net: Add SKB DMA mapping helper functions.
[deliverable/linux.git] / include / linux / skbuff.h
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/cache.h>
21
22 #include <asm/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/net.h>
26 #include <linux/textsearch.h>
27 #include <net/checksum.h>
28 #include <linux/rcupdate.h>
29 #include <linux/dmaengine.h>
30 #include <linux/hrtimer.h>
31
32 #define HAVE_ALLOC_SKB /* For the drivers to know */
33 #define HAVE_ALIGNABLE_SKB /* Ditto 8) */
34
35 /* Don't change this without changing skb_csum_unnecessary! */
36 #define CHECKSUM_NONE 0
37 #define CHECKSUM_UNNECESSARY 1
38 #define CHECKSUM_COMPLETE 2
39 #define CHECKSUM_PARTIAL 3
40
41 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
42 ~(SMP_CACHE_BYTES - 1))
43 #define SKB_WITH_OVERHEAD(X) \
44 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
45 #define SKB_MAX_ORDER(X, ORDER) \
46 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
47 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
48 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
49
50 /* A. Checksumming of received packets by device.
51 *
52 * NONE: device failed to checksum this packet.
53 * skb->csum is undefined.
54 *
55 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
56 * skb->csum is undefined.
57 * It is bad option, but, unfortunately, many of vendors do this.
58 * Apparently with secret goal to sell you new device, when you
59 * will add new protocol to your host. F.e. IPv6. 8)
60 *
61 * COMPLETE: the most generic way. Device supplied checksum of _all_
62 * the packet as seen by netif_rx in skb->csum.
63 * NOTE: Even if device supports only some protocols, but
64 * is able to produce some skb->csum, it MUST use COMPLETE,
65 * not UNNECESSARY.
66 *
67 * PARTIAL: identical to the case for output below. This may occur
68 * on a packet received directly from another Linux OS, e.g.,
69 * a virtualised Linux kernel on the same host. The packet can
70 * be treated in the same way as UNNECESSARY except that on
71 * output (i.e., forwarding) the checksum must be filled in
72 * by the OS or the hardware.
73 *
74 * B. Checksumming on output.
75 *
76 * NONE: skb is checksummed by protocol or csum is not required.
77 *
78 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
79 * from skb->csum_start to the end and to record the checksum
80 * at skb->csum_start + skb->csum_offset.
81 *
82 * Device must show its capabilities in dev->features, set
83 * at device setup time.
84 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
85 * everything.
86 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
87 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
88 * TCP/UDP over IPv4. Sigh. Vendors like this
89 * way by an unknown reason. Though, see comment above
90 * about CHECKSUM_UNNECESSARY. 8)
91 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
92 *
93 * Any questions? No questions, good. --ANK
94 */
95
96 struct net_device;
97 struct scatterlist;
98 struct pipe_inode_info;
99
100 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
101 struct nf_conntrack {
102 atomic_t use;
103 };
104 #endif
105
106 #ifdef CONFIG_BRIDGE_NETFILTER
107 struct nf_bridge_info {
108 atomic_t use;
109 struct net_device *physindev;
110 struct net_device *physoutdev;
111 unsigned int mask;
112 unsigned long data[32 / sizeof(unsigned long)];
113 };
114 #endif
115
116 struct sk_buff_head {
117 /* These two members must be first. */
118 struct sk_buff *next;
119 struct sk_buff *prev;
120
121 __u32 qlen;
122 spinlock_t lock;
123 };
124
125 struct sk_buff;
126
127 /* To allow 64K frame to be packed as single skb without frag_list */
128 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
129
130 typedef struct skb_frag_struct skb_frag_t;
131
132 struct skb_frag_struct {
133 struct page *page;
134 __u32 page_offset;
135 __u32 size;
136 };
137
138 /* This data is invariant across clones and lives at
139 * the end of the header data, ie. at skb->end.
140 */
141 struct skb_shared_info {
142 atomic_t dataref;
143 unsigned short nr_frags;
144 unsigned short gso_size;
145 /* Warning: this field is not always filled in (UFO)! */
146 unsigned short gso_segs;
147 unsigned short gso_type;
148 __be32 ip6_frag_id;
149 #ifdef CONFIG_HAS_DMA
150 unsigned int num_dma_maps;
151 #endif
152 struct sk_buff *frag_list;
153 skb_frag_t frags[MAX_SKB_FRAGS];
154 #ifdef CONFIG_HAS_DMA
155 dma_addr_t dma_maps[MAX_SKB_FRAGS + 1];
156 #endif
157 };
158
159 /* We divide dataref into two halves. The higher 16 bits hold references
160 * to the payload part of skb->data. The lower 16 bits hold references to
161 * the entire skb->data. A clone of a headerless skb holds the length of
162 * the header in skb->hdr_len.
163 *
164 * All users must obey the rule that the skb->data reference count must be
165 * greater than or equal to the payload reference count.
166 *
167 * Holding a reference to the payload part means that the user does not
168 * care about modifications to the header part of skb->data.
