1920 }
1921
1922 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1923 {
1924 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1925 }
1926
1927 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1928 {
1929 if (likely(len <= skb_headlen(skb)))
1930 return 1;
1931 if (unlikely(len > skb->len))
1932 return 0;
1933 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1934 }
1935
1936 /**
1937 * skb_headroom - bytes at buffer head
1938 * @skb: buffer to check
1939 *
1940 * Return the number of bytes of free space at the head of an &sk_buff.
1941 */
1942 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1943 {
1944 return skb->data - skb->head;
1945 }
1946
1947 /**
1948 * skb_tailroom - bytes at buffer end
1949 * @skb: buffer to check
1950 *
1951 * Return the number of bytes of free space at the tail of an sk_buff
1952 */
1953 static inline int skb_tailroom(const struct sk_buff *skb)
1954 {
1955 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1956 }
1957
1958 /**
1959 * skb_availroom - bytes at buffer end
1960 * @skb: buffer to check
1961 *
1962 * Return the number of bytes of free space at the tail of an sk_buff
1963 * allocated by sk_stream_alloc()
1964 */
1965 static inline int skb_availroom(const struct sk_buff *skb)
1966 {
1967 if (skb_is_nonlinear(skb))
1968 return 0;
1969
1970 return skb->end - skb->tail - skb->reserved_tailroom;
1971 }
1972
1973 /**
1974 * skb_reserve - adjust headroom
1975 * @skb: buffer to alter
1976 * @len: bytes to move
1977 *
1978 * Increase the headroom of an empty &sk_buff by reducing the tail
1979 * room. This is only allowed for an empty buffer.
1980 */
1981 static inline void skb_reserve(struct sk_buff *skb, int len)
1982 {
1983 skb->data += len;
1984 skb->tail += len;
1985 }
1986
1987 #define ENCAP_TYPE_ETHER 0
1988 #define ENCAP_TYPE_IPPROTO 1
1989
1990 static inline void skb_set_inner_protocol(struct sk_buff *skb,
1991 __be16 protocol)
1992 {
1993 skb->inner_protocol = protocol;
1994 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
1995 }
1996
1997 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
1998 __u8 ipproto)
1999 {
2000 skb->inner_ipproto = ipproto;
2001 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2002 }
2003
2004 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2005 {
2006 skb->inner_mac_header = skb->mac_header;
2007 skb->inner_network_header = skb->network_header;
2008 skb->inner_transport_header = skb->transport_header;
2009 }
2010
2011 static inline void skb_reset_mac_len(struct sk_buff *skb)
2012 {
2013 skb->mac_len = skb->network_header - skb->mac_header;
2014 }
2015
2016 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2017 *skb)
2018 {
2019 return skb->head + skb->inner_transport_header;
2020 }
2021
2022 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2023 {
2024 return skb_inner_transport_header(skb) - skb->data;
2025 }
2026
2027 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2028 {
2029 skb->inner_transport_header = skb->data - skb->head;
2030 }
2031
2032 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2033 const int offset)
2034 {
2035 skb_reset_inner_transport_header(skb);
2036 skb->inner_transport_header += offset;
2037 }
2038
2039 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2040 {
2041 return skb->head + skb->inner_network_header;
2042 }
2043
2044 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2045 {
2046 skb->inner_network_header = skb->data - skb->head;
2047 }
2048
2049 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2050 const int offset)
2051 {
2052 skb_reset_inner_network_header(skb);
2053 skb->inner_network_header += offset;
2054 }
2055
2056 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2057 {
2058 return skb->head + skb->inner_mac_header;
2059 }
2060
2061 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2062 {
2063 skb->inner_mac_header = skb->data - skb->head;
2064 }
2065
2066 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2067 const int offset)
2068 {
2069 skb_reset_inner_mac_header(skb);
2070 skb->inner_mac_header += offset;
2071 }
2072 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2073 {
2074 return skb->transport_header != (typeof(skb->transport_header))~0U;
2075 }
2076
2077 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2078 {
2079 return skb->head + skb->transport_header;
2080 }
2081
2082 static inline void skb_reset_transport_header(struct sk_buff *skb)
2083 {
2084 skb->transport_header = skb->data - skb->head;
2085 }
2086
2087 static inline void skb_set_transport_header(struct sk_buff *skb,
2088 const int offset)
2089 {
2090 skb_reset_transport_header(skb);
2091 skb->transport_header += offset;
2092 }
2093
2094 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2095 {
2096 return skb->head + skb->network_header;
2097 }
2098
2099 static inline void skb_reset_network_header(struct sk_buff *skb)
2100 {
2101 skb->network_header = skb->data - skb->head;
2102 }
2103
2104 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2105 {
2106 skb_reset_network_header(skb);
2107 skb->network_header += offset;
2108 }
2109
2110 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2111 {
2112 return skb->head + skb->mac_header;
2113 }
2114
2115 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2116 {
2117 return skb->mac_header != (typeof(skb->mac_header))~0U;
2118 }
2119
2120 static inline void skb_reset_mac_header(struct sk_buff *skb)
2121 {
2122 skb->mac_header = skb->data - skb->head;
2123 }
2124
2125 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2126 {
2127 skb_reset_mac_header(skb);
2128 skb->mac_header += offset;
2129 }
2130
2131 static inline void skb_pop_mac_header(struct sk_buff *skb)
2132 {
2133 skb->mac_header = skb->network_header;
2134 }
2135
2136 static inline void skb_probe_transport_header(struct sk_buff *skb,
2137 const int offset_hint)
2138 {
2139 struct flow_keys keys;
2140
2141 if (skb_transport_header_was_set(skb))
2142 return;
2143 else if (skb_flow_dissect_flow_keys(skb, &keys, 0))
2144 skb_set_transport_header(skb, keys.control.thoff);
2145 else
2146 skb_set_transport_header(skb, offset_hint);
2147 }
2148
2149 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2150 {
2151 if (skb_mac_header_was_set(skb)) {
2152 const unsigned char *old_mac = skb_mac_header(skb);
2153
2154 skb_set_mac_header(skb, -skb->mac_len);
2155 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2156 }
2157 }
2158
2159 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2160 {
2161 return skb->csum_start - skb_headroom(skb);
2162 }
2163
2164 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2165 {
2166 return skb->head + skb->csum_start;
2167 }
2168
2169 static inline int skb_transport_offset(const struct sk_buff *skb)
2170 {
2171 return skb_transport_header(skb) - skb->data;
2172 }
2173
2174 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2175 {
2176 return skb->transport_header - skb->network_header;
2177 }
2178
2179 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2180 {
2181 return skb->inner_transport_header - skb->inner_network_header;
2182 }
2183
2184 static inline int skb_network_offset(const struct sk_buff *skb)
2185 {
2186 return skb_network_header(skb) - skb->data;
2187 }
2188
2189 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2190 {
2191 return skb_inner_network_header(skb) - skb->data;
2192 }
2193
2194 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2195 {
2196 return pskb_may_pull(skb, skb_network_offset(skb) + len);
2197 }
2198
2199 /*
2200 * CPUs often take a performance hit when accessing unaligned memory
2201 * locations. The actual performance hit varies, it can be small if the
2202 * hardware handles it or large if we have to take an exception and fix it
2203 * in software.
