a656cecd373c812eb7057d844f74dd2c0ce189df
[deliverable/linux.git] / include / linux / skbuff.h
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/cache.h>
21
22 #include <asm/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/net.h>
26 #include <linux/textsearch.h>
27 #include <net/checksum.h>
28 #include <linux/rcupdate.h>
29 #include <linux/dmaengine.h>
30 #include <linux/hrtimer.h>
31
32 #define HAVE_ALLOC_SKB /* For the drivers to know */
33 #define HAVE_ALIGNABLE_SKB /* Ditto 8) */
34
35 /* Don't change this without changing skb_csum_unnecessary! */
36 #define CHECKSUM_NONE 0
37 #define CHECKSUM_UNNECESSARY 1
38 #define CHECKSUM_COMPLETE 2
39 #define CHECKSUM_PARTIAL 3
40
41 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
42 ~(SMP_CACHE_BYTES - 1))
43 #define SKB_WITH_OVERHEAD(X) \
44 (((X) - sizeof(struct skb_shared_info)) & \
45 ~(SMP_CACHE_BYTES - 1))
46 #define SKB_MAX_ORDER(X, ORDER) \
47 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
48 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
49 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
50
51 /* A. Checksumming of received packets by device.
52 *
53 * NONE: device failed to checksum this packet.
54 * skb->csum is undefined.
55 *
56 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
57 * skb->csum is undefined.
58 * It is bad option, but, unfortunately, many of vendors do this.
59 * Apparently with secret goal to sell you new device, when you
60 * will add new protocol to your host. F.e. IPv6. 8)
61 *
62 * COMPLETE: the most generic way. Device supplied checksum of _all_
63 * the packet as seen by netif_rx in skb->csum.
64 * NOTE: Even if device supports only some protocols, but
65 * is able to produce some skb->csum, it MUST use COMPLETE,
66 * not UNNECESSARY.
67 *
68 * PARTIAL: identical to the case for output below. This may occur
69 * on a packet received directly from another Linux OS, e.g.,
70 * a virtualised Linux kernel on the same host. The packet can
71 * be treated in the same way as UNNECESSARY except that on
72 * output (i.e., forwarding) the checksum must be filled in
73 * by the OS or the hardware.
74 *
75 * B. Checksumming on output.
76 *
77 * NONE: skb is checksummed by protocol or csum is not required.
78 *
79 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
80 * from skb->csum_start to the end and to record the checksum
81 * at skb->csum_start + skb->csum_offset.
82 *
83 * Device must show its capabilities in dev->features, set
84 * at device setup time.
85 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
86 * everything.
87 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
88 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
89 * TCP/UDP over IPv4. Sigh. Vendors like this
90 * way by an unknown reason. Though, see comment above
91 * about CHECKSUM_UNNECESSARY. 8)
92 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
93 *
94 * Any questions? No questions, good. --ANK
95 */
96
97 struct net_device;
98 struct scatterlist;
99
100 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
101 struct nf_conntrack {
102 atomic_t use;
103 };
104 #endif
105
106 #ifdef CONFIG_BRIDGE_NETFILTER
107 struct nf_bridge_info {
108 atomic_t use;
109 struct net_device *physindev;
110 struct net_device *physoutdev;
111 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
112 struct net_device *netoutdev;
113 #endif
114 unsigned int mask;
115 unsigned long data[32 / sizeof(unsigned long)];
116 };
117 #endif
118
119 struct sk_buff_head {
120 /* These two members must be first. */
121 struct sk_buff *next;
122 struct sk_buff *prev;
123
124 __u32 qlen;
125 spinlock_t lock;
126 };
127
128 struct sk_buff;
129
130 /* To allow 64K frame to be packed as single skb without frag_list */
131 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
132
133 typedef struct skb_frag_struct skb_frag_t;
134
135 struct skb_frag_struct {
136 struct page *page;
137 __u32 page_offset;
138 __u32 size;
139 };
140
141 /* This data is invariant across clones and lives at
142 * the end of the header data, ie. at skb->end.
143 */
144 struct skb_shared_info {
145 atomic_t dataref;
146 unsigned short nr_frags;
147 unsigned short gso_size;
148 /* Warning: this field is not always filled in (UFO)! */
149 unsigned short gso_segs;
150 unsigned short gso_type;
151 __be32 ip6_frag_id;
152 struct sk_buff *frag_list;
153 skb_frag_t frags[MAX_SKB_FRAGS];
154 };
155
156 /* We divide dataref into two halves. The higher 16 bits hold references
157 * to the payload part of skb->data. The lower 16 bits hold references to
158 * the entire skb->data. A clone of a headerless skb holds the length of
159 * the header in skb->hdr_len.
160 *
161 * All users must obey the rule that the skb->data reference count must be
162 * greater than or equal to the payload reference count.
163 *
164 * Holding a reference to the payload part means that the user does not
165 * care about modifications to the header part of skb->data.
