net: convert core to skb paged frag APIs
[deliverable/linux.git] / include / linux / skbuff.h
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/cache.h>
22
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/dmaengine.h>
31 #include <linux/hrtimer.h>
32 #include <linux/dma-mapping.h>
33
34 /* Don't change this without changing skb_csum_unnecessary! */
35 #define CHECKSUM_NONE 0
36 #define CHECKSUM_UNNECESSARY 1
37 #define CHECKSUM_COMPLETE 2
38 #define CHECKSUM_PARTIAL 3
39
40 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
41 ~(SMP_CACHE_BYTES - 1))
42 #define SKB_WITH_OVERHEAD(X) \
43 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
44 #define SKB_MAX_ORDER(X, ORDER) \
45 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
46 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
47 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
48
49 /* A. Checksumming of received packets by device.
50 *
51 * NONE: device failed to checksum this packet.
52 * skb->csum is undefined.
53 *
54 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
55 * skb->csum is undefined.
56 * It is bad option, but, unfortunately, many of vendors do this.
57 * Apparently with secret goal to sell you new device, when you
58 * will add new protocol to your host. F.e. IPv6. 8)
59 *
60 * COMPLETE: the most generic way. Device supplied checksum of _all_
61 * the packet as seen by netif_rx in skb->csum.
62 * NOTE: Even if device supports only some protocols, but
63 * is able to produce some skb->csum, it MUST use COMPLETE,
64 * not UNNECESSARY.
65 *
66 * PARTIAL: identical to the case for output below. This may occur
67 * on a packet received directly from another Linux OS, e.g.,
68 * a virtualised Linux kernel on the same host. The packet can
69 * be treated in the same way as UNNECESSARY except that on
70 * output (i.e., forwarding) the checksum must be filled in
71 * by the OS or the hardware.
72 *
73 * B. Checksumming on output.
74 *
75 * NONE: skb is checksummed by protocol or csum is not required.
76 *
77 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
78 * from skb->csum_start to the end and to record the checksum
79 * at skb->csum_start + skb->csum_offset.
80 *
81 * Device must show its capabilities in dev->features, set
82 * at device setup time.
83 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
84 * everything.
85 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
86 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
87 * TCP/UDP over IPv4. Sigh. Vendors like this
88 * way by an unknown reason. Though, see comment above
89 * about CHECKSUM_UNNECESSARY. 8)
90 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
91 *
92 * Any questions? No questions, good. --ANK
93 */
94
95 struct net_device;
96 struct scatterlist;
97 struct pipe_inode_info;
98
99 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
100 struct nf_conntrack {
101 atomic_t use;
102 };
103 #endif
104
105 #ifdef CONFIG_BRIDGE_NETFILTER
106 struct nf_bridge_info {
107 atomic_t use;
108 struct net_device *physindev;
109 struct net_device *physoutdev;
110 unsigned int mask;
111 unsigned long data[32 / sizeof(unsigned long)];
112 };
113 #endif
114
115 struct sk_buff_head {
116 /* These two members must be first. */
117 struct sk_buff *next;
118 struct sk_buff *prev;
119
120 __u32 qlen;
121 spinlock_t lock;
122 };
123
124 struct sk_buff;
125
126 /* To allow 64K frame to be packed as single skb without frag_list. Since
127 * GRO uses frags we allocate at least 16 regardless of page size.
128 */
129 #if (65536/PAGE_SIZE + 2) < 16
130 #define MAX_SKB_FRAGS 16UL
131 #else
132 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
133 #endif
134
135 typedef struct skb_frag_struct skb_frag_t;
136
137 struct skb_frag_struct {
138 struct page *page;
139 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
140 __u32 page_offset;
141 __u32 size;
142 #else
143 __u16 page_offset;
144 __u16 size;
145 #endif
146 };
147
148 #define HAVE_HW_TIME_STAMP
149
150 /**
151 * struct skb_shared_hwtstamps - hardware time stamps
152 * @hwtstamp: hardware time stamp transformed into duration
153 * since arbitrary point in time
154 * @syststamp: hwtstamp transformed to system time base
155 *
156 * Software time stamps generated by ktime_get_real() are stored in
157 * skb->tstamp. The relation between the different kinds of time
158 * stamps is as follows:
159 *
160 * syststamp and tstamp can be compared against each other in
161 * arbitrary combinations. The accuracy of a
162 * syststamp/tstamp/"syststamp from other device" comparison is
163 * limited by the accuracy of the transformation into system time
164 * base. This depends on the device driver and its underlying
165 * hardware.
166 *
167 * hwtstamps can only be compared against other hwtstamps from
168 * the same device.
169 *
170 * This structure is attached to packets as part of the
171 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
172 */
173 struct skb_shared_hwtstamps {
174 ktime_t hwtstamp;
175 ktime_t syststamp;
176 };
177
178 /* Definitions for tx_flags in struct skb_shared_info */
179 enum {
180 /* generate hardware time stamp */
181 SKBTX_HW_TSTAMP = 1 << 0,
182
183 /* generate software time stamp */
184 SKBTX_SW_TSTAMP = 1 << 1,
185
186 /* device driver is going to provide hardware time stamp */
187 SKBTX_IN_PROGRESS = 1 << 2,
188
189 /* ensure the originating sk reference is available on driver level */
190 SKBTX_DRV_NEEDS_SK_REF = 1 << 3,
191
192 /* device driver supports TX zero-copy buffers */
193 SKBTX_DEV_ZEROCOPY = 1 << 4,
194 };
195
196 /*
197 * The callback notifies userspace to release buffers when skb DMA is done in
198 * lower device, the skb last reference should be 0 when calling this.
199 * The desc is used to track userspace buffer index.
200 */
201 struct ubuf_info {
202 void (*callback)(void *);
203 void *arg;
204 unsigned long desc;
205 };
206
207 /* This data is invariant across clones and lives at
208 * the end of the header data, ie. at skb->end.
209 */
210 struct skb_shared_info {
211 unsigned short nr_frags;
212 unsigned short gso_size;
213 /* Warning: this field is not always filled in (UFO)! */
214 unsigned short gso_segs;
215 unsigned short gso_type;
216 __be32 ip6_frag_id;
217 __u8 tx_flags;
218 struct sk_buff *frag_list;
219 struct skb_shared_hwtstamps hwtstamps;
220
221 /*
222 * Warning : all fields before dataref are cleared in __alloc_skb()
223 */
224 atomic_t dataref;
225
226 /* Intermediate layers must ensure that destructor_arg
227 * remains valid until skb destructor */
228 void * destructor_arg;
229
230 /* must be last field, see pskb_expand_head() */
231 skb_frag_t frags[MAX_SKB_FRAGS];
232 };
233
234 /* We divide dataref into two halves. The higher 16 bits hold references
235 * to the payload part of skb->data. The lower 16 bits hold references to
236 * the entire skb->data. A clone of a headerless skb holds the length of
237 * the header in skb->hdr_len.
238 *
239 * All users must obey the rule that the skb->data reference count must be
240 * greater than or equal to the payload reference count.
241 *
242 * Holding a reference to the payload part means that the user does not
243 * care about modifications to the header part of skb->data.
244 */
245 #define SKB_DATAREF_SHIFT 16
246 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
247
248
249 enum {
250 SKB_FCLONE_UNAVAILABLE,
251 SKB_FCLONE_ORIG,
252 SKB_FCLONE_CLONE,
253 };
254
255 enum {
256 SKB_GSO_TCPV4 = 1 << 0,
257 SKB_GSO_UDP = 1 << 1,
258
259 /* This indicates the skb is from an untrusted source. */
260 SKB_GSO_DODGY = 1 << 2,
261
262 /* This indicates the tcp segment has CWR set. */
263 SKB_GSO_TCP_ECN = 1 << 3,
264
265 SKB_GSO_TCPV6 = 1 << 4,
266
267 SKB_GSO_FCOE = 1 << 5,
268 };
269
270 #if BITS_PER_LONG > 32
271 #define NET_SKBUFF_DATA_USES_OFFSET 1
272 #endif
273
274 #ifdef NET_SKBUFF_DATA_USES_OFFSET
275 typedef unsigned int sk_buff_data_t;
276 #else
277 typedef unsigned char *sk_buff_data_t;
278 #endif
279
280 #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
281 defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
282 #define NET_SKBUFF_NF_DEFRAG_NEEDED 1
283 #endif
284
285 /**
286 * struct sk_buff - socket buffer
287 * @next: Next buffer in list
288 * @prev: Previous buffer in list
289 * @tstamp: Time we arrived
290 * @sk: Socket we are owned by
291 * @dev: Device we arrived on/are leaving by
292 * @cb: Control buffer. Free for use by every layer. Put private vars here
293 * @_skb_refdst: destination entry (with norefcount bit)
294 * @sp: the security path, used for xfrm
295 * @len: Length of actual data
296 * @data_len: Data length
297 * @mac_len: Length of link layer header
298 * @hdr_len: writable header length of cloned skb
299 * @csum: Checksum (must include start/offset pair)
300 * @csum_start: Offset from skb->head where checksumming should start
301 * @csum_offset: Offset from csum_start where checksum should be stored
302 * @priority: Packet queueing priority
303 * @local_df: allow local fragmentation
304 * @cloned: Head may be cloned (check refcnt to be sure)
305 * @ip_summed: Driver fed us an IP checksum
306 * @nohdr: Payload reference only, must not modify header
307 * @nfctinfo: Relationship of this skb to the connection
308 * @pkt_type: Packet class
309 * @fclone: skbuff clone status
310 * @ipvs_property: skbuff is owned by ipvs
311 * @peeked: this packet has been seen already, so stats have been
312 * done for it, don't do them again
313 * @nf_trace: netfilter packet trace flag
314 * @protocol: Packet protocol from driver
315 * @destructor: Destruct function
316 * @nfct: Associated connection, if any
317 * @nfct_reasm: netfilter conntrack re-assembly pointer
318 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
319 * @skb_iif: ifindex of device we arrived on
320 * @tc_index: Traffic control index
321 * @tc_verd: traffic control verdict
322 * @rxhash: the packet hash computed on receive
323 * @queue_mapping: Queue mapping for multiqueue devices
324 * @ndisc_nodetype: router type (from link layer)
325 * @ooo_okay: allow the mapping of a socket to a queue to be changed
326 * @l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport
327 * ports.