2204 *
2205 * Since an ethernet header is 14 bytes network drivers often end up with
2206 * the IP header at an unaligned offset. The IP header can be aligned by
2207 * shifting the start of the packet by 2 bytes. Drivers should do this
2208 * with:
2209 *
2210 * skb_reserve(skb, NET_IP_ALIGN);
2211 *
2212 * The downside to this alignment of the IP header is that the DMA is now
2213 * unaligned. On some architectures the cost of an unaligned DMA is high
2214 * and this cost outweighs the gains made by aligning the IP header.
2215 *
2216 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2217 * to be overridden.
2218 */
2219 #ifndef NET_IP_ALIGN
2220 #define NET_IP_ALIGN 2
2221 #endif
2222
2223 /*
2224 * The networking layer reserves some headroom in skb data (via
2225 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2226 * the header has to grow. In the default case, if the header has to grow
2227 * 32 bytes or less we avoid the reallocation.
2228 *
2229 * Unfortunately this headroom changes the DMA alignment of the resulting
2230 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2231 * on some architectures. An architecture can override this value,
2232 * perhaps setting it to a cacheline in size (since that will maintain
2233 * cacheline alignment of the DMA). It must be a power of 2.
2234 *
2235 * Various parts of the networking layer expect at least 32 bytes of
2236 * headroom, you should not reduce this.
2237 *
2238 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2239 * to reduce average number of cache lines per packet.
2240 * get_rps_cpus() for example only access one 64 bytes aligned block :
2241 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2242 */
2243 #ifndef NET_SKB_PAD
2244 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
2245 #endif
2246
2247 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2248
2249 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2250 {
2251 if (unlikely(skb_is_nonlinear(skb))) {
2252 WARN_ON(1);
2253 return;
2254 }
2255 skb->len = len;
2256 skb_set_tail_pointer(skb, len);
2257 }
2258
2259 void skb_trim(struct sk_buff *skb, unsigned int len);
2260
2261 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2262 {
2263 if (skb->data_len)
2264 return ___pskb_trim(skb, len);
2265 __skb_trim(skb, len);
2266 return 0;
2267 }
2268
2269 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2270 {
2271 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2272 }
2273
2274 /**
2275 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2276 * @skb: buffer to alter
2277 * @len: new length
2278 *
2279 * This is identical to pskb_trim except that the caller knows that
2280 * the skb is not cloned so we should never get an error due to out-
2281 * of-memory.
2282 */
2283 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2284 {
2285 int err = pskb_trim(skb, len);
2286 BUG_ON(err);
2287 }
2288
2289 /**
2290 * skb_orphan - orphan a buffer
2291 * @skb: buffer to orphan
2292 *
2293 * If a buffer currently has an owner then we call the owner's
2294 * destructor function and make the @skb unowned. The buffer continues
2295 * to exist but is no longer charged to its former owner.
2296 */
2297 static inline void skb_orphan(struct sk_buff *skb)
2298 {
2299 if (skb->destructor) {
2300 skb->destructor(skb);
2301 skb->destructor = NULL;
2302 skb->sk = NULL;
2303 } else {
2304 BUG_ON(skb->sk);
2305 }
2306 }
2307
2308 /**
2309 * skb_orphan_frags - orphan the frags contained in a buffer
2310 * @skb: buffer to orphan frags from
2311 * @gfp_mask: allocation mask for replacement pages
2312 *
2313 * For each frag in the SKB which needs a destructor (i.e. has an
2314 * owner) create a copy of that frag and release the original
2315 * page by calling the destructor.
2316 */
2317 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2318 {
2319 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
2320 return 0;
2321 return skb_copy_ubufs(skb, gfp_mask);
2322 }
2323
2324 /**
2325 * __skb_queue_purge - empty a list
2326 * @list: list to empty
2327 *
2328 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2329 * the list and one reference dropped. This function does not take the
2330 * list lock and the caller must hold the relevant locks to use it.
2331 */
2332 void skb_queue_purge(struct sk_buff_head *list);
2333 static inline void __skb_queue_purge(struct sk_buff_head *list)
2334 {
2335 struct sk_buff *skb;
2336 while ((skb = __skb_dequeue(list)) != NULL)
2337 kfree_skb(skb);
2338 }
2339
2340 void *netdev_alloc_frag(unsigned int fragsz);
2341
2342 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2343 gfp_t gfp_mask);
2344
2345 /**
2346 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
2347 * @dev: network device to receive on
2348 * @length: length to allocate
2349 *
2350 * Allocate a new &sk_buff and assign it a usage count of one. The
2351 * buffer has unspecified headroom built in. Users should allocate
2352 * the headroom they think they need without accounting for the
2353 * built in space. The built in space is used for optimisations.
2354 *
2355 * %NULL is returned if there is no free memory. Although this function
2356 * allocates memory it can be called from an interrupt.
2357 */
2358 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2359 unsigned int length)
2360 {
2361 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2362 }
2363
2364 /* legacy helper around __netdev_alloc_skb() */
2365 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2366 gfp_t gfp_mask)
2367 {
2368 return __netdev_alloc_skb(NULL, length, gfp_mask);
2369 }
2370
2371 /* legacy helper around netdev_alloc_skb() */
2372 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2373 {
2374 return netdev_alloc_skb(NULL, length);
2375 }
2376
2377
2378 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2379 unsigned int length, gfp_t gfp)
2380 {
2381 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2382
2383 if (NET_IP_ALIGN && skb)
2384 skb_reserve(skb, NET_IP_ALIGN);
2385 return skb;
2386 }
2387
2388 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2389 unsigned int length)
2390 {
2391 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2392 }
2393
2394 static inline void skb_free_frag(void *addr)
2395 {
2396 __free_page_frag(addr);
2397 }
2398
2399 void *napi_alloc_frag(unsigned int fragsz);
2400 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2401 unsigned int length, gfp_t gfp_mask);
2402 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2403 unsigned int length)
2404 {
2405 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2406 }
2407 void napi_consume_skb(struct sk_buff *skb, int budget);
2408
2409 void __kfree_skb_flush(void);
2410 void __kfree_skb_defer(struct sk_buff *skb);
2411
2412 /**
2413 * __dev_alloc_pages - allocate page for network Rx
2414 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2415 * @order: size of the allocation
2416 *
2417 * Allocate a new page.