166 */
167 #define SKB_DATAREF_SHIFT 16
168 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
169
170
171 enum {
172 SKB_FCLONE_UNAVAILABLE,
173 SKB_FCLONE_ORIG,
174 SKB_FCLONE_CLONE,
175 };
176
177 enum {
178 SKB_GSO_TCPV4 = 1 << 0,
179 SKB_GSO_UDP = 1 << 1,
180
181 /* This indicates the skb is from an untrusted source. */
182 SKB_GSO_DODGY = 1 << 2,
183
184 /* This indicates the tcp segment has CWR set. */
185 SKB_GSO_TCP_ECN = 1 << 3,
186
187 SKB_GSO_TCPV6 = 1 << 4,
188 };
189
190 #if BITS_PER_LONG > 32
191 #define NET_SKBUFF_DATA_USES_OFFSET 1
192 #endif
193
194 #ifdef NET_SKBUFF_DATA_USES_OFFSET
195 typedef unsigned int sk_buff_data_t;
196 #else
197 typedef unsigned char *sk_buff_data_t;
198 #endif
199
200 /**
201 * struct sk_buff - socket buffer
202 * @next: Next buffer in list
203 * @prev: Previous buffer in list
204 * @sk: Socket we are owned by
205 * @tstamp: Time we arrived
206 * @dev: Device we arrived on/are leaving by
207 * @transport_header: Transport layer header
208 * @network_header: Network layer header
209 * @mac_header: Link layer header
210 * @dst: destination entry
211 * @sp: the security path, used for xfrm
212 * @cb: Control buffer. Free for use by every layer. Put private vars here
213 * @len: Length of actual data
214 * @data_len: Data length
215 * @mac_len: Length of link layer header
216 * @hdr_len: writable header length of cloned skb
217 * @csum: Checksum (must include start/offset pair)
218 * @csum_start: Offset from skb->head where checksumming should start
219 * @csum_offset: Offset from csum_start where checksum should be stored
220 * @local_df: allow local fragmentation
221 * @cloned: Head may be cloned (check refcnt to be sure)
222 * @nohdr: Payload reference only, must not modify header
223 * @pkt_type: Packet class
224 * @fclone: skbuff clone status
225 * @ip_summed: Driver fed us an IP checksum
226 * @priority: Packet queueing priority
227 * @users: User count - see {datagram,tcp}.c
228 * @protocol: Packet protocol from driver
229 * @truesize: Buffer size
230 * @head: Head of buffer
231 * @data: Data head pointer
232 * @tail: Tail pointer
233 * @end: End pointer
234 * @destructor: Destruct function
235 * @mark: Generic packet mark
236 * @nfct: Associated connection, if any
237 * @ipvs_property: skbuff is owned by ipvs
238 * @nf_trace: netfilter packet trace flag
239 * @nfctinfo: Relationship of this skb to the connection
240 * @nfct_reasm: netfilter conntrack re-assembly pointer
241 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
242 * @iif: ifindex of device we arrived on
243 * @queue_mapping: Queue mapping for multiqueue devices
244 * @tc_index: Traffic control index
245 * @tc_verd: traffic control verdict
246 * @dma_cookie: a cookie to one of several possible DMA operations
247 * done by skb DMA functions
248 * @secmark: security marking
249 */
250
251 struct sk_buff {
252 /* These two members must be first. */
253 struct sk_buff *next;
254 struct sk_buff *prev;
255
256 struct sock *sk;
257 ktime_t tstamp;
258 struct net_device *dev;
259
260 struct dst_entry *dst;
261 struct sec_path *sp;
262
263 /*
264 * This is the control buffer. It is free to use for every
265 * layer. Please put your private variables there. If you
266 * want to keep them across layers you have to do a skb_clone()
267 * first. This is owned by whoever has the skb queued ATM.
268 */
269 char cb[48];
270
271 unsigned int len,
272 data_len;
273 __u16 mac_len,
274 hdr_len;
275 union {
276 __wsum csum;
277 struct {
278 __u16 csum_start;
279 __u16 csum_offset;
280 };
281 };
282 __u32 priority;
283 __u8 local_df:1,
284 cloned:1,
285 ip_summed:2,
286 nohdr:1,
287 nfctinfo:3;
288 __u8 pkt_type:3,
289 fclone:2,
290 ipvs_property:1,
291 nf_trace:1;
292 __be16 protocol;
293
294 void (*destructor)(struct sk_buff *skb);
295 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
296 struct nf_conntrack *nfct;
297 struct sk_buff *nfct_reasm;
298 #endif
299 #ifdef CONFIG_BRIDGE_NETFILTER
300 struct nf_bridge_info *nf_bridge;
301 #endif
302
303 int iif;
304 __u16 queue_mapping;
305
306 #ifdef CONFIG_NET_SCHED
307 __u16 tc_index; /* traffic control index */
308 #ifdef CONFIG_NET_CLS_ACT
309 __u16 tc_verd; /* traffic control verdict */
310 #endif
311 #endif
312 /* 2 byte hole */
313
314 #ifdef CONFIG_NET_DMA
315 dma_cookie_t dma_cookie;
316 #endif
317 #ifdef CONFIG_NETWORK_SECMARK
318 __u32 secmark;
319 #endif
320
321 __u32 mark;
322
323 sk_buff_data_t transport_header;
324 sk_buff_data_t network_header;
325 sk_buff_data_t mac_header;
326 /* These elements must be at the end, see alloc_skb() for details. */
327 sk_buff_data_t tail;
328 sk_buff_data_t end;
329 unsigned char *head,
330 *data;
331 unsigned int truesize;
332 atomic_t users;
333 };
334
335 #ifdef __KERNEL__
336 /*
337 * Handling routines are only of interest to the kernel
338 */
339 #include <linux/slab.h>
340
341 #include <asm/system.h>
342
343 extern void kfree_skb(struct sk_buff *skb);
344 extern void __kfree_skb(struct sk_buff *skb);
345 extern struct sk_buff *__alloc_skb(unsigned int size,
346 gfp_t priority, int fclone, int node);
347 static inline struct sk_buff *alloc_skb(unsigned int size,
348 gfp_t priority)
349 {
350 return __alloc_skb(size, priority, 0, -1);
351 }
352
353 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
354 gfp_t priority)
355 {
356 return __alloc_skb(size, priority, 1, -1);
357 }
358
359 extern void kfree_skbmem(struct sk_buff *skb);
360 extern struct sk_buff *skb_clone(struct sk_buff *skb,
361 gfp_t priority);
362 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
363 gfp_t priority);
364 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
365 gfp_t gfp_mask);
366 extern int pskb_expand_head(struct sk_buff *skb,
367 int nhead, int ntail,
368 gfp_t gfp_mask);
369 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
370 unsigned int headroom);
371 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
372 int newheadroom, int newtailroom,
373 gfp_t priority);
374 extern int skb_to_sgvec(struct sk_buff *skb,
375 struct scatterlist *sg, int offset,
376 int len);
377 extern int skb_cow_data(struct sk_buff *skb, int tailbits,
378 struct sk_buff **trailer);
379 extern int skb_pad(struct sk_buff *skb, int pad);
380 #define dev_kfree_skb(a) kfree_skb(a)
381 extern void skb_over_panic(struct sk_buff *skb, int len,
382 void *here);
383 extern void skb_under_panic(struct sk_buff *skb, int len,
384 void *here);
385 extern void skb_truesize_bug(struct sk_buff *skb);
386
387 static inline void skb_truesize_check(struct sk_buff *skb)
388 {
389 if (unlikely((int)skb->truesize < sizeof(struct sk_buff) + skb->len))
390 skb_truesize_bug(skb);
391 }
392
393 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
394 int getfrag(void *from, char *to, int offset,
395 int len,int odd, struct sk_buff *skb),
396 void *from, int length);
397
398 struct skb_seq_state
399 {
400 __u32 lower_offset;
401 __u32 upper_offset;
402 __u32 frag_idx;
403 __u32 stepped_offset;
404 struct sk_buff *root_skb;
405 struct sk_buff *cur_skb;
406 __u8 *frag_data;
407 };
408
409 extern void skb_prepare_seq_read(struct sk_buff *skb,
410 unsigned int from, unsigned int to,
411 struct skb_seq_state *st);
412 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
413 struct skb_seq_state *st);
414 extern void skb_abort_seq_read(struct skb_seq_state *st);
415
416 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
417 unsigned int to, struct ts_config *config,
418 struct ts_state *state);
419
420 #ifdef NET_SKBUFF_DATA_USES_OFFSET
421 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
422 {
423 return skb->head + skb->end;
424 }
425 #else
426 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
427 {
428 return skb->end;
429 }
430 #endif
431
432 /* Internal */
433 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
434
435 /**
436 * skb_queue_empty - check if a queue is empty
437 * @list: queue head
438 *
439 * Returns true if the queue is empty, false otherwise.
