ipv6: Fix endianess warning in ip6_flow_hdr().
[deliverable/linux.git] / include / linux / skbuff.h
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/bug.h>
22 #include <linux/cache.h>
23
24 #include <linux/atomic.h>
25 #include <asm/types.h>
26 #include <linux/spinlock.h>
27 #include <linux/net.h>
28 #include <linux/textsearch.h>
29 #include <net/checksum.h>
30 #include <linux/rcupdate.h>
31 #include <linux/dmaengine.h>
32 #include <linux/hrtimer.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/netdev_features.h>
35
36 /* Don't change this without changing skb_csum_unnecessary! */
37 #define CHECKSUM_NONE 0
38 #define CHECKSUM_UNNECESSARY 1
39 #define CHECKSUM_COMPLETE 2
40 #define CHECKSUM_PARTIAL 3
41
42 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
43 ~(SMP_CACHE_BYTES - 1))
44 #define SKB_WITH_OVERHEAD(X) \
45 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
46 #define SKB_MAX_ORDER(X, ORDER) \
47 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
48 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
49 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
50
51 /* return minimum truesize of one skb containing X bytes of data */
52 #define SKB_TRUESIZE(X) ((X) + \
53 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
54 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
55
56 /* A. Checksumming of received packets by device.
57 *
58 * NONE: device failed to checksum this packet.
59 * skb->csum is undefined.
60 *
61 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
62 * skb->csum is undefined.
63 * It is bad option, but, unfortunately, many of vendors do this.
64 * Apparently with secret goal to sell you new device, when you
65 * will add new protocol to your host. F.e. IPv6. 8)
66 *
67 * COMPLETE: the most generic way. Device supplied checksum of _all_
68 * the packet as seen by netif_rx in skb->csum.
69 * NOTE: Even if device supports only some protocols, but
70 * is able to produce some skb->csum, it MUST use COMPLETE,
71 * not UNNECESSARY.
72 *
73 * PARTIAL: identical to the case for output below. This may occur
74 * on a packet received directly from another Linux OS, e.g.,
75 * a virtualised Linux kernel on the same host. The packet can
76 * be treated in the same way as UNNECESSARY except that on
77 * output (i.e., forwarding) the checksum must be filled in
78 * by the OS or the hardware.
79 *
80 * B. Checksumming on output.
81 *
82 * NONE: skb is checksummed by protocol or csum is not required.
83 *
84 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
85 * from skb->csum_start to the end and to record the checksum
86 * at skb->csum_start + skb->csum_offset.
87 *
88 * Device must show its capabilities in dev->features, set
89 * at device setup time.
90 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
91 * everything.
92 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
93 * TCP/UDP over IPv4. Sigh. Vendors like this
94 * way by an unknown reason. Though, see comment above
95 * about CHECKSUM_UNNECESSARY. 8)
96 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
97 *
98 * UNNECESSARY: device will do per protocol specific csum. Protocol drivers
99 * that do not want net to perform the checksum calculation should use
100 * this flag in their outgoing skbs.
101 * NETIF_F_FCOE_CRC this indicates the device can do FCoE FC CRC
102 * offload. Correspondingly, the FCoE protocol driver
103 * stack should use CHECKSUM_UNNECESSARY.
104 *
105 * Any questions? No questions, good. --ANK
106 */
107
108 struct net_device;
109 struct scatterlist;
110 struct pipe_inode_info;
111
112 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
113 struct nf_conntrack {
114 atomic_t use;
115 };
116 #endif
117
118 #ifdef CONFIG_BRIDGE_NETFILTER
119 struct nf_bridge_info {
120 atomic_t use;
121 unsigned int mask;
122 struct net_device *physindev;
123 struct net_device *physoutdev;
124 unsigned long data[32 / sizeof(unsigned long)];
125 };
126 #endif
127
128 struct sk_buff_head {
129 /* These two members must be first. */
130 struct sk_buff *next;
131 struct sk_buff *prev;
132
133 __u32 qlen;
134 spinlock_t lock;
135 };
136
137 struct sk_buff;
138
139 /* To allow 64K frame to be packed as single skb without frag_list we
140 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
141 * buffers which do not start on a page boundary.
142 *
143 * Since GRO uses frags we allocate at least 16 regardless of page
144 * size.
145 */
146 #if (65536/PAGE_SIZE + 1) < 16
147 #define MAX_SKB_FRAGS 16UL
148 #else
149 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
150 #endif
151
152 typedef struct skb_frag_struct skb_frag_t;
153
154 struct skb_frag_struct {
155 struct {
156 struct page *p;
157 } page;
158 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
159 __u32 page_offset;
160 __u32 size;
161 #else
162 __u16 page_offset;
163 __u16 size;
164 #endif
165 };
166
167 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
168 {
169 return frag->size;
170 }
171
172 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
173 {
174 frag->size = size;
175 }
176
177 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
178 {
179 frag->size += delta;
180 }
181
182 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
183 {
184 frag->size -= delta;
185 }
186
187 #define HAVE_HW_TIME_STAMP
188
189 /**
190 * struct skb_shared_hwtstamps - hardware time stamps
191 * @hwtstamp: hardware time stamp transformed into duration
192 * since arbitrary point in time
193 * @syststamp: hwtstamp transformed to system time base
194 *
195 * Software time stamps generated by ktime_get_real() are stored in
196 * skb->tstamp. The relation between the different kinds of time
197 * stamps is as follows:
198 *
199 * syststamp and tstamp can be compared against each other in
200 * arbitrary combinations. The accuracy of a
201 * syststamp/tstamp/"syststamp from other device" comparison is
202 * limited by the accuracy of the transformation into system time
203 * base. This depends on the device driver and its underlying
204 * hardware.
205 *
206 * hwtstamps can only be compared against other hwtstamps from
207 * the same device.
208 *
209 * This structure is attached to packets as part of the
210 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
211 */
212 struct skb_shared_hwtstamps {
213 ktime_t hwtstamp;
214 ktime_t syststamp;
215 };
216
217 /* Definitions for tx_flags in struct skb_shared_info */
218 enum {
219 /* generate hardware time stamp */
220 SKBTX_HW_TSTAMP = 1 << 0,
221
222 /* generate software time stamp */
223 SKBTX_SW_TSTAMP = 1 << 1,
224
225 /* device driver is going to provide hardware time stamp */
226 SKBTX_IN_PROGRESS = 1 << 2,
227
228 /* device driver supports TX zero-copy buffers */
229 SKBTX_DEV_ZEROCOPY = 1 << 3,
230
231 /* generate wifi status information (where possible) */
232 SKBTX_WIFI_STATUS = 1 << 4,
233 };
234
235 /*
236 * The callback notifies userspace to release buffers when skb DMA is done in
237 * lower device, the skb last reference should be 0 when calling this.
238 * The zerocopy_success argument is true if zero copy transmit occurred,
239 * false on data copy or out of memory error caused by data copy attempt.
240 * The ctx field is used to track device context.
241 * The desc field is used to track userspace buffer index.
242 */
243 struct ubuf_info {
244 void (*callback)(struct ubuf_info *, bool zerocopy_success);
245 void *ctx;
246 unsigned long desc;
247 };
248
249 /* This data is invariant across clones and lives at
250 * the end of the header data, ie. at skb->end.
251 */
252 struct skb_shared_info {
253 unsigned char nr_frags;
254 __u8 tx_flags;
255 unsigned short gso_size;
256 /* Warning: this field is not always filled in (UFO)! */
257 unsigned short gso_segs;
258 unsigned short gso_type;
259 struct sk_buff *frag_list;
260 struct skb_shared_hwtstamps hwtstamps;
261 __be32 ip6_frag_id;
262
263 /*
264 * Warning : all fields before dataref are cleared in __alloc_skb()
265 */
266 atomic_t dataref;
267
268 /* Intermediate layers must ensure that destructor_arg
269 * remains valid until skb destructor */
270 void * destructor_arg;
271
272 /* must be last field, see pskb_expand_head() */
273 skb_frag_t frags[MAX_SKB_FRAGS];
274 };
275
276 /* We divide dataref into two halves. The higher 16 bits hold references
277 * to the payload part of skb->data. The lower 16 bits hold references to
278 * the entire skb->data. A clone of a headerless skb holds the length of
279 * the header in skb->hdr_len.
280 *
281 * All users must obey the rule that the skb->data reference count must be
282 * greater than or equal to the payload reference count.
283 *
284 * Holding a reference to the payload part means that the user does not
285 * care about modifications to the header part of skb->data.