2418 *
2419 * %NULL is returned if there is no free memory.
2420 */
2421 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2422 unsigned int order)
2423 {
2424 /* This piece of code contains several assumptions.
2425 * 1. This is for device Rx, therefor a cold page is preferred.
2426 * 2. The expectation is the user wants a compound page.
2427 * 3. If requesting a order 0 page it will not be compound
2428 * due to the check to see if order has a value in prep_new_page
2429 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2430 * code in gfp_to_alloc_flags that should be enforcing this.
2431 */
2432 gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC;
2433
2434 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2435 }
2436
2437 static inline struct page *dev_alloc_pages(unsigned int order)
2438 {
2439 return __dev_alloc_pages(GFP_ATOMIC, order);
2440 }
2441
2442 /**
2443 * __dev_alloc_page - allocate a page for network Rx
2444 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2445 *
2446 * Allocate a new page.
2447 *
2448 * %NULL is returned if there is no free memory.
2449 */
2450 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2451 {
2452 return __dev_alloc_pages(gfp_mask, 0);
2453 }
2454
2455 static inline struct page *dev_alloc_page(void)
2456 {
2457 return __dev_alloc_page(GFP_ATOMIC);
2458 }
2459
2460 /**
2461 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2462 * @page: The page that was allocated from skb_alloc_page
2463 * @skb: The skb that may need pfmemalloc set
2464 */
2465 static inline void skb_propagate_pfmemalloc(struct page *page,
2466 struct sk_buff *skb)
2467 {
2468 if (page_is_pfmemalloc(page))
2469 skb->pfmemalloc = true;
2470 }
2471
2472 /**
2473 * skb_frag_page - retrieve the page referred to by a paged fragment
2474 * @frag: the paged fragment
2475 *
2476 * Returns the &struct page associated with @frag.
2477 */
2478 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2479 {
2480 return frag->page.p;
2481 }
2482
2483 /**
2484 * __skb_frag_ref - take an addition reference on a paged fragment.
2485 * @frag: the paged fragment
2486 *
2487 * Takes an additional reference on the paged fragment @frag.
2488 */
2489 static inline void __skb_frag_ref(skb_frag_t *frag)
2490 {
2491 get_page(skb_frag_page(frag));
2492 }
2493
2494 /**
2495 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2496 * @skb: the buffer
2497 * @f: the fragment offset.
2498 *
2499 * Takes an additional reference on the @f'th paged fragment of @skb.
2500 */
2501 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2502 {
2503 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2504 }
2505
2506 /**
2507 * __skb_frag_unref - release a reference on a paged fragment.
2508 * @frag: the paged fragment
2509 *
2510 * Releases a reference on the paged fragment @frag.
2511 */
2512 static inline void __skb_frag_unref(skb_frag_t *frag)
2513 {
2514 put_page(skb_frag_page(frag));
2515 }
2516
2517 /**
2518 * skb_frag_unref - release a reference on a paged fragment of an skb.
2519 * @skb: the buffer
2520 * @f: the fragment offset
2521 *
2522 * Releases a reference on the @f'th paged fragment of @skb.
2523 */
2524 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2525 {
2526 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2527 }
2528
2529 /**
2530 * skb_frag_address - gets the address of the data contained in a paged fragment
2531 * @frag: the paged fragment buffer
2532 *
2533 * Returns the address of the data within @frag. The page must already
2534 * be mapped.
2535 */
2536 static inline void *skb_frag_address(const skb_frag_t *frag)
2537 {
2538 return page_address(skb_frag_page(frag)) + frag->page_offset;
2539 }
2540
2541 /**
2542 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2543 * @frag: the paged fragment buffer
2544 *
2545 * Returns the address of the data within @frag. Checks that the page
2546 * is mapped and returns %NULL otherwise.
2547 */
2548 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2549 {
2550 void *ptr = page_address(skb_frag_page(frag));
2551 if (unlikely(!ptr))
2552 return NULL;
2553
2554 return ptr + frag->page_offset;
2555 }
2556
2557 /**
2558 * __skb_frag_set_page - sets the page contained in a paged fragment
2559 * @frag: the paged fragment
2560 * @page: the page to set
2561 *
2562 * Sets the fragment @frag to contain @page.
2563 */
2564 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2565 {
2566 frag->page.p = page;
2567 }
2568
2569 /**
2570 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2571 * @skb: the buffer
2572 * @f: the fragment offset
2573 * @page: the page to set
2574 *
2575 * Sets the @f'th fragment of @skb to contain @page.
2576 */
2577 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2578 struct page *page)
2579 {
2580 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2581 }
2582
2583 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2584
2585 /**
2586 * skb_frag_dma_map - maps a paged fragment via the DMA API
2587 * @dev: the device to map the fragment to
2588 * @frag: the paged fragment to map
2589 * @offset: the offset within the fragment (starting at the
2590 * fragment's own offset)
2591 * @size: the number of bytes to map
2592 * @dir: the direction of the mapping (%PCI_DMA_*)
2593 *
2594 * Maps the page associated with @frag to @device.
2595 */
2596 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2597 const skb_frag_t *frag,
2598 size_t offset, size_t size,
2599 enum dma_data_direction dir)
2600 {
2601 return dma_map_page(dev, skb_frag_page(frag),
2602 frag->page_offset + offset, size, dir);
2603 }
2604
2605 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2606 gfp_t gfp_mask)
2607 {
2608 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2609 }
2610
2611
2612 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2613 gfp_t gfp_mask)
2614 {
2615 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2616 }
2617
2618
2619 /**
2620 * skb_clone_writable - is the header of a clone writable
2621 * @skb: buffer to check
2622 * @len: length up to which to write
2623 *
2624 * Returns true if modifying the header part of the cloned buffer
2625 * does not requires the data to be copied.