440 */
441 static inline int skb_queue_empty(const struct sk_buff_head *list)
442 {
443 return list->next == (struct sk_buff *)list;
444 }
445
446 /**
447 * skb_get - reference buffer
448 * @skb: buffer to reference
449 *
450 * Makes another reference to a socket buffer and returns a pointer
451 * to the buffer.
452 */
453 static inline struct sk_buff *skb_get(struct sk_buff *skb)
454 {
455 atomic_inc(&skb->users);
456 return skb;
457 }
458
459 /*
460 * If users == 1, we are the only owner and are can avoid redundant
461 * atomic change.
462 */
463
464 /**
465 * skb_cloned - is the buffer a clone
466 * @skb: buffer to check
467 *
468 * Returns true if the buffer was generated with skb_clone() and is
469 * one of multiple shared copies of the buffer. Cloned buffers are
470 * shared data so must not be written to under normal circumstances.
471 */
472 static inline int skb_cloned(const struct sk_buff *skb)
473 {
474 return skb->cloned &&
475 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
476 }
477
478 /**
479 * skb_header_cloned - is the header a clone
480 * @skb: buffer to check
481 *
482 * Returns true if modifying the header part of the buffer requires
483 * the data to be copied.
484 */
485 static inline int skb_header_cloned(const struct sk_buff *skb)
486 {
487 int dataref;
488
489 if (!skb->cloned)
490 return 0;
491
492 dataref = atomic_read(&skb_shinfo(skb)->dataref);
493 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
494 return dataref != 1;
495 }
496
497 /**
498 * skb_header_release - release reference to header
499 * @skb: buffer to operate on
500 *
501 * Drop a reference to the header part of the buffer. This is done
502 * by acquiring a payload reference. You must not read from the header
503 * part of skb->data after this.
504 */
505 static inline void skb_header_release(struct sk_buff *skb)
506 {
507 BUG_ON(skb->nohdr);
508 skb->nohdr = 1;
509 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
510 }
511
512 /**
513 * skb_shared - is the buffer shared
514 * @skb: buffer to check
515 *
516 * Returns true if more than one person has a reference to this
517 * buffer.
518 */
519 static inline int skb_shared(const struct sk_buff *skb)
520 {
521 return atomic_read(&skb->users) != 1;
522 }
523
524 /**
525 * skb_share_check - check if buffer is shared and if so clone it
526 * @skb: buffer to check
527 * @pri: priority for memory allocation
528 *
529 * If the buffer is shared the buffer is cloned and the old copy
530 * drops a reference. A new clone with a single reference is returned.
531 * If the buffer is not shared the original buffer is returned. When
532 * being called from interrupt status or with spinlocks held pri must
533 * be GFP_ATOMIC.
534 *
535 * NULL is returned on a memory allocation failure.
536 */
537 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
538 gfp_t pri)
539 {
540 might_sleep_if(pri & __GFP_WAIT);
541 if (skb_shared(skb)) {
542 struct sk_buff *nskb = skb_clone(skb, pri);
543 kfree_skb(skb);
544 skb = nskb;
545 }
546 return skb;
547 }
548
549 /*
550 * Copy shared buffers into a new sk_buff. We effectively do COW on
551 * packets to handle cases where we have a local reader and forward
552 * and a couple of other messy ones. The normal one is tcpdumping
553 * a packet thats being forwarded.
554 */
555
556 /**
557 * skb_unshare - make a copy of a shared buffer
558 * @skb: buffer to check
559 * @pri: priority for memory allocation
560 *
561 * If the socket buffer is a clone then this function creates a new
562 * copy of the data, drops a reference count on the old copy and returns
563 * the new copy with the reference count at 1. If the buffer is not a clone
564 * the original buffer is returned. When called with a spinlock held or
565 * from interrupt state @pri must be %GFP_ATOMIC
566 *
567 * %NULL is returned on a memory allocation failure.
568 */
569 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
570 gfp_t pri)
571 {
572 might_sleep_if(pri & __GFP_WAIT);
573 if (skb_cloned(skb)) {
574 struct sk_buff *nskb = skb_copy(skb, pri);
575 kfree_skb(skb); /* Free our shared copy */
576 skb = nskb;
577 }
578 return skb;
579 }
580
581 /**
582 * skb_peek
583 * @list_: list to peek at
584 *
585 * Peek an &sk_buff. Unlike most other operations you _MUST_
586 * be careful with this one. A peek leaves the buffer on the
587 * list and someone else may run off with it. You must hold
588 * the appropriate locks or have a private queue to do this.
589 *
590 * Returns %NULL for an empty list or a pointer to the head element.
591 * The reference count is not incremented and the reference is therefore
592 * volatile. Use with caution.
593 */
594 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
595 {
596 struct sk_buff *list = ((struct sk_buff *)list_)->next;
597 if (list == (struct sk_buff *)list_)
598 list = NULL;
599 return list;
600 }
601
602 /**
603 * skb_peek_tail
604 * @list_: list to peek at
605 *
606 * Peek an &sk_buff. Unlike most other operations you _MUST_
607 * be careful with this one. A peek leaves the buffer on the
608 * list and someone else may run off with it. You must hold
609 * the appropriate locks or have a private queue to do this.
610 *
611 * Returns %NULL for an empty list or a pointer to the tail element.
612 * The reference count is not incremented and the reference is therefore
613 * volatile. Use with caution.