286 */
287 #define SKB_DATAREF_SHIFT 16
288 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
289
290
291 enum {
292 SKB_FCLONE_UNAVAILABLE,
293 SKB_FCLONE_ORIG,
294 SKB_FCLONE_CLONE,
295 };
296
297 enum {
298 SKB_GSO_TCPV4 = 1 << 0,
299 SKB_GSO_UDP = 1 << 1,
300
301 /* This indicates the skb is from an untrusted source. */
302 SKB_GSO_DODGY = 1 << 2,
303
304 /* This indicates the tcp segment has CWR set. */
305 SKB_GSO_TCP_ECN = 1 << 3,
306
307 SKB_GSO_TCPV6 = 1 << 4,
308
309 SKB_GSO_FCOE = 1 << 5,
310 };
311
312 #if BITS_PER_LONG > 32
313 #define NET_SKBUFF_DATA_USES_OFFSET 1
314 #endif
315
316 #ifdef NET_SKBUFF_DATA_USES_OFFSET
317 typedef unsigned int sk_buff_data_t;
318 #else
319 typedef unsigned char *sk_buff_data_t;
320 #endif
321
322 #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
323 defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
324 #define NET_SKBUFF_NF_DEFRAG_NEEDED 1
325 #endif
326
327 /**
328 * struct sk_buff - socket buffer
329 * @next: Next buffer in list
330 * @prev: Previous buffer in list
331 * @tstamp: Time we arrived
332 * @sk: Socket we are owned by
333 * @dev: Device we arrived on/are leaving by
334 * @cb: Control buffer. Free for use by every layer. Put private vars here
335 * @_skb_refdst: destination entry (with norefcount bit)
336 * @sp: the security path, used for xfrm
337 * @len: Length of actual data
338 * @data_len: Data length
339 * @mac_len: Length of link layer header
340 * @hdr_len: writable header length of cloned skb
341 * @csum: Checksum (must include start/offset pair)
342 * @csum_start: Offset from skb->head where checksumming should start
343 * @csum_offset: Offset from csum_start where checksum should be stored
344 * @priority: Packet queueing priority
345 * @local_df: allow local fragmentation
346 * @cloned: Head may be cloned (check refcnt to be sure)
347 * @ip_summed: Driver fed us an IP checksum
348 * @nohdr: Payload reference only, must not modify header
349 * @nfctinfo: Relationship of this skb to the connection
350 * @pkt_type: Packet class
351 * @fclone: skbuff clone status
352 * @ipvs_property: skbuff is owned by ipvs
353 * @peeked: this packet has been seen already, so stats have been
354 * done for it, don't do them again
355 * @nf_trace: netfilter packet trace flag
356 * @protocol: Packet protocol from driver
357 * @destructor: Destruct function
358 * @nfct: Associated connection, if any
359 * @nfct_reasm: netfilter conntrack re-assembly pointer
360 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
361 * @skb_iif: ifindex of device we arrived on
362 * @tc_index: Traffic control index
363 * @tc_verd: traffic control verdict
364 * @rxhash: the packet hash computed on receive
365 * @queue_mapping: Queue mapping for multiqueue devices
366 * @ndisc_nodetype: router type (from link layer)
367 * @ooo_okay: allow the mapping of a socket to a queue to be changed
368 * @l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport
369 * ports.
370 * @wifi_acked_valid: wifi_acked was set
371 * @wifi_acked: whether frame was acked on wifi or not
372 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
373 * @dma_cookie: a cookie to one of several possible DMA operations
374 * done by skb DMA functions
375 * @secmark: security marking
376 * @mark: Generic packet mark
377 * @dropcount: total number of sk_receive_queue overflows
378 * @vlan_tci: vlan tag control information
379 * @inner_transport_header: Inner transport layer header (encapsulation)
380 * @inner_network_header: Network layer header (encapsulation)
381 * @transport_header: Transport layer header
382 * @network_header: Network layer header
383 * @mac_header: Link layer header
384 * @tail: Tail pointer
385 * @end: End pointer
386 * @head: Head of buffer
387 * @data: Data head pointer
388 * @truesize: Buffer size
389 * @users: User count - see {datagram,tcp}.c
390 */
391
392 struct sk_buff {
393 /* These two members must be first. */
394 struct sk_buff *next;
395 struct sk_buff *prev;
396
397 ktime_t tstamp;
398
399 struct sock *sk;
400 struct net_device *dev;
401
402 /*
403 * This is the control buffer. It is free to use for every
404 * layer. Please put your private variables there. If you
405 * want to keep them across layers you have to do a skb_clone()
406 * first. This is owned by whoever has the skb queued ATM.
407 */
408 char cb[48] __aligned(8);
409
410 unsigned long _skb_refdst;
411 #ifdef CONFIG_XFRM
412 struct sec_path *sp;
413 #endif
414 unsigned int len,
415 data_len;
416 __u16 mac_len,
417 hdr_len;
418 union {
419 __wsum csum;
420 struct {
421 __u16 csum_start;
422 __u16 csum_offset;
423 };
424 };
425 __u32 priority;
426 kmemcheck_bitfield_begin(flags1);
427 __u8 local_df:1,
428 cloned:1,
429 ip_summed:2,
430 nohdr:1,
431 nfctinfo:3;
432 __u8 pkt_type:3,
433 fclone:2,
434 ipvs_property:1,
435 peeked:1,
436 nf_trace:1;
437 kmemcheck_bitfield_end(flags1);
438 __be16 protocol;
439
440 void (*destructor)(struct sk_buff *skb);
441 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
442 struct nf_conntrack *nfct;
443 #endif
444 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
445 struct sk_buff *nfct_reasm;
446 #endif
447 #ifdef CONFIG_BRIDGE_NETFILTER
448 struct nf_bridge_info *nf_bridge;
449 #endif
450
451 int skb_iif;
452
453 __u32 rxhash;
454
455 __u16 vlan_tci;
456
457 #ifdef CONFIG_NET_SCHED
458 __u16 tc_index; /* traffic control index */
459 #ifdef CONFIG_NET_CLS_ACT
460 __u16 tc_verd; /* traffic control verdict */
461 #endif
462 #endif
463
464 __u16 queue_mapping;
465 kmemcheck_bitfield_begin(flags2);
466 #ifdef CONFIG_IPV6_NDISC_NODETYPE
467 __u8 ndisc_nodetype:2;
468 #endif
469 __u8 pfmemalloc:1;
470 __u8 ooo_okay:1;
471 __u8 l4_rxhash:1;
472 __u8 wifi_acked_valid:1;
473 __u8 wifi_acked:1;
474 __u8 no_fcs:1;
475 __u8 head_frag:1;
476 /* Encapsulation protocol and NIC drivers should use
477 * this flag to indicate to each other if the skb contains
478 * encapsulated packet or not and maybe use the inner packet
479 * headers if needed
480 */
481 __u8 encapsulation:1;
482 /* 7/9 bit hole (depending on ndisc_nodetype presence) */
483 kmemcheck_bitfield_end(flags2);
484
485 #ifdef CONFIG_NET_DMA
486 dma_cookie_t dma_cookie;
487 #endif
488 #ifdef CONFIG_NETWORK_SECMARK
489 __u32 secmark;
490 #endif
491 union {
492 __u32 mark;
493 __u32 dropcount;
494 __u32 avail_size;
495 };
496
497 sk_buff_data_t inner_transport_header;
498 sk_buff_data_t inner_network_header;
499 sk_buff_data_t transport_header;
500 sk_buff_data_t network_header;
501 sk_buff_data_t mac_header;
502 /* These elements must be at the end, see alloc_skb() for details. */
503 sk_buff_data_t tail;
504 sk_buff_data_t end;
505 unsigned char *head,
506 *data;
507 unsigned int truesize;
508 atomic_t users;
509 };
510
511 #ifdef __KERNEL__
512 /*
513 * Handling routines are only of interest to the kernel
514 */
515 #include <linux/slab.h>
516
517
518 #define SKB_ALLOC_FCLONE 0x01
519 #define SKB_ALLOC_RX 0x02
520
521 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
522 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
523 {
524 return unlikely(skb->pfmemalloc);
525 }
526
527 /*
528 * skb might have a dst pointer attached, refcounted or not.
529 * _skb_refdst low order bit is set if refcount was _not_ taken
530 */
531 #define SKB_DST_NOREF 1UL
532 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
533
534 /**
535 * skb_dst - returns skb dst_entry
536 * @skb: buffer
537 *
538 * Returns skb dst_entry, regardless of reference taken or not.
539 */
540 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
541 {
542 /* If refdst was not refcounted, check we still are in a
543 * rcu_read_lock section
544 */
545 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
546 !rcu_read_lock_held() &&
547 !rcu_read_lock_bh_held());
548 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
549 }
550
551 /**
552 * skb_dst_set - sets skb dst
553 * @skb: buffer
554 * @dst: dst entry
555 *
556 * Sets skb dst, assuming a reference was taken on dst and should
557 * be released by skb_dst_drop()
558 */
559 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
560 {
561 skb->_skb_refdst = (unsigned long)dst;
562 }
563
564 extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst);
565
566 /**
567 * skb_dst_is_noref - Test if skb dst isn't refcounted
568 * @skb: buffer
569 */
570 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
571 {
572 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
573 }
574
575 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
576 {
577 return (struct rtable *)skb_dst(skb);
578 }
579
580 extern void kfree_skb(struct sk_buff *skb);
581 extern void skb_tx_error(struct sk_buff *skb);
582 extern void consume_skb(struct sk_buff *skb);
583 extern void __kfree_skb(struct sk_buff *skb);
584 extern struct kmem_cache *skbuff_head_cache;
585
586 extern void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
587 extern bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
588 bool *fragstolen, int *delta_truesize);
589
590 extern struct sk_buff *__alloc_skb(unsigned int size,
591 gfp_t priority, int flags, int node);
592 extern struct sk_buff *build_skb(void *data, unsigned int frag_size);
593 static inline struct sk_buff *alloc_skb(unsigned int size,
594 gfp_t priority)
595 {
596 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
597 }
598
599 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
600 gfp_t priority)
601 {
602 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
603 }
604
605 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
606 extern int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
607 extern struct sk_buff *skb_clone(struct sk_buff *skb,
608 gfp_t priority);
609 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
610 gfp_t priority);
611 extern struct sk_buff *__pskb_copy(struct sk_buff *skb,
612 int headroom, gfp_t gfp_mask);
613
614 extern int pskb_expand_head(struct sk_buff *skb,
615 int nhead, int ntail,
616 gfp_t gfp_mask);
617 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
618 unsigned int headroom);
619 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
620 int newheadroom, int newtailroom,
621 gfp_t priority);
622 extern int skb_to_sgvec(struct sk_buff *skb,
623 struct scatterlist *sg, int offset,
624 int len);
625 extern int skb_cow_data(struct sk_buff *skb, int tailbits,
626 struct sk_buff **trailer);
627 extern int skb_pad(struct sk_buff *skb, int pad);
628 #define dev_kfree_skb(a) consume_skb(a)
629
630 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
631 int getfrag(void *from, char *to, int offset,
632 int len,int odd, struct sk_buff *skb),
633 void *from, int length);
634
635 struct skb_seq_state {
636 __u32 lower_offset;
637 __u32 upper_offset;
638 __u32 frag_idx;
639 __u32 stepped_offset;
640 struct sk_buff *root_skb;
641 struct sk_buff *cur_skb;
642 __u8 *frag_data;
643 };
644
645 extern void skb_prepare_seq_read(struct sk_buff *skb,
646 unsigned int from, unsigned int to,
647 struct skb_seq_state *st);
648 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
649 struct skb_seq_state *st);
650 extern void skb_abort_seq_read(struct skb_seq_state *st);
651
652 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
653 unsigned int to, struct ts_config *config,
654 struct ts_state *state);
655
656 extern void __skb_get_rxhash(struct sk_buff *skb);
657 static inline __u32 skb_get_rxhash(struct sk_buff *skb)
658 {
659 if (!skb->l4_rxhash)
660 __skb_get_rxhash(skb);
661
662 return skb->rxhash;
663 }
664
665 #ifdef NET_SKBUFF_DATA_USES_OFFSET
666 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
667 {
668 return skb->head + skb->end;
669 }
670
671 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
672 {
673 return skb->end;
674 }
675 #else
676 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
677 {
678 return skb->end;
679 }
680
681 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
682 {
683 return skb->end - skb->head;
684 }
685 #endif
686
687 /* Internal */
688 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
689
690 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
691 {
692 return &skb_shinfo(skb)->hwtstamps;
693 }
694
695 /**
696 * skb_queue_empty - check if a queue is empty
697 * @list: queue head
698 *
699 * Returns true if the queue is empty, false otherwise.
