Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ieee1394...
[deliverable/linux.git] / include / linux / skbuff.h
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/cache.h>
22
23 #include <asm/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/dmaengine.h>
31 #include <linux/hrtimer.h>
32
33 /* Don't change this without changing skb_csum_unnecessary! */
34 #define CHECKSUM_NONE 0
35 #define CHECKSUM_UNNECESSARY 1
36 #define CHECKSUM_COMPLETE 2
37 #define CHECKSUM_PARTIAL 3
38
39 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
40 ~(SMP_CACHE_BYTES - 1))
41 #define SKB_WITH_OVERHEAD(X) \
42 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
43 #define SKB_MAX_ORDER(X, ORDER) \
44 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
45 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
46 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
47
48 /* A. Checksumming of received packets by device.
49 *
50 * NONE: device failed to checksum this packet.
51 * skb->csum is undefined.
52 *
53 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
54 * skb->csum is undefined.
55 * It is bad option, but, unfortunately, many of vendors do this.
56 * Apparently with secret goal to sell you new device, when you
57 * will add new protocol to your host. F.e. IPv6. 8)
58 *
59 * COMPLETE: the most generic way. Device supplied checksum of _all_
60 * the packet as seen by netif_rx in skb->csum.
61 * NOTE: Even if device supports only some protocols, but
62 * is able to produce some skb->csum, it MUST use COMPLETE,
63 * not UNNECESSARY.
64 *
65 * PARTIAL: identical to the case for output below. This may occur
66 * on a packet received directly from another Linux OS, e.g.,
67 * a virtualised Linux kernel on the same host. The packet can
68 * be treated in the same way as UNNECESSARY except that on
69 * output (i.e., forwarding) the checksum must be filled in
70 * by the OS or the hardware.
71 *
72 * B. Checksumming on output.
73 *
74 * NONE: skb is checksummed by protocol or csum is not required.
75 *
76 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
77 * from skb->csum_start to the end and to record the checksum
78 * at skb->csum_start + skb->csum_offset.
79 *
80 * Device must show its capabilities in dev->features, set
81 * at device setup time.
82 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
83 * everything.
84 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
85 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
86 * TCP/UDP over IPv4. Sigh. Vendors like this
87 * way by an unknown reason. Though, see comment above
88 * about CHECKSUM_UNNECESSARY. 8)
89 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
90 *
91 * Any questions? No questions, good. --ANK
92 */
93
94 struct net_device;
95 struct scatterlist;
96 struct pipe_inode_info;
97
98 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
99 struct nf_conntrack {
100 atomic_t use;
101 };
102 #endif
103
104 #ifdef CONFIG_BRIDGE_NETFILTER
105 struct nf_bridge_info {
106 atomic_t use;
107 struct net_device *physindev;
108 struct net_device *physoutdev;
109 unsigned int mask;
110 unsigned long data[32 / sizeof(unsigned long)];
111 };
112 #endif
113
114 struct sk_buff_head {
115 /* These two members must be first. */
116 struct sk_buff *next;
117 struct sk_buff *prev;
118
119 __u32 qlen;
120 spinlock_t lock;
121 };
122
123 struct sk_buff;
124
125 /* To allow 64K frame to be packed as single skb without frag_list */
126 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
127
128 typedef struct skb_frag_struct skb_frag_t;
129
130 struct skb_frag_struct {
131 struct page *page;
132 __u32 page_offset;
133 __u32 size;
134 };
135
136 #define HAVE_HW_TIME_STAMP
137
138 /**
139 * struct skb_shared_hwtstamps - hardware time stamps
140 * @hwtstamp: hardware time stamp transformed into duration
141 * since arbitrary point in time
142 * @syststamp: hwtstamp transformed to system time base
143 *
144 * Software time stamps generated by ktime_get_real() are stored in
145 * skb->tstamp. The relation between the different kinds of time
146 * stamps is as follows:
147 *
148 * syststamp and tstamp can be compared against each other in
149 * arbitrary combinations. The accuracy of a
150 * syststamp/tstamp/"syststamp from other device" comparison is
151 * limited by the accuracy of the transformation into system time
152 * base. This depends on the device driver and its underlying
153 * hardware.
154 *
155 * hwtstamps can only be compared against other hwtstamps from
156 * the same device.
157 *
158 * This structure is attached to packets as part of the
159 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
160 */
161 struct skb_shared_hwtstamps {
162 ktime_t hwtstamp;
163 ktime_t syststamp;
164 };
165
166 /**
167 * struct skb_shared_tx - instructions for time stamping of outgoing packets
168 * @hardware: generate hardware time stamp
169 * @software: generate software time stamp
170 * @in_progress: device driver is going to provide
171 * hardware time stamp
172 * @flags: all shared_tx flags
173 *
174 * These flags are attached to packets as part of the
175 * &skb_shared_info. Use skb_tx() to get a pointer.
176 */
177 union skb_shared_tx {
178 struct {
179 __u8 hardware:1,
180 software:1,
181 in_progress:1;
182 };
183 __u8 flags;
184 };
185
186 /* This data is invariant across clones and lives at
187 * the end of the header data, ie. at skb->end.
188 */
189 struct skb_shared_info {
190 unsigned short nr_frags;
191 unsigned short gso_size;
192 /* Warning: this field is not always filled in (UFO)! */
193 unsigned short gso_segs;
194 unsigned short gso_type;
195 __be32 ip6_frag_id;
196 union skb_shared_tx tx_flags;
197 struct sk_buff *frag_list;
198 struct skb_shared_hwtstamps hwtstamps;
199
200 /*
201 * Warning : all fields before dataref are cleared in __alloc_skb()
202 */
203 atomic_t dataref;
204
205 skb_frag_t frags[MAX_SKB_FRAGS];
206 /* Intermediate layers must ensure that destructor_arg
207 * remains valid until skb destructor */
208 void * destructor_arg;
209 };
210
211 /* We divide dataref into two halves. The higher 16 bits hold references
212 * to the payload part of skb->data. The lower 16 bits hold references to
213 * the entire skb->data. A clone of a headerless skb holds the length of
214 * the header in skb->hdr_len.
215 *
216 * All users must obey the rule that the skb->data reference count must be
217 * greater than or equal to the payload reference count.
218 *
219 * Holding a reference to the payload part means that the user does not
220 * care about modifications to the header part of skb->data.