328 * @dma_cookie: a cookie to one of several possible DMA operations
329 * done by skb DMA functions
330 * @secmark: security marking
331 * @mark: Generic packet mark
332 * @dropcount: total number of sk_receive_queue overflows
333 * @vlan_tci: vlan tag control information
334 * @transport_header: Transport layer header
335 * @network_header: Network layer header
336 * @mac_header: Link layer header
337 * @tail: Tail pointer
338 * @end: End pointer
339 * @head: Head of buffer
340 * @data: Data head pointer
341 * @truesize: Buffer size
342 * @users: User count - see {datagram,tcp}.c
343 */
344
345 struct sk_buff {
346 /* These two members must be first. */
347 struct sk_buff *next;
348 struct sk_buff *prev;
349
350 ktime_t tstamp;
351
352 struct sock *sk;
353 struct net_device *dev;
354
355 /*
356 * This is the control buffer. It is free to use for every
357 * layer. Please put your private variables there. If you
358 * want to keep them across layers you have to do a skb_clone()
359 * first. This is owned by whoever has the skb queued ATM.
360 */
361 char cb[48] __aligned(8);
362
363 unsigned long _skb_refdst;
364 #ifdef CONFIG_XFRM
365 struct sec_path *sp;
366 #endif
367 unsigned int len,
368 data_len;
369 __u16 mac_len,
370 hdr_len;
371 union {
372 __wsum csum;
373 struct {
374 __u16 csum_start;
375 __u16 csum_offset;
376 };
377 };
378 __u32 priority;
379 kmemcheck_bitfield_begin(flags1);
380 __u8 local_df:1,
381 cloned:1,
382 ip_summed:2,
383 nohdr:1,
384 nfctinfo:3;
385 __u8 pkt_type:3,
386 fclone:2,
387 ipvs_property:1,
388 peeked:1,
389 nf_trace:1;
390 kmemcheck_bitfield_end(flags1);
391 __be16 protocol;
392
393 void (*destructor)(struct sk_buff *skb);
394 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
395 struct nf_conntrack *nfct;
396 #endif
397 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
398 struct sk_buff *nfct_reasm;
399 #endif
400 #ifdef CONFIG_BRIDGE_NETFILTER
401 struct nf_bridge_info *nf_bridge;
402 #endif
403
404 int skb_iif;
405 #ifdef CONFIG_NET_SCHED
406 __u16 tc_index; /* traffic control index */
407 #ifdef CONFIG_NET_CLS_ACT
408 __u16 tc_verd; /* traffic control verdict */
409 #endif
410 #endif
411
412 __u32 rxhash;
413
414 __u16 queue_mapping;
415 kmemcheck_bitfield_begin(flags2);
416 #ifdef CONFIG_IPV6_NDISC_NODETYPE
417 __u8 ndisc_nodetype:2;
418 #endif
419 __u8 ooo_okay:1;
420 __u8 l4_rxhash:1;
421 kmemcheck_bitfield_end(flags2);
422
423 /* 0/13 bit hole */
424
425 #ifdef CONFIG_NET_DMA
426 dma_cookie_t dma_cookie;
427 #endif
428 #ifdef CONFIG_NETWORK_SECMARK
429 __u32 secmark;
430 #endif
431 union {
432 __u32 mark;
433 __u32 dropcount;
434 };
435
436 __u16 vlan_tci;
437
438 sk_buff_data_t transport_header;
439 sk_buff_data_t network_header;
440 sk_buff_data_t mac_header;
441 /* These elements must be at the end, see alloc_skb() for details. */
442 sk_buff_data_t tail;
443 sk_buff_data_t end;
444 unsigned char *head,
445 *data;
446 unsigned int truesize;
447 atomic_t users;
448 };
449
450 #ifdef __KERNEL__
451 /*
452 * Handling routines are only of interest to the kernel
453 */
454 #include <linux/slab.h>
455
456 #include <asm/system.h>
457
458 /*
459 * skb might have a dst pointer attached, refcounted or not.
460 * _skb_refdst low order bit is set if refcount was _not_ taken
461 */
462 #define SKB_DST_NOREF 1UL
463 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
464
465 /**
466 * skb_dst - returns skb dst_entry
467 * @skb: buffer
468 *
469 * Returns skb dst_entry, regardless of reference taken or not.
470 */
471 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
472 {
473 /* If refdst was not refcounted, check we still are in a
474 * rcu_read_lock section
475 */
476 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
477 !rcu_read_lock_held() &&
478 !rcu_read_lock_bh_held());
479 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
480 }
481
482 /**
483 * skb_dst_set - sets skb dst
484 * @skb: buffer
485 * @dst: dst entry
486 *
487 * Sets skb dst, assuming a reference was taken on dst and should
488 * be released by skb_dst_drop()
489 */
490 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
491 {
492 skb->_skb_refdst = (unsigned long)dst;
493 }
494
495 extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst);
496
497 /**
498 * skb_dst_is_noref - Test if skb dst isn't refcounted
499 * @skb: buffer
500 */
501 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
502 {
503 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
504 }
505
506 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
507 {
508 return (struct rtable *)skb_dst(skb);
509 }
510
511 extern void kfree_skb(struct sk_buff *skb);
512 extern void consume_skb(struct sk_buff *skb);
513 extern void __kfree_skb(struct sk_buff *skb);
514 extern struct sk_buff *__alloc_skb(unsigned int size,
515 gfp_t priority, int fclone, int node);
516 static inline struct sk_buff *alloc_skb(unsigned int size,
517 gfp_t priority)
518 {
519 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
520 }
521
522 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
523 gfp_t priority)
524 {
525 return __alloc_skb(size, priority, 1, NUMA_NO_NODE);
526 }
527
528 extern bool skb_recycle_check(struct sk_buff *skb, int skb_size);
529
530 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
531 extern struct sk_buff *skb_clone(struct sk_buff *skb,
532 gfp_t priority);
533 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
534 gfp_t priority);
535 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
536 gfp_t gfp_mask);
537 extern int pskb_expand_head(struct sk_buff *skb,
538 int nhead, int ntail,
539 gfp_t gfp_mask);
540 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
541 unsigned int headroom);
542 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
543 int newheadroom, int newtailroom,
544 gfp_t priority);
545 extern int skb_to_sgvec(struct sk_buff *skb,
546 struct scatterlist *sg, int offset,
547 int len);
548 extern int skb_cow_data(struct sk_buff *skb, int tailbits,
549 struct sk_buff **trailer);
550 extern int skb_pad(struct sk_buff *skb, int pad);
551 #define dev_kfree_skb(a) consume_skb(a)
552
553 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
554 int getfrag(void *from, char *to, int offset,
555 int len,int odd, struct sk_buff *skb),
556 void *from, int length);
557
558 struct skb_seq_state {
559 __u32 lower_offset;
560 __u32 upper_offset;
561 __u32 frag_idx;
562 __u32 stepped_offset;
563 struct sk_buff *root_skb;
564 struct sk_buff *cur_skb;
565 __u8 *frag_data;
566 };
567
568 extern void skb_prepare_seq_read(struct sk_buff *skb,
569 unsigned int from, unsigned int to,
570 struct skb_seq_state *st);
571 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
572 struct skb_seq_state *st);
573 extern void skb_abort_seq_read(struct skb_seq_state *st);
574
575 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
576 unsigned int to, struct ts_config *config,
577 struct ts_state *state);
578
579 extern void __skb_get_rxhash(struct sk_buff *skb);
580 static inline __u32 skb_get_rxhash(struct sk_buff *skb)
581 {
582 if (!skb->rxhash)
583 __skb_get_rxhash(skb);
584
585 return skb->rxhash;
586 }
587
588 #ifdef NET_SKBUFF_DATA_USES_OFFSET
589 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
590 {
591 return skb->head + skb->end;
592 }
593 #else
594 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
595 {
596 return skb->end;
597 }
598 #endif
599
600 /* Internal */
601 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
602
603 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
604 {
605 return &skb_shinfo(skb)->hwtstamps;
606 }
607
608 /**
609 * skb_queue_empty - check if a queue is empty
610 * @list: queue head
611 *
612 * Returns true if the queue is empty, false otherwise.