700 */
701 static inline int skb_queue_empty(const struct sk_buff_head *list)
702 {
703 return list->next == (struct sk_buff *)list;
704 }
705
706 /**
707 * skb_queue_is_last - check if skb is the last entry in the queue
708 * @list: queue head
709 * @skb: buffer
710 *
711 * Returns true if @skb is the last buffer on the list.
712 */
713 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
714 const struct sk_buff *skb)
715 {
716 return skb->next == (struct sk_buff *)list;
717 }
718
719 /**
720 * skb_queue_is_first - check if skb is the first entry in the queue
721 * @list: queue head
722 * @skb: buffer
723 *
724 * Returns true if @skb is the first buffer on the list.
725 */
726 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
727 const struct sk_buff *skb)
728 {
729 return skb->prev == (struct sk_buff *)list;
730 }
731
732 /**
733 * skb_queue_next - return the next packet in the queue
734 * @list: queue head
735 * @skb: current buffer
736 *
737 * Return the next packet in @list after @skb. It is only valid to
738 * call this if skb_queue_is_last() evaluates to false.
739 */
740 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
741 const struct sk_buff *skb)
742 {
743 /* This BUG_ON may seem severe, but if we just return then we
744 * are going to dereference garbage.
745 */
746 BUG_ON(skb_queue_is_last(list, skb));
747 return skb->next;
748 }
749
750 /**
751 * skb_queue_prev - return the prev packet in the queue
752 * @list: queue head
753 * @skb: current buffer
754 *
755 * Return the prev packet in @list before @skb. It is only valid to
756 * call this if skb_queue_is_first() evaluates to false.
757 */
758 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
759 const struct sk_buff *skb)
760 {
761 /* This BUG_ON may seem severe, but if we just return then we
762 * are going to dereference garbage.
763 */
764 BUG_ON(skb_queue_is_first(list, skb));
765 return skb->prev;
766 }
767
768 /**
769 * skb_get - reference buffer
770 * @skb: buffer to reference
771 *
772 * Makes another reference to a socket buffer and returns a pointer
773 * to the buffer.
774 */
775 static inline struct sk_buff *skb_get(struct sk_buff *skb)
776 {
777 atomic_inc(&skb->users);
778 return skb;
779 }
780
781 /*
782 * If users == 1, we are the only owner and are can avoid redundant
783 * atomic change.
784 */
785
786 /**
787 * skb_cloned - is the buffer a clone
788 * @skb: buffer to check
789 *
790 * Returns true if the buffer was generated with skb_clone() and is
791 * one of multiple shared copies of the buffer. Cloned buffers are
792 * shared data so must not be written to under normal circumstances.
793 */
794 static inline int skb_cloned(const struct sk_buff *skb)
795 {
796 return skb->cloned &&
797 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
798 }
799
800 /**
801 * skb_header_cloned - is the header a clone
802 * @skb: buffer to check
803 *
804 * Returns true if modifying the header part of the buffer requires
805 * the data to be copied.
806 */
807 static inline int skb_header_cloned(const struct sk_buff *skb)
808 {
809 int dataref;
810
811 if (!skb->cloned)
812 return 0;
813
814 dataref = atomic_read(&skb_shinfo(skb)->dataref);
815 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
816 return dataref != 1;
817 }
818
819 /**
820 * skb_header_release - release reference to header
821 * @skb: buffer to operate on
822 *
823 * Drop a reference to the header part of the buffer. This is done
824 * by acquiring a payload reference. You must not read from the header
825 * part of skb->data after this.
826 */
827 static inline void skb_header_release(struct sk_buff *skb)
828 {
829 BUG_ON(skb->nohdr);
830 skb->nohdr = 1;
831 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
832 }
833
834 /**
835 * skb_shared - is the buffer shared
836 * @skb: buffer to check
837 *
838 * Returns true if more than one person has a reference to this
839 * buffer.
840 */
841 static inline int skb_shared(const struct sk_buff *skb)
842 {
843 return atomic_read(&skb->users) != 1;
844 }
845
846 /**
847 * skb_share_check - check if buffer is shared and if so clone it
848 * @skb: buffer to check
849 * @pri: priority for memory allocation
850 *
851 * If the buffer is shared the buffer is cloned and the old copy
852 * drops a reference. A new clone with a single reference is returned.
853 * If the buffer is not shared the original buffer is returned. When
854 * being called from interrupt status or with spinlocks held pri must
855 * be GFP_ATOMIC.
856 *
857 * NULL is returned on a memory allocation failure.
858 */
859 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
860 {
861 might_sleep_if(pri & __GFP_WAIT);
862 if (skb_shared(skb)) {
863 struct sk_buff *nskb = skb_clone(skb, pri);
864
865 if (likely(nskb))
866 consume_skb(skb);
867 else
868 kfree_skb(skb);
869 skb = nskb;
870 }
871 return skb;
872 }
873
874 /*
875 * Copy shared buffers into a new sk_buff. We effectively do COW on
876 * packets to handle cases where we have a local reader and forward
877 * and a couple of other messy ones. The normal one is tcpdumping
878 * a packet thats being forwarded.
879 */
880
881 /**
882 * skb_unshare - make a copy of a shared buffer
883 * @skb: buffer to check
884 * @pri: priority for memory allocation
885 *
886 * If the socket buffer is a clone then this function creates a new
887 * copy of the data, drops a reference count on the old copy and returns
888 * the new copy with the reference count at 1. If the buffer is not a clone
889 * the original buffer is returned. When called with a spinlock held or
890 * from interrupt state @pri must be %GFP_ATOMIC
891 *
892 * %NULL is returned on a memory allocation failure.
893 */
894 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
895 gfp_t pri)
896 {
897 might_sleep_if(pri & __GFP_WAIT);
898 if (skb_cloned(skb)) {
899 struct sk_buff *nskb = skb_copy(skb, pri);
900 kfree_skb(skb); /* Free our shared copy */
901 skb = nskb;
902 }
903 return skb;
904 }
905
906 /**
907 * skb_peek - peek at the head of an &sk_buff_head
908 * @list_: list to peek at
909 *
910 * Peek an &sk_buff. Unlike most other operations you _MUST_
911 * be careful with this one. A peek leaves the buffer on the
912 * list and someone else may run off with it. You must hold
913 * the appropriate locks or have a private queue to do this.
914 *
915 * Returns %NULL for an empty list or a pointer to the head element.
916 * The reference count is not incremented and the reference is therefore
917 * volatile. Use with caution.
918 */
919 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
920 {
921 struct sk_buff *skb = list_->next;
922
923 if (skb == (struct sk_buff *)list_)
924 skb = NULL;
925 return skb;
926 }
927
928 /**
929 * skb_peek_next - peek skb following the given one from a queue
930 * @skb: skb to start from
931 * @list_: list to peek at
932 *
933 * Returns %NULL when the end of the list is met or a pointer to the
934 * next element. The reference count is not incremented and the
935 * reference is therefore volatile. Use with caution.
936 */
937 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
938 const struct sk_buff_head *list_)
939 {
940 struct sk_buff *next = skb->next;
941
942 if (next == (struct sk_buff *)list_)
943 next = NULL;
944 return next;
945 }
946
947 /**
948 * skb_peek_tail - peek at the tail of an &sk_buff_head
949 * @list_: list to peek at
950 *
951 * Peek an &sk_buff. Unlike most other operations you _MUST_
952 * be careful with this one. A peek leaves the buffer on the
953 * list and someone else may run off with it. You must hold
954 * the appropriate locks or have a private queue to do this.
955 *
956 * Returns %NULL for an empty list or a pointer to the tail element.
957 * The reference count is not incremented and the reference is therefore
958 * volatile. Use with caution.
959 */
960 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
961 {
962 struct sk_buff *skb = list_->prev;
963
964 if (skb == (struct sk_buff *)list_)
965 skb = NULL;
966 return skb;
967
968 }
969
970 /**
971 * skb_queue_len - get queue length
972 * @list_: list to measure
973 *
974 * Return the length of an &sk_buff queue.
975 */
976 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
977 {
978 return list_->qlen;
979 }
980
981 /**
982 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
983 * @list: queue to initialize
984 *
985 * This initializes only the list and queue length aspects of
986 * an sk_buff_head object. This allows to initialize the list
987 * aspects of an sk_buff_head without reinitializing things like
988 * the spinlock. It can also be used for on-stack sk_buff_head
989 * objects where the spinlock is known to not be used.