221 */
222 #define SKB_DATAREF_SHIFT 16
223 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
224
225
226 enum {
227 SKB_FCLONE_UNAVAILABLE,
228 SKB_FCLONE_ORIG,
229 SKB_FCLONE_CLONE,
230 };
231
232 enum {
233 SKB_GSO_TCPV4 = 1 << 0,
234 SKB_GSO_UDP = 1 << 1,
235
236 /* This indicates the skb is from an untrusted source. */
237 SKB_GSO_DODGY = 1 << 2,
238
239 /* This indicates the tcp segment has CWR set. */
240 SKB_GSO_TCP_ECN = 1 << 3,
241
242 SKB_GSO_TCPV6 = 1 << 4,
243
244 SKB_GSO_FCOE = 1 << 5,
245 };
246
247 #if BITS_PER_LONG > 32
248 #define NET_SKBUFF_DATA_USES_OFFSET 1
249 #endif
250
251 #ifdef NET_SKBUFF_DATA_USES_OFFSET
252 typedef unsigned int sk_buff_data_t;
253 #else
254 typedef unsigned char *sk_buff_data_t;
255 #endif
256
257 /**
258 * struct sk_buff - socket buffer
259 * @next: Next buffer in list
260 * @prev: Previous buffer in list
261 * @sk: Socket we are owned by
262 * @tstamp: Time we arrived
263 * @dev: Device we arrived on/are leaving by
264 * @transport_header: Transport layer header
265 * @network_header: Network layer header
266 * @mac_header: Link layer header
267 * @_skb_refdst: destination entry (with norefcount bit)
268 * @sp: the security path, used for xfrm
269 * @cb: Control buffer. Free for use by every layer. Put private vars here
270 * @len: Length of actual data
271 * @data_len: Data length
272 * @mac_len: Length of link layer header
273 * @hdr_len: writable header length of cloned skb
274 * @csum: Checksum (must include start/offset pair)
275 * @csum_start: Offset from skb->head where checksumming should start
276 * @csum_offset: Offset from csum_start where checksum should be stored
277 * @local_df: allow local fragmentation
278 * @cloned: Head may be cloned (check refcnt to be sure)
279 * @nohdr: Payload reference only, must not modify header
280 * @pkt_type: Packet class
281 * @fclone: skbuff clone status
282 * @ip_summed: Driver fed us an IP checksum
283 * @priority: Packet queueing priority
284 * @users: User count - see {datagram,tcp}.c
285 * @protocol: Packet protocol from driver
286 * @truesize: Buffer size
287 * @head: Head of buffer
288 * @data: Data head pointer
289 * @tail: Tail pointer
290 * @end: End pointer
291 * @destructor: Destruct function
292 * @mark: Generic packet mark
293 * @nfct: Associated connection, if any
294 * @ipvs_property: skbuff is owned by ipvs
295 * @peeked: this packet has been seen already, so stats have been
296 * done for it, don't do them again
297 * @nf_trace: netfilter packet trace flag
298 * @nfctinfo: Relationship of this skb to the connection
299 * @nfct_reasm: netfilter conntrack re-assembly pointer
300 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
301 * @skb_iif: ifindex of device we arrived on
302 * @rxhash: the packet hash computed on receive
303 * @queue_mapping: Queue mapping for multiqueue devices
304 * @tc_index: Traffic control index
305 * @tc_verd: traffic control verdict
306 * @ndisc_nodetype: router type (from link layer)
307 * @dma_cookie: a cookie to one of several possible DMA operations
308 * done by skb DMA functions
309 * @secmark: security marking
310 * @vlan_tci: vlan tag control information
311 */
312
313 struct sk_buff {
314 /* These two members must be first. */
315 struct sk_buff *next;
316 struct sk_buff *prev;
317
318 ktime_t tstamp;
319
320 struct sock *sk;
321 struct net_device *dev;
322
323 /*
324 * This is the control buffer. It is free to use for every
325 * layer. Please put your private variables there. If you
326 * want to keep them across layers you have to do a skb_clone()
327 * first. This is owned by whoever has the skb queued ATM.
328 */
329 char cb[48] __aligned(8);
330
331 unsigned long _skb_refdst;
332 #ifdef CONFIG_XFRM
333 struct sec_path *sp;
334 #endif
335 unsigned int len,
336 data_len;
337 __u16 mac_len,
338 hdr_len;
339 union {
340 __wsum csum;
341 struct {
342 __u16 csum_start;
343 __u16 csum_offset;
344 };
345 };
346 __u32 priority;
347 kmemcheck_bitfield_begin(flags1);
348 __u8 local_df:1,
349 cloned:1,
350 ip_summed:2,
351 nohdr:1,
352 nfctinfo:3;
353 __u8 pkt_type:3,
354 fclone:2,
355 ipvs_property:1,
356 peeked:1,
357 nf_trace:1;
358 kmemcheck_bitfield_end(flags1);
359 __be16 protocol;
360
361 void (*destructor)(struct sk_buff *skb);
362 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
363 struct nf_conntrack *nfct;
364 struct sk_buff *nfct_reasm;
365 #endif
366 #ifdef CONFIG_BRIDGE_NETFILTER
367 struct nf_bridge_info *nf_bridge;
368 #endif
369
370 int skb_iif;
371 #ifdef CONFIG_NET_SCHED
372 __u16 tc_index; /* traffic control index */
373 #ifdef CONFIG_NET_CLS_ACT
374 __u16 tc_verd; /* traffic control verdict */
375 #endif
376 #endif
377
378 __u32 rxhash;
379
380 kmemcheck_bitfield_begin(flags2);
381 __u16 queue_mapping:16;
382 #ifdef CONFIG_IPV6_NDISC_NODETYPE
383 __u8 ndisc_nodetype:2;
384 #endif
385 kmemcheck_bitfield_end(flags2);
386
387 /* 0/14 bit hole */
388
389 #ifdef CONFIG_NET_DMA
390 dma_cookie_t dma_cookie;
391 #endif
392 #ifdef CONFIG_NETWORK_SECMARK
393 __u32 secmark;
394 #endif
395 union {
396 __u32 mark;
397 __u32 dropcount;
398 };
399
400 __u16 vlan_tci;
401
402 sk_buff_data_t transport_header;
403 sk_buff_data_t network_header;
404 sk_buff_data_t mac_header;
405 /* These elements must be at the end, see alloc_skb() for details. */
406 sk_buff_data_t tail;
407 sk_buff_data_t end;
408 unsigned char *head,
409 *data;
410 unsigned int truesize;
411 atomic_t users;
412 };
413
414 #ifdef __KERNEL__
415 /*
416 * Handling routines are only of interest to the kernel
417 */
418 #include <linux/slab.h>
419
420 #include <asm/system.h>
421
422 /*
423 * skb might have a dst pointer attached, refcounted or not.
424 * _skb_refdst low order bit is set if refcount was _not_ taken
425 */
426 #define SKB_DST_NOREF 1UL
427 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
428
429 /**
430 * skb_dst - returns skb dst_entry
431 * @skb: buffer
432 *
433 * Returns skb dst_entry, regardless of reference taken or not.