613 */
614 static inline int skb_queue_empty(const struct sk_buff_head *list)
615 {
616 return list->next == (struct sk_buff *)list;
617 }
618
619 /**
620 * skb_queue_is_last - check if skb is the last entry in the queue
621 * @list: queue head
622 * @skb: buffer
623 *
624 * Returns true if @skb is the last buffer on the list.
625 */
626 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
627 const struct sk_buff *skb)
628 {
629 return skb->next == (struct sk_buff *)list;
630 }
631
632 /**
633 * skb_queue_is_first - check if skb is the first entry in the queue
634 * @list: queue head
635 * @skb: buffer
636 *
637 * Returns true if @skb is the first buffer on the list.
638 */
639 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
640 const struct sk_buff *skb)
641 {
642 return skb->prev == (struct sk_buff *)list;
643 }
644
645 /**
646 * skb_queue_next - return the next packet in the queue
647 * @list: queue head
648 * @skb: current buffer
649 *
650 * Return the next packet in @list after @skb. It is only valid to
651 * call this if skb_queue_is_last() evaluates to false.
652 */
653 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
654 const struct sk_buff *skb)
655 {
656 /* This BUG_ON may seem severe, but if we just return then we
657 * are going to dereference garbage.
658 */
659 BUG_ON(skb_queue_is_last(list, skb));
660 return skb->next;
661 }
662
663 /**
664 * skb_queue_prev - return the prev packet in the queue
665 * @list: queue head
666 * @skb: current buffer
667 *
668 * Return the prev packet in @list before @skb. It is only valid to
669 * call this if skb_queue_is_first() evaluates to false.
670 */
671 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
672 const struct sk_buff *skb)
673 {
674 /* This BUG_ON may seem severe, but if we just return then we
675 * are going to dereference garbage.
676 */
677 BUG_ON(skb_queue_is_first(list, skb));
678 return skb->prev;
679 }
680
681 /**
682 * skb_get - reference buffer
683 * @skb: buffer to reference
684 *
685 * Makes another reference to a socket buffer and returns a pointer
686 * to the buffer.
687 */
688 static inline struct sk_buff *skb_get(struct sk_buff *skb)
689 {
690 atomic_inc(&skb->users);
691 return skb;
692 }
693
694 /*
695 * If users == 1, we are the only owner and are can avoid redundant
696 * atomic change.
697 */
698
699 /**
700 * skb_cloned - is the buffer a clone
701 * @skb: buffer to check
702 *
703 * Returns true if the buffer was generated with skb_clone() and is
704 * one of multiple shared copies of the buffer. Cloned buffers are
705 * shared data so must not be written to under normal circumstances.
706 */
707 static inline int skb_cloned(const struct sk_buff *skb)
708 {
709 return skb->cloned &&
710 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
711 }
712
713 /**
714 * skb_header_cloned - is the header a clone
715 * @skb: buffer to check
716 *
717 * Returns true if modifying the header part of the buffer requires
718 * the data to be copied.
719 */
720 static inline int skb_header_cloned(const struct sk_buff *skb)
721 {
722 int dataref;
723
724 if (!skb->cloned)
725 return 0;
726
727 dataref = atomic_read(&skb_shinfo(skb)->dataref);
728 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
729 return dataref != 1;
730 }
731
732 /**
733 * skb_header_release - release reference to header
734 * @skb: buffer to operate on
735 *
736 * Drop a reference to the header part of the buffer. This is done
737 * by acquiring a payload reference. You must not read from the header
738 * part of skb->data after this.
739 */
740 static inline void skb_header_release(struct sk_buff *skb)
741 {
742 BUG_ON(skb->nohdr);
743 skb->nohdr = 1;
744 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
745 }
746
747 /**
748 * skb_shared - is the buffer shared
749 * @skb: buffer to check
750 *
751 * Returns true if more than one person has a reference to this
752 * buffer.
753 */
754 static inline int skb_shared(const struct sk_buff *skb)
755 {
756 return atomic_read(&skb->users) != 1;
757 }
758
759 /**
760 * skb_share_check - check if buffer is shared and if so clone it
761 * @skb: buffer to check
762 * @pri: priority for memory allocation
763 *
764 * If the buffer is shared the buffer is cloned and the old copy
765 * drops a reference. A new clone with a single reference is returned.
766 * If the buffer is not shared the original buffer is returned. When
767 * being called from interrupt status or with spinlocks held pri must
768 * be GFP_ATOMIC.
769 *
770 * NULL is returned on a memory allocation failure.
771 */
772 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
773 gfp_t pri)
774 {
775 might_sleep_if(pri & __GFP_WAIT);
776 if (skb_shared(skb)) {
777 struct sk_buff *nskb = skb_clone(skb, pri);
778 kfree_skb(skb);
779 skb = nskb;
780 }
781 return skb;
782 }
783
784 /*
785 * Copy shared buffers into a new sk_buff. We effectively do COW on
786 * packets to handle cases where we have a local reader and forward
787 * and a couple of other messy ones. The normal one is tcpdumping
788 * a packet thats being forwarded.
789 */
790
791 /**
792 * skb_unshare - make a copy of a shared buffer
793 * @skb: buffer to check
794 * @pri: priority for memory allocation
795 *
796 * If the socket buffer is a clone then this function creates a new
797 * copy of the data, drops a reference count on the old copy and returns
798 * the new copy with the reference count at 1. If the buffer is not a clone
799 * the original buffer is returned. When called with a spinlock held or
800 * from interrupt state @pri must be %GFP_ATOMIC
801 *
802 * %NULL is returned on a memory allocation failure.
803 */
804 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
805 gfp_t pri)
806 {
807 might_sleep_if(pri & __GFP_WAIT);
808 if (skb_cloned(skb)) {
809 struct sk_buff *nskb = skb_copy(skb, pri);
810 kfree_skb(skb); /* Free our shared copy */
811 skb = nskb;
812 }
813 return skb;
814 }
815
816 /**
817 * skb_peek - peek at the head of an &sk_buff_head
818 * @list_: list to peek at
819 *
820 * Peek an &sk_buff. Unlike most other operations you _MUST_
821 * be careful with this one. A peek leaves the buffer on the
822 * list and someone else may run off with it. You must hold
823 * the appropriate locks or have a private queue to do this.
824 *
825 * Returns %NULL for an empty list or a pointer to the head element.
826 * The reference count is not incremented and the reference is therefore
827 * volatile. Use with caution.
828 */
829 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
830 {
831 struct sk_buff *list = ((struct sk_buff *)list_)->next;
832 if (list == (struct sk_buff *)list_)
833 list = NULL;
834 return list;
835 }
836
837 /**
838 * skb_peek_tail - peek at the tail of an &sk_buff_head
839 * @list_: list to peek at
840 *
841 * Peek an &sk_buff. Unlike most other operations you _MUST_
842 * be careful with this one. A peek leaves the buffer on the
843 * list and someone else may run off with it. You must hold
844 * the appropriate locks or have a private queue to do this.
845 *
846 * Returns %NULL for an empty list or a pointer to the tail element.
847 * The reference count is not incremented and the reference is therefore
848 * volatile. Use with caution.
849 */
850 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
851 {
852 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
853 if (list == (struct sk_buff *)list_)
854 list = NULL;
855 return list;
856 }
857
858 /**
859 * skb_queue_len - get queue length
860 * @list_: list to measure
861 *
862 * Return the length of an &sk_buff queue.
863 */
864 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
865 {
866 return list_->qlen;
867 }
868
869 /**
870 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
871 * @list: queue to initialize
872 *
873 * This initializes only the list and queue length aspects of
874 * an sk_buff_head object. This allows to initialize the list
875 * aspects of an sk_buff_head without reinitializing things like
876 * the spinlock. It can also be used for on-stack sk_buff_head
877 * objects where the spinlock is known to not be used.