990 */
991 static inline void __skb_queue_head_init(struct sk_buff_head *list)
992 {
993 list->prev = list->next = (struct sk_buff *)list;
994 list->qlen = 0;
995 }
996
997 /*
998 * This function creates a split out lock class for each invocation;
999 * this is needed for now since a whole lot of users of the skb-queue
1000 * infrastructure in drivers have different locking usage (in hardirq)
1001 * than the networking core (in softirq only). In the long run either the
1002 * network layer or drivers should need annotation to consolidate the
1003 * main types of usage into 3 classes.
1004 */
1005 static inline void skb_queue_head_init(struct sk_buff_head *list)
1006 {
1007 spin_lock_init(&list->lock);
1008 __skb_queue_head_init(list);
1009 }
1010
1011 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1012 struct lock_class_key *class)
1013 {
1014 skb_queue_head_init(list);
1015 lockdep_set_class(&list->lock, class);
1016 }
1017
1018 /*
1019 * Insert an sk_buff on a list.
1020 *
1021 * The "__skb_xxxx()" functions are the non-atomic ones that
1022 * can only be called with interrupts disabled.
1023 */
1024 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
1025 static inline void __skb_insert(struct sk_buff *newsk,
1026 struct sk_buff *prev, struct sk_buff *next,
1027 struct sk_buff_head *list)
1028 {
1029 newsk->next = next;
1030 newsk->prev = prev;
1031 next->prev = prev->next = newsk;
1032 list->qlen++;
1033 }
1034
1035 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1036 struct sk_buff *prev,
1037 struct sk_buff *next)
1038 {
1039 struct sk_buff *first = list->next;
1040 struct sk_buff *last = list->prev;
1041
1042 first->prev = prev;
1043 prev->next = first;
1044
1045 last->next = next;
1046 next->prev = last;
1047 }
1048
1049 /**
1050 * skb_queue_splice - join two skb lists, this is designed for stacks
1051 * @list: the new list to add
1052 * @head: the place to add it in the first list
1053 */
1054 static inline void skb_queue_splice(const struct sk_buff_head *list,
1055 struct sk_buff_head *head)
1056 {
1057 if (!skb_queue_empty(list)) {
1058 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1059 head->qlen += list->qlen;
1060 }
1061 }
1062
1063 /**
1064 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1065 * @list: the new list to add
1066 * @head: the place to add it in the first list
1067 *
1068 * The list at @list is reinitialised
1069 */
1070 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1071 struct sk_buff_head *head)
1072 {
1073 if (!skb_queue_empty(list)) {
1074 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1075 head->qlen += list->qlen;
1076 __skb_queue_head_init(list);
1077 }
1078 }
1079
1080 /**
1081 * skb_queue_splice_tail - join two skb lists, each list being a queue
1082 * @list: the new list to add
1083 * @head: the place to add it in the first list
1084 */
1085 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1086 struct sk_buff_head *head)
1087 {
1088 if (!skb_queue_empty(list)) {
1089 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1090 head->qlen += list->qlen;
1091 }
1092 }
1093
1094 /**
1095 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1096 * @list: the new list to add
1097 * @head: the place to add it in the first list
1098 *
1099 * Each of the lists is a queue.
1100 * The list at @list is reinitialised
1101 */
1102 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1103 struct sk_buff_head *head)
1104 {
1105 if (!skb_queue_empty(list)) {
1106 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1107 head->qlen += list->qlen;
1108 __skb_queue_head_init(list);
1109 }
1110 }
1111
1112 /**
1113 * __skb_queue_after - queue a buffer at the list head
1114 * @list: list to use
1115 * @prev: place after this buffer
1116 * @newsk: buffer to queue
1117 *
1118 * Queue a buffer int the middle of a list. This function takes no locks
1119 * and you must therefore hold required locks before calling it.
1120 *
1121 * A buffer cannot be placed on two lists at the same time.
1122 */
1123 static inline void __skb_queue_after(struct sk_buff_head *list,
1124 struct sk_buff *prev,
1125 struct sk_buff *newsk)
1126 {
1127 __skb_insert(newsk, prev, prev->next, list);
1128 }
1129
1130 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1131 struct sk_buff_head *list);
1132
1133 static inline void __skb_queue_before(struct sk_buff_head *list,
1134 struct sk_buff *next,
1135 struct sk_buff *newsk)
1136 {
1137 __skb_insert(newsk, next->prev, next, list);
1138 }
1139
1140 /**
1141 * __skb_queue_head - queue a buffer at the list head
1142 * @list: list to use
1143 * @newsk: buffer to queue
1144 *
1145 * Queue a buffer at the start of a list. This function takes no locks
1146 * and you must therefore hold required locks before calling it.
1147 *
1148 * A buffer cannot be placed on two lists at the same time.
1149 */
1150 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1151 static inline void __skb_queue_head(struct sk_buff_head *list,
1152 struct sk_buff *newsk)
1153 {
1154 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1155 }
1156
1157 /**
1158 * __skb_queue_tail - queue a buffer at the list tail
1159 * @list: list to use
1160 * @newsk: buffer to queue
1161 *
1162 * Queue a buffer at the end of a list. This function takes no locks
1163 * and you must therefore hold required locks before calling it.
1164 *
1165 * A buffer cannot be placed on two lists at the same time.
1166 */
1167 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1168 static inline void __skb_queue_tail(struct sk_buff_head *list,
1169 struct sk_buff *newsk)
1170 {
1171 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1172 }
1173
1174 /*
1175 * remove sk_buff from list. _Must_ be called atomically, and with
1176 * the list known..
1177 */
1178 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1179 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1180 {
1181 struct sk_buff *next, *prev;
1182
1183 list->qlen--;
1184 next = skb->next;
1185 prev = skb->prev;
1186 skb->next = skb->prev = NULL;
1187 next->prev = prev;
1188 prev->next = next;
1189 }
1190
1191 /**
1192 * __skb_dequeue - remove from the head of the queue
1193 * @list: list to dequeue from
1194 *
1195 * Remove the head of the list. This function does not take any locks
1196 * so must be used with appropriate locks held only. The head item is
1197 * returned or %NULL if the list is empty.
1198 */
1199 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1200 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1201 {
1202 struct sk_buff *skb = skb_peek(list);
1203 if (skb)
1204 __skb_unlink(skb, list);
1205 return skb;
1206 }
1207
1208 /**
1209 * __skb_dequeue_tail - remove from the tail of the queue
1210 * @list: list to dequeue from
1211 *
1212 * Remove the tail of the list. This function does not take any locks
1213 * so must be used with appropriate locks held only. The tail item is
1214 * returned or %NULL if the list is empty.
1215 */
1216 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1217 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1218 {
1219 struct sk_buff *skb = skb_peek_tail(list);
1220 if (skb)
1221 __skb_unlink(skb, list);
1222 return skb;
1223 }
1224
1225
1226 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1227 {
1228 return skb->data_len;
1229 }
1230
1231 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1232 {
1233 return skb->len - skb->data_len;
1234 }
1235
1236 static inline int skb_pagelen(const struct sk_buff *skb)
1237 {
1238 int i, len = 0;
1239
1240 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1241 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1242 return len + skb_headlen(skb);
1243 }
1244
1245 /**
1246 * __skb_fill_page_desc - initialise a paged fragment in an skb
1247 * @skb: buffer containing fragment to be initialised
1248 * @i: paged fragment index to initialise
1249 * @page: the page to use for this fragment
1250 * @off: the offset to the data with @page
1251 * @size: the length of the data
1252 *
1253 * Initialises the @i'th fragment of @skb to point to &size bytes at
1254 * offset @off within @page.
1255 *
1256 * Does not take any additional reference on the fragment.
1257 */
1258 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1259 struct page *page, int off, int size)
1260 {
1261 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1262
1263 /*
1264 * Propagate page->pfmemalloc to the skb if we can. The problem is
1265 * that not all callers have unique ownership of the page. If
1266 * pfmemalloc is set, we check the mapping as a mapping implies
1267 * page->index is set (index and pfmemalloc share space).
1268 * If it's a valid mapping, we cannot use page->pfmemalloc but we
1269 * do not lose pfmemalloc information as the pages would not be
1270 * allocated using __GFP_MEMALLOC.
1271 */
1272 if (page->pfmemalloc && !page->mapping)
1273 skb->pfmemalloc = true;
1274 frag->page.p = page;
1275 frag->page_offset = off;
1276 skb_frag_size_set(frag, size);
1277 }
1278
1279 /**
1280 * skb_fill_page_desc - initialise a paged fragment in an skb
1281 * @skb: buffer containing fragment to be initialised
1282 * @i: paged fragment index to initialise
1283 * @page: the page to use for this fragment
1284 * @off: the offset to the data with @page
1285 * @size: the length of the data
1286 *
1287 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1288 * @skb to point to &size bytes at offset @off within @page. In
1289 * addition updates @skb such that @i is the last fragment.
1290 *
1291 * Does not take any additional reference on the fragment.