434 */
435 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
436 {
437 /* If refdst was not refcounted, check we still are in a
438 * rcu_read_lock section
439 */
440 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
441 !rcu_read_lock_held() &&
442 !rcu_read_lock_bh_held());
443 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
444 }
445
446 /**
447 * skb_dst_set - sets skb dst
448 * @skb: buffer
449 * @dst: dst entry
450 *
451 * Sets skb dst, assuming a reference was taken on dst and should
452 * be released by skb_dst_drop()
453 */
454 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
455 {
456 skb->_skb_refdst = (unsigned long)dst;
457 }
458
459 /**
460 * skb_dst_set_noref - sets skb dst, without a reference
461 * @skb: buffer
462 * @dst: dst entry
463 *
464 * Sets skb dst, assuming a reference was not taken on dst
465 * skb_dst_drop() should not dst_release() this dst
466 */
467 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
468 {
469 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
470 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
471 }
472
473 /**
474 * skb_dst_is_noref - Test if skb dst isnt refcounted
475 * @skb: buffer
476 */
477 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
478 {
479 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
480 }
481
482 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
483 {
484 return (struct rtable *)skb_dst(skb);
485 }
486
487 extern void kfree_skb(struct sk_buff *skb);
488 extern void consume_skb(struct sk_buff *skb);
489 extern void __kfree_skb(struct sk_buff *skb);
490 extern struct sk_buff *__alloc_skb(unsigned int size,
491 gfp_t priority, int fclone, int node);
492 static inline struct sk_buff *alloc_skb(unsigned int size,
493 gfp_t priority)
494 {
495 return __alloc_skb(size, priority, 0, -1);
496 }
497
498 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
499 gfp_t priority)
500 {
501 return __alloc_skb(size, priority, 1, -1);
502 }
503
504 extern int skb_recycle_check(struct sk_buff *skb, int skb_size);
505
506 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
507 extern struct sk_buff *skb_clone(struct sk_buff *skb,
508 gfp_t priority);
509 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
510 gfp_t priority);
511 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
512 gfp_t gfp_mask);
513 extern int pskb_expand_head(struct sk_buff *skb,
514 int nhead, int ntail,
515 gfp_t gfp_mask);
516 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
517 unsigned int headroom);
518 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
519 int newheadroom, int newtailroom,
520 gfp_t priority);
521 extern int skb_to_sgvec(struct sk_buff *skb,
522 struct scatterlist *sg, int offset,
523 int len);
524 extern int skb_cow_data(struct sk_buff *skb, int tailbits,
525 struct sk_buff **trailer);
526 extern int skb_pad(struct sk_buff *skb, int pad);
527 #define dev_kfree_skb(a) consume_skb(a)
528
529 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
530 int getfrag(void *from, char *to, int offset,
531 int len,int odd, struct sk_buff *skb),
532 void *from, int length);
533
534 struct skb_seq_state {
535 __u32 lower_offset;
536 __u32 upper_offset;
537 __u32 frag_idx;
538 __u32 stepped_offset;
539 struct sk_buff *root_skb;
540 struct sk_buff *cur_skb;
541 __u8 *frag_data;
542 };
543
544 extern void skb_prepare_seq_read(struct sk_buff *skb,
545 unsigned int from, unsigned int to,
546 struct skb_seq_state *st);
547 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
548 struct skb_seq_state *st);
549 extern void skb_abort_seq_read(struct skb_seq_state *st);
550
551 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
552 unsigned int to, struct ts_config *config,
553 struct ts_state *state);
554
555 #ifdef NET_SKBUFF_DATA_USES_OFFSET
556 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
557 {
558 return skb->head + skb->end;
559 }
560 #else
561 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
562 {
563 return skb->end;
564 }
565 #endif
566
567 /* Internal */
568 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
569
570 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
571 {
572 return &skb_shinfo(skb)->hwtstamps;
573 }
574
575 static inline union skb_shared_tx *skb_tx(struct sk_buff *skb)
576 {
577 return &skb_shinfo(skb)->tx_flags;
578 }
579
580 /**
581 * skb_queue_empty - check if a queue is empty
582 * @list: queue head
583 *
584 * Returns true if the queue is empty, false otherwise.
585 */
586 static inline int skb_queue_empty(const struct sk_buff_head *list)
587 {
588 return list->next == (struct sk_buff *)list;
589 }
590
591 /**
592 * skb_queue_is_last - check if skb is the last entry in the queue
593 * @list: queue head
594 * @skb: buffer
595 *
596 * Returns true if @skb is the last buffer on the list.
597 */
598 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
599 const struct sk_buff *skb)
600 {
601 return (skb->next == (struct sk_buff *) list);
602 }
603
604 /**
605 * skb_queue_is_first - check if skb is the first entry in the queue
606 * @list: queue head
607 * @skb: buffer
608 *
609 * Returns true if @skb is the first buffer on the list.
610 */
611 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
612 const struct sk_buff *skb)
613 {
614 return (skb->prev == (struct sk_buff *) list);
615 }
616
617 /**
618 * skb_queue_next - return the next packet in the queue
619 * @list: queue head
620 * @skb: current buffer
621 *
622 * Return the next packet in @list after @skb. It is only valid to
623 * call this if skb_queue_is_last() evaluates to false.
624 */
625 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
626 const struct sk_buff *skb)
627 {
628 /* This BUG_ON may seem severe, but if we just return then we
629 * are going to dereference garbage.
630 */
631 BUG_ON(skb_queue_is_last(list, skb));
632 return skb->next;
633 }
634
635 /**
636 * skb_queue_prev - return the prev packet in the queue
637 * @list: queue head
638 * @skb: current buffer
639 *
640 * Return the prev packet in @list before @skb. It is only valid to
641 * call this if skb_queue_is_first() evaluates to false.
642 */
643 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
644 const struct sk_buff *skb)
645 {
646 /* This BUG_ON may seem severe, but if we just return then we
647 * are going to dereference garbage.
648 */
649 BUG_ON(skb_queue_is_first(list, skb));
650 return skb->prev;
651 }
652
653 /**
654 * skb_get - reference buffer
655 * @skb: buffer to reference
656 *
657 * Makes another reference to a socket buffer and returns a pointer
658 * to the buffer.
659 */
660 static inline struct sk_buff *skb_get(struct sk_buff *skb)
661 {
662 atomic_inc(&skb->users);
663 return skb;
664 }
665
666 /*
667 * If users == 1, we are the only owner and are can avoid redundant
668 * atomic change.
669 */
670
671 /**
672 * skb_cloned - is the buffer a clone
673 * @skb: buffer to check
674 *
675 * Returns true if the buffer was generated with skb_clone() and is
676 * one of multiple shared copies of the buffer. Cloned buffers are
677 * shared data so must not be written to under normal circumstances.
678 */
679 static inline int skb_cloned(const struct sk_buff *skb)
680 {
681 return skb->cloned &&
682 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
683 }
684
685 /**
686 * skb_header_cloned - is the header a clone
687 * @skb: buffer to check
688 *
689 * Returns true if modifying the header part of the buffer requires
690 * the data to be copied.
691 */
692 static inline int skb_header_cloned(const struct sk_buff *skb)
693 {
694 int dataref;
695
696 if (!skb->cloned)
697 return 0;
698
699 dataref = atomic_read(&skb_shinfo(skb)->dataref);
700 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
701 return dataref != 1;
702 }
703
704 /**
705 * skb_header_release - release reference to header
706 * @skb: buffer to operate on
707 *
708 * Drop a reference to the header part of the buffer. This is done
709 * by acquiring a payload reference. You must not read from the header
710 * part of skb->data after this.
711 */
712 static inline void skb_header_release(struct sk_buff *skb)
713 {
714 BUG_ON(skb->nohdr);
715 skb->nohdr = 1;
716 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
717 }
718
719 /**
720 * skb_shared - is the buffer shared
721 * @skb: buffer to check
722 *
723 * Returns true if more than one person has a reference to this
724 * buffer.
725 */
726 static inline int skb_shared(const struct sk_buff *skb)
727 {
728 return atomic_read(&skb->users) != 1;
729 }
730
731 /**
732 * skb_share_check - check if buffer is shared and if so clone it
733 * @skb: buffer to check
734 * @pri: priority for memory allocation
735 *
736 * If the buffer is shared the buffer is cloned and the old copy
737 * drops a reference. A new clone with a single reference is returned.
738 * If the buffer is not shared the original buffer is returned. When
739 * being called from interrupt status or with spinlocks held pri must
740 * be GFP_ATOMIC.
741 *
742 * NULL is returned on a memory allocation failure.
743 */
744 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
745 gfp_t pri)
746 {
747 might_sleep_if(pri & __GFP_WAIT);
748 if (skb_shared(skb)) {
749 struct sk_buff *nskb = skb_clone(skb, pri);
750 kfree_skb(skb);
751 skb = nskb;
752 }
753 return skb;
754 }
755
756 /*
757 * Copy shared buffers into a new sk_buff. We effectively do COW on
758 * packets to handle cases where we have a local reader and forward
759 * and a couple of other messy ones. The normal one is tcpdumping
760 * a packet thats being forwarded.
761 */
762
763 /**
764 * skb_unshare - make a copy of a shared buffer
765 * @skb: buffer to check
766 * @pri: priority for memory allocation
767 *
768 * If the socket buffer is a clone then this function creates a new
769 * copy of the data, drops a reference count on the old copy and returns
770 * the new copy with the reference count at 1. If the buffer is not a clone
771 * the original buffer is returned. When called with a spinlock held or
772 * from interrupt state @pri must be %GFP_ATOMIC
773 *
774 * %NULL is returned on a memory allocation failure.