878 */
879 static inline void __skb_queue_head_init(struct sk_buff_head *list)
880 {
881 list->prev = list->next = (struct sk_buff *)list;
882 list->qlen = 0;
883 }
884
885 /*
886 * This function creates a split out lock class for each invocation;
887 * this is needed for now since a whole lot of users of the skb-queue
888 * infrastructure in drivers have different locking usage (in hardirq)
889 * than the networking core (in softirq only). In the long run either the
890 * network layer or drivers should need annotation to consolidate the
891 * main types of usage into 3 classes.
892 */
893 static inline void skb_queue_head_init(struct sk_buff_head *list)
894 {
895 spin_lock_init(&list->lock);
896 __skb_queue_head_init(list);
897 }
898
899 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
900 struct lock_class_key *class)
901 {
902 skb_queue_head_init(list);
903 lockdep_set_class(&list->lock, class);
904 }
905
906 /*
907 * Insert an sk_buff on a list.
908 *
909 * The "__skb_xxxx()" functions are the non-atomic ones that
910 * can only be called with interrupts disabled.
911 */
912 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
913 static inline void __skb_insert(struct sk_buff *newsk,
914 struct sk_buff *prev, struct sk_buff *next,
915 struct sk_buff_head *list)
916 {
917 newsk->next = next;
918 newsk->prev = prev;
919 next->prev = prev->next = newsk;
920 list->qlen++;
921 }
922
923 static inline void __skb_queue_splice(const struct sk_buff_head *list,
924 struct sk_buff *prev,
925 struct sk_buff *next)
926 {
927 struct sk_buff *first = list->next;
928 struct sk_buff *last = list->prev;
929
930 first->prev = prev;
931 prev->next = first;
932
933 last->next = next;
934 next->prev = last;
935 }
936
937 /**
938 * skb_queue_splice - join two skb lists, this is designed for stacks
939 * @list: the new list to add
940 * @head: the place to add it in the first list
941 */
942 static inline void skb_queue_splice(const struct sk_buff_head *list,
943 struct sk_buff_head *head)
944 {
945 if (!skb_queue_empty(list)) {
946 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
947 head->qlen += list->qlen;
948 }
949 }
950
951 /**
952 * skb_queue_splice - join two skb lists and reinitialise the emptied list
953 * @list: the new list to add
954 * @head: the place to add it in the first list
955 *
956 * The list at @list is reinitialised
957 */
958 static inline void skb_queue_splice_init(struct sk_buff_head *list,
959 struct sk_buff_head *head)
960 {
961 if (!skb_queue_empty(list)) {
962 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
963 head->qlen += list->qlen;
964 __skb_queue_head_init(list);
965 }
966 }
967
968 /**
969 * skb_queue_splice_tail - join two skb lists, each list being a queue
970 * @list: the new list to add
971 * @head: the place to add it in the first list
972 */
973 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
974 struct sk_buff_head *head)
975 {
976 if (!skb_queue_empty(list)) {
977 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
978 head->qlen += list->qlen;
979 }
980 }
981
982 /**
983 * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
984 * @list: the new list to add
985 * @head: the place to add it in the first list
986 *
987 * Each of the lists is a queue.
988 * The list at @list is reinitialised
989 */
990 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
991 struct sk_buff_head *head)
992 {
993 if (!skb_queue_empty(list)) {
994 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
995 head->qlen += list->qlen;
996 __skb_queue_head_init(list);
997 }
998 }
999
1000 /**
1001 * __skb_queue_after - queue a buffer at the list head
1002 * @list: list to use
1003 * @prev: place after this buffer
1004 * @newsk: buffer to queue
1005 *
1006 * Queue a buffer int the middle of a list. This function takes no locks
1007 * and you must therefore hold required locks before calling it.
1008 *
1009 * A buffer cannot be placed on two lists at the same time.
1010 */
1011 static inline void __skb_queue_after(struct sk_buff_head *list,
1012 struct sk_buff *prev,
1013 struct sk_buff *newsk)
1014 {
1015 __skb_insert(newsk, prev, prev->next, list);
1016 }
1017
1018 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1019 struct sk_buff_head *list);
1020
1021 static inline void __skb_queue_before(struct sk_buff_head *list,
1022 struct sk_buff *next,
1023 struct sk_buff *newsk)
1024 {
1025 __skb_insert(newsk, next->prev, next, list);
1026 }
1027
1028 /**
1029 * __skb_queue_head - queue a buffer at the list head
1030 * @list: list to use
1031 * @newsk: buffer to queue
1032 *
1033 * Queue a buffer at the start of a list. This function takes no locks
1034 * and you must therefore hold required locks before calling it.
1035 *
1036 * A buffer cannot be placed on two lists at the same time.
1037 */
1038 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1039 static inline void __skb_queue_head(struct sk_buff_head *list,
1040 struct sk_buff *newsk)
1041 {
1042 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1043 }
1044
1045 /**
1046 * __skb_queue_tail - queue a buffer at the list tail
1047 * @list: list to use
1048 * @newsk: buffer to queue
1049 *
1050 * Queue a buffer at the end of a list. This function takes no locks
1051 * and you must therefore hold required locks before calling it.
1052 *
1053 * A buffer cannot be placed on two lists at the same time.
1054 */
1055 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1056 static inline void __skb_queue_tail(struct sk_buff_head *list,
1057 struct sk_buff *newsk)
1058 {
1059 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1060 }
1061
1062 /*
1063 * remove sk_buff from list. _Must_ be called atomically, and with
1064 * the list known..
1065 */
1066 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1067 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1068 {
1069 struct sk_buff *next, *prev;
1070
1071 list->qlen--;
1072 next = skb->next;
1073 prev = skb->prev;
1074 skb->next = skb->prev = NULL;
1075 next->prev = prev;
1076 prev->next = next;
1077 }
1078
1079 /**
1080 * __skb_dequeue - remove from the head of the queue
1081 * @list: list to dequeue from
1082 *
1083 * Remove the head of the list. This function does not take any locks
1084 * so must be used with appropriate locks held only. The head item is
1085 * returned or %NULL if the list is empty.
1086 */
1087 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1088 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1089 {
1090 struct sk_buff *skb = skb_peek(list);
1091 if (skb)
1092 __skb_unlink(skb, list);
1093 return skb;
1094 }
1095
1096 /**
1097 * __skb_dequeue_tail - remove from the tail of the queue
1098 * @list: list to dequeue from
1099 *
1100 * Remove the tail of the list. This function does not take any locks
1101 * so must be used with appropriate locks held only. The tail item is
1102 * returned or %NULL if the list is empty.
1103 */
1104 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1105 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1106 {
1107 struct sk_buff *skb = skb_peek_tail(list);
1108 if (skb)
1109 __skb_unlink(skb, list);
1110 return skb;
1111 }
1112
1113
1114 static inline int skb_is_nonlinear(const struct sk_buff *skb)
1115 {
1116 return skb->data_len;
1117 }
1118
1119 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1120 {
1121 return skb->len - skb->data_len;
1122 }
1123
1124 static inline int skb_pagelen(const struct sk_buff *skb)
1125 {
1126 int i, len = 0;
1127
1128 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1129 len += skb_shinfo(skb)->frags[i].size;
1130 return len + skb_headlen(skb);
1131 }
1132
1133 /**
1134 * __skb_fill_page_desc - initialise a paged fragment in an skb
1135 * @skb: buffer containing fragment to be initialised
1136 * @i: paged fragment index to initialise
1137 * @page: the page to use for this fragment
1138 * @off: the offset to the data with @page
1139 * @size: the length of the data
1140 *
1141 * Initialises the @i'th fragment of @skb to point to &size bytes at
1142 * offset @off within @page.
1143 *
1144 * Does not take any additional reference on the fragment.
1145 */
1146 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1147 struct page *page, int off, int size)
1148 {
1149 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1150
1151 frag->page = page;
1152 frag->page_offset = off;
1153 frag->size = size;
1154 }
1155
1156 /**
1157 * skb_fill_page_desc - initialise a paged fragment in an skb
1158 * @skb: buffer containing fragment to be initialised
1159 * @i: paged fragment index to initialise
1160 * @page: the page to use for this fragment
1161 * @off: the offset to the data with @page
1162 * @size: the length of the data
1163 *
1164 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1165 * @skb to point to &size bytes at offset @off within @page. In
1166 * addition updates @skb such that @i is the last fragment.
1167 *
1168 * Does not take any additional reference on the fragment.