2626 */
2627 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2628 {
2629 return !skb_header_cloned(skb) &&
2630 skb_headroom(skb) + len <= skb->hdr_len;
2631 }
2632
2633 static inline int skb_try_make_writable(struct sk_buff *skb,
2634 unsigned int write_len)
2635 {
2636 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
2637 pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2638 }
2639
2640 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2641 int cloned)
2642 {
2643 int delta = 0;
2644
2645 if (headroom > skb_headroom(skb))
2646 delta = headroom - skb_headroom(skb);
2647
2648 if (delta || cloned)
2649 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2650 GFP_ATOMIC);
2651 return 0;
2652 }
2653
2654 /**
2655 * skb_cow - copy header of skb when it is required
2656 * @skb: buffer to cow
2657 * @headroom: needed headroom
2658 *
2659 * If the skb passed lacks sufficient headroom or its data part
2660 * is shared, data is reallocated. If reallocation fails, an error
2661 * is returned and original skb is not changed.
2662 *
2663 * The result is skb with writable area skb->head...skb->tail
2664 * and at least @headroom of space at head.
2665 */
2666 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2667 {
2668 return __skb_cow(skb, headroom, skb_cloned(skb));
2669 }
2670
2671 /**
2672 * skb_cow_head - skb_cow but only making the head writable
2673 * @skb: buffer to cow
2674 * @headroom: needed headroom
2675 *
2676 * This function is identical to skb_cow except that we replace the
2677 * skb_cloned check by skb_header_cloned. It should be used when
2678 * you only need to push on some header and do not need to modify
2679 * the data.
2680 */
2681 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2682 {
2683 return __skb_cow(skb, headroom, skb_header_cloned(skb));
2684 }
2685
2686 /**
2687 * skb_padto - pad an skbuff up to a minimal size
2688 * @skb: buffer to pad
2689 * @len: minimal length
2690 *
2691 * Pads up a buffer to ensure the trailing bytes exist and are
2692 * blanked. If the buffer already contains sufficient data it
2693 * is untouched. Otherwise it is extended. Returns zero on
2694 * success. The skb is freed on error.
2695 */
2696 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2697 {
2698 unsigned int size = skb->len;
2699 if (likely(size >= len))
2700 return 0;
2701 return skb_pad(skb, len - size);
2702 }
2703
2704 /**
2705 * skb_put_padto - increase size and pad an skbuff up to a minimal size
2706 * @skb: buffer to pad
2707 * @len: minimal length
2708 *
2709 * Pads up a buffer to ensure the trailing bytes exist and are
2710 * blanked. If the buffer already contains sufficient data it
2711 * is untouched. Otherwise it is extended. Returns zero on
2712 * success. The skb is freed on error.
2713 */
2714 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2715 {
2716 unsigned int size = skb->len;
2717
2718 if (unlikely(size < len)) {
2719 len -= size;
2720 if (skb_pad(skb, len))
2721 return -ENOMEM;
2722 __skb_put(skb, len);
2723 }
2724 return 0;
2725 }
2726
2727 static inline int skb_add_data(struct sk_buff *skb,
2728 struct iov_iter *from, int copy)
2729 {
2730 const int off = skb->len;
2731
2732 if (skb->ip_summed == CHECKSUM_NONE) {
2733 __wsum csum = 0;
2734 if (csum_and_copy_from_iter(skb_put(skb, copy), copy,
2735 &csum, from) == copy) {
2736 skb->csum = csum_block_add(skb->csum, csum, off);
2737 return 0;
2738 }
2739 } else if (copy_from_iter(skb_put(skb, copy), copy, from) == copy)
2740 return 0;
2741
2742 __skb_trim(skb, off);
2743 return -EFAULT;
2744 }
2745
2746 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2747 const struct page *page, int off)
2748 {
2749 if (i) {
2750 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
2751
2752 return page == skb_frag_page(frag) &&
2753 off == frag->page_offset + skb_frag_size(frag);
2754 }
2755 return false;
2756 }
2757
2758 static inline int __skb_linearize(struct sk_buff *skb)
2759 {
2760 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2761 }
2762
2763 /**
2764 * skb_linearize - convert paged skb to linear one
2765 * @skb: buffer to linarize
2766 *
2767 * If there is no free memory -ENOMEM is returned, otherwise zero
2768 * is returned and the old skb data released.
2769 */
2770 static inline int skb_linearize(struct sk_buff *skb)
2771 {
2772 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2773 }
2774
2775 /**
2776 * skb_has_shared_frag - can any frag be overwritten
2777 * @skb: buffer to test
2778 *
2779 * Return true if the skb has at least one frag that might be modified
2780 * by an external entity (as in vmsplice()/sendfile())
2781 */
2782 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
2783 {
2784 return skb_is_nonlinear(skb) &&
2785 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2786 }
2787
2788 /**
2789 * skb_linearize_cow - make sure skb is linear and writable
2790 * @skb: buffer to process
2791 *
2792 * If there is no free memory -ENOMEM is returned, otherwise zero
2793 * is returned and the old skb data released.
2794 */
2795 static inline int skb_linearize_cow(struct sk_buff *skb)
2796 {
2797 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2798 __skb_linearize(skb) : 0;
2799 }
2800
2801 /**
2802 * skb_postpull_rcsum - update checksum for received skb after pull
2803 * @skb: buffer to update
2804 * @start: start of data before pull
2805 * @len: length of data pulled
2806 *
2807 * After doing a pull on a received packet, you need to call this to
2808 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2809 * CHECKSUM_NONE so that it can be recomputed from scratch.
2810 */
2811
2812 static inline void skb_postpull_rcsum(struct sk_buff *skb,
2813 const void *start, unsigned int len)
2814 {
2815 if (skb->ip_summed == CHECKSUM_COMPLETE)
2816 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2817 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
2818 skb_checksum_start_offset(skb) < 0)
2819 skb->ip_summed = CHECKSUM_NONE;
2820 }
2821
2822 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2823
2824 static inline void skb_postpush_rcsum(struct sk_buff *skb,
2825 const void *start, unsigned int len)
2826 {
2827 /* For performing the reverse operation to skb_postpull_rcsum(),
2828 * we can instead of ...
2829 *
2830 * skb->csum = csum_add(skb->csum, csum_partial(start, len, 0));
2831 *
2832 * ... just use this equivalent version here to save a few
2833 * instructions. Feeding csum of 0 in csum_partial() and later
2834 * on adding skb->csum is equivalent to feed skb->csum in the
2835 * first place.
2836 */
2837 if (skb->ip_summed == CHECKSUM_COMPLETE)
2838 skb->csum = csum_partial(start, len, skb->csum);
2839 }
2840
2841 /**
2842 * pskb_trim_rcsum - trim received skb and update checksum
2843 * @skb: buffer to trim
2844 * @len: new length
2845 *
2846 * This is exactly the same as pskb_trim except that it ensures the
2847 * checksum of received packets are still valid after the operation.