1292 */
1293 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1294 struct page *page, int off, int size)
1295 {
1296 __skb_fill_page_desc(skb, i, page, off, size);
1297 skb_shinfo(skb)->nr_frags = i + 1;
1298 }
1299
1300 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1301 int off, int size, unsigned int truesize);
1302
1303 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1304 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1305 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1306
1307 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1308 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1309 {
1310 return skb->head + skb->tail;
1311 }
1312
1313 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1314 {
1315 skb->tail = skb->data - skb->head;
1316 }
1317
1318 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1319 {
1320 skb_reset_tail_pointer(skb);
1321 skb->tail += offset;
1322 }
1323 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1324 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1325 {
1326 return skb->tail;
1327 }
1328
1329 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1330 {
1331 skb->tail = skb->data;
1332 }
1333
1334 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1335 {
1336 skb->tail = skb->data + offset;
1337 }
1338
1339 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1340
1341 /*
1342 * Add data to an sk_buff
1343 */
1344 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1345 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1346 {
1347 unsigned char *tmp = skb_tail_pointer(skb);
1348 SKB_LINEAR_ASSERT(skb);
1349 skb->tail += len;
1350 skb->len += len;
1351 return tmp;
1352 }
1353
1354 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1355 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1356 {
1357 skb->data -= len;
1358 skb->len += len;
1359 return skb->data;
1360 }
1361
1362 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1363 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1364 {
1365 skb->len -= len;
1366 BUG_ON(skb->len < skb->data_len);
1367 return skb->data += len;
1368 }
1369
1370 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1371 {
1372 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1373 }
1374
1375 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1376
1377 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1378 {
1379 if (len > skb_headlen(skb) &&
1380 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1381 return NULL;
1382 skb->len -= len;
1383 return skb->data += len;
1384 }
1385
1386 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1387 {
1388 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1389 }
1390
1391 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1392 {
1393 if (likely(len <= skb_headlen(skb)))
1394 return 1;
1395 if (unlikely(len > skb->len))
1396 return 0;
1397 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1398 }
1399
1400 /**
1401 * skb_headroom - bytes at buffer head
1402 * @skb: buffer to check
1403 *
1404 * Return the number of bytes of free space at the head of an &sk_buff.
1405 */
1406 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1407 {
1408 return skb->data - skb->head;
1409 }
1410
1411 /**
1412 * skb_tailroom - bytes at buffer end
1413 * @skb: buffer to check
1414 *
1415 * Return the number of bytes of free space at the tail of an sk_buff
1416 */
1417 static inline int skb_tailroom(const struct sk_buff *skb)
1418 {
1419 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1420 }
1421
1422 /**
1423 * skb_availroom - bytes at buffer end
1424 * @skb: buffer to check
1425 *
1426 * Return the number of bytes of free space at the tail of an sk_buff
1427 * allocated by sk_stream_alloc()
1428 */
1429 static inline int skb_availroom(const struct sk_buff *skb)
1430 {
1431 return skb_is_nonlinear(skb) ? 0 : skb->avail_size - skb->len;
1432 }
1433
1434 /**
1435 * skb_reserve - adjust headroom
1436 * @skb: buffer to alter
1437 * @len: bytes to move
1438 *
1439 * Increase the headroom of an empty &sk_buff by reducing the tail
1440 * room. This is only allowed for an empty buffer.
1441 */
1442 static inline void skb_reserve(struct sk_buff *skb, int len)
1443 {
1444 skb->data += len;
1445 skb->tail += len;
1446 }
1447
1448 static inline void skb_reset_inner_headers(struct sk_buff *skb)
1449 {
1450 skb->inner_network_header = skb->network_header;
1451 skb->inner_transport_header = skb->transport_header;
1452 }
1453
1454 static inline void skb_reset_mac_len(struct sk_buff *skb)
1455 {
1456 skb->mac_len = skb->network_header - skb->mac_header;
1457 }
1458
1459 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1460 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
1461 *skb)
1462 {
1463 return skb->head + skb->inner_transport_header;
1464 }
1465
1466 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
1467 {
1468 skb->inner_transport_header = skb->data - skb->head;
1469 }
1470
1471 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
1472 const int offset)
1473 {
1474 skb_reset_inner_transport_header(skb);
1475 skb->inner_transport_header += offset;
1476 }
1477
1478 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
1479 {
1480 return skb->head + skb->inner_network_header;
1481 }
1482
1483 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
1484 {
1485 skb->inner_network_header = skb->data - skb->head;
1486 }
1487
1488 static inline void skb_set_inner_network_header(struct sk_buff *skb,
1489 const int offset)
1490 {
1491 skb_reset_inner_network_header(skb);
1492 skb->inner_network_header += offset;
1493 }
1494
1495 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
1496 {
1497 return skb->transport_header != ~0U;
1498 }
1499
1500 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1501 {
1502 return skb->head + skb->transport_header;
1503 }
1504
1505 static inline void skb_reset_transport_header(struct sk_buff *skb)
1506 {
1507 skb->transport_header = skb->data - skb->head;
1508 }
1509
1510 static inline void skb_set_transport_header(struct sk_buff *skb,
1511 const int offset)
1512 {
1513 skb_reset_transport_header(skb);
1514 skb->transport_header += offset;
1515 }
1516
1517 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1518 {
1519 return skb->head + skb->network_header;
1520 }
1521
1522 static inline void skb_reset_network_header(struct sk_buff *skb)
1523 {
1524 skb->network_header = skb->data - skb->head;
1525 }
1526
1527 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1528 {
1529 skb_reset_network_header(skb);
1530 skb->network_header += offset;
1531 }
1532
1533 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1534 {
1535 return skb->head + skb->mac_header;
1536 }
1537
1538 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1539 {
1540 return skb->mac_header != ~0U;
1541 }
1542
1543 static inline void skb_reset_mac_header(struct sk_buff *skb)
1544 {
1545 skb->mac_header = skb->data - skb->head;
1546 }
1547
1548 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1549 {
1550 skb_reset_mac_header(skb);
1551 skb->mac_header += offset;
1552 }
1553
1554 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1555 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
1556 *skb)
1557 {
1558 return skb->inner_transport_header;
1559 }
1560
1561 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
1562 {
1563 skb->inner_transport_header = skb->data;
1564 }
1565
1566 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
1567 const int offset)
1568 {
1569 skb->inner_transport_header = skb->data + offset;
1570 }
1571
1572 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
1573 {
1574 return skb->inner_network_header;
1575 }
1576
1577 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
1578 {
1579 skb->inner_network_header = skb->data;
1580 }
1581
1582 static inline void skb_set_inner_network_header(struct sk_buff *skb,
1583 const int offset)
1584 {
1585 skb->inner_network_header = skb->data + offset;
1586 }
1587
1588 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
1589 {
1590 return skb->transport_header != NULL;
1591 }
1592
1593 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1594 {
1595 return skb->transport_header;
1596 }
1597
1598 static inline void skb_reset_transport_header(struct sk_buff *skb)
1599 {
1600 skb->transport_header = skb->data;
1601 }
1602
1603 static inline void skb_set_transport_header(struct sk_buff *skb,
1604 const int offset)
1605 {
1606 skb->transport_header = skb->data + offset;
1607 }
1608
1609 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1610 {
1611 return skb->network_header;
1612 }
1613
1614 static inline void skb_reset_network_header(struct sk_buff *skb)
1615 {
1616 skb->network_header = skb->data;
1617 }
1618
1619 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1620 {
1621 skb->network_header = skb->data + offset;
1622 }
1623
1624 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1625 {
1626 return skb->mac_header;
1627 }
1628
1629 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1630 {
1631 return skb->mac_header != NULL;
1632 }
1633
1634 static inline void skb_reset_mac_header(struct sk_buff *skb)
1635 {
1636 skb->mac_header = skb->data;
1637 }
1638
1639 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1640 {
1641 skb->mac_header = skb->data + offset;
1642 }
1643 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1644
1645 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
1646 {
1647 if (skb_mac_header_was_set(skb)) {
1648 const unsigned char *old_mac = skb_mac_header(skb);
1649
1650 skb_set_mac_header(skb, -skb->mac_len);
1651 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
1652 }
1653 }
1654
1655 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1656 {
1657 return skb->csum_start - skb_headroom(skb);
1658 }
1659
1660 static inline int skb_transport_offset(const struct sk_buff *skb)
1661 {
1662 return skb_transport_header(skb) - skb->data;
1663 }
1664
1665 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1666 {
1667 return skb->transport_header - skb->network_header;
1668 }
1669
1670 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
1671 {
1672 return skb->inner_transport_header - skb->inner_network_header;
1673 }
1674
1675 static inline int skb_network_offset(const struct sk_buff *skb)
1676 {
1677 return skb_network_header(skb) - skb->data;
1678 }
1679
1680 static inline int skb_inner_network_offset(const struct sk_buff *skb)
1681 {
1682 return skb_inner_network_header(skb) - skb->data;
1683 }
1684
1685 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1686 {
1687 return pskb_may_pull(skb, skb_network_offset(skb) + len);
1688 }
1689
1690 /*
1691 * CPUs often take a performance hit when accessing unaligned memory
1692 * locations. The actual performance hit varies, it can be small if the
1693 * hardware handles it or large if we have to take an exception and fix it
1694 * in software.
1695 *
1696 * Since an ethernet header is 14 bytes network drivers often end up with
1697 * the IP header at an unaligned offset. The IP header can be aligned by
1698 * shifting the start of the packet by 2 bytes. Drivers should do this
1699 * with:
1700 *
1701 * skb_reserve(skb, NET_IP_ALIGN);
1702 *
1703 * The downside to this alignment of the IP header is that the DMA is now
1704 * unaligned. On some architectures the cost of an unaligned DMA is high
1705 * and this cost outweighs the gains made by aligning the IP header.
1706 *
1707 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1708 * to be overridden.
1709 */
1710 #ifndef NET_IP_ALIGN
1711 #define NET_IP_ALIGN 2
1712 #endif
1713
1714 /*
1715 * The networking layer reserves some headroom in skb data (via
1716 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1717 * the header has to grow. In the default case, if the header has to grow
1718 * 32 bytes or less we avoid the reallocation.
1719 *
1720 * Unfortunately this headroom changes the DMA alignment of the resulting
1721 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1722 * on some architectures. An architecture can override this value,
1723 * perhaps setting it to a cacheline in size (since that will maintain
1724 * cacheline alignment of the DMA). It must be a power of 2.
1725 *
1726 * Various parts of the networking layer expect at least 32 bytes of
1727 * headroom, you should not reduce this.
1728 *
1729 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
1730 * to reduce average number of cache lines per packet.