1169 */
1170 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1171 struct page *page, int off, int size)
1172 {
1173 __skb_fill_page_desc(skb, i, page, off, size);
1174 skb_shinfo(skb)->nr_frags = i + 1;
1175 }
1176
1177 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1178 int off, int size);
1179
1180 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1181 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1182 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1183
1184 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1185 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1186 {
1187 return skb->head + skb->tail;
1188 }
1189
1190 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1191 {
1192 skb->tail = skb->data - skb->head;
1193 }
1194
1195 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1196 {
1197 skb_reset_tail_pointer(skb);
1198 skb->tail += offset;
1199 }
1200 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1201 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1202 {
1203 return skb->tail;
1204 }
1205
1206 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1207 {
1208 skb->tail = skb->data;
1209 }
1210
1211 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1212 {
1213 skb->tail = skb->data + offset;
1214 }
1215
1216 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1217
1218 /*
1219 * Add data to an sk_buff
1220 */
1221 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1222 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1223 {
1224 unsigned char *tmp = skb_tail_pointer(skb);
1225 SKB_LINEAR_ASSERT(skb);
1226 skb->tail += len;
1227 skb->len += len;
1228 return tmp;
1229 }
1230
1231 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1232 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1233 {
1234 skb->data -= len;
1235 skb->len += len;
1236 return skb->data;
1237 }
1238
1239 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1240 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1241 {
1242 skb->len -= len;
1243 BUG_ON(skb->len < skb->data_len);
1244 return skb->data += len;
1245 }
1246
1247 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1248 {
1249 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1250 }
1251
1252 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1253
1254 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1255 {
1256 if (len > skb_headlen(skb) &&
1257 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1258 return NULL;
1259 skb->len -= len;
1260 return skb->data += len;
1261 }
1262
1263 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1264 {
1265 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1266 }
1267
1268 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1269 {
1270 if (likely(len <= skb_headlen(skb)))
1271 return 1;
1272 if (unlikely(len > skb->len))
1273 return 0;
1274 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1275 }
1276
1277 /**
1278 * skb_headroom - bytes at buffer head
1279 * @skb: buffer to check
1280 *
1281 * Return the number of bytes of free space at the head of an &sk_buff.
1282 */
1283 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1284 {
1285 return skb->data - skb->head;
1286 }
1287
1288 /**
1289 * skb_tailroom - bytes at buffer end
1290 * @skb: buffer to check
1291 *
1292 * Return the number of bytes of free space at the tail of an sk_buff
1293 */
1294 static inline int skb_tailroom(const struct sk_buff *skb)
1295 {
1296 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1297 }
1298
1299 /**
1300 * skb_reserve - adjust headroom
1301 * @skb: buffer to alter
1302 * @len: bytes to move
1303 *
1304 * Increase the headroom of an empty &sk_buff by reducing the tail
1305 * room. This is only allowed for an empty buffer.
1306 */
1307 static inline void skb_reserve(struct sk_buff *skb, int len)
1308 {
1309 skb->data += len;
1310 skb->tail += len;
1311 }
1312
1313 static inline void skb_reset_mac_len(struct sk_buff *skb)
1314 {
1315 skb->mac_len = skb->network_header - skb->mac_header;
1316 }
1317
1318 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1319 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1320 {
1321 return skb->head + skb->transport_header;
1322 }
1323
1324 static inline void skb_reset_transport_header(struct sk_buff *skb)
1325 {
1326 skb->transport_header = skb->data - skb->head;
1327 }
1328
1329 static inline void skb_set_transport_header(struct sk_buff *skb,
1330 const int offset)
1331 {
1332 skb_reset_transport_header(skb);
1333 skb->transport_header += offset;
1334 }
1335
1336 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1337 {
1338 return skb->head + skb->network_header;
1339 }
1340
1341 static inline void skb_reset_network_header(struct sk_buff *skb)
1342 {
1343 skb->network_header = skb->data - skb->head;
1344 }
1345
1346 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1347 {
1348 skb_reset_network_header(skb);
1349 skb->network_header += offset;
1350 }
1351
1352 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1353 {
1354 return skb->head + skb->mac_header;
1355 }
1356
1357 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1358 {
1359 return skb->mac_header != ~0U;
1360 }
1361
1362 static inline void skb_reset_mac_header(struct sk_buff *skb)
1363 {
1364 skb->mac_header = skb->data - skb->head;
1365 }
1366
1367 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1368 {
1369 skb_reset_mac_header(skb);
1370 skb->mac_header += offset;
1371 }
1372
1373 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1374
1375 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1376 {
1377 return skb->transport_header;
1378 }
1379
1380 static inline void skb_reset_transport_header(struct sk_buff *skb)
1381 {
1382 skb->transport_header = skb->data;
1383 }
1384
1385 static inline void skb_set_transport_header(struct sk_buff *skb,
1386 const int offset)
1387 {
1388 skb->transport_header = skb->data + offset;
1389 }
1390
1391 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1392 {
1393 return skb->network_header;
1394 }
1395
1396 static inline void skb_reset_network_header(struct sk_buff *skb)
1397 {
1398 skb->network_header = skb->data;
1399 }
1400
1401 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1402 {
1403 skb->network_header = skb->data + offset;
1404 }
1405
1406 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1407 {
1408 return skb->mac_header;
1409 }
1410
1411 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1412 {
1413 return skb->mac_header != NULL;
1414 }
1415
1416 static inline void skb_reset_mac_header(struct sk_buff *skb)
1417 {
1418 skb->mac_header = skb->data;
1419 }
1420
1421 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1422 {
1423 skb->mac_header = skb->data + offset;
1424 }
1425 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1426
1427 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1428 {
1429 return skb->csum_start - skb_headroom(skb);
1430 }
1431
1432 static inline int skb_transport_offset(const struct sk_buff *skb)
1433 {
1434 return skb_transport_header(skb) - skb->data;
1435 }
1436
1437 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1438 {
1439 return skb->transport_header - skb->network_header;
1440 }
1441
1442 static inline int skb_network_offset(const struct sk_buff *skb)
1443 {
1444 return skb_network_header(skb) - skb->data;
1445 }
1446
1447 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1448 {
1449 return pskb_may_pull(skb, skb_network_offset(skb) + len);
1450 }
1451
1452 /*
1453 * CPUs often take a performance hit when accessing unaligned memory
1454 * locations. The actual performance hit varies, it can be small if the
1455 * hardware handles it or large if we have to take an exception and fix it
1456 * in software.
1457 *
1458 * Since an ethernet header is 14 bytes network drivers often end up with
1459 * the IP header at an unaligned offset. The IP header can be aligned by
1460 * shifting the start of the packet by 2 bytes. Drivers should do this
1461 * with:
1462 *
1463 * skb_reserve(skb, NET_IP_ALIGN);
1464 *
1465 * The downside to this alignment of the IP header is that the DMA is now
1466 * unaligned. On some architectures the cost of an unaligned DMA is high
1467 * and this cost outweighs the gains made by aligning the IP header.
1468 *
1469 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1470 * to be overridden.
1471 */
1472 #ifndef NET_IP_ALIGN
1473 #define NET_IP_ALIGN 2
1474 #endif
1475
1476 /*
1477 * The networking layer reserves some headroom in skb data (via
1478 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1479 * the header has to grow. In the default case, if the header has to grow
1480 * 32 bytes or less we avoid the reallocation.
1481 *
1482 * Unfortunately this headroom changes the DMA alignment of the resulting
1483 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1484 * on some architectures. An architecture can override this value,
1485 * perhaps setting it to a cacheline in size (since that will maintain
1486 * cacheline alignment of the DMA). It must be a power of 2.
1487 *
1488 * Various parts of the networking layer expect at least 32 bytes of
1489 * headroom, you should not reduce this.
1490 *
1491 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
1492 * to reduce average number of cache lines per packet.
1493 * get_rps_cpus() for example only access one 64 bytes aligned block :
1494 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
1495 */
1496 #ifndef NET_SKB_PAD
1497 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
1498 #endif
1499
1500 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1501
1502 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1503 {
1504 if (unlikely(skb_is_nonlinear(skb))) {
1505 WARN_ON(1);
1506 return;
1507 }
1508 skb->len = len;
1509 skb_set_tail_pointer(skb, len);
1510 }
1511
1512 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1513
1514 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1515 {
1516 if (skb->data_len)
1517 return ___pskb_trim(skb, len);
1518 __skb_trim(skb, len);
1519 return 0;
1520 }
1521
1522 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1523 {
1524 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1525 }
1526
1527 /**
1528 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1529 * @skb: buffer to alter
1530 * @len: new length
1531 *
1532 * This is identical to pskb_trim except that the caller knows that
1533 * the skb is not cloned so we should never get an error due to out-
1534 * of-memory.
1535 */
1536 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1537 {
1538 int err = pskb_trim(skb, len);
1539 BUG_ON(err);
1540 }
1541
1542 /**
1543 * skb_orphan - orphan a buffer
1544 * @skb: buffer to orphan
1545 *
1546 * If a buffer currently has an owner then we call the owner's
1547 * destructor function and make the @skb unowned. The buffer continues
1548 * to exist but is no longer charged to its former owner.