2848 */
2849
2850 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2851 {
2852 if (likely(len >= skb->len))
2853 return 0;
2854 if (skb->ip_summed == CHECKSUM_COMPLETE)
2855 skb->ip_summed = CHECKSUM_NONE;
2856 return __pskb_trim(skb, len);
2857 }
2858
2859 #define skb_queue_walk(queue, skb) \
2860 for (skb = (queue)->next; \
2861 skb != (struct sk_buff *)(queue); \
2862 skb = skb->next)
2863
2864 #define skb_queue_walk_safe(queue, skb, tmp) \
2865 for (skb = (queue)->next, tmp = skb->next; \
2866 skb != (struct sk_buff *)(queue); \
2867 skb = tmp, tmp = skb->next)
2868
2869 #define skb_queue_walk_from(queue, skb) \
2870 for (; skb != (struct sk_buff *)(queue); \
2871 skb = skb->next)
2872
2873 #define skb_queue_walk_from_safe(queue, skb, tmp) \
2874 for (tmp = skb->next; \
2875 skb != (struct sk_buff *)(queue); \
2876 skb = tmp, tmp = skb->next)
2877
2878 #define skb_queue_reverse_walk(queue, skb) \
2879 for (skb = (queue)->prev; \
2880 skb != (struct sk_buff *)(queue); \
2881 skb = skb->prev)
2882
2883 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
2884 for (skb = (queue)->prev, tmp = skb->prev; \
2885 skb != (struct sk_buff *)(queue); \
2886 skb = tmp, tmp = skb->prev)
2887
2888 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
2889 for (tmp = skb->prev; \
2890 skb != (struct sk_buff *)(queue); \
2891 skb = tmp, tmp = skb->prev)
2892
2893 static inline bool skb_has_frag_list(const struct sk_buff *skb)
2894 {
2895 return skb_shinfo(skb)->frag_list != NULL;
2896 }
2897
2898 static inline void skb_frag_list_init(struct sk_buff *skb)
2899 {
2900 skb_shinfo(skb)->frag_list = NULL;
2901 }
2902
2903 #define skb_walk_frags(skb, iter) \
2904 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2905
2906
2907 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
2908 const struct sk_buff *skb);
2909 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
2910 int *peeked, int *off, int *err,
2911 struct sk_buff **last);
2912 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2913 int *peeked, int *off, int *err);
2914 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
2915 int *err);
2916 unsigned int datagram_poll(struct file *file, struct socket *sock,
2917 struct poll_table_struct *wait);
2918 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
2919 struct iov_iter *to, int size);
2920 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
2921 struct msghdr *msg, int size)
2922 {
2923 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
2924 }
2925 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
2926 struct msghdr *msg);
2927 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
2928 struct iov_iter *from, int len);
2929 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
2930 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2931 void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb);
2932 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
2933 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
2934 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
2935 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
2936 int len, __wsum csum);
2937 ssize_t skb_socket_splice(struct sock *sk,
2938 struct pipe_inode_info *pipe,
2939 struct splice_pipe_desc *spd);
2940 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2941 struct pipe_inode_info *pipe, unsigned int len,
2942 unsigned int flags,
2943 ssize_t (*splice_cb)(struct sock *,
2944 struct pipe_inode_info *,
2945 struct splice_pipe_desc *));
2946 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2947 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
2948 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
2949 int len, int hlen);
2950 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
2951 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
2952 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
2953 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
2954 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
2955 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
2956 int skb_ensure_writable(struct sk_buff *skb, int write_len);
2957 int skb_vlan_pop(struct sk_buff *skb);
2958 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
2959
2960 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
2961 {
2962 return copy_from_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
2963 }
2964
2965 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
2966 {
2967 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
2968 }
2969
2970 struct skb_checksum_ops {
2971 __wsum (*update)(const void *mem, int len, __wsum wsum);
2972 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
2973 };
2974
2975 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2976 __wsum csum, const struct skb_checksum_ops *ops);
2977 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
2978 __wsum csum);
2979
2980 static inline void * __must_check
2981 __skb_header_pointer(const struct sk_buff *skb, int offset,
2982 int len, void *data, int hlen, void *buffer)
2983 {
2984 if (hlen - offset >= len)
2985 return data + offset;
2986
2987 if (!skb ||
2988 skb_copy_bits(skb, offset, buffer, len) < 0)
2989 return NULL;
2990
2991 return buffer;
2992 }
2993
2994 static inline void * __must_check
2995 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
2996 {
2997 return __skb_header_pointer(skb, offset, len, skb->data,
2998 skb_headlen(skb), buffer);
2999 }
3000
3001 /**
3002 * skb_needs_linearize - check if we need to linearize a given skb
3003 * depending on the given device features.
3004 * @skb: socket buffer to check
3005 * @features: net device features
3006 *
3007 * Returns true if either:
3008 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
3009 * 2. skb is fragmented and the device does not support SG.
3010 */
3011 static inline bool skb_needs_linearize(struct sk_buff *skb,
3012 netdev_features_t features)
3013 {
3014 return skb_is_nonlinear(skb) &&
3015 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3016 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3017 }
3018
3019 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3020 void *to,
3021 const unsigned int len)
3022 {
3023 memcpy(to, skb->data, len);
3024 }
3025
3026 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3027 const int offset, void *to,
3028 const unsigned int len)
3029 {
3030 memcpy(to, skb->data + offset, len);
3031 }
3032
3033 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3034 const void *from,
3035 const unsigned int len)
3036 {
3037 memcpy(skb->data, from, len);
3038 }
3039
3040 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3041 const int offset,
3042 const void *from,
3043 const unsigned int len)
3044 {
3045 memcpy(skb->data + offset, from, len);
3046 }
3047
3048 void skb_init(void);
3049
3050 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3051 {
3052 return skb->tstamp;
3053 }
3054
3055 /**
3056 * skb_get_timestamp - get timestamp from a skb
3057 * @skb: skb to get stamp from
3058 * @stamp: pointer to struct timeval to store stamp in
3059 *
3060 * Timestamps are stored in the skb as offsets to a base timestamp.
3061 * This function converts the offset back to a struct timeval and stores
3062 * it in stamp.