775 */
776 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
777 gfp_t pri)
778 {
779 might_sleep_if(pri & __GFP_WAIT);
780 if (skb_cloned(skb)) {
781 struct sk_buff *nskb = skb_copy(skb, pri);
782 kfree_skb(skb); /* Free our shared copy */
783 skb = nskb;
784 }
785 return skb;
786 }
787
788 /**
789 * skb_peek - peek at the head of an &sk_buff_head
790 * @list_: list to peek at
791 *
792 * Peek an &sk_buff. Unlike most other operations you _MUST_
793 * be careful with this one. A peek leaves the buffer on the
794 * list and someone else may run off with it. You must hold
795 * the appropriate locks or have a private queue to do this.
796 *
797 * Returns %NULL for an empty list or a pointer to the head element.
798 * The reference count is not incremented and the reference is therefore
799 * volatile. Use with caution.
800 */
801 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
802 {
803 struct sk_buff *list = ((struct sk_buff *)list_)->next;
804 if (list == (struct sk_buff *)list_)
805 list = NULL;
806 return list;
807 }
808
809 /**
810 * skb_peek_tail - peek at the tail of an &sk_buff_head
811 * @list_: list to peek at
812 *
813 * Peek an &sk_buff. Unlike most other operations you _MUST_
814 * be careful with this one. A peek leaves the buffer on the
815 * list and someone else may run off with it. You must hold
816 * the appropriate locks or have a private queue to do this.
817 *
818 * Returns %NULL for an empty list or a pointer to the tail element.
819 * The reference count is not incremented and the reference is therefore
820 * volatile. Use with caution.
821 */
822 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
823 {
824 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
825 if (list == (struct sk_buff *)list_)
826 list = NULL;
827 return list;
828 }
829
830 /**
831 * skb_queue_len - get queue length
832 * @list_: list to measure
833 *
834 * Return the length of an &sk_buff queue.
835 */
836 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
837 {
838 return list_->qlen;
839 }
840
841 /**
842 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
843 * @list: queue to initialize
844 *
845 * This initializes only the list and queue length aspects of
846 * an sk_buff_head object. This allows to initialize the list
847 * aspects of an sk_buff_head without reinitializing things like
848 * the spinlock. It can also be used for on-stack sk_buff_head
849 * objects where the spinlock is known to not be used.
850 */
851 static inline void __skb_queue_head_init(struct sk_buff_head *list)
852 {
853 list->prev = list->next = (struct sk_buff *)list;
854 list->qlen = 0;
855 }
856
857 /*
858 * This function creates a split out lock class for each invocation;
859 * this is needed for now since a whole lot of users of the skb-queue
860 * infrastructure in drivers have different locking usage (in hardirq)
861 * than the networking core (in softirq only). In the long run either the
862 * network layer or drivers should need annotation to consolidate the
863 * main types of usage into 3 classes.
864 */
865 static inline void skb_queue_head_init(struct sk_buff_head *list)
866 {
867 spin_lock_init(&list->lock);
868 __skb_queue_head_init(list);
869 }
870
871 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
872 struct lock_class_key *class)
873 {
874 skb_queue_head_init(list);
875 lockdep_set_class(&list->lock, class);
876 }
877
878 /*
879 * Insert an sk_buff on a list.
880 *
881 * The "__skb_xxxx()" functions are the non-atomic ones that
882 * can only be called with interrupts disabled.
883 */
884 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
885 static inline void __skb_insert(struct sk_buff *newsk,
886 struct sk_buff *prev, struct sk_buff *next,
887 struct sk_buff_head *list)
888 {
889 newsk->next = next;
890 newsk->prev = prev;
891 next->prev = prev->next = newsk;
892 list->qlen++;
893 }
894
895 static inline void __skb_queue_splice(const struct sk_buff_head *list,
896 struct sk_buff *prev,
897 struct sk_buff *next)
898 {
899 struct sk_buff *first = list->next;
900 struct sk_buff *last = list->prev;
901
902 first->prev = prev;
903 prev->next = first;
904
905 last->next = next;
906 next->prev = last;
907 }
908
909 /**
910 * skb_queue_splice - join two skb lists, this is designed for stacks
911 * @list: the new list to add
912 * @head: the place to add it in the first list
913 */
914 static inline void skb_queue_splice(const struct sk_buff_head *list,
915 struct sk_buff_head *head)
916 {
917 if (!skb_queue_empty(list)) {
918 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
919 head->qlen += list->qlen;
920 }
921 }
922
923 /**
924 * skb_queue_splice - join two skb lists and reinitialise the emptied list
925 * @list: the new list to add
926 * @head: the place to add it in the first list
927 *
928 * The list at @list is reinitialised
929 */
930 static inline void skb_queue_splice_init(struct sk_buff_head *list,
931 struct sk_buff_head *head)
932 {
933 if (!skb_queue_empty(list)) {
934 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
935 head->qlen += list->qlen;
936 __skb_queue_head_init(list);
937 }
938 }
939
940 /**
941 * skb_queue_splice_tail - join two skb lists, each list being a queue
942 * @list: the new list to add
943 * @head: the place to add it in the first list
944 */
945 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
946 struct sk_buff_head *head)
947 {
948 if (!skb_queue_empty(list)) {
949 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
950 head->qlen += list->qlen;
951 }
952 }
953
954 /**
955 * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
956 * @list: the new list to add
957 * @head: the place to add it in the first list
958 *
959 * Each of the lists is a queue.
960 * The list at @list is reinitialised
961 */
962 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
963 struct sk_buff_head *head)
964 {
965 if (!skb_queue_empty(list)) {
966 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
967 head->qlen += list->qlen;
968 __skb_queue_head_init(list);
969 }
970 }
971
972 /**
973 * __skb_queue_after - queue a buffer at the list head
974 * @list: list to use
975 * @prev: place after this buffer
976 * @newsk: buffer to queue
977 *
978 * Queue a buffer int the middle of a list. This function takes no locks
979 * and you must therefore hold required locks before calling it.
980 *
981 * A buffer cannot be placed on two lists at the same time.
982 */
983 static inline void __skb_queue_after(struct sk_buff_head *list,
984 struct sk_buff *prev,
985 struct sk_buff *newsk)
986 {
987 __skb_insert(newsk, prev, prev->next, list);
988 }
989
990 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
991 struct sk_buff_head *list);
992
993 static inline void __skb_queue_before(struct sk_buff_head *list,
994 struct sk_buff *next,
995 struct sk_buff *newsk)
996 {
997 __skb_insert(newsk, next->prev, next, list);
998 }
999
1000 /**
1001 * __skb_queue_head - queue a buffer at the list head
1002 * @list: list to use
1003 * @newsk: buffer to queue
1004 *
1005 * Queue a buffer at the start of a list. This function takes no locks
1006 * and you must therefore hold required locks before calling it.
1007 *
1008 * A buffer cannot be placed on two lists at the same time.
1009 */
1010 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1011 static inline void __skb_queue_head(struct sk_buff_head *list,
1012 struct sk_buff *newsk)
1013 {
1014 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1015 }
1016
1017 /**
1018 * __skb_queue_tail - queue a buffer at the list tail
1019 * @list: list to use
1020 * @newsk: buffer to queue
1021 *
1022 * Queue a buffer at the end of a list. This function takes no locks
1023 * and you must therefore hold required locks before calling it.
1024 *
1025 * A buffer cannot be placed on two lists at the same time.