1549 */
1550 static inline void skb_orphan(struct sk_buff *skb)
1551 {
1552 if (skb->destructor)
1553 skb->destructor(skb);
1554 skb->destructor = NULL;
1555 skb->sk = NULL;
1556 }
1557
1558 /**
1559 * __skb_queue_purge - empty a list
1560 * @list: list to empty
1561 *
1562 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1563 * the list and one reference dropped. This function does not take the
1564 * list lock and the caller must hold the relevant locks to use it.
1565 */
1566 extern void skb_queue_purge(struct sk_buff_head *list);
1567 static inline void __skb_queue_purge(struct sk_buff_head *list)
1568 {
1569 struct sk_buff *skb;
1570 while ((skb = __skb_dequeue(list)) != NULL)
1571 kfree_skb(skb);
1572 }
1573
1574 /**
1575 * __dev_alloc_skb - allocate an skbuff for receiving
1576 * @length: length to allocate
1577 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1578 *
1579 * Allocate a new &sk_buff and assign it a usage count of one. The
1580 * buffer has unspecified headroom built in. Users should allocate
1581 * the headroom they think they need without accounting for the
1582 * built in space. The built in space is used for optimisations.
1583 *
1584 * %NULL is returned if there is no free memory.
1585 */
1586 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1587 gfp_t gfp_mask)
1588 {
1589 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1590 if (likely(skb))
1591 skb_reserve(skb, NET_SKB_PAD);
1592 return skb;
1593 }
1594
1595 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1596
1597 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1598 unsigned int length, gfp_t gfp_mask);
1599
1600 /**
1601 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1602 * @dev: network device to receive on
1603 * @length: length to allocate
1604 *
1605 * Allocate a new &sk_buff and assign it a usage count of one. The
1606 * buffer has unspecified headroom built in. Users should allocate
1607 * the headroom they think they need without accounting for the
1608 * built in space. The built in space is used for optimisations.
1609 *
1610 * %NULL is returned if there is no free memory. Although this function
1611 * allocates memory it can be called from an interrupt.
1612 */
1613 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1614 unsigned int length)
1615 {
1616 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1617 }
1618
1619 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
1620 unsigned int length, gfp_t gfp)
1621 {
1622 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
1623
1624 if (NET_IP_ALIGN && skb)
1625 skb_reserve(skb, NET_IP_ALIGN);
1626 return skb;
1627 }
1628
1629 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
1630 unsigned int length)
1631 {
1632 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
1633 }
1634
1635 /**
1636 * __netdev_alloc_page - allocate a page for ps-rx on a specific device
1637 * @dev: network device to receive on
1638 * @gfp_mask: alloc_pages_node mask
1639 *
1640 * Allocate a new page. dev currently unused.
1641 *
1642 * %NULL is returned if there is no free memory.
1643 */
1644 static inline struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask)
1645 {
1646 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, 0);
1647 }
1648
1649 /**
1650 * netdev_alloc_page - allocate a page for ps-rx on a specific device
1651 * @dev: network device to receive on
1652 *
1653 * Allocate a new page. dev currently unused.
1654 *
1655 * %NULL is returned if there is no free memory.
1656 */
1657 static inline struct page *netdev_alloc_page(struct net_device *dev)
1658 {
1659 return __netdev_alloc_page(dev, GFP_ATOMIC);
1660 }
1661
1662 static inline void netdev_free_page(struct net_device *dev, struct page *page)
1663 {
1664 __free_page(page);
1665 }
1666
1667 /**
1668 * skb_frag_page - retrieve the page refered to by a paged fragment
1669 * @frag: the paged fragment
1670 *
1671 * Returns the &struct page associated with @frag.
1672 */
1673 static inline struct page *skb_frag_page(const skb_frag_t *frag)
1674 {
1675 return frag->page;
1676 }
1677
1678 /**
1679 * __skb_frag_ref - take an addition reference on a paged fragment.
1680 * @frag: the paged fragment
1681 *
1682 * Takes an additional reference on the paged fragment @frag.
1683 */
1684 static inline void __skb_frag_ref(skb_frag_t *frag)
1685 {
1686 get_page(skb_frag_page(frag));
1687 }
1688
1689 /**
1690 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
1691 * @skb: the buffer
1692 * @f: the fragment offset.
1693 *
1694 * Takes an additional reference on the @f'th paged fragment of @skb.
1695 */
1696 static inline void skb_frag_ref(struct sk_buff *skb, int f)
1697 {
1698 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
1699 }
1700
1701 /**
1702 * __skb_frag_unref - release a reference on a paged fragment.
1703 * @frag: the paged fragment
1704 *
1705 * Releases a reference on the paged fragment @frag.
1706 */
1707 static inline void __skb_frag_unref(skb_frag_t *frag)
1708 {
1709 put_page(skb_frag_page(frag));
1710 }
1711
1712 /**
1713 * skb_frag_unref - release a reference on a paged fragment of an skb.
1714 * @skb: the buffer
1715 * @f: the fragment offset
1716 *
1717 * Releases a reference on the @f'th paged fragment of @skb.
1718 */
1719 static inline void skb_frag_unref(struct sk_buff *skb, int f)
1720 {
1721 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
1722 }
1723
1724 /**
1725 * skb_frag_address - gets the address of the data contained in a paged fragment
1726 * @frag: the paged fragment buffer
1727 *
1728 * Returns the address of the data within @frag. The page must already
1729 * be mapped.
1730 */
1731 static inline void *skb_frag_address(const skb_frag_t *frag)
1732 {
1733 return page_address(skb_frag_page(frag)) + frag->page_offset;
1734 }
1735
1736 /**
1737 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
1738 * @frag: the paged fragment buffer
1739 *
1740 * Returns the address of the data within @frag. Checks that the page
1741 * is mapped and returns %NULL otherwise.
1742 */
1743 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
1744 {
1745 void *ptr = page_address(skb_frag_page(frag));
1746 if (unlikely(!ptr))
1747 return NULL;
1748
1749 return ptr + frag->page_offset;
1750 }
1751
1752 /**
1753 * __skb_frag_set_page - sets the page contained in a paged fragment
1754 * @frag: the paged fragment
1755 * @page: the page to set
1756 *
1757 * Sets the fragment @frag to contain @page.
1758 */
1759 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
1760 {
1761 frag->page = page;
1762 __skb_frag_ref(frag);
1763 }
1764
1765 /**
1766 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
1767 * @skb: the buffer
1768 * @f: the fragment offset
1769 * @page: the page to set
1770 *
1771 * Sets the @f'th fragment of @skb to contain @page.
1772 */
1773 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
1774 struct page *page)
1775 {
1776 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
1777 }
1778
1779 /**
1780 * skb_frag_dma_map - maps a paged fragment via the DMA API
1781 * @device: the device to map the fragment to
1782 * @frag: the paged fragment to map
1783 * @offset: the offset within the fragment (starting at the
1784 * fragment's own offset)
1785 * @size: the number of bytes to map
1786 * @direction: the direction of the mapping (%PCI_DMA_*)
1787 *
1788 * Maps the page associated with @frag to @device.
1789 */
1790 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
1791 const skb_frag_t *frag,
1792 size_t offset, size_t size,
1793 enum dma_data_direction dir)
1794 {
1795 return dma_map_page(dev, skb_frag_page(frag),
1796 frag->page_offset + offset, size, dir);
1797 }
1798
1799 /**
1800 * skb_clone_writable - is the header of a clone writable
1801 * @skb: buffer to check
1802 * @len: length up to which to write
1803 *
1804 * Returns true if modifying the header part of the cloned buffer
1805 * does not requires the data to be copied.
1806 */
1807 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1808 {
1809 return !skb_header_cloned(skb) &&
1810 skb_headroom(skb) + len <= skb->hdr_len;
1811 }
1812
1813 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1814 int cloned)
1815 {
1816 int delta = 0;
1817
1818 if (headroom < NET_SKB_PAD)
1819 headroom = NET_SKB_PAD;
1820 if (headroom > skb_headroom(skb))
1821 delta = headroom - skb_headroom(skb);
1822
1823 if (delta || cloned)
1824 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1825 GFP_ATOMIC);
1826 return 0;
1827 }
1828
1829 /**
1830 * skb_cow - copy header of skb when it is required
1831 * @skb: buffer to cow
1832 * @headroom: needed headroom
1833 *
1834 * If the skb passed lacks sufficient headroom or its data part
1835 * is shared, data is reallocated. If reallocation fails, an error
1836 * is returned and original skb is not changed.
1837 *
1838 * The result is skb with writable area skb->head...skb->tail
1839 * and at least @headroom of space at head.
1840 */
1841 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1842 {
1843 return __skb_cow(skb, headroom, skb_cloned(skb));
1844 }
1845
1846 /**
1847 * skb_cow_head - skb_cow but only making the head writable
1848 * @skb: buffer to cow
1849 * @headroom: needed headroom
1850 *
1851 * This function is identical to skb_cow except that we replace the
1852 * skb_cloned check by skb_header_cloned. It should be used when
1853 * you only need to push on some header and do not need to modify
1854 * the data.