3063 */
3064 static inline void skb_get_timestamp(const struct sk_buff *skb,
3065 struct timeval *stamp)
3066 {
3067 *stamp = ktime_to_timeval(skb->tstamp);
3068 }
3069
3070 static inline void skb_get_timestampns(const struct sk_buff *skb,
3071 struct timespec *stamp)
3072 {
3073 *stamp = ktime_to_timespec(skb->tstamp);
3074 }
3075
3076 static inline void __net_timestamp(struct sk_buff *skb)
3077 {
3078 skb->tstamp = ktime_get_real();
3079 }
3080
3081 static inline ktime_t net_timedelta(ktime_t t)
3082 {
3083 return ktime_sub(ktime_get_real(), t);
3084 }
3085
3086 static inline ktime_t net_invalid_timestamp(void)
3087 {
3088 return ktime_set(0, 0);
3089 }
3090
3091 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3092
3093 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3094
3095 void skb_clone_tx_timestamp(struct sk_buff *skb);
3096 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3097
3098 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3099
3100 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3101 {
3102 }
3103
3104 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3105 {
3106 return false;
3107 }
3108
3109 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3110
3111 /**
3112 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3113 *
3114 * PHY drivers may accept clones of transmitted packets for
3115 * timestamping via their phy_driver.txtstamp method. These drivers
3116 * must call this function to return the skb back to the stack with a
3117 * timestamp.
3118 *
3119 * @skb: clone of the the original outgoing packet
3120 * @hwtstamps: hardware time stamps
3121 *
3122 */
3123 void skb_complete_tx_timestamp(struct sk_buff *skb,
3124 struct skb_shared_hwtstamps *hwtstamps);
3125
3126 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3127 struct skb_shared_hwtstamps *hwtstamps,
3128 struct sock *sk, int tstype);
3129
3130 /**
3131 * skb_tstamp_tx - queue clone of skb with send time stamps
3132 * @orig_skb: the original outgoing packet
3133 * @hwtstamps: hardware time stamps, may be NULL if not available
3134 *
3135 * If the skb has a socket associated, then this function clones the
3136 * skb (thus sharing the actual data and optional structures), stores
3137 * the optional hardware time stamping information (if non NULL) or
3138 * generates a software time stamp (otherwise), then queues the clone
3139 * to the error queue of the socket. Errors are silently ignored.
3140 */
3141 void skb_tstamp_tx(struct sk_buff *orig_skb,
3142 struct skb_shared_hwtstamps *hwtstamps);
3143
3144 static inline void sw_tx_timestamp(struct sk_buff *skb)
3145 {
3146 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
3147 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
3148 skb_tstamp_tx(skb, NULL);
3149 }
3150
3151 /**
3152 * skb_tx_timestamp() - Driver hook for transmit timestamping
3153 *
3154 * Ethernet MAC Drivers should call this function in their hard_xmit()
3155 * function immediately before giving the sk_buff to the MAC hardware.
3156 *
3157 * Specifically, one should make absolutely sure that this function is
3158 * called before TX completion of this packet can trigger. Otherwise
3159 * the packet could potentially already be freed.
3160 *
3161 * @skb: A socket buffer.
3162 */
3163 static inline void skb_tx_timestamp(struct sk_buff *skb)
3164 {
3165 skb_clone_tx_timestamp(skb);
3166 sw_tx_timestamp(skb);
3167 }
3168
3169 /**
3170 * skb_complete_wifi_ack - deliver skb with wifi status
3171 *
3172 * @skb: the original outgoing packet
3173 * @acked: ack status
3174 *
3175 */
3176 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3177
3178 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3179 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3180
3181 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3182 {
3183 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3184 skb->csum_valid ||
3185 (skb->ip_summed == CHECKSUM_PARTIAL &&
3186 skb_checksum_start_offset(skb) >= 0));
3187 }
3188
3189 /**
3190 * skb_checksum_complete - Calculate checksum of an entire packet
3191 * @skb: packet to process
3192 *
3193 * This function calculates the checksum over the entire packet plus
3194 * the value of skb->csum. The latter can be used to supply the
3195 * checksum of a pseudo header as used by TCP/UDP. It returns the
3196 * checksum.
3197 *
3198 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
3199 * this function can be used to verify that checksum on received
3200 * packets. In that case the function should return zero if the
3201 * checksum is correct. In particular, this function will return zero
3202 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3203 * hardware has already verified the correctness of the checksum.
3204 */
3205 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3206 {
3207 return skb_csum_unnecessary(skb) ?
3208 0 : __skb_checksum_complete(skb);
3209 }
3210
3211 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3212 {
3213 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3214 if (skb->csum_level == 0)
3215 skb->ip_summed = CHECKSUM_NONE;
3216 else
3217 skb->csum_level--;
3218 }
3219 }
3220
3221 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3222 {
3223 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3224 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3225 skb->csum_level++;
3226 } else if (skb->ip_summed == CHECKSUM_NONE) {
3227 skb->ip_summed = CHECKSUM_UNNECESSARY;
3228 skb->csum_level = 0;
3229 }
3230 }
3231
3232 static inline void __skb_mark_checksum_bad(struct sk_buff *skb)
3233 {
3234 /* Mark current checksum as bad (typically called from GRO
3235 * path). In the case that ip_summed is CHECKSUM_NONE
3236 * this must be the first checksum encountered in the packet.
3237 * When ip_summed is CHECKSUM_UNNECESSARY, this is the first
3238 * checksum after the last one validated. For UDP, a zero
3239 * checksum can not be marked as bad.
3240 */
3241
3242 if (skb->ip_summed == CHECKSUM_NONE ||
3243 skb->ip_summed == CHECKSUM_UNNECESSARY)
3244 skb->csum_bad = 1;
3245 }
3246
3247 /* Check if we need to perform checksum complete validation.
3248 *
3249 * Returns true if checksum complete is needed, false otherwise
3250 * (either checksum is unnecessary or zero checksum is allowed).
3251 */
3252 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3253 bool zero_okay,
3254 __sum16 check)
3255 {
3256 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3257 skb->csum_valid = 1;
3258 __skb_decr_checksum_unnecessary(skb);
3259 return false;
3260 }
3261
3262 return true;
3263 }
3264
3265 /* For small packets <= CHECKSUM_BREAK peform checksum complete directly
3266 * in checksum_init.
3267 */
3268 #define CHECKSUM_BREAK 76
3269
3270 /* Unset checksum-complete
3271 *
3272 * Unset checksum complete can be done when packet is being modified
3273 * (uncompressed for instance) and checksum-complete value is
3274 * invalidated.
3275 */
3276 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3277 {
3278 if (skb->ip_summed == CHECKSUM_COMPLETE)
3279 skb->ip_summed = CHECKSUM_NONE;
3280 }
3281
3282 /* Validate (init) checksum based on checksum complete.