1026 */
1027 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1028 static inline void __skb_queue_tail(struct sk_buff_head *list,
1029 struct sk_buff *newsk)
1030 {
1031 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1032 }
1033
1034 /*
1035 * remove sk_buff from list. _Must_ be called atomically, and with
1036 * the list known..
1037 */
1038 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1039 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1040 {
1041 struct sk_buff *next, *prev;
1042
1043 list->qlen--;
1044 next = skb->next;
1045 prev = skb->prev;
1046 skb->next = skb->prev = NULL;
1047 next->prev = prev;
1048 prev->next = next;
1049 }
1050
1051 /**
1052 * __skb_dequeue - remove from the head of the queue
1053 * @list: list to dequeue from
1054 *
1055 * Remove the head of the list. This function does not take any locks
1056 * so must be used with appropriate locks held only. The head item is
1057 * returned or %NULL if the list is empty.
1058 */
1059 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1060 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1061 {
1062 struct sk_buff *skb = skb_peek(list);
1063 if (skb)
1064 __skb_unlink(skb, list);
1065 return skb;
1066 }
1067
1068 /**
1069 * __skb_dequeue_tail - remove from the tail of the queue
1070 * @list: list to dequeue from
1071 *
1072 * Remove the tail of the list. This function does not take any locks
1073 * so must be used with appropriate locks held only. The tail item is
1074 * returned or %NULL if the list is empty.
1075 */
1076 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1077 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1078 {
1079 struct sk_buff *skb = skb_peek_tail(list);
1080 if (skb)
1081 __skb_unlink(skb, list);
1082 return skb;
1083 }
1084
1085
1086 static inline int skb_is_nonlinear(const struct sk_buff *skb)
1087 {
1088 return skb->data_len;
1089 }
1090
1091 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1092 {
1093 return skb->len - skb->data_len;
1094 }
1095
1096 static inline int skb_pagelen(const struct sk_buff *skb)
1097 {
1098 int i, len = 0;
1099
1100 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1101 len += skb_shinfo(skb)->frags[i].size;
1102 return len + skb_headlen(skb);
1103 }
1104
1105 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1106 struct page *page, int off, int size)
1107 {
1108 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1109
1110 frag->page = page;
1111 frag->page_offset = off;
1112 frag->size = size;
1113 skb_shinfo(skb)->nr_frags = i + 1;
1114 }
1115
1116 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1117 int off, int size);
1118
1119 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1120 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frags(skb))
1121 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1122
1123 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1124 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1125 {
1126 return skb->head + skb->tail;
1127 }
1128
1129 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1130 {
1131 skb->tail = skb->data - skb->head;
1132 }
1133
1134 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1135 {
1136 skb_reset_tail_pointer(skb);
1137 skb->tail += offset;
1138 }
1139 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1140 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1141 {
1142 return skb->tail;
1143 }
1144
1145 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1146 {
1147 skb->tail = skb->data;
1148 }
1149
1150 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1151 {
1152 skb->tail = skb->data + offset;
1153 }
1154
1155 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1156
1157 /*
1158 * Add data to an sk_buff
1159 */
1160 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1161 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1162 {
1163 unsigned char *tmp = skb_tail_pointer(skb);
1164 SKB_LINEAR_ASSERT(skb);
1165 skb->tail += len;
1166 skb->len += len;
1167 return tmp;
1168 }
1169
1170 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1171 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1172 {
1173 skb->data -= len;
1174 skb->len += len;
1175 return skb->data;
1176 }
1177
1178 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1179 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1180 {
1181 skb->len -= len;
1182 BUG_ON(skb->len < skb->data_len);
1183 return skb->data += len;
1184 }
1185
1186 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1187 {
1188 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1189 }
1190
1191 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1192
1193 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1194 {
1195 if (len > skb_headlen(skb) &&
1196 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1197 return NULL;
1198 skb->len -= len;
1199 return skb->data += len;
1200 }
1201
1202 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1203 {
1204 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1205 }
1206
1207 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1208 {
1209 if (likely(len <= skb_headlen(skb)))
1210 return 1;
1211 if (unlikely(len > skb->len))
1212 return 0;
1213 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1214 }
1215
1216 /**
1217 * skb_headroom - bytes at buffer head
1218 * @skb: buffer to check
1219 *
1220 * Return the number of bytes of free space at the head of an &sk_buff.
1221 */
1222 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1223 {
1224 return skb->data - skb->head;
1225 }
1226
1227 /**
1228 * skb_tailroom - bytes at buffer end
1229 * @skb: buffer to check
1230 *
1231 * Return the number of bytes of free space at the tail of an sk_buff
1232 */
1233 static inline int skb_tailroom(const struct sk_buff *skb)
1234 {
1235 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1236 }
1237
1238 /**
1239 * skb_reserve - adjust headroom
1240 * @skb: buffer to alter
1241 * @len: bytes to move
1242 *
1243 * Increase the headroom of an empty &sk_buff by reducing the tail
1244 * room. This is only allowed for an empty buffer.
1245 */
1246 static inline void skb_reserve(struct sk_buff *skb, int len)
1247 {
1248 skb->data += len;
1249 skb->tail += len;
1250 }
1251
1252 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1253 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1254 {
1255 return skb->head + skb->transport_header;
1256 }
1257
1258 static inline void skb_reset_transport_header(struct sk_buff *skb)
1259 {
1260 skb->transport_header = skb->data - skb->head;
1261 }
1262
1263 static inline void skb_set_transport_header(struct sk_buff *skb,
1264 const int offset)
1265 {
1266 skb_reset_transport_header(skb);
1267 skb->transport_header += offset;
1268 }
1269
1270 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1271 {
1272 return skb->head + skb->network_header;
1273 }
1274
1275 static inline void skb_reset_network_header(struct sk_buff *skb)
1276 {
1277 skb->network_header = skb->data - skb->head;
1278 }
1279
1280 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1281 {
1282 skb_reset_network_header(skb);
1283 skb->network_header += offset;
1284 }
1285
1286 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1287 {
1288 return skb->head + skb->mac_header;
1289 }
1290
1291 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1292 {
1293 return skb->mac_header != ~0U;
1294 }
1295
1296 static inline void skb_reset_mac_header(struct sk_buff *skb)
1297 {
1298 skb->mac_header = skb->data - skb->head;
1299 }
1300
1301 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1302 {
1303 skb_reset_mac_header(skb);
1304 skb->mac_header += offset;
1305 }
1306
1307 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1308
1309 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1310 {
1311 return skb->transport_header;
1312 }
1313
1314 static inline void skb_reset_transport_header(struct sk_buff *skb)
1315 {
1316 skb->transport_header = skb->data;
1317 }
1318
1319 static inline void skb_set_transport_header(struct sk_buff *skb,
1320 const int offset)
1321 {
1322 skb->transport_header = skb->data + offset;
1323 }
1324
1325 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1326 {
1327 return skb->network_header;
1328 }
1329
1330 static inline void skb_reset_network_header(struct sk_buff *skb)
1331 {
1332 skb->network_header = skb->data;
1333 }
1334
1335 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1336 {
1337 skb->network_header = skb->data + offset;
1338 }
1339
1340 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1341 {
1342 return skb->mac_header;
1343 }
1344
1345 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1346 {
1347 return skb->mac_header != NULL;
1348 }
1349
1350 static inline void skb_reset_mac_header(struct sk_buff *skb)
1351 {
1352 skb->mac_header = skb->data;
1353 }
1354
1355 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1356 {
1357 skb->mac_header = skb->data + offset;
1358 }
1359 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1360
1361 static inline int skb_transport_offset(const struct sk_buff *skb)
1362 {
1363 return skb_transport_header(skb) - skb->data;
1364 }
1365
1366 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1367 {
1368 return skb->transport_header - skb->network_header;
1369 }
1370
1371 static inline int skb_network_offset(const struct sk_buff *skb)
1372 {
1373 return skb_network_header(skb) - skb->data;
1374 }
1375
1376 /*
1377 * CPUs often take a performance hit when accessing unaligned memory
1378 * locations. The actual performance hit varies, it can be small if the
1379 * hardware handles it or large if we have to take an exception and fix it
1380 * in software.