1855 */
1856 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1857 {
1858 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1859 }
1860
1861 /**
1862 * skb_padto - pad an skbuff up to a minimal size
1863 * @skb: buffer to pad
1864 * @len: minimal length
1865 *
1866 * Pads up a buffer to ensure the trailing bytes exist and are
1867 * blanked. If the buffer already contains sufficient data it
1868 * is untouched. Otherwise it is extended. Returns zero on
1869 * success. The skb is freed on error.
1870 */
1871
1872 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1873 {
1874 unsigned int size = skb->len;
1875 if (likely(size >= len))
1876 return 0;
1877 return skb_pad(skb, len - size);
1878 }
1879
1880 static inline int skb_add_data(struct sk_buff *skb,
1881 char __user *from, int copy)
1882 {
1883 const int off = skb->len;
1884
1885 if (skb->ip_summed == CHECKSUM_NONE) {
1886 int err = 0;
1887 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1888 copy, 0, &err);
1889 if (!err) {
1890 skb->csum = csum_block_add(skb->csum, csum, off);
1891 return 0;
1892 }
1893 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1894 return 0;
1895
1896 __skb_trim(skb, off);
1897 return -EFAULT;
1898 }
1899
1900 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1901 const struct page *page, int off)
1902 {
1903 if (i) {
1904 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1905
1906 return page == skb_frag_page(frag) &&
1907 off == frag->page_offset + frag->size;
1908 }
1909 return 0;
1910 }
1911
1912 static inline int __skb_linearize(struct sk_buff *skb)
1913 {
1914 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1915 }
1916
1917 /**
1918 * skb_linearize - convert paged skb to linear one
1919 * @skb: buffer to linarize
1920 *
1921 * If there is no free memory -ENOMEM is returned, otherwise zero
1922 * is returned and the old skb data released.
1923 */
1924 static inline int skb_linearize(struct sk_buff *skb)
1925 {
1926 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1927 }
1928
1929 /**
1930 * skb_linearize_cow - make sure skb is linear and writable
1931 * @skb: buffer to process
1932 *
1933 * If there is no free memory -ENOMEM is returned, otherwise zero
1934 * is returned and the old skb data released.
1935 */
1936 static inline int skb_linearize_cow(struct sk_buff *skb)
1937 {
1938 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1939 __skb_linearize(skb) : 0;
1940 }
1941
1942 /**
1943 * skb_postpull_rcsum - update checksum for received skb after pull
1944 * @skb: buffer to update
1945 * @start: start of data before pull
1946 * @len: length of data pulled
1947 *
1948 * After doing a pull on a received packet, you need to call this to
1949 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1950 * CHECKSUM_NONE so that it can be recomputed from scratch.
1951 */
1952
1953 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1954 const void *start, unsigned int len)
1955 {
1956 if (skb->ip_summed == CHECKSUM_COMPLETE)
1957 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1958 }
1959
1960 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1961
1962 /**
1963 * pskb_trim_rcsum - trim received skb and update checksum
1964 * @skb: buffer to trim
1965 * @len: new length
1966 *
1967 * This is exactly the same as pskb_trim except that it ensures the
1968 * checksum of received packets are still valid after the operation.
1969 */
1970
1971 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1972 {
1973 if (likely(len >= skb->len))
1974 return 0;
1975 if (skb->ip_summed == CHECKSUM_COMPLETE)
1976 skb->ip_summed = CHECKSUM_NONE;
1977 return __pskb_trim(skb, len);
1978 }
1979
1980 #define skb_queue_walk(queue, skb) \
1981 for (skb = (queue)->next; \
1982 skb != (struct sk_buff *)(queue); \
1983 skb = skb->next)
1984
1985 #define skb_queue_walk_safe(queue, skb, tmp) \
1986 for (skb = (queue)->next, tmp = skb->next; \
1987 skb != (struct sk_buff *)(queue); \
1988 skb = tmp, tmp = skb->next)
1989
1990 #define skb_queue_walk_from(queue, skb) \
1991 for (; skb != (struct sk_buff *)(queue); \
1992 skb = skb->next)
1993
1994 #define skb_queue_walk_from_safe(queue, skb, tmp) \
1995 for (tmp = skb->next; \
1996 skb != (struct sk_buff *)(queue); \
1997 skb = tmp, tmp = skb->next)
1998
1999 #define skb_queue_reverse_walk(queue, skb) \
2000 for (skb = (queue)->prev; \
2001 skb != (struct sk_buff *)(queue); \
2002 skb = skb->prev)
2003
2004 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
2005 for (skb = (queue)->prev, tmp = skb->prev; \
2006 skb != (struct sk_buff *)(queue); \
2007 skb = tmp, tmp = skb->prev)
2008
2009 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
2010 for (tmp = skb->prev; \
2011 skb != (struct sk_buff *)(queue); \
2012 skb = tmp, tmp = skb->prev)
2013
2014 static inline bool skb_has_frag_list(const struct sk_buff *skb)
2015 {
2016 return skb_shinfo(skb)->frag_list != NULL;
2017 }
2018
2019 static inline void skb_frag_list_init(struct sk_buff *skb)
2020 {
2021 skb_shinfo(skb)->frag_list = NULL;
2022 }
2023
2024 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
2025 {
2026 frag->next = skb_shinfo(skb)->frag_list;
2027 skb_shinfo(skb)->frag_list = frag;
2028 }
2029
2030 #define skb_walk_frags(skb, iter) \
2031 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2032
2033 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2034 int *peeked, int *err);
2035 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
2036 int noblock, int *err);
2037 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
2038 struct poll_table_struct *wait);
2039 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
2040 int offset, struct iovec *to,
2041 int size);
2042 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
2043 int hlen,
2044 struct iovec *iov);
2045 extern int skb_copy_datagram_from_iovec(struct sk_buff *skb,
2046 int offset,
2047 const struct iovec *from,
2048 int from_offset,
2049 int len);
2050 extern int skb_copy_datagram_const_iovec(const struct sk_buff *from,
2051 int offset,
2052 const struct iovec *to,
2053 int to_offset,
2054 int size);
2055 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2056 extern void skb_free_datagram_locked(struct sock *sk,
2057 struct sk_buff *skb);
2058 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
2059 unsigned int flags);
2060 extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
2061 int len, __wsum csum);
2062 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
2063 void *to, int len);
2064 extern int skb_store_bits(struct sk_buff *skb, int offset,
2065 const void *from, int len);
2066 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
2067 int offset, u8 *to, int len,
2068 __wsum csum);
2069 extern int skb_splice_bits(struct sk_buff *skb,
2070 unsigned int offset,
2071 struct pipe_inode_info *pipe,
2072 unsigned int len,
2073 unsigned int flags);
2074 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2075 extern void skb_split(struct sk_buff *skb,
2076 struct sk_buff *skb1, const u32 len);
2077 extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
2078 int shiftlen);
2079
2080 extern struct sk_buff *skb_segment(struct sk_buff *skb, u32 features);
2081
2082 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
2083 int len, void *buffer)
2084 {
2085 int hlen = skb_headlen(skb);
2086
2087 if (hlen - offset >= len)
2088 return skb->data + offset;
2089
2090 if (skb_copy_bits(skb, offset, buffer, len) < 0)
2091 return NULL;
2092
2093 return buffer;
2094 }
2095
2096 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2097 void *to,
2098 const unsigned int len)
2099 {
2100 memcpy(to, skb->data, len);
2101 }
2102
2103 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2104 const int offset, void *to,
2105 const unsigned int len)
2106 {
2107 memcpy(to, skb->data + offset, len);
2108 }
2109
2110 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2111 const void *from,
2112 const unsigned int len)
2113 {
2114 memcpy(skb->data, from, len);
2115 }
2116
2117 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2118 const int offset,
2119 const void *from,
2120 const unsigned int len)
2121 {
2122 memcpy(skb->data + offset, from, len);
2123 }
2124
2125 extern void skb_init(void);
2126
2127 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2128 {
2129 return skb->tstamp;
2130 }
2131
2132 /**
2133 * skb_get_timestamp - get timestamp from a skb
2134 * @skb: skb to get stamp from
2135 * @stamp: pointer to struct timeval to store stamp in
2136 *
2137 * Timestamps are stored in the skb as offsets to a base timestamp.
2138 * This function converts the offset back to a struct timeval and stores
2139 * it in stamp.