1731 * get_rps_cpus() for example only access one 64 bytes aligned block :
1732 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
1733 */
1734 #ifndef NET_SKB_PAD
1735 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
1736 #endif
1737
1738 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1739
1740 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1741 {
1742 if (unlikely(skb_is_nonlinear(skb))) {
1743 WARN_ON(1);
1744 return;
1745 }
1746 skb->len = len;
1747 skb_set_tail_pointer(skb, len);
1748 }
1749
1750 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1751
1752 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1753 {
1754 if (skb->data_len)
1755 return ___pskb_trim(skb, len);
1756 __skb_trim(skb, len);
1757 return 0;
1758 }
1759
1760 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1761 {
1762 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1763 }
1764
1765 /**
1766 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1767 * @skb: buffer to alter
1768 * @len: new length
1769 *
1770 * This is identical to pskb_trim except that the caller knows that
1771 * the skb is not cloned so we should never get an error due to out-
1772 * of-memory.
1773 */
1774 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1775 {
1776 int err = pskb_trim(skb, len);
1777 BUG_ON(err);
1778 }
1779
1780 /**
1781 * skb_orphan - orphan a buffer
1782 * @skb: buffer to orphan
1783 *
1784 * If a buffer currently has an owner then we call the owner's
1785 * destructor function and make the @skb unowned. The buffer continues
1786 * to exist but is no longer charged to its former owner.
1787 */
1788 static inline void skb_orphan(struct sk_buff *skb)
1789 {
1790 if (skb->destructor)
1791 skb->destructor(skb);
1792 skb->destructor = NULL;
1793 skb->sk = NULL;
1794 }
1795
1796 /**
1797 * skb_orphan_frags - orphan the frags contained in a buffer
1798 * @skb: buffer to orphan frags from
1799 * @gfp_mask: allocation mask for replacement pages
1800 *
1801 * For each frag in the SKB which needs a destructor (i.e. has an
1802 * owner) create a copy of that frag and release the original
1803 * page by calling the destructor.
1804 */
1805 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
1806 {
1807 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
1808 return 0;
1809 return skb_copy_ubufs(skb, gfp_mask);
1810 }
1811
1812 /**
1813 * __skb_queue_purge - empty a list
1814 * @list: list to empty
1815 *
1816 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1817 * the list and one reference dropped. This function does not take the
1818 * list lock and the caller must hold the relevant locks to use it.
1819 */
1820 extern void skb_queue_purge(struct sk_buff_head *list);
1821 static inline void __skb_queue_purge(struct sk_buff_head *list)
1822 {
1823 struct sk_buff *skb;
1824 while ((skb = __skb_dequeue(list)) != NULL)
1825 kfree_skb(skb);
1826 }
1827
1828 extern void *netdev_alloc_frag(unsigned int fragsz);
1829
1830 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1831 unsigned int length,
1832 gfp_t gfp_mask);
1833
1834 /**
1835 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1836 * @dev: network device to receive on
1837 * @length: length to allocate
1838 *
1839 * Allocate a new &sk_buff and assign it a usage count of one. The
1840 * buffer has unspecified headroom built in. Users should allocate
1841 * the headroom they think they need without accounting for the
1842 * built in space. The built in space is used for optimisations.
1843 *
1844 * %NULL is returned if there is no free memory. Although this function
1845 * allocates memory it can be called from an interrupt.
1846 */
1847 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1848 unsigned int length)
1849 {
1850 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1851 }
1852
1853 /* legacy helper around __netdev_alloc_skb() */
1854 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1855 gfp_t gfp_mask)
1856 {
1857 return __netdev_alloc_skb(NULL, length, gfp_mask);
1858 }
1859
1860 /* legacy helper around netdev_alloc_skb() */
1861 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1862 {
1863 return netdev_alloc_skb(NULL, length);
1864 }
1865
1866
1867 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
1868 unsigned int length, gfp_t gfp)
1869 {
1870 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
1871
1872 if (NET_IP_ALIGN && skb)
1873 skb_reserve(skb, NET_IP_ALIGN);
1874 return skb;
1875 }
1876
1877 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
1878 unsigned int length)
1879 {
1880 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
1881 }
1882
1883 /*
1884 * __skb_alloc_page - allocate pages for ps-rx on a skb and preserve pfmemalloc data
1885 * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX
1886 * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used
1887 * @order: size of the allocation
1888 *
1889 * Allocate a new page.
1890 *
1891 * %NULL is returned if there is no free memory.
1892 */
1893 static inline struct page *__skb_alloc_pages(gfp_t gfp_mask,
1894 struct sk_buff *skb,
1895 unsigned int order)
1896 {
1897 struct page *page;
1898
1899 gfp_mask |= __GFP_COLD;
1900
1901 if (!(gfp_mask & __GFP_NOMEMALLOC))
1902 gfp_mask |= __GFP_MEMALLOC;
1903
1904 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
1905 if (skb && page && page->pfmemalloc)
1906 skb->pfmemalloc = true;
1907
1908 return page;
1909 }
1910
1911 /**
1912 * __skb_alloc_page - allocate a page for ps-rx for a given skb and preserve pfmemalloc data
1913 * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX
1914 * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used
1915 *
1916 * Allocate a new page.
1917 *
1918 * %NULL is returned if there is no free memory.
1919 */
1920 static inline struct page *__skb_alloc_page(gfp_t gfp_mask,
1921 struct sk_buff *skb)
1922 {
1923 return __skb_alloc_pages(gfp_mask, skb, 0);
1924 }
1925
1926 /**
1927 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
1928 * @page: The page that was allocated from skb_alloc_page
1929 * @skb: The skb that may need pfmemalloc set
1930 */
1931 static inline void skb_propagate_pfmemalloc(struct page *page,
1932 struct sk_buff *skb)
1933 {
1934 if (page && page->pfmemalloc)
1935 skb->pfmemalloc = true;
1936 }
1937
1938 /**
1939 * skb_frag_page - retrieve the page refered to by a paged fragment
1940 * @frag: the paged fragment
1941 *
1942 * Returns the &struct page associated with @frag.
1943 */
1944 static inline struct page *skb_frag_page(const skb_frag_t *frag)
1945 {
1946 return frag->page.p;
1947 }
1948
1949 /**
1950 * __skb_frag_ref - take an addition reference on a paged fragment.
1951 * @frag: the paged fragment
1952 *
1953 * Takes an additional reference on the paged fragment @frag.
1954 */
1955 static inline void __skb_frag_ref(skb_frag_t *frag)
1956 {
1957 get_page(skb_frag_page(frag));
1958 }
1959
1960 /**
1961 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
1962 * @skb: the buffer
1963 * @f: the fragment offset.
1964 *
1965 * Takes an additional reference on the @f'th paged fragment of @skb.
1966 */
1967 static inline void skb_frag_ref(struct sk_buff *skb, int f)
1968 {
1969 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
1970 }
1971
1972 /**
1973 * __skb_frag_unref - release a reference on a paged fragment.
1974 * @frag: the paged fragment
1975 *
1976 * Releases a reference on the paged fragment @frag.
1977 */
1978 static inline void __skb_frag_unref(skb_frag_t *frag)
1979 {
1980 put_page(skb_frag_page(frag));
1981 }
1982
1983 /**
1984 * skb_frag_unref - release a reference on a paged fragment of an skb.
1985 * @skb: the buffer
1986 * @f: the fragment offset
1987 *
1988 * Releases a reference on the @f'th paged fragment of @skb.
1989 */
1990 static inline void skb_frag_unref(struct sk_buff *skb, int f)
1991 {
1992 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
1993 }
1994
1995 /**
1996 * skb_frag_address - gets the address of the data contained in a paged fragment
1997 * @frag: the paged fragment buffer
1998 *
1999 * Returns the address of the data within @frag. The page must already
2000 * be mapped.
2001 */
2002 static inline void *skb_frag_address(const skb_frag_t *frag)
2003 {
2004 return page_address(skb_frag_page(frag)) + frag->page_offset;
2005 }
2006
2007 /**
2008 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2009 * @frag: the paged fragment buffer
2010 *
2011 * Returns the address of the data within @frag. Checks that the page
2012 * is mapped and returns %NULL otherwise.
2013 */
2014 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2015 {
2016 void *ptr = page_address(skb_frag_page(frag));
2017 if (unlikely(!ptr))
2018 return NULL;
2019
2020 return ptr + frag->page_offset;
2021 }
2022
2023 /**
2024 * __skb_frag_set_page - sets the page contained in a paged fragment
2025 * @frag: the paged fragment
2026 * @page: the page to set
2027 *
2028 * Sets the fragment @frag to contain @page.
2029 */
2030 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2031 {
2032 frag->page.p = page;
2033 }
2034
2035 /**
2036 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2037 * @skb: the buffer
2038 * @f: the fragment offset
2039 * @page: the page to set
2040 *
2041 * Sets the @f'th fragment of @skb to contain @page.
2042 */
2043 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2044 struct page *page)
2045 {
2046 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2047 }
2048
2049 /**
2050 * skb_frag_dma_map - maps a paged fragment via the DMA API
2051 * @dev: the device to map the fragment to
2052 * @frag: the paged fragment to map
2053 * @offset: the offset within the fragment (starting at the
2054 * fragment's own offset)
2055 * @size: the number of bytes to map
2056 * @dir: the direction of the mapping (%PCI_DMA_*)
2057 *
2058 * Maps the page associated with @frag to @device.
2059 */
2060 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2061 const skb_frag_t *frag,
2062 size_t offset, size_t size,
2063 enum dma_data_direction dir)
2064 {
2065 return dma_map_page(dev, skb_frag_page(frag),
2066 frag->page_offset + offset, size, dir);
2067 }
2068
2069 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2070 gfp_t gfp_mask)
2071 {
2072 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2073 }
2074
2075 /**
2076 * skb_clone_writable - is the header of a clone writable
2077 * @skb: buffer to check
2078 * @len: length up to which to write
2079 *
2080 * Returns true if modifying the header part of the cloned buffer
2081 * does not requires the data to be copied.