1381 *
1382 * Since an ethernet header is 14 bytes network drivers often end up with
1383 * the IP header at an unaligned offset. The IP header can be aligned by
1384 * shifting the start of the packet by 2 bytes. Drivers should do this
1385 * with:
1386 *
1387 * skb_reserve(skb, NET_IP_ALIGN);
1388 *
1389 * The downside to this alignment of the IP header is that the DMA is now
1390 * unaligned. On some architectures the cost of an unaligned DMA is high
1391 * and this cost outweighs the gains made by aligning the IP header.
1392 *
1393 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1394 * to be overridden.
1395 */
1396 #ifndef NET_IP_ALIGN
1397 #define NET_IP_ALIGN 2
1398 #endif
1399
1400 /*
1401 * The networking layer reserves some headroom in skb data (via
1402 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1403 * the header has to grow. In the default case, if the header has to grow
1404 * 32 bytes or less we avoid the reallocation.
1405 *
1406 * Unfortunately this headroom changes the DMA alignment of the resulting
1407 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1408 * on some architectures. An architecture can override this value,
1409 * perhaps setting it to a cacheline in size (since that will maintain
1410 * cacheline alignment of the DMA). It must be a power of 2.
1411 *
1412 * Various parts of the networking layer expect at least 32 bytes of
1413 * headroom, you should not reduce this.
1414 * With RPS, we raised NET_SKB_PAD to 64 so that get_rps_cpus() fetches span
1415 * a 64 bytes aligned block to fit modern (>= 64 bytes) cache line sizes
1416 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
1417 */
1418 #ifndef NET_SKB_PAD
1419 #define NET_SKB_PAD 64
1420 #endif
1421
1422 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1423
1424 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1425 {
1426 if (unlikely(skb->data_len)) {
1427 WARN_ON(1);
1428 return;
1429 }
1430 skb->len = len;
1431 skb_set_tail_pointer(skb, len);
1432 }
1433
1434 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1435
1436 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1437 {
1438 if (skb->data_len)
1439 return ___pskb_trim(skb, len);
1440 __skb_trim(skb, len);
1441 return 0;
1442 }
1443
1444 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1445 {
1446 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1447 }
1448
1449 /**
1450 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1451 * @skb: buffer to alter
1452 * @len: new length
1453 *
1454 * This is identical to pskb_trim except that the caller knows that
1455 * the skb is not cloned so we should never get an error due to out-
1456 * of-memory.
1457 */
1458 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1459 {
1460 int err = pskb_trim(skb, len);
1461 BUG_ON(err);
1462 }
1463
1464 /**
1465 * skb_orphan - orphan a buffer
1466 * @skb: buffer to orphan
1467 *
1468 * If a buffer currently has an owner then we call the owner's
1469 * destructor function and make the @skb unowned. The buffer continues
1470 * to exist but is no longer charged to its former owner.
1471 */
1472 static inline void skb_orphan(struct sk_buff *skb)
1473 {
1474 if (skb->destructor)
1475 skb->destructor(skb);
1476 skb->destructor = NULL;
1477 skb->sk = NULL;
1478 }
1479
1480 /**
1481 * __skb_queue_purge - empty a list
1482 * @list: list to empty
1483 *
1484 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1485 * the list and one reference dropped. This function does not take the
1486 * list lock and the caller must hold the relevant locks to use it.
1487 */
1488 extern void skb_queue_purge(struct sk_buff_head *list);
1489 static inline void __skb_queue_purge(struct sk_buff_head *list)
1490 {
1491 struct sk_buff *skb;
1492 while ((skb = __skb_dequeue(list)) != NULL)
1493 kfree_skb(skb);
1494 }
1495
1496 /**
1497 * __dev_alloc_skb - allocate an skbuff for receiving
1498 * @length: length to allocate
1499 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1500 *
1501 * Allocate a new &sk_buff and assign it a usage count of one. The
1502 * buffer has unspecified headroom built in. Users should allocate
1503 * the headroom they think they need without accounting for the
1504 * built in space. The built in space is used for optimisations.
1505 *
1506 * %NULL is returned if there is no free memory.
1507 */
1508 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1509 gfp_t gfp_mask)
1510 {
1511 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1512 if (likely(skb))
1513 skb_reserve(skb, NET_SKB_PAD);
1514 return skb;
1515 }
1516
1517 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1518
1519 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1520 unsigned int length, gfp_t gfp_mask);
1521
1522 /**
1523 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1524 * @dev: network device to receive on
1525 * @length: length to allocate
1526 *
1527 * Allocate a new &sk_buff and assign it a usage count of one. The
1528 * buffer has unspecified headroom built in. Users should allocate
1529 * the headroom they think they need without accounting for the
1530 * built in space. The built in space is used for optimisations.
1531 *
1532 * %NULL is returned if there is no free memory. Although this function
1533 * allocates memory it can be called from an interrupt.
1534 */
1535 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1536 unsigned int length)
1537 {
1538 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1539 }
1540
1541 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
1542 unsigned int length)
1543 {
1544 struct sk_buff *skb = netdev_alloc_skb(dev, length + NET_IP_ALIGN);
1545
1546 if (NET_IP_ALIGN && skb)
1547 skb_reserve(skb, NET_IP_ALIGN);
1548 return skb;
1549 }
1550
1551 extern struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask);
1552
1553 /**
1554 * netdev_alloc_page - allocate a page for ps-rx on a specific device
1555 * @dev: network device to receive on
1556 *
1557 * Allocate a new page node local to the specified device.
1558 *
1559 * %NULL is returned if there is no free memory.
1560 */
1561 static inline struct page *netdev_alloc_page(struct net_device *dev)
1562 {
1563 return __netdev_alloc_page(dev, GFP_ATOMIC);
1564 }
1565
1566 static inline void netdev_free_page(struct net_device *dev, struct page *page)
1567 {
1568 __free_page(page);
1569 }
1570
1571 /**
1572 * skb_clone_writable - is the header of a clone writable
1573 * @skb: buffer to check
1574 * @len: length up to which to write
1575 *
1576 * Returns true if modifying the header part of the cloned buffer
1577 * does not requires the data to be copied.
1578 */
1579 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1580 {
1581 return !skb_header_cloned(skb) &&
1582 skb_headroom(skb) + len <= skb->hdr_len;
1583 }
1584
1585 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1586 int cloned)
1587 {
1588 int delta = 0;
1589
1590 if (headroom < NET_SKB_PAD)
1591 headroom = NET_SKB_PAD;
1592 if (headroom > skb_headroom(skb))
1593 delta = headroom - skb_headroom(skb);
1594
1595 if (delta || cloned)
1596 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1597 GFP_ATOMIC);
1598 return 0;
1599 }
1600
1601 /**
1602 * skb_cow - copy header of skb when it is required
1603 * @skb: buffer to cow
1604 * @headroom: needed headroom
1605 *
1606 * If the skb passed lacks sufficient headroom or its data part
1607 * is shared, data is reallocated. If reallocation fails, an error
1608 * is returned and original skb is not changed.
1609 *
1610 * The result is skb with writable area skb->head...skb->tail
1611 * and at least @headroom of space at head.