3283 *
3284 * Return values:
3285 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
3286 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3287 * checksum is stored in skb->csum for use in __skb_checksum_complete
3288 * non-zero: value of invalid checksum
3289 *
3290 */
3291 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3292 bool complete,
3293 __wsum psum)
3294 {
3295 if (skb->ip_summed == CHECKSUM_COMPLETE) {
3296 if (!csum_fold(csum_add(psum, skb->csum))) {
3297 skb->csum_valid = 1;
3298 return 0;
3299 }
3300 } else if (skb->csum_bad) {
3301 /* ip_summed == CHECKSUM_NONE in this case */
3302 return (__force __sum16)1;
3303 }
3304
3305 skb->csum = psum;
3306
3307 if (complete || skb->len <= CHECKSUM_BREAK) {
3308 __sum16 csum;
3309
3310 csum = __skb_checksum_complete(skb);
3311 skb->csum_valid = !csum;
3312 return csum;
3313 }
3314
3315 return 0;
3316 }
3317
3318 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3319 {
3320 return 0;
3321 }
3322
3323 /* Perform checksum validate (init). Note that this is a macro since we only
3324 * want to calculate the pseudo header which is an input function if necessary.
3325 * First we try to validate without any computation (checksum unnecessary) and
3326 * then calculate based on checksum complete calling the function to compute
3327 * pseudo header.
3328 *
3329 * Return values:
3330 * 0: checksum is validated or try to in skb_checksum_complete
3331 * non-zero: value of invalid checksum
3332 */
3333 #define __skb_checksum_validate(skb, proto, complete, \
3334 zero_okay, check, compute_pseudo) \
3335 ({ \
3336 __sum16 __ret = 0; \
3337 skb->csum_valid = 0; \
3338 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
3339 __ret = __skb_checksum_validate_complete(skb, \
3340 complete, compute_pseudo(skb, proto)); \
3341 __ret; \
3342 })
3343
3344 #define skb_checksum_init(skb, proto, compute_pseudo) \
3345 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3346
3347 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
3348 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3349
3350 #define skb_checksum_validate(skb, proto, compute_pseudo) \
3351 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3352
3353 #define skb_checksum_validate_zero_check(skb, proto, check, \
3354 compute_pseudo) \
3355 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3356
3357 #define skb_checksum_simple_validate(skb) \
3358 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3359
3360 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3361 {
3362 return (skb->ip_summed == CHECKSUM_NONE &&
3363 skb->csum_valid && !skb->csum_bad);
3364 }
3365
3366 static inline void __skb_checksum_convert(struct sk_buff *skb,
3367 __sum16 check, __wsum pseudo)
3368 {
3369 skb->csum = ~pseudo;
3370 skb->ip_summed = CHECKSUM_COMPLETE;
3371 }
3372
3373 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \
3374 do { \
3375 if (__skb_checksum_convert_check(skb)) \
3376 __skb_checksum_convert(skb, check, \
3377 compute_pseudo(skb, proto)); \
3378 } while (0)
3379
3380 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3381 u16 start, u16 offset)
3382 {
3383 skb->ip_summed = CHECKSUM_PARTIAL;
3384 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3385 skb->csum_offset = offset - start;
3386 }
3387
3388 /* Update skbuf and packet to reflect the remote checksum offload operation.
3389 * When called, ptr indicates the starting point for skb->csum when
3390 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3391 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3392 */
3393 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3394 int start, int offset, bool nopartial)
3395 {
3396 __wsum delta;
3397
3398 if (!nopartial) {
3399 skb_remcsum_adjust_partial(skb, ptr, start, offset);
3400 return;
3401 }
3402
3403 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3404 __skb_checksum_complete(skb);
3405 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3406 }
3407
3408 delta = remcsum_adjust(ptr, skb->csum, start, offset);
3409
3410 /* Adjust skb->csum since we changed the packet */
3411 skb->csum = csum_add(skb->csum, delta);
3412 }
3413
3414 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3415 void nf_conntrack_destroy(struct nf_conntrack *nfct);
3416 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3417 {
3418 if (nfct && atomic_dec_and_test(&nfct->use))
3419 nf_conntrack_destroy(nfct);
3420 }
3421 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3422 {
3423 if (nfct)
3424 atomic_inc(&nfct->use);
3425 }
3426 #endif
3427 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3428 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3429 {
3430 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
3431 kfree(nf_bridge);
3432 }
3433 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3434 {
3435 if (nf_bridge)
3436 atomic_inc(&nf_bridge->use);
3437 }
3438 #endif /* CONFIG_BRIDGE_NETFILTER */
3439 static inline void nf_reset(struct sk_buff *skb)
3440 {
3441 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3442 nf_conntrack_put(skb->nfct);
3443 skb->nfct = NULL;
3444 #endif
3445 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3446 nf_bridge_put(skb->nf_bridge);
3447 skb->nf_bridge = NULL;
3448 #endif
3449 }
3450
3451 static inline void nf_reset_trace(struct sk_buff *skb)
3452 {
3453 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3454 skb->nf_trace = 0;
3455 #endif
3456 }
3457
3458 /* Note: This doesn't put any conntrack and bridge info in dst. */
3459 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3460 bool copy)
3461 {
3462 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3463 dst->nfct = src->nfct;
3464 nf_conntrack_get(src->nfct);
3465 if (copy)
3466 dst->nfctinfo = src->nfctinfo;
3467 #endif
3468 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3469 dst->nf_bridge = src->nf_bridge;
3470 nf_bridge_get(src->nf_bridge);
3471 #endif
3472 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3473 if (copy)
3474 dst->nf_trace = src->nf_trace;
3475 #endif
3476 }
3477
3478 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3479 {
3480 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3481 nf_conntrack_put(dst->nfct);
3482 #endif
3483 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3484 nf_bridge_put(dst->nf_bridge);
3485 #endif
3486 __nf_copy(dst, src, true);
3487 }
3488
3489 #ifdef CONFIG_NETWORK_SECMARK
3490 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3491 {
3492 to->secmark = from->secmark;
3493 }
3494
3495 static inline void skb_init_secmark(struct sk_buff *skb)
3496 {
3497 skb->secmark = 0;
3498 }
3499 #else
3500 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3501 { }
3502
3503 static inline void skb_init_secmark(struct sk_buff *skb)
3504 { }
3505 #endif
3506
3507 static inline bool skb_irq_freeable(const struct sk_buff *skb)
3508 {
3509 return !skb->destructor &&
3510 #if IS_ENABLED(CONFIG_XFRM)
3511 !skb->sp &&
3512 #endif
3513 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3514 !skb->nfct &&
3515 #endif
3516 !skb->_skb_refdst &&
3517 !skb_has_frag_list(skb);
3518 }
3519
3520 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3521 {
3522 skb->queue_mapping = queue_mapping;
3523 }
3524
3525 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3526 {
3527 return skb->queue_mapping;
3528 }
3529
3530 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3531 {
3532 to->queue_mapping = from->queue_mapping;
3533 }
3534
3535 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3536 {
3537 skb->queue_mapping = rx_queue + 1;
3538 }
3539
3540 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3541 {
3542 return skb->queue_mapping - 1;
3543 }
3544
3545 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3546 {
3547 return skb->queue_mapping != 0;
3548 }
3549
3550 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3551 {
3552 #ifdef CONFIG_XFRM
3553 return skb->sp;
3554 #else
3555 return NULL;
3556 #endif
3557 }
3558
3559 /* Keeps track of mac header offset relative to skb->head.