2082 */
2083 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2084 {
2085 return !skb_header_cloned(skb) &&
2086 skb_headroom(skb) + len <= skb->hdr_len;
2087 }
2088
2089 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2090 int cloned)
2091 {
2092 int delta = 0;
2093
2094 if (headroom > skb_headroom(skb))
2095 delta = headroom - skb_headroom(skb);
2096
2097 if (delta || cloned)
2098 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2099 GFP_ATOMIC);
2100 return 0;
2101 }
2102
2103 /**
2104 * skb_cow - copy header of skb when it is required
2105 * @skb: buffer to cow
2106 * @headroom: needed headroom
2107 *
2108 * If the skb passed lacks sufficient headroom or its data part
2109 * is shared, data is reallocated. If reallocation fails, an error
2110 * is returned and original skb is not changed.
2111 *
2112 * The result is skb with writable area skb->head...skb->tail
2113 * and at least @headroom of space at head.
2114 */
2115 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2116 {
2117 return __skb_cow(skb, headroom, skb_cloned(skb));
2118 }
2119
2120 /**
2121 * skb_cow_head - skb_cow but only making the head writable
2122 * @skb: buffer to cow
2123 * @headroom: needed headroom
2124 *
2125 * This function is identical to skb_cow except that we replace the
2126 * skb_cloned check by skb_header_cloned. It should be used when
2127 * you only need to push on some header and do not need to modify
2128 * the data.
2129 */
2130 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2131 {
2132 return __skb_cow(skb, headroom, skb_header_cloned(skb));
2133 }
2134
2135 /**
2136 * skb_padto - pad an skbuff up to a minimal size
2137 * @skb: buffer to pad
2138 * @len: minimal length
2139 *
2140 * Pads up a buffer to ensure the trailing bytes exist and are
2141 * blanked. If the buffer already contains sufficient data it
2142 * is untouched. Otherwise it is extended. Returns zero on
2143 * success. The skb is freed on error.
2144 */
2145
2146 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2147 {
2148 unsigned int size = skb->len;
2149 if (likely(size >= len))
2150 return 0;
2151 return skb_pad(skb, len - size);
2152 }
2153
2154 static inline int skb_add_data(struct sk_buff *skb,
2155 char __user *from, int copy)
2156 {
2157 const int off = skb->len;
2158
2159 if (skb->ip_summed == CHECKSUM_NONE) {
2160 int err = 0;
2161 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
2162 copy, 0, &err);
2163 if (!err) {
2164 skb->csum = csum_block_add(skb->csum, csum, off);
2165 return 0;
2166 }
2167 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
2168 return 0;
2169
2170 __skb_trim(skb, off);
2171 return -EFAULT;
2172 }
2173
2174 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2175 const struct page *page, int off)
2176 {
2177 if (i) {
2178 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
2179
2180 return page == skb_frag_page(frag) &&
2181 off == frag->page_offset + skb_frag_size(frag);
2182 }
2183 return false;
2184 }
2185
2186 static inline int __skb_linearize(struct sk_buff *skb)
2187 {
2188 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2189 }
2190
2191 /**
2192 * skb_linearize - convert paged skb to linear one
2193 * @skb: buffer to linarize
2194 *
2195 * If there is no free memory -ENOMEM is returned, otherwise zero
2196 * is returned and the old skb data released.
2197 */
2198 static inline int skb_linearize(struct sk_buff *skb)
2199 {
2200 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2201 }
2202
2203 /**
2204 * skb_linearize_cow - make sure skb is linear and writable
2205 * @skb: buffer to process
2206 *
2207 * If there is no free memory -ENOMEM is returned, otherwise zero
2208 * is returned and the old skb data released.
2209 */
2210 static inline int skb_linearize_cow(struct sk_buff *skb)
2211 {
2212 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2213 __skb_linearize(skb) : 0;
2214 }
2215
2216 /**
2217 * skb_postpull_rcsum - update checksum for received skb after pull
2218 * @skb: buffer to update
2219 * @start: start of data before pull
2220 * @len: length of data pulled
2221 *
2222 * After doing a pull on a received packet, you need to call this to
2223 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2224 * CHECKSUM_NONE so that it can be recomputed from scratch.
2225 */
2226
2227 static inline void skb_postpull_rcsum(struct sk_buff *skb,
2228 const void *start, unsigned int len)
2229 {
2230 if (skb->ip_summed == CHECKSUM_COMPLETE)
2231 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2232 }
2233
2234 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2235
2236 /**
2237 * pskb_trim_rcsum - trim received skb and update checksum
2238 * @skb: buffer to trim
2239 * @len: new length
2240 *
2241 * This is exactly the same as pskb_trim except that it ensures the
2242 * checksum of received packets are still valid after the operation.
2243 */
2244
2245 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2246 {
2247 if (likely(len >= skb->len))
2248 return 0;
2249 if (skb->ip_summed == CHECKSUM_COMPLETE)
2250 skb->ip_summed = CHECKSUM_NONE;
2251 return __pskb_trim(skb, len);
2252 }
2253
2254 #define skb_queue_walk(queue, skb) \
2255 for (skb = (queue)->next; \
2256 skb != (struct sk_buff *)(queue); \
2257 skb = skb->next)
2258
2259 #define skb_queue_walk_safe(queue, skb, tmp) \
2260 for (skb = (queue)->next, tmp = skb->next; \
2261 skb != (struct sk_buff *)(queue); \
2262 skb = tmp, tmp = skb->next)
2263
2264 #define skb_queue_walk_from(queue, skb) \
2265 for (; skb != (struct sk_buff *)(queue); \
2266 skb = skb->next)
2267
2268 #define skb_queue_walk_from_safe(queue, skb, tmp) \
2269 for (tmp = skb->next; \
2270 skb != (struct sk_buff *)(queue); \
2271 skb = tmp, tmp = skb->next)
2272
2273 #define skb_queue_reverse_walk(queue, skb) \
2274 for (skb = (queue)->prev; \
2275 skb != (struct sk_buff *)(queue); \
2276 skb = skb->prev)
2277
2278 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
2279 for (skb = (queue)->prev, tmp = skb->prev; \
2280 skb != (struct sk_buff *)(queue); \
2281 skb = tmp, tmp = skb->prev)
2282
2283 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
2284 for (tmp = skb->prev; \
2285 skb != (struct sk_buff *)(queue); \
2286 skb = tmp, tmp = skb->prev)
2287
2288 static inline bool skb_has_frag_list(const struct sk_buff *skb)
2289 {
2290 return skb_shinfo(skb)->frag_list != NULL;
2291 }
2292
2293 static inline void skb_frag_list_init(struct sk_buff *skb)
2294 {
2295 skb_shinfo(skb)->frag_list = NULL;
2296 }
2297
2298 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
2299 {
2300 frag->next = skb_shinfo(skb)->frag_list;
2301 skb_shinfo(skb)->frag_list = frag;
2302 }
2303
2304 #define skb_walk_frags(skb, iter) \
2305 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2306
2307 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2308 int *peeked, int *off, int *err);
2309 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
2310 int noblock, int *err);
2311 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
2312 struct poll_table_struct *wait);
2313 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
2314 int offset, struct iovec *to,
2315 int size);
2316 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
2317 int hlen,
2318 struct iovec *iov);
2319 extern int skb_copy_datagram_from_iovec(struct sk_buff *skb,
2320 int offset,
2321 const struct iovec *from,
2322 int from_offset,
2323 int len);
2324 extern int skb_copy_datagram_const_iovec(const struct sk_buff *from,
2325 int offset,
2326 const struct iovec *to,
2327 int to_offset,
2328 int size);
2329 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2330 extern void skb_free_datagram_locked(struct sock *sk,
2331 struct sk_buff *skb);
2332 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
2333 unsigned int flags);
2334 extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
2335 int len, __wsum csum);
2336 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
2337 void *to, int len);
2338 extern int skb_store_bits(struct sk_buff *skb, int offset,
2339 const void *from, int len);
2340 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
2341 int offset, u8 *to, int len,
2342 __wsum csum);
2343 extern int skb_splice_bits(struct sk_buff *skb,
2344 unsigned int offset,
2345 struct pipe_inode_info *pipe,
2346 unsigned int len,
2347 unsigned int flags);
2348 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2349 extern void skb_split(struct sk_buff *skb,
2350 struct sk_buff *skb1, const u32 len);
2351 extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
2352 int shiftlen);
2353
2354 extern struct sk_buff *skb_segment(struct sk_buff *skb,
2355 netdev_features_t features);
2356
2357 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
2358 int len, void *buffer)
2359 {
2360 int hlen = skb_headlen(skb);
2361
2362 if (hlen - offset >= len)
2363 return skb->data + offset;
2364
2365 if (skb_copy_bits(skb, offset, buffer, len) < 0)
2366 return NULL;
2367
2368 return buffer;
2369 }
2370
2371 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2372 void *to,
2373 const unsigned int len)
2374 {
2375 memcpy(to, skb->data, len);
2376 }
2377
2378 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2379 const int offset, void *to,
2380 const unsigned int len)
2381 {
2382 memcpy(to, skb->data + offset, len);
2383 }
2384
2385 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2386 const void *from,
2387 const unsigned int len)
2388 {
2389 memcpy(skb->data, from, len);
2390 }
2391
2392 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2393 const int offset,
2394 const void *from,
2395 const unsigned int len)
2396 {
2397 memcpy(skb->data + offset, from, len);
2398 }
2399
2400 extern void skb_init(void);
2401
2402 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2403 {
2404 return skb->tstamp;
2405 }
2406
2407 /**
2408 * skb_get_timestamp - get timestamp from a skb
2409 * @skb: skb to get stamp from
2410 * @stamp: pointer to struct timeval to store stamp in
2411 *
2412 * Timestamps are stored in the skb as offsets to a base timestamp.
2413 * This function converts the offset back to a struct timeval and stores
2414 * it in stamp.