614 */
615 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
616 {
617 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
618 if (list == (struct sk_buff *)list_)
619 list = NULL;
620 return list;
621 }
622
623 /**
624 * skb_queue_len - get queue length
625 * @list_: list to measure
626 *
627 * Return the length of an &sk_buff queue.
628 */
629 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
630 {
631 return list_->qlen;
632 }
633
634 /*
635 * This function creates a split out lock class for each invocation;
636 * this is needed for now since a whole lot of users of the skb-queue
637 * infrastructure in drivers have different locking usage (in hardirq)
638 * than the networking core (in softirq only). In the long run either the
639 * network layer or drivers should need annotation to consolidate the
640 * main types of usage into 3 classes.
641 */
642 static inline void skb_queue_head_init(struct sk_buff_head *list)
643 {
644 spin_lock_init(&list->lock);
645 list->prev = list->next = (struct sk_buff *)list;
646 list->qlen = 0;
647 }
648
649 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
650 struct lock_class_key *class)
651 {
652 skb_queue_head_init(list);
653 lockdep_set_class(&list->lock, class);
654 }
655
656 /*
657 * Insert an sk_buff at the start of a list.
658 *
659 * The "__skb_xxxx()" functions are the non-atomic ones that
660 * can only be called with interrupts disabled.
661 */
662
663 /**
664 * __skb_queue_after - queue a buffer at the list head
665 * @list: list to use
666 * @prev: place after this buffer
667 * @newsk: buffer to queue
668 *
669 * Queue a buffer int the middle of a list. This function takes no locks
670 * and you must therefore hold required locks before calling it.
671 *
672 * A buffer cannot be placed on two lists at the same time.
673 */
674 static inline void __skb_queue_after(struct sk_buff_head *list,
675 struct sk_buff *prev,
676 struct sk_buff *newsk)
677 {
678 struct sk_buff *next;
679 list->qlen++;
680
681 next = prev->next;
682 newsk->next = next;
683 newsk->prev = prev;
684 next->prev = prev->next = newsk;
685 }
686
687 /**
688 * __skb_queue_head - queue a buffer at the list head
689 * @list: list to use
690 * @newsk: buffer to queue
691 *
692 * Queue a buffer at the start of a list. This function takes no locks
693 * and you must therefore hold required locks before calling it.
694 *
695 * A buffer cannot be placed on two lists at the same time.
696 */
697 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
698 static inline void __skb_queue_head(struct sk_buff_head *list,
699 struct sk_buff *newsk)
700 {
701 __skb_queue_after(list, (struct sk_buff *)list, newsk);
702 }
703
704 /**
705 * __skb_queue_tail - queue a buffer at the list tail
706 * @list: list to use
707 * @newsk: buffer to queue
708 *
709 * Queue a buffer at the end of a list. This function takes no locks
710 * and you must therefore hold required locks before calling it.
711 *
712 * A buffer cannot be placed on two lists at the same time.
713 */
714 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
715 static inline void __skb_queue_tail(struct sk_buff_head *list,
716 struct sk_buff *newsk)
717 {
718 struct sk_buff *prev, *next;
719
720 list->qlen++;
721 next = (struct sk_buff *)list;
722 prev = next->prev;
723 newsk->next = next;
724 newsk->prev = prev;
725 next->prev = prev->next = newsk;
726 }
727
728
729 /**
730 * __skb_dequeue - remove from the head of the queue
731 * @list: list to dequeue from
732 *
733 * Remove the head of the list. This function does not take any locks
734 * so must be used with appropriate locks held only. The head item is
735 * returned or %NULL if the list is empty.
736 */
737 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
738 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
739 {
740 struct sk_buff *next, *prev, *result;
741
742 prev = (struct sk_buff *) list;
743 next = prev->next;
744 result = NULL;
745 if (next != prev) {
746 result = next;
747 next = next->next;
748 list->qlen--;
749 next->prev = prev;
750 prev->next = next;
751 result->next = result->prev = NULL;
752 }
753 return result;
754 }
755
756
757 /*
758 * Insert a packet on a list.
759 */
760 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
761 static inline void __skb_insert(struct sk_buff *newsk,
762 struct sk_buff *prev, struct sk_buff *next,
763 struct sk_buff_head *list)
764 {
765 newsk->next = next;
766 newsk->prev = prev;
767 next->prev = prev->next = newsk;
768 list->qlen++;
769 }
770
771 /*
772 * Place a packet after a given packet in a list.
773 */
774 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
775 static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
776 {
777 __skb_insert(newsk, old, old->next, list);
778 }
779
780 /*
781 * remove sk_buff from list. _Must_ be called atomically, and with
782 * the list known..
783 */
784 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
785 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
786 {
787 struct sk_buff *next, *prev;
788
789 list->qlen--;
790 next = skb->next;
791 prev = skb->prev;
792 skb->next = skb->prev = NULL;
793 next->prev = prev;
794 prev->next = next;
795 }
796
797
798 /* XXX: more streamlined implementation */
799
800 /**
801 * __skb_dequeue_tail - remove from the tail of the queue
802 * @list: list to dequeue from
803 *
804 * Remove the tail of the list. This function does not take any locks
805 * so must be used with appropriate locks held only. The tail item is
806 * returned or %NULL if the list is empty.
807 */
808 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
809 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
810 {
811 struct sk_buff *skb = skb_peek_tail(list);
812 if (skb)
813 __skb_unlink(skb, list);
814 return skb;
815 }
816
817
818 static inline int skb_is_nonlinear(const struct sk_buff *skb)
819 {
820 return skb->data_len;
821 }
822
823 static inline unsigned int skb_headlen(const struct sk_buff *skb)
824 {
825 return skb->len - skb->data_len;
826 }
827
828 static inline int skb_pagelen(const struct sk_buff *skb)
829 {
830 int i, len = 0;
831
832 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
833 len += skb_shinfo(skb)->frags[i].size;
834 return len + skb_headlen(skb);
835 }
836
837 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
838 struct page *page, int off, int size)
839 {
840 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
841
842 frag->page = page;
843 frag->page_offset = off;
844 frag->size = size;
845 skb_shinfo(skb)->nr_frags = i + 1;
846 }
847
848 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
849 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
850 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
851
852 #ifdef NET_SKBUFF_DATA_USES_OFFSET
853 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
854 {
855 return skb->head + skb->tail;
856 }
857
858 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
859 {
860 skb->tail = skb->data - skb->head;
861 }
862
863 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
864 {
865 skb_reset_tail_pointer(skb);
866 skb->tail += offset;
867 }
868 #else /* NET_SKBUFF_DATA_USES_OFFSET */
869 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
870 {
871 return skb->tail;
872 }
873
874 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
875 {
876 skb->tail = skb->data;
877 }
878
879 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
880 {
881 skb->tail = skb->data + offset;
882 }
883
884 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
885
886 /*
887 * Add data to an sk_buff
888 */
889 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
890 {
891 unsigned char *tmp = skb_tail_pointer(skb);
892 SKB_LINEAR_ASSERT(skb);
893 skb->tail += len;
894 skb->len += len;
895 return tmp;
896 }
897
898 /**
899 * skb_put - add data to a buffer
900 * @skb: buffer to use
901 * @len: amount of data to add
902 *
903 * This function extends the used data area of the buffer. If this would
904 * exceed the total buffer size the kernel will panic. A pointer to the
905 * first byte of the extra data is returned.