1612 */
1613 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1614 {
1615 return __skb_cow(skb, headroom, skb_cloned(skb));
1616 }
1617
1618 /**
1619 * skb_cow_head - skb_cow but only making the head writable
1620 * @skb: buffer to cow
1621 * @headroom: needed headroom
1622 *
1623 * This function is identical to skb_cow except that we replace the
1624 * skb_cloned check by skb_header_cloned. It should be used when
1625 * you only need to push on some header and do not need to modify
1626 * the data.
1627 */
1628 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1629 {
1630 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1631 }
1632
1633 /**
1634 * skb_padto - pad an skbuff up to a minimal size
1635 * @skb: buffer to pad
1636 * @len: minimal length
1637 *
1638 * Pads up a buffer to ensure the trailing bytes exist and are
1639 * blanked. If the buffer already contains sufficient data it
1640 * is untouched. Otherwise it is extended. Returns zero on
1641 * success. The skb is freed on error.
1642 */
1643
1644 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1645 {
1646 unsigned int size = skb->len;
1647 if (likely(size >= len))
1648 return 0;
1649 return skb_pad(skb, len - size);
1650 }
1651
1652 static inline int skb_add_data(struct sk_buff *skb,
1653 char __user *from, int copy)
1654 {
1655 const int off = skb->len;
1656
1657 if (skb->ip_summed == CHECKSUM_NONE) {
1658 int err = 0;
1659 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1660 copy, 0, &err);
1661 if (!err) {
1662 skb->csum = csum_block_add(skb->csum, csum, off);
1663 return 0;
1664 }
1665 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1666 return 0;
1667
1668 __skb_trim(skb, off);
1669 return -EFAULT;
1670 }
1671
1672 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1673 struct page *page, int off)
1674 {
1675 if (i) {
1676 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1677
1678 return page == frag->page &&
1679 off == frag->page_offset + frag->size;
1680 }
1681 return 0;
1682 }
1683
1684 static inline int __skb_linearize(struct sk_buff *skb)
1685 {
1686 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1687 }
1688
1689 /**
1690 * skb_linearize - convert paged skb to linear one
1691 * @skb: buffer to linarize
1692 *
1693 * If there is no free memory -ENOMEM is returned, otherwise zero
1694 * is returned and the old skb data released.
1695 */
1696 static inline int skb_linearize(struct sk_buff *skb)
1697 {
1698 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1699 }
1700
1701 /**
1702 * skb_linearize_cow - make sure skb is linear and writable
1703 * @skb: buffer to process
1704 *
1705 * If there is no free memory -ENOMEM is returned, otherwise zero
1706 * is returned and the old skb data released.
1707 */
1708 static inline int skb_linearize_cow(struct sk_buff *skb)
1709 {
1710 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1711 __skb_linearize(skb) : 0;
1712 }
1713
1714 /**
1715 * skb_postpull_rcsum - update checksum for received skb after pull
1716 * @skb: buffer to update
1717 * @start: start of data before pull
1718 * @len: length of data pulled
1719 *
1720 * After doing a pull on a received packet, you need to call this to
1721 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1722 * CHECKSUM_NONE so that it can be recomputed from scratch.
1723 */
1724
1725 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1726 const void *start, unsigned int len)
1727 {
1728 if (skb->ip_summed == CHECKSUM_COMPLETE)
1729 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1730 }
1731
1732 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1733
1734 /**
1735 * pskb_trim_rcsum - trim received skb and update checksum
1736 * @skb: buffer to trim
1737 * @len: new length
1738 *
1739 * This is exactly the same as pskb_trim except that it ensures the
1740 * checksum of received packets are still valid after the operation.
1741 */
1742
1743 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1744 {
1745 if (likely(len >= skb->len))
1746 return 0;
1747 if (skb->ip_summed == CHECKSUM_COMPLETE)
1748 skb->ip_summed = CHECKSUM_NONE;
1749 return __pskb_trim(skb, len);
1750 }
1751
1752 #define skb_queue_walk(queue, skb) \
1753 for (skb = (queue)->next; \
1754 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1755 skb = skb->next)
1756
1757 #define skb_queue_walk_safe(queue, skb, tmp) \
1758 for (skb = (queue)->next, tmp = skb->next; \
1759 skb != (struct sk_buff *)(queue); \
1760 skb = tmp, tmp = skb->next)
1761
1762 #define skb_queue_walk_from(queue, skb) \
1763 for (; prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1764 skb = skb->next)
1765
1766 #define skb_queue_walk_from_safe(queue, skb, tmp) \
1767 for (tmp = skb->next; \
1768 skb != (struct sk_buff *)(queue); \
1769 skb = tmp, tmp = skb->next)
1770
1771 #define skb_queue_reverse_walk(queue, skb) \
1772 for (skb = (queue)->prev; \
1773 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1774 skb = skb->prev)
1775
1776
1777 static inline bool skb_has_frags(const struct sk_buff *skb)
1778 {
1779 return skb_shinfo(skb)->frag_list != NULL;
1780 }
1781
1782 static inline void skb_frag_list_init(struct sk_buff *skb)
1783 {
1784 skb_shinfo(skb)->frag_list = NULL;
1785 }
1786
1787 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
1788 {
1789 frag->next = skb_shinfo(skb)->frag_list;
1790 skb_shinfo(skb)->frag_list = frag;
1791 }
1792
1793 #define skb_walk_frags(skb, iter) \
1794 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
1795
1796 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
1797 int *peeked, int *err);
1798 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1799 int noblock, int *err);
1800 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1801 struct poll_table_struct *wait);
1802 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1803 int offset, struct iovec *to,
1804 int size);
1805 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1806 int hlen,
1807 struct iovec *iov);
1808 extern int skb_copy_datagram_from_iovec(struct sk_buff *skb,
1809 int offset,
1810 const struct iovec *from,
1811 int from_offset,
1812 int len);
1813 extern int skb_copy_datagram_const_iovec(const struct sk_buff *from,
1814 int offset,
1815 const struct iovec *to,
1816 int to_offset,
1817 int size);
1818 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1819 extern void skb_free_datagram_locked(struct sock *sk,
1820 struct sk_buff *skb);
1821 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1822 unsigned int flags);
1823 extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
1824 int len, __wsum csum);
1825 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1826 void *to, int len);
1827 extern int skb_store_bits(struct sk_buff *skb, int offset,
1828 const void *from, int len);
1829 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
1830 int offset, u8 *to, int len,
1831 __wsum csum);
1832 extern int skb_splice_bits(struct sk_buff *skb,
1833 unsigned int offset,
1834 struct pipe_inode_info *pipe,
1835 unsigned int len,
1836 unsigned int flags);
1837 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1838 extern void skb_split(struct sk_buff *skb,
1839 struct sk_buff *skb1, const u32 len);
1840 extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
1841 int shiftlen);
1842
1843 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1844
1845 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1846 int len, void *buffer)
1847 {
1848 int hlen = skb_headlen(skb);
1849
1850 if (hlen - offset >= len)
1851 return skb->data + offset;
1852
1853 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1854 return NULL;
1855
1856 return buffer;
1857 }
1858
1859 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1860 void *to,
1861 const unsigned int len)
1862 {
1863 memcpy(to, skb->data, len);
1864 }
1865
1866 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1867 const int offset, void *to,
1868 const unsigned int len)
1869 {
1870 memcpy(to, skb->data + offset, len);
1871 }
1872
1873 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1874 const void *from,
1875 const unsigned int len)
1876 {
1877 memcpy(skb->data, from, len);
1878 }
1879
1880 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1881 const int offset,
1882 const void *from,
1883 const unsigned int len)
1884 {
1885 memcpy(skb->data + offset, from, len);
1886 }
1887
1888 extern void skb_init(void);
1889
1890 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
1891 {
1892 return skb->tstamp;
1893 }
1894
1895 /**
1896 * skb_get_timestamp - get timestamp from a skb
1897 * @skb: skb to get stamp from
1898 * @stamp: pointer to struct timeval to store stamp in
1899 *
1900 * Timestamps are stored in the skb as offsets to a base timestamp.