2415 */
2416 static inline void skb_get_timestamp(const struct sk_buff *skb,
2417 struct timeval *stamp)
2418 {
2419 *stamp = ktime_to_timeval(skb->tstamp);
2420 }
2421
2422 static inline void skb_get_timestampns(const struct sk_buff *skb,
2423 struct timespec *stamp)
2424 {
2425 *stamp = ktime_to_timespec(skb->tstamp);
2426 }
2427
2428 static inline void __net_timestamp(struct sk_buff *skb)
2429 {
2430 skb->tstamp = ktime_get_real();
2431 }
2432
2433 static inline ktime_t net_timedelta(ktime_t t)
2434 {
2435 return ktime_sub(ktime_get_real(), t);
2436 }
2437
2438 static inline ktime_t net_invalid_timestamp(void)
2439 {
2440 return ktime_set(0, 0);
2441 }
2442
2443 extern void skb_timestamping_init(void);
2444
2445 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2446
2447 extern void skb_clone_tx_timestamp(struct sk_buff *skb);
2448 extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
2449
2450 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2451
2452 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2453 {
2454 }
2455
2456 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2457 {
2458 return false;
2459 }
2460
2461 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2462
2463 /**
2464 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2465 *
2466 * PHY drivers may accept clones of transmitted packets for
2467 * timestamping via their phy_driver.txtstamp method. These drivers
2468 * must call this function to return the skb back to the stack, with
2469 * or without a timestamp.
2470 *
2471 * @skb: clone of the the original outgoing packet
2472 * @hwtstamps: hardware time stamps, may be NULL if not available
2473 *
2474 */
2475 void skb_complete_tx_timestamp(struct sk_buff *skb,
2476 struct skb_shared_hwtstamps *hwtstamps);
2477
2478 /**
2479 * skb_tstamp_tx - queue clone of skb with send time stamps
2480 * @orig_skb: the original outgoing packet
2481 * @hwtstamps: hardware time stamps, may be NULL if not available
2482 *
2483 * If the skb has a socket associated, then this function clones the
2484 * skb (thus sharing the actual data and optional structures), stores
2485 * the optional hardware time stamping information (if non NULL) or
2486 * generates a software time stamp (otherwise), then queues the clone
2487 * to the error queue of the socket. Errors are silently ignored.
2488 */
2489 extern void skb_tstamp_tx(struct sk_buff *orig_skb,
2490 struct skb_shared_hwtstamps *hwtstamps);
2491
2492 static inline void sw_tx_timestamp(struct sk_buff *skb)
2493 {
2494 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2495 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2496 skb_tstamp_tx(skb, NULL);
2497 }
2498
2499 /**
2500 * skb_tx_timestamp() - Driver hook for transmit timestamping
2501 *
2502 * Ethernet MAC Drivers should call this function in their hard_xmit()
2503 * function immediately before giving the sk_buff to the MAC hardware.
2504 *
2505 * @skb: A socket buffer.
2506 */
2507 static inline void skb_tx_timestamp(struct sk_buff *skb)
2508 {
2509 skb_clone_tx_timestamp(skb);
2510 sw_tx_timestamp(skb);
2511 }
2512
2513 /**
2514 * skb_complete_wifi_ack - deliver skb with wifi status
2515 *
2516 * @skb: the original outgoing packet
2517 * @acked: ack status
2518 *
2519 */
2520 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
2521
2522 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2523 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
2524
2525 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2526 {
2527 return skb->ip_summed & CHECKSUM_UNNECESSARY;
2528 }
2529
2530 /**
2531 * skb_checksum_complete - Calculate checksum of an entire packet
2532 * @skb: packet to process
2533 *
2534 * This function calculates the checksum over the entire packet plus
2535 * the value of skb->csum. The latter can be used to supply the
2536 * checksum of a pseudo header as used by TCP/UDP. It returns the
2537 * checksum.
2538 *
2539 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
2540 * this function can be used to verify that checksum on received
2541 * packets. In that case the function should return zero if the
2542 * checksum is correct. In particular, this function will return zero
2543 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2544 * hardware has already verified the correctness of the checksum.
2545 */
2546 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2547 {
2548 return skb_csum_unnecessary(skb) ?
2549 0 : __skb_checksum_complete(skb);
2550 }
2551
2552 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2553 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
2554 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
2555 {
2556 if (nfct && atomic_dec_and_test(&nfct->use))
2557 nf_conntrack_destroy(nfct);
2558 }
2559 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
2560 {
2561 if (nfct)
2562 atomic_inc(&nfct->use);
2563 }
2564 #endif
2565 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2566 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
2567 {
2568 if (skb)
2569 atomic_inc(&skb->users);
2570 }
2571 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
2572 {
2573 if (skb)
2574 kfree_skb(skb);
2575 }
2576 #endif
2577 #ifdef CONFIG_BRIDGE_NETFILTER
2578 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
2579 {
2580 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
2581 kfree(nf_bridge);
2582 }
2583 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
2584 {
2585 if (nf_bridge)
2586 atomic_inc(&nf_bridge->use);
2587 }
2588 #endif /* CONFIG_BRIDGE_NETFILTER */
2589 static inline void nf_reset(struct sk_buff *skb)
2590 {
2591 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2592 nf_conntrack_put(skb->nfct);
2593 skb->nfct = NULL;
2594 #endif
2595 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2596 nf_conntrack_put_reasm(skb->nfct_reasm);
2597 skb->nfct_reasm = NULL;
2598 #endif
2599 #ifdef CONFIG_BRIDGE_NETFILTER
2600 nf_bridge_put(skb->nf_bridge);
2601 skb->nf_bridge = NULL;
2602 #endif
2603 }
2604
2605 /* Note: This doesn't put any conntrack and bridge info in dst. */
2606 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2607 {
2608 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2609 dst->nfct = src->nfct;
2610 nf_conntrack_get(src->nfct);
2611 dst->nfctinfo = src->nfctinfo;
2612 #endif
2613 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2614 dst->nfct_reasm = src->nfct_reasm;
2615 nf_conntrack_get_reasm(src->nfct_reasm);
2616 #endif
2617 #ifdef CONFIG_BRIDGE_NETFILTER
2618 dst->nf_bridge = src->nf_bridge;
2619 nf_bridge_get(src->nf_bridge);
2620 #endif
2621 }
2622
2623 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2624 {
2625 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2626 nf_conntrack_put(dst->nfct);
2627 #endif
2628 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2629 nf_conntrack_put_reasm(dst->nfct_reasm);
2630 #endif
2631 #ifdef CONFIG_BRIDGE_NETFILTER
2632 nf_bridge_put(dst->nf_bridge);
2633 #endif
2634 __nf_copy(dst, src);
2635 }
2636
2637 #ifdef CONFIG_NETWORK_SECMARK
2638 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2639 {
2640 to->secmark = from->secmark;
2641 }
2642
2643 static inline void skb_init_secmark(struct sk_buff *skb)
2644 {
2645 skb->secmark = 0;
2646 }
2647 #else
2648 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2649 { }
2650
2651 static inline void skb_init_secmark(struct sk_buff *skb)
2652 { }
2653 #endif
2654
2655 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2656 {
2657 skb->queue_mapping = queue_mapping;
2658 }
2659
2660 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2661 {
2662 return skb->queue_mapping;
2663 }
2664
2665 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2666 {
2667 to->queue_mapping = from->queue_mapping;
2668 }
2669
2670 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2671 {
2672 skb->queue_mapping = rx_queue + 1;
2673 }
2674
2675 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2676 {
2677 return skb->queue_mapping - 1;
2678 }
2679
2680 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2681 {
2682 return skb->queue_mapping != 0;
2683 }
2684
2685 extern u16 __skb_tx_hash(const struct net_device *dev,
2686 const struct sk_buff *skb,
2687 unsigned int num_tx_queues);
2688
2689 #ifdef CONFIG_XFRM
2690 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2691 {
2692 return skb->sp;
2693 }
2694 #else
2695 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2696 {
2697 return NULL;
2698 }
2699 #endif
2700
2701 static inline bool skb_is_gso(const struct sk_buff *skb)
2702 {
2703 return skb_shinfo(skb)->gso_size;
2704 }
2705
2706 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
2707 {
2708 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2709 }
2710
2711 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2712
2713 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2714 {
2715 /* LRO sets gso_size but not gso_type, whereas if GSO is really
2716 * wanted then gso_type will be set. */
2717 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2718
2719 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
2720 unlikely(shinfo->gso_type == 0)) {
2721 __skb_warn_lro_forwarding(skb);
2722 return true;
2723 }
2724 return false;
2725 }
2726
2727 static inline void skb_forward_csum(struct sk_buff *skb)
2728 {
2729 /* Unfortunately we don't support this one. Any brave souls? */
2730 if (skb->ip_summed == CHECKSUM_COMPLETE)
2731 skb->ip_summed = CHECKSUM_NONE;
2732 }
2733
2734 /**
2735 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
2736 * @skb: skb to check
2737 *
2738 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
2739 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
2740 * use this helper, to document places where we make this assertion.
2741 */
2742 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
2743 {
2744 #ifdef DEBUG
2745 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
2746 #endif
2747 }
2748
2749 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2750
2751 /**
2752 * skb_head_is_locked - Determine if the skb->head is locked down
2753 * @skb: skb to check
2754 *
2755 * The head on skbs build around a head frag can be removed if they are
2756 * not cloned. This function returns true if the skb head is locked down
2757 * due to either being allocated via kmalloc, or by being a clone with
2758 * multiple references to the head.
2759 */
2760 static inline bool skb_head_is_locked(const struct sk_buff *skb)
2761 {
2762 return !skb->head_frag || skb_cloned(skb);
2763 }
2764 #endif /* __KERNEL__ */
2765 #endif /* _LINUX_SKBUFF_H */
This page took 0.130267 seconds and 5 git commands to generate.