906 */
907 static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
908 {
909 unsigned char *tmp = skb_tail_pointer(skb);
910 SKB_LINEAR_ASSERT(skb);
911 skb->tail += len;
912 skb->len += len;
913 if (unlikely(skb->tail > skb->end))
914 skb_over_panic(skb, len, current_text_addr());
915 return tmp;
916 }
917
918 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
919 {
920 skb->data -= len;
921 skb->len += len;
922 return skb->data;
923 }
924
925 /**
926 * skb_push - add data to the start of a buffer
927 * @skb: buffer to use
928 * @len: amount of data to add
929 *
930 * This function extends the used data area of the buffer at the buffer
931 * start. If this would exceed the total buffer headroom the kernel will
932 * panic. A pointer to the first byte of the extra data is returned.
933 */
934 static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
935 {
936 skb->data -= len;
937 skb->len += len;
938 if (unlikely(skb->data<skb->head))
939 skb_under_panic(skb, len, current_text_addr());
940 return skb->data;
941 }
942
943 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
944 {
945 skb->len -= len;
946 BUG_ON(skb->len < skb->data_len);
947 return skb->data += len;
948 }
949
950 /**
951 * skb_pull - remove data from the start of a buffer
952 * @skb: buffer to use
953 * @len: amount of data to remove
954 *
955 * This function removes data from the start of a buffer, returning
956 * the memory to the headroom. A pointer to the next data in the buffer
957 * is returned. Once the data has been pulled future pushes will overwrite
958 * the old data.
959 */
960 static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
961 {
962 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
963 }
964
965 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
966
967 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
968 {
969 if (len > skb_headlen(skb) &&
970 !__pskb_pull_tail(skb, len-skb_headlen(skb)))
971 return NULL;
972 skb->len -= len;
973 return skb->data += len;
974 }
975
976 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
977 {
978 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
979 }
980
981 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
982 {
983 if (likely(len <= skb_headlen(skb)))
984 return 1;
985 if (unlikely(len > skb->len))
986 return 0;
987 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
988 }
989
990 /**
991 * skb_headroom - bytes at buffer head
992 * @skb: buffer to check
993 *
994 * Return the number of bytes of free space at the head of an &sk_buff.
995 */
996 static inline int skb_headroom(const struct sk_buff *skb)
997 {
998 return skb->data - skb->head;
999 }
1000
1001 /**
1002 * skb_tailroom - bytes at buffer end
1003 * @skb: buffer to check
1004 *
1005 * Return the number of bytes of free space at the tail of an sk_buff
1006 */
1007 static inline int skb_tailroom(const struct sk_buff *skb)
1008 {
1009 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1010 }
1011
1012 /**
1013 * skb_reserve - adjust headroom
1014 * @skb: buffer to alter
1015 * @len: bytes to move
1016 *
1017 * Increase the headroom of an empty &sk_buff by reducing the tail
1018 * room. This is only allowed for an empty buffer.
1019 */
1020 static inline void skb_reserve(struct sk_buff *skb, int len)
1021 {
1022 skb->data += len;
1023 skb->tail += len;
1024 }
1025
1026 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1027 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1028 {
1029 return skb->head + skb->transport_header;
1030 }
1031
1032 static inline void skb_reset_transport_header(struct sk_buff *skb)
1033 {
1034 skb->transport_header = skb->data - skb->head;
1035 }
1036
1037 static inline void skb_set_transport_header(struct sk_buff *skb,
1038 const int offset)
1039 {
1040 skb_reset_transport_header(skb);
1041 skb->transport_header += offset;
1042 }
1043
1044 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1045 {
1046 return skb->head + skb->network_header;
1047 }
1048
1049 static inline void skb_reset_network_header(struct sk_buff *skb)
1050 {
1051 skb->network_header = skb->data - skb->head;
1052 }
1053
1054 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1055 {
1056 skb_reset_network_header(skb);
1057 skb->network_header += offset;
1058 }
1059
1060 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1061 {
1062 return skb->head + skb->mac_header;
1063 }
1064
1065 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1066 {
1067 return skb->mac_header != ~0U;
1068 }
1069
1070 static inline void skb_reset_mac_header(struct sk_buff *skb)
1071 {
1072 skb->mac_header = skb->data - skb->head;
1073 }
1074
1075 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1076 {
1077 skb_reset_mac_header(skb);
1078 skb->mac_header += offset;
1079 }
1080
1081 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1082
1083 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1084 {
1085 return skb->transport_header;
1086 }
1087
1088 static inline void skb_reset_transport_header(struct sk_buff *skb)
1089 {
1090 skb->transport_header = skb->data;
1091 }
1092
1093 static inline void skb_set_transport_header(struct sk_buff *skb,
1094 const int offset)
1095 {
1096 skb->transport_header = skb->data + offset;
1097 }
1098
1099 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1100 {
1101 return skb->network_header;
1102 }
1103
1104 static inline void skb_reset_network_header(struct sk_buff *skb)
1105 {
1106 skb->network_header = skb->data;
1107 }
1108
1109 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1110 {
1111 skb->network_header = skb->data + offset;
1112 }
1113
1114 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1115 {
1116 return skb->mac_header;
1117 }
1118
1119 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1120 {
1121 return skb->mac_header != NULL;
1122 }
1123
1124 static inline void skb_reset_mac_header(struct sk_buff *skb)
1125 {
1126 skb->mac_header = skb->data;
1127 }
1128
1129 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1130 {
1131 skb->mac_header = skb->data + offset;
1132 }
1133 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1134
1135 static inline int skb_transport_offset(const struct sk_buff *skb)
1136 {
1137 return skb_transport_header(skb) - skb->data;
1138 }
1139
1140 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1141 {
1142 return skb->transport_header - skb->network_header;
1143 }
1144
1145 static inline int skb_network_offset(const struct sk_buff *skb)
1146 {
1147 return skb_network_header(skb) - skb->data;
1148 }
1149
1150 /*
1151 * CPUs often take a performance hit when accessing unaligned memory
1152 * locations. The actual performance hit varies, it can be small if the
1153 * hardware handles it or large if we have to take an exception and fix it
1154 * in software.