3560 * It is useful for TSO of Tunneling protocol. e.g. GRE.
3561 * For non-tunnel skb it points to skb_mac_header() and for
3562 * tunnel skb it points to outer mac header.
3563 * Keeps track of level of encapsulation of network headers.
3564 */
3565 struct skb_gso_cb {
3566 int mac_offset;
3567 int encap_level;
3568 __wsum csum;
3569 __u16 csum_start;
3570 };
3571 #define SKB_SGO_CB_OFFSET 32
3572 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
3573
3574 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3575 {
3576 return (skb_mac_header(inner_skb) - inner_skb->head) -
3577 SKB_GSO_CB(inner_skb)->mac_offset;
3578 }
3579
3580 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3581 {
3582 int new_headroom, headroom;
3583 int ret;
3584
3585 headroom = skb_headroom(skb);
3586 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3587 if (ret)
3588 return ret;
3589
3590 new_headroom = skb_headroom(skb);
3591 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3592 return 0;
3593 }
3594
3595 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
3596 {
3597 /* Do not update partial checksums if remote checksum is enabled. */
3598 if (skb->remcsum_offload)
3599 return;
3600
3601 SKB_GSO_CB(skb)->csum = res;
3602 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
3603 }
3604
3605 /* Compute the checksum for a gso segment. First compute the checksum value
3606 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
3607 * then add in skb->csum (checksum from csum_start to end of packet).
3608 * skb->csum and csum_start are then updated to reflect the checksum of the
3609 * resultant packet starting from the transport header-- the resultant checksum
3610 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
3611 * header.
3612 */
3613 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
3614 {
3615 unsigned char *csum_start = skb_transport_header(skb);
3616 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
3617 __wsum partial = SKB_GSO_CB(skb)->csum;
3618
3619 SKB_GSO_CB(skb)->csum = res;
3620 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
3621
3622 return csum_fold(csum_partial(csum_start, plen, partial));
3623 }
3624
3625 static inline bool skb_is_gso(const struct sk_buff *skb)
3626 {
3627 return skb_shinfo(skb)->gso_size;
3628 }
3629
3630 /* Note: Should be called only if skb_is_gso(skb) is true */
3631 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
3632 {
3633 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
3634 }
3635
3636 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
3637
3638 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
3639 {
3640 /* LRO sets gso_size but not gso_type, whereas if GSO is really
3641 * wanted then gso_type will be set. */
3642 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3643
3644 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
3645 unlikely(shinfo->gso_type == 0)) {
3646 __skb_warn_lro_forwarding(skb);
3647 return true;
3648 }
3649 return false;
3650 }
3651
3652 static inline void skb_forward_csum(struct sk_buff *skb)
3653 {
3654 /* Unfortunately we don't support this one. Any brave souls? */
3655 if (skb->ip_summed == CHECKSUM_COMPLETE)
3656 skb->ip_summed = CHECKSUM_NONE;
3657 }
3658
3659 /**
3660 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
3661 * @skb: skb to check
3662 *
3663 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
3664 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
3665 * use this helper, to document places where we make this assertion.
3666 */
3667 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
3668 {
3669 #ifdef DEBUG
3670 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
3671 #endif
3672 }
3673
3674 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
3675
3676 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
3677 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
3678 unsigned int transport_len,
3679 __sum16(*skb_chkf)(struct sk_buff *skb));
3680
3681 /**
3682 * skb_head_is_locked - Determine if the skb->head is locked down
3683 * @skb: skb to check
3684 *
3685 * The head on skbs build around a head frag can be removed if they are
3686 * not cloned. This function returns true if the skb head is locked down
3687 * due to either being allocated via kmalloc, or by being a clone with
3688 * multiple references to the head.
3689 */
3690 static inline bool skb_head_is_locked(const struct sk_buff *skb)
3691 {
3692 return !skb->head_frag || skb_cloned(skb);
3693 }
3694
3695 /**
3696 * skb_gso_network_seglen - Return length of individual segments of a gso packet
3697 *
3698 * @skb: GSO skb
3699 *
3700 * skb_gso_network_seglen is used to determine the real size of the
3701 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
3702 *
3703 * The MAC/L2 header is not accounted for.
3704 */
3705 static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
3706 {
3707 unsigned int hdr_len = skb_transport_header(skb) -
3708 skb_network_header(skb);
3709 return hdr_len + skb_gso_transport_seglen(skb);
3710 }
3711
3712 /* Local Checksum Offload.
3713 * Compute outer checksum based on the assumption that the
3714 * inner checksum will be offloaded later.
3715 * See Documentation/networking/checksum-offloads.txt for
3716 * explanation of how this works.
3717 * Fill in outer checksum adjustment (e.g. with sum of outer
3718 * pseudo-header) before calling.
3719 * Also ensure that inner checksum is in linear data area.
3720 */
3721 static inline __wsum lco_csum(struct sk_buff *skb)
3722 {
3723 unsigned char *csum_start = skb_checksum_start(skb);
3724 unsigned char *l4_hdr = skb_transport_header(skb);
3725 __wsum partial;
3726
3727 /* Start with complement of inner checksum adjustment */
3728 partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
3729 skb->csum_offset));
3730
3731 /* Add in checksum of our headers (incl. outer checksum
3732 * adjustment filled in by caller) and return result.
3733 */
3734 return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
3735 }
3736
3737 #endif /* __KERNEL__ */
3738 #endif /* _LINUX_SKBUFF_H */
This page took 0.159071 seconds and 5 git commands to generate.