2140 */
2141 static inline void skb_get_timestamp(const struct sk_buff *skb,
2142 struct timeval *stamp)
2143 {
2144 *stamp = ktime_to_timeval(skb->tstamp);
2145 }
2146
2147 static inline void skb_get_timestampns(const struct sk_buff *skb,
2148 struct timespec *stamp)
2149 {
2150 *stamp = ktime_to_timespec(skb->tstamp);
2151 }
2152
2153 static inline void __net_timestamp(struct sk_buff *skb)
2154 {
2155 skb->tstamp = ktime_get_real();
2156 }
2157
2158 static inline ktime_t net_timedelta(ktime_t t)
2159 {
2160 return ktime_sub(ktime_get_real(), t);
2161 }
2162
2163 static inline ktime_t net_invalid_timestamp(void)
2164 {
2165 return ktime_set(0, 0);
2166 }
2167
2168 extern void skb_timestamping_init(void);
2169
2170 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2171
2172 extern void skb_clone_tx_timestamp(struct sk_buff *skb);
2173 extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
2174
2175 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2176
2177 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2178 {
2179 }
2180
2181 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2182 {
2183 return false;
2184 }
2185
2186 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2187
2188 /**
2189 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2190 *
2191 * @skb: clone of the the original outgoing packet
2192 * @hwtstamps: hardware time stamps
2193 *
2194 */
2195 void skb_complete_tx_timestamp(struct sk_buff *skb,
2196 struct skb_shared_hwtstamps *hwtstamps);
2197
2198 /**
2199 * skb_tstamp_tx - queue clone of skb with send time stamps
2200 * @orig_skb: the original outgoing packet
2201 * @hwtstamps: hardware time stamps, may be NULL if not available
2202 *
2203 * If the skb has a socket associated, then this function clones the
2204 * skb (thus sharing the actual data and optional structures), stores
2205 * the optional hardware time stamping information (if non NULL) or
2206 * generates a software time stamp (otherwise), then queues the clone
2207 * to the error queue of the socket. Errors are silently ignored.
2208 */
2209 extern void skb_tstamp_tx(struct sk_buff *orig_skb,
2210 struct skb_shared_hwtstamps *hwtstamps);
2211
2212 static inline void sw_tx_timestamp(struct sk_buff *skb)
2213 {
2214 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2215 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2216 skb_tstamp_tx(skb, NULL);
2217 }
2218
2219 /**
2220 * skb_tx_timestamp() - Driver hook for transmit timestamping
2221 *
2222 * Ethernet MAC Drivers should call this function in their hard_xmit()
2223 * function immediately before giving the sk_buff to the MAC hardware.
2224 *
2225 * @skb: A socket buffer.
2226 */
2227 static inline void skb_tx_timestamp(struct sk_buff *skb)
2228 {
2229 skb_clone_tx_timestamp(skb);
2230 sw_tx_timestamp(skb);
2231 }
2232
2233 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2234 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
2235
2236 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2237 {
2238 return skb->ip_summed & CHECKSUM_UNNECESSARY;
2239 }
2240
2241 /**
2242 * skb_checksum_complete - Calculate checksum of an entire packet
2243 * @skb: packet to process
2244 *
2245 * This function calculates the checksum over the entire packet plus
2246 * the value of skb->csum. The latter can be used to supply the
2247 * checksum of a pseudo header as used by TCP/UDP. It returns the
2248 * checksum.
2249 *
2250 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
2251 * this function can be used to verify that checksum on received
2252 * packets. In that case the function should return zero if the
2253 * checksum is correct. In particular, this function will return zero
2254 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2255 * hardware has already verified the correctness of the checksum.
2256 */
2257 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2258 {
2259 return skb_csum_unnecessary(skb) ?
2260 0 : __skb_checksum_complete(skb);
2261 }
2262
2263 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2264 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
2265 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
2266 {
2267 if (nfct && atomic_dec_and_test(&nfct->use))
2268 nf_conntrack_destroy(nfct);
2269 }
2270 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
2271 {
2272 if (nfct)
2273 atomic_inc(&nfct->use);
2274 }
2275 #endif
2276 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2277 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
2278 {
2279 if (skb)
2280 atomic_inc(&skb->users);
2281 }
2282 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
2283 {
2284 if (skb)
2285 kfree_skb(skb);
2286 }
2287 #endif
2288 #ifdef CONFIG_BRIDGE_NETFILTER
2289 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
2290 {
2291 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
2292 kfree(nf_bridge);
2293 }
2294 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
2295 {
2296 if (nf_bridge)
2297 atomic_inc(&nf_bridge->use);
2298 }
2299 #endif /* CONFIG_BRIDGE_NETFILTER */
2300 static inline void nf_reset(struct sk_buff *skb)
2301 {
2302 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2303 nf_conntrack_put(skb->nfct);
2304 skb->nfct = NULL;
2305 #endif
2306 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2307 nf_conntrack_put_reasm(skb->nfct_reasm);
2308 skb->nfct_reasm = NULL;
2309 #endif
2310 #ifdef CONFIG_BRIDGE_NETFILTER
2311 nf_bridge_put(skb->nf_bridge);
2312 skb->nf_bridge = NULL;
2313 #endif
2314 }
2315
2316 /* Note: This doesn't put any conntrack and bridge info in dst. */
2317 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2318 {
2319 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2320 dst->nfct = src->nfct;
2321 nf_conntrack_get(src->nfct);
2322 dst->nfctinfo = src->nfctinfo;
2323 #endif
2324 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2325 dst->nfct_reasm = src->nfct_reasm;
2326 nf_conntrack_get_reasm(src->nfct_reasm);
2327 #endif
2328 #ifdef CONFIG_BRIDGE_NETFILTER
2329 dst->nf_bridge = src->nf_bridge;
2330 nf_bridge_get(src->nf_bridge);
2331 #endif
2332 }
2333
2334 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2335 {
2336 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2337 nf_conntrack_put(dst->nfct);
2338 #endif
2339 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2340 nf_conntrack_put_reasm(dst->nfct_reasm);
2341 #endif
2342 #ifdef CONFIG_BRIDGE_NETFILTER
2343 nf_bridge_put(dst->nf_bridge);
2344 #endif
2345 __nf_copy(dst, src);
2346 }
2347
2348 #ifdef CONFIG_NETWORK_SECMARK
2349 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2350 {
2351 to->secmark = from->secmark;
2352 }
2353
2354 static inline void skb_init_secmark(struct sk_buff *skb)
2355 {
2356 skb->secmark = 0;
2357 }
2358 #else
2359 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2360 { }
2361
2362 static inline void skb_init_secmark(struct sk_buff *skb)
2363 { }
2364 #endif
2365
2366 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2367 {
2368 skb->queue_mapping = queue_mapping;
2369 }
2370
2371 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2372 {
2373 return skb->queue_mapping;
2374 }
2375
2376 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2377 {
2378 to->queue_mapping = from->queue_mapping;
2379 }
2380
2381 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2382 {
2383 skb->queue_mapping = rx_queue + 1;
2384 }
2385
2386 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2387 {
2388 return skb->queue_mapping - 1;
2389 }
2390
2391 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2392 {
2393 return skb->queue_mapping != 0;
2394 }
2395
2396 extern u16 __skb_tx_hash(const struct net_device *dev,
2397 const struct sk_buff *skb,
2398 unsigned int num_tx_queues);
2399
2400 #ifdef CONFIG_XFRM
2401 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2402 {
2403 return skb->sp;
2404 }
2405 #else
2406 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2407 {
2408 return NULL;
2409 }
2410 #endif
2411
2412 static inline int skb_is_gso(const struct sk_buff *skb)
2413 {
2414 return skb_shinfo(skb)->gso_size;
2415 }
2416
2417 static inline int skb_is_gso_v6(const struct sk_buff *skb)
2418 {
2419 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2420 }
2421
2422 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2423
2424 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2425 {
2426 /* LRO sets gso_size but not gso_type, whereas if GSO is really
2427 * wanted then gso_type will be set. */
2428 struct skb_shared_info *shinfo = skb_shinfo(skb);
2429 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
2430 unlikely(shinfo->gso_type == 0)) {
2431 __skb_warn_lro_forwarding(skb);
2432 return true;
2433 }
2434 return false;
2435 }
2436
2437 static inline void skb_forward_csum(struct sk_buff *skb)
2438 {
2439 /* Unfortunately we don't support this one. Any brave souls? */
2440 if (skb->ip_summed == CHECKSUM_COMPLETE)
2441 skb->ip_summed = CHECKSUM_NONE;
2442 }
2443
2444 /**
2445 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
2446 * @skb: skb to check
2447 *
2448 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
2449 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
2450 * use this helper, to document places where we make this assertion.
2451 */
2452 static inline void skb_checksum_none_assert(struct sk_buff *skb)
2453 {
2454 #ifdef DEBUG
2455 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
2456 #endif
2457 }
2458
2459 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2460
2461 #endif /* __KERNEL__ */
2462 #endif /* _LINUX_SKBUFF_H */
This page took 0.20209 seconds and 5 git commands to generate.