1155 *
1156 * Since an ethernet header is 14 bytes network drivers often end up with
1157 * the IP header at an unaligned offset. The IP header can be aligned by
1158 * shifting the start of the packet by 2 bytes. Drivers should do this
1159 * with:
1160 *
1161 * skb_reserve(NET_IP_ALIGN);
1162 *
1163 * The downside to this alignment of the IP header is that the DMA is now
1164 * unaligned. On some architectures the cost of an unaligned DMA is high
1165 * and this cost outweighs the gains made by aligning the IP header.
1166 *
1167 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1168 * to be overridden.
1169 */
1170 #ifndef NET_IP_ALIGN
1171 #define NET_IP_ALIGN 2
1172 #endif
1173
1174 /*
1175 * The networking layer reserves some headroom in skb data (via
1176 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1177 * the header has to grow. In the default case, if the header has to grow
1178 * 16 bytes or less we avoid the reallocation.
1179 *
1180 * Unfortunately this headroom changes the DMA alignment of the resulting
1181 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1182 * on some architectures. An architecture can override this value,
1183 * perhaps setting it to a cacheline in size (since that will maintain
1184 * cacheline alignment of the DMA). It must be a power of 2.
1185 *
1186 * Various parts of the networking layer expect at least 16 bytes of
1187 * headroom, you should not reduce this.
1188 */
1189 #ifndef NET_SKB_PAD
1190 #define NET_SKB_PAD 16
1191 #endif
1192
1193 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1194
1195 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1196 {
1197 if (unlikely(skb->data_len)) {
1198 WARN_ON(1);
1199 return;
1200 }
1201 skb->len = len;
1202 skb_set_tail_pointer(skb, len);
1203 }
1204
1205 /**
1206 * skb_trim - remove end from a buffer
1207 * @skb: buffer to alter
1208 * @len: new length
1209 *
1210 * Cut the length of a buffer down by removing data from the tail. If
1211 * the buffer is already under the length specified it is not modified.
1212 * The skb must be linear.
1213 */
1214 static inline void skb_trim(struct sk_buff *skb, unsigned int len)
1215 {
1216 if (skb->len > len)
1217 __skb_trim(skb, len);
1218 }
1219
1220
1221 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1222 {
1223 if (skb->data_len)
1224 return ___pskb_trim(skb, len);
1225 __skb_trim(skb, len);
1226 return 0;
1227 }
1228
1229 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1230 {
1231 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1232 }
1233
1234 /**
1235 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1236 * @skb: buffer to alter
1237 * @len: new length
1238 *
1239 * This is identical to pskb_trim except that the caller knows that
1240 * the skb is not cloned so we should never get an error due to out-
1241 * of-memory.
1242 */
1243 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1244 {
1245 int err = pskb_trim(skb, len);
1246 BUG_ON(err);
1247 }
1248
1249 /**
1250 * skb_orphan - orphan a buffer
1251 * @skb: buffer to orphan
1252 *
1253 * If a buffer currently has an owner then we call the owner's
1254 * destructor function and make the @skb unowned. The buffer continues
1255 * to exist but is no longer charged to its former owner.
1256 */
1257 static inline void skb_orphan(struct sk_buff *skb)
1258 {
1259 if (skb->destructor)
1260 skb->destructor(skb);
1261 skb->destructor = NULL;
1262 skb->sk = NULL;
1263 }
1264
1265 /**
1266 * __skb_queue_purge - empty a list
1267 * @list: list to empty
1268 *
1269 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1270 * the list and one reference dropped. This function does not take the
1271 * list lock and the caller must hold the relevant locks to use it.
1272 */
1273 extern void skb_queue_purge(struct sk_buff_head *list);
1274 static inline void __skb_queue_purge(struct sk_buff_head *list)
1275 {
1276 struct sk_buff *skb;
1277 while ((skb = __skb_dequeue(list)) != NULL)
1278 kfree_skb(skb);
1279 }
1280
1281 /**
1282 * __dev_alloc_skb - allocate an skbuff for receiving
1283 * @length: length to allocate
1284 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1285 *
1286 * Allocate a new &sk_buff and assign it a usage count of one. The
1287 * buffer has unspecified headroom built in. Users should allocate
1288 * the headroom they think they need without accounting for the
1289 * built in space. The built in space is used for optimisations.
1290 *
1291 * %NULL is returned if there is no free memory.
1292 */
1293 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1294 gfp_t gfp_mask)
1295 {
1296 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1297 if (likely(skb))
1298 skb_reserve(skb, NET_SKB_PAD);
1299 return skb;
1300 }
1301
1302 /**
1303 * dev_alloc_skb - allocate an skbuff for receiving
1304 * @length: length to allocate
1305 *
1306 * Allocate a new &sk_buff and assign it a usage count of one. The
1307 * buffer has unspecified headroom built in. Users should allocate
1308 * the headroom they think they need without accounting for the
1309 * built in space. The built in space is used for optimisations.
1310 *
1311 * %NULL is returned if there is no free memory. Although this function
1312 * allocates memory it can be called from an interrupt.
1313 */
1314 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1315 {
1316 return __dev_alloc_skb(length, GFP_ATOMIC);
1317 }
1318
1319 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1320 unsigned int length, gfp_t gfp_mask);
1321
1322 /**
1323 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1324 * @dev: network device to receive on
1325 * @length: length to allocate
1326 *
1327 * Allocate a new &sk_buff and assign it a usage count of one. The
1328 * buffer has unspecified headroom built in. Users should allocate
1329 * the headroom they think they need without accounting for the
1330 * built in space. The built in space is used for optimisations.
1331 *
1332 * %NULL is returned if there is no free memory. Although this function
1333 * allocates memory it can be called from an interrupt.