1901 * This function converts the offset back to a struct timeval and stores
1902 * it in stamp.
1903 */
1904 static inline void skb_get_timestamp(const struct sk_buff *skb,
1905 struct timeval *stamp)
1906 {
1907 *stamp = ktime_to_timeval(skb->tstamp);
1908 }
1909
1910 static inline void skb_get_timestampns(const struct sk_buff *skb,
1911 struct timespec *stamp)
1912 {
1913 *stamp = ktime_to_timespec(skb->tstamp);
1914 }
1915
1916 static inline void __net_timestamp(struct sk_buff *skb)
1917 {
1918 skb->tstamp = ktime_get_real();
1919 }
1920
1921 static inline ktime_t net_timedelta(ktime_t t)
1922 {
1923 return ktime_sub(ktime_get_real(), t);
1924 }
1925
1926 static inline ktime_t net_invalid_timestamp(void)
1927 {
1928 return ktime_set(0, 0);
1929 }
1930
1931 /**
1932 * skb_tstamp_tx - queue clone of skb with send time stamps
1933 * @orig_skb: the original outgoing packet
1934 * @hwtstamps: hardware time stamps, may be NULL if not available
1935 *
1936 * If the skb has a socket associated, then this function clones the
1937 * skb (thus sharing the actual data and optional structures), stores
1938 * the optional hardware time stamping information (if non NULL) or
1939 * generates a software time stamp (otherwise), then queues the clone
1940 * to the error queue of the socket. Errors are silently ignored.
1941 */
1942 extern void skb_tstamp_tx(struct sk_buff *orig_skb,
1943 struct skb_shared_hwtstamps *hwtstamps);
1944
1945 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1946 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1947
1948 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
1949 {
1950 return skb->ip_summed & CHECKSUM_UNNECESSARY;
1951 }
1952
1953 /**
1954 * skb_checksum_complete - Calculate checksum of an entire packet
1955 * @skb: packet to process
1956 *
1957 * This function calculates the checksum over the entire packet plus
1958 * the value of skb->csum. The latter can be used to supply the
1959 * checksum of a pseudo header as used by TCP/UDP. It returns the
1960 * checksum.
1961 *
1962 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
1963 * this function can be used to verify that checksum on received
1964 * packets. In that case the function should return zero if the
1965 * checksum is correct. In particular, this function will return zero
1966 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1967 * hardware has already verified the correctness of the checksum.
1968 */
1969 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
1970 {
1971 return skb_csum_unnecessary(skb) ?
1972 0 : __skb_checksum_complete(skb);
1973 }
1974
1975 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1976 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
1977 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1978 {
1979 if (nfct && atomic_dec_and_test(&nfct->use))
1980 nf_conntrack_destroy(nfct);
1981 }
1982 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1983 {
1984 if (nfct)
1985 atomic_inc(&nfct->use);
1986 }
1987 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1988 {
1989 if (skb)
1990 atomic_inc(&skb->users);
1991 }
1992 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1993 {
1994 if (skb)
1995 kfree_skb(skb);
1996 }
1997 #endif
1998 #ifdef CONFIG_BRIDGE_NETFILTER
1999 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
2000 {
2001 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
2002 kfree(nf_bridge);
2003 }
2004 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
2005 {
2006 if (nf_bridge)
2007 atomic_inc(&nf_bridge->use);
2008 }
2009 #endif /* CONFIG_BRIDGE_NETFILTER */
2010 static inline void nf_reset(struct sk_buff *skb)
2011 {
2012 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2013 nf_conntrack_put(skb->nfct);
2014 skb->nfct = NULL;
2015 nf_conntrack_put_reasm(skb->nfct_reasm);
2016 skb->nfct_reasm = NULL;
2017 #endif
2018 #ifdef CONFIG_BRIDGE_NETFILTER
2019 nf_bridge_put(skb->nf_bridge);
2020 skb->nf_bridge = NULL;
2021 #endif
2022 }
2023
2024 /* Note: This doesn't put any conntrack and bridge info in dst. */
2025 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2026 {
2027 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2028 dst->nfct = src->nfct;
2029 nf_conntrack_get(src->nfct);
2030 dst->nfctinfo = src->nfctinfo;
2031 dst->nfct_reasm = src->nfct_reasm;
2032 nf_conntrack_get_reasm(src->nfct_reasm);
2033 #endif
2034 #ifdef CONFIG_BRIDGE_NETFILTER
2035 dst->nf_bridge = src->nf_bridge;
2036 nf_bridge_get(src->nf_bridge);
2037 #endif
2038 }
2039
2040 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2041 {
2042 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2043 nf_conntrack_put(dst->nfct);
2044 nf_conntrack_put_reasm(dst->nfct_reasm);
2045 #endif
2046 #ifdef CONFIG_BRIDGE_NETFILTER
2047 nf_bridge_put(dst->nf_bridge);
2048 #endif
2049 __nf_copy(dst, src);
2050 }
2051
2052 #ifdef CONFIG_NETWORK_SECMARK
2053 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2054 {
2055 to->secmark = from->secmark;
2056 }
2057
2058 static inline void skb_init_secmark(struct sk_buff *skb)
2059 {
2060 skb->secmark = 0;
2061 }
2062 #else
2063 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2064 { }
2065
2066 static inline void skb_init_secmark(struct sk_buff *skb)
2067 { }
2068 #endif
2069
2070 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2071 {
2072 skb->queue_mapping = queue_mapping;
2073 }
2074
2075 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2076 {
2077 return skb->queue_mapping;
2078 }
2079
2080 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2081 {
2082 to->queue_mapping = from->queue_mapping;
2083 }
2084
2085 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2086 {
2087 skb->queue_mapping = rx_queue + 1;
2088 }
2089
2090 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2091 {
2092 return skb->queue_mapping - 1;
2093 }
2094
2095 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2096 {
2097 return (skb->queue_mapping != 0);
2098 }
2099
2100 extern u16 skb_tx_hash(const struct net_device *dev,
2101 const struct sk_buff *skb);
2102
2103 #ifdef CONFIG_XFRM
2104 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2105 {
2106 return skb->sp;
2107 }
2108 #else
2109 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2110 {
2111 return NULL;
2112 }
2113 #endif
2114
2115 static inline int skb_is_gso(const struct sk_buff *skb)
2116 {
2117 return skb_shinfo(skb)->gso_size;
2118 }
2119
2120 static inline int skb_is_gso_v6(const struct sk_buff *skb)
2121 {
2122 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2123 }
2124
2125 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2126
2127 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2128 {
2129 /* LRO sets gso_size but not gso_type, whereas if GSO is really
2130 * wanted then gso_type will be set. */
2131 struct skb_shared_info *shinfo = skb_shinfo(skb);
2132 if (shinfo->gso_size != 0 && unlikely(shinfo->gso_type == 0)) {
2133 __skb_warn_lro_forwarding(skb);
2134 return true;
2135 }
2136 return false;
2137 }
2138
2139 static inline void skb_forward_csum(struct sk_buff *skb)
2140 {
2141 /* Unfortunately we don't support this one. Any brave souls? */
2142 if (skb->ip_summed == CHECKSUM_COMPLETE)
2143 skb->ip_summed = CHECKSUM_NONE;
2144 }
2145
2146 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2147 #endif /* __KERNEL__ */
2148 #endif /* _LINUX_SKBUFF_H */
This page took 0.080272 seconds and 5 git commands to generate.