1334 */
1335 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1336 unsigned int length)
1337 {
1338 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1339 }
1340
1341 /**
1342 * skb_clone_writable - is the header of a clone writable
1343 * @skb: buffer to check
1344 * @len: length up to which to write
1345 *
1346 * Returns true if modifying the header part of the cloned buffer
1347 * does not requires the data to be copied.
1348 */
1349 static inline int skb_clone_writable(struct sk_buff *skb, int len)
1350 {
1351 return !skb_header_cloned(skb) &&
1352 skb_headroom(skb) + len <= skb->hdr_len;
1353 }
1354
1355 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1356 int cloned)
1357 {
1358 int delta = 0;
1359
1360 if (headroom < NET_SKB_PAD)
1361 headroom = NET_SKB_PAD;
1362 if (headroom > skb_headroom(skb))
1363 delta = headroom - skb_headroom(skb);
1364
1365 if (delta || cloned)
1366 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1367 GFP_ATOMIC);
1368 return 0;
1369 }
1370
1371 /**
1372 * skb_cow - copy header of skb when it is required
1373 * @skb: buffer to cow
1374 * @headroom: needed headroom
1375 *
1376 * If the skb passed lacks sufficient headroom or its data part
1377 * is shared, data is reallocated. If reallocation fails, an error
1378 * is returned and original skb is not changed.
1379 *
1380 * The result is skb with writable area skb->head...skb->tail
1381 * and at least @headroom of space at head.
1382 */
1383 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1384 {
1385 return __skb_cow(skb, headroom, skb_cloned(skb));
1386 }
1387
1388 /**
1389 * skb_cow_head - skb_cow but only making the head writable
1390 * @skb: buffer to cow
1391 * @headroom: needed headroom
1392 *
1393 * This function is identical to skb_cow except that we replace the
1394 * skb_cloned check by skb_header_cloned. It should be used when
1395 * you only need to push on some header and do not need to modify
1396 * the data.
1397 */
1398 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1399 {
1400 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1401 }
1402
1403 /**
1404 * skb_padto - pad an skbuff up to a minimal size
1405 * @skb: buffer to pad
1406 * @len: minimal length
1407 *
1408 * Pads up a buffer to ensure the trailing bytes exist and are
1409 * blanked. If the buffer already contains sufficient data it
1410 * is untouched. Otherwise it is extended. Returns zero on
1411 * success. The skb is freed on error.
1412 */
1413
1414 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1415 {
1416 unsigned int size = skb->len;
1417 if (likely(size >= len))
1418 return 0;
1419 return skb_pad(skb, len-size);
1420 }
1421
1422 static inline int skb_add_data(struct sk_buff *skb,
1423 char __user *from, int copy)
1424 {
1425 const int off = skb->len;
1426
1427 if (skb->ip_summed == CHECKSUM_NONE) {
1428 int err = 0;
1429 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1430 copy, 0, &err);
1431 if (!err) {
1432 skb->csum = csum_block_add(skb->csum, csum, off);
1433 return 0;
1434 }
1435 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1436 return 0;
1437
1438 __skb_trim(skb, off);
1439 return -EFAULT;
1440 }
1441
1442 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1443 struct page *page, int off)
1444 {
1445 if (i) {
1446 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1447
1448 return page == frag->page &&
1449 off == frag->page_offset + frag->size;
1450 }
1451 return 0;
1452 }
1453
1454 static inline int __skb_linearize(struct sk_buff *skb)
1455 {
1456 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1457 }
1458
1459 /**
1460 * skb_linearize - convert paged skb to linear one
1461 * @skb: buffer to linarize
1462 *
1463 * If there is no free memory -ENOMEM is returned, otherwise zero
1464 * is returned and the old skb data released.
1465 */
1466 static inline int skb_linearize(struct sk_buff *skb)
1467 {
1468 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1469 }
1470
1471 /**
1472 * skb_linearize_cow - make sure skb is linear and writable
1473 * @skb: buffer to process
1474 *
1475 * If there is no free memory -ENOMEM is returned, otherwise zero
1476 * is returned and the old skb data released.
1477 */
1478 static inline int skb_linearize_cow(struct sk_buff *skb)
1479 {
1480 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1481 __skb_linearize(skb) : 0;
1482 }
1483
1484 /**
1485 * skb_postpull_rcsum - update checksum for received skb after pull
1486 * @skb: buffer to update
1487 * @start: start of data before pull
1488 * @len: length of data pulled
1489 *
1490 * After doing a pull on a received packet, you need to call this to
1491 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1492 * CHECKSUM_NONE so that it can be recomputed from scratch.
1493 */
1494
1495 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1496 const void *start, unsigned int len)
1497 {
1498 if (skb->ip_summed == CHECKSUM_COMPLETE)
1499 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1500 }
1501
1502 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1503
1504 /**
1505 * pskb_trim_rcsum - trim received skb and update checksum
1506 * @skb: buffer to trim
1507 * @len: new length
1508 *
1509 * This is exactly the same as pskb_trim except that it ensures the
1510 * checksum of received packets are still valid after the operation.
1511 */
1512
1513 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1514 {
1515 if (likely(len >= skb->len))
1516 return 0;
1517 if (skb->ip_summed == CHECKSUM_COMPLETE)
1518 skb->ip_summed = CHECKSUM_NONE;
1519 return __pskb_trim(skb, len);
1520 }
1521
1522 #define skb_queue_walk(queue, skb) \
1523 for (skb = (queue)->next; \
1524 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1525 skb = skb->next)
1526
1527 #define skb_queue_walk_safe(queue, skb, tmp) \
1528 for (skb = (queue)->next, tmp = skb->next; \
1529 skb != (struct sk_buff *)(queue); \
1530 skb = tmp, tmp = skb->next)
1531
1532 #define skb_queue_reverse_walk(queue, skb) \
1533 for (skb = (queue)->prev; \
1534 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1535 skb = skb->prev)
1536
1537
1538 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1539 int noblock, int *err);
1540 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1541 struct poll_table_struct *wait);
1542 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1543 int offset, struct iovec *to,
1544 int size);
1545 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1546 int hlen,
1547 struct iovec *iov);
1548 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1549 extern void skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1550 unsigned int flags);
1551 extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
1552 int len, __wsum csum);
1553 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1554 void *to, int len);
1555 extern int skb_store_bits(struct sk_buff *skb, int offset,
1556 const void *from, int len);
1557 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
1558 int offset, u8 *to, int len,
1559 __wsum csum);
1560 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1561 extern void skb_split(struct sk_buff *skb,
1562 struct sk_buff *skb1, const u32 len);
1563
1564 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1565
1566 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1567 int len, void *buffer)
1568 {
1569 int hlen = skb_headlen(skb);
1570
1571 if (hlen - offset >= len)
1572 return skb->data + offset;
1573
1574 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1575 return NULL;
1576
1577 return buffer;
1578 }
1579
1580 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1581 void *to,
1582 const unsigned int len)
1583 {
1584 memcpy(to, skb->data, len);
1585 }
1586
1587 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1588 const int offset, void *to,
1589 const unsigned int len)
1590 {
1591 memcpy(to, skb->data + offset, len);
1592 }
1593
1594 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1595 const void *from,
1596 const unsigned int len)
1597 {
1598 memcpy(skb->data, from, len);
1599 }
1600
1601 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1602 const int offset,
1603 const void *from,
1604 const unsigned int len)
1605 {
1606 memcpy(skb->data + offset, from, len);
1607 }
1608
1609 extern void skb_init(void);
1610
1611 /**
1612 * skb_get_timestamp - get timestamp from a skb
1613 * @skb: skb to get stamp from
1614 * @stamp: pointer to struct timeval to store stamp in
1615 *
1616 * Timestamps are stored in the skb as offsets to a base timestamp.
1617 * This function converts the offset back to a struct timeval and stores
1618 * it in stamp.
1619 */
1620 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1621 {
1622 *stamp = ktime_to_timeval(skb->tstamp);
1623 }
1624
1625 static inline void __net_timestamp(struct sk_buff *skb)
1626 {
1627 skb->tstamp = ktime_get_real();
1628 }
1629
1630 static inline ktime_t net_timedelta(ktime_t t)
1631 {
1632 return ktime_sub(ktime_get_real(), t);
1633 }
1634
1635 static inline ktime_t net_invalid_timestamp(void)
1636 {
1637 return ktime_set(0, 0);
1638 }
1639
1640 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1641 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1642
1643 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
1644 {
1645 return skb->ip_summed & CHECKSUM_UNNECESSARY;
1646 }
1647
1648 /**
1649 * skb_checksum_complete - Calculate checksum of an entire packet
1650 * @skb: packet to process
1651 *
1652 * This function calculates the checksum over the entire packet plus
1653 * the value of skb->csum. The latter can be used to supply the
1654 * checksum of a pseudo header as used by TCP/UDP. It returns the
1655 * checksum.
1656 *
1657 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
1658 * this function can be used to verify that checksum on received
1659 * packets. In that case the function should return zero if the
1660 * checksum is correct. In particular, this function will return zero
1661 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1662 * hardware has already verified the correctness of the checksum.
1663 */
1664 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
1665 {
1666 return skb_csum_unnecessary(skb) ?
1667 0 : __skb_checksum_complete(skb);
1668 }
1669
1670 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1671 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
1672 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1673 {
1674 if (nfct && atomic_dec_and_test(&nfct->use))
1675 nf_conntrack_destroy(nfct);
1676 }
1677 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1678 {
1679 if (nfct)
1680 atomic_inc(&nfct->use);
1681 }
1682 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1683 {
1684 if (skb)
1685 atomic_inc(&skb->users);
1686 }
1687 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1688 {
1689 if (skb)
1690 kfree_skb(skb);
1691 }
1692 #endif
1693 #ifdef CONFIG_BRIDGE_NETFILTER
1694 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1695 {
1696 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1697 kfree(nf_bridge);
1698 }
1699 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1700 {
1701 if (nf_bridge)
1702 atomic_inc(&nf_bridge->use);
1703 }
1704 #endif /* CONFIG_BRIDGE_NETFILTER */
1705 static inline void nf_reset(struct sk_buff *skb)
1706 {
1707 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1708 nf_conntrack_put(skb->nfct);
1709 skb->nfct = NULL;
1710 nf_conntrack_put_reasm(skb->nfct_reasm);
1711 skb->nfct_reasm = NULL;
1712 #endif
1713 #ifdef CONFIG_BRIDGE_NETFILTER
1714 nf_bridge_put(skb->nf_bridge);
1715 skb->nf_bridge = NULL;
1716 #endif
1717 }
1718
1719 /* Note: This doesn't put any conntrack and bridge info in dst. */
1720 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1721 {
1722 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1723 dst->nfct = src->nfct;
1724 nf_conntrack_get(src->nfct);
1725 dst->nfctinfo = src->nfctinfo;
1726 dst->nfct_reasm = src->nfct_reasm;
1727 nf_conntrack_get_reasm(src->nfct_reasm);
1728 #endif
1729 #ifdef CONFIG_BRIDGE_NETFILTER
1730 dst->nf_bridge = src->nf_bridge;
1731 nf_bridge_get(src->nf_bridge);
1732 #endif
1733 }
1734
1735 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1736 {
1737 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1738 nf_conntrack_put(dst->nfct);
1739 nf_conntrack_put_reasm(dst->nfct_reasm);
1740 #endif
1741 #ifdef CONFIG_BRIDGE_NETFILTER
1742 nf_bridge_put(dst->nf_bridge);
1743 #endif
1744 __nf_copy(dst, src);
1745 }
1746
1747 #ifdef CONFIG_NETWORK_SECMARK
1748 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1749 {
1750 to->secmark = from->secmark;
1751 }
1752
1753 static inline void skb_init_secmark(struct sk_buff *skb)
1754 {
1755 skb->secmark = 0;
1756 }
1757 #else
1758 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1759 { }
1760
1761 static inline void skb_init_secmark(struct sk_buff *skb)
1762 { }
1763 #endif
1764
1765 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
1766 {
1767 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1768 skb->queue_mapping = queue_mapping;
1769 #endif
1770 }
1771
1772 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
1773 {
1774 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1775 to->queue_mapping = from->queue_mapping;
1776 #endif
1777 }
1778
1779 static inline int skb_is_gso(const struct sk_buff *skb)
1780 {
1781 return skb_shinfo(skb)->gso_size;
1782 }
1783
1784 static inline void skb_forward_csum(struct sk_buff *skb)
1785 {
1786 /* Unfortunately we don't support this one. Any brave souls? */
1787 if (skb->ip_summed == CHECKSUM_COMPLETE)
1788 skb->ip_summed = CHECKSUM_NONE;
1789 }
1790
1791 #endif /* __KERNEL__ */
1792 #endif /* _LINUX_SKBUFF_H */
This page took 0.084932 seconds and 4 git commands to generate.