169 */
170 #define SKB_DATAREF_SHIFT 16
171 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
172
173
174 enum {
175 SKB_FCLONE_UNAVAILABLE,
176 SKB_FCLONE_ORIG,
177 SKB_FCLONE_CLONE,
178 };
179
180 enum {
181 SKB_GSO_TCPV4 = 1 << 0,
182 SKB_GSO_UDP = 1 << 1,
183
184 /* This indicates the skb is from an untrusted source. */
185 SKB_GSO_DODGY = 1 << 2,
186
187 /* This indicates the tcp segment has CWR set. */
188 SKB_GSO_TCP_ECN = 1 << 3,
189
190 SKB_GSO_TCPV6 = 1 << 4,
191 };
192
193 #if BITS_PER_LONG > 32
194 #define NET_SKBUFF_DATA_USES_OFFSET 1
195 #endif
196
197 #ifdef NET_SKBUFF_DATA_USES_OFFSET
198 typedef unsigned int sk_buff_data_t;
199 #else
200 typedef unsigned char *sk_buff_data_t;
201 #endif
202
203 /**
204 * struct sk_buff - socket buffer
205 * @next: Next buffer in list
206 * @prev: Previous buffer in list
207 * @sk: Socket we are owned by
208 * @tstamp: Time we arrived
209 * @dev: Device we arrived on/are leaving by
210 * @transport_header: Transport layer header
211 * @network_header: Network layer header
212 * @mac_header: Link layer header
213 * @dst: destination entry
214 * @sp: the security path, used for xfrm
215 * @cb: Control buffer. Free for use by every layer. Put private vars here
216 * @len: Length of actual data
217 * @data_len: Data length
218 * @mac_len: Length of link layer header
219 * @hdr_len: writable header length of cloned skb
220 * @csum: Checksum (must include start/offset pair)
221 * @csum_start: Offset from skb->head where checksumming should start
222 * @csum_offset: Offset from csum_start where checksum should be stored
223 * @local_df: allow local fragmentation
224 * @cloned: Head may be cloned (check refcnt to be sure)
225 * @nohdr: Payload reference only, must not modify header
226 * @pkt_type: Packet class
227 * @fclone: skbuff clone status
228 * @ip_summed: Driver fed us an IP checksum
229 * @priority: Packet queueing priority
230 * @users: User count - see {datagram,tcp}.c
231 * @protocol: Packet protocol from driver
232 * @truesize: Buffer size
233 * @head: Head of buffer
234 * @data: Data head pointer
235 * @tail: Tail pointer
236 * @end: End pointer
237 * @destructor: Destruct function
238 * @mark: Generic packet mark
239 * @nfct: Associated connection, if any
240 * @ipvs_property: skbuff is owned by ipvs
241 * @peeked: this packet has been seen already, so stats have been
242 * done for it, don't do them again
243 * @nf_trace: netfilter packet trace flag
244 * @nfctinfo: Relationship of this skb to the connection
245 * @nfct_reasm: netfilter conntrack re-assembly pointer
246 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
247 * @iif: ifindex of device we arrived on
248 * @queue_mapping: Queue mapping for multiqueue devices
249 * @tc_index: Traffic control index
250 * @tc_verd: traffic control verdict
251 * @ndisc_nodetype: router type (from link layer)
252 * @do_not_encrypt: set to prevent encryption of this frame
253 * @dma_cookie: a cookie to one of several possible DMA operations
254 * done by skb DMA functions
255 * @secmark: security marking
256 * @vlan_tci: vlan tag control information
257 */
258
259 struct sk_buff {
260 /* These two members must be first. */
261 struct sk_buff *next;
262 struct sk_buff *prev;
263
264 struct sock *sk;
265 ktime_t tstamp;
266 struct net_device *dev;
267
268 union {
269 struct dst_entry *dst;
270 struct rtable *rtable;
271 };
272 struct sec_path *sp;
273
274 /*
275 * This is the control buffer. It is free to use for every
276 * layer. Please put your private variables there. If you
277 * want to keep them across layers you have to do a skb_clone()
278 * first. This is owned by whoever has the skb queued ATM.
279 */
280 char cb[48];
281
282 unsigned int len,
283 data_len;
284 __u16 mac_len,
285 hdr_len;
286 union {
287 __wsum csum;
288 struct {
289 __u16 csum_start;
290 __u16 csum_offset;
291 };
292 };
293 __u32 priority;
294 __u8 local_df:1,
295 cloned:1,
296 ip_summed:2,
297 nohdr:1,
298 nfctinfo:3;
299 __u8 pkt_type:3,
300 fclone:2,
301 ipvs_property:1,
302 peeked:1,
303 nf_trace:1;
304 __be16 protocol;
305
306 void (*destructor)(struct sk_buff *skb);
307 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
308 struct nf_conntrack *nfct;
309 struct sk_buff *nfct_reasm;
310 #endif
311 #ifdef CONFIG_BRIDGE_NETFILTER
312 struct nf_bridge_info *nf_bridge;
313 #endif
314
315 int iif;
316 __u16 queue_mapping;
317 #ifdef CONFIG_NET_SCHED
318 __u16 tc_index; /* traffic control index */
319 #ifdef CONFIG_NET_CLS_ACT
320 __u16 tc_verd; /* traffic control verdict */
321 #endif
322 #endif
323 #ifdef CONFIG_IPV6_NDISC_NODETYPE
324 __u8 ndisc_nodetype:2;
325 #endif
326 #if defined(CONFIG_MAC80211) || defined(CONFIG_MAC80211_MODULE)
327 __u8 do_not_encrypt:1;
328 #endif
329 /* 0/13/14 bit hole */
330
331 #ifdef CONFIG_NET_DMA
332 dma_cookie_t dma_cookie;
333 #endif
334 #ifdef CONFIG_NETWORK_SECMARK
335 __u32 secmark;
336 #endif
337
338 __u32 mark;
339
340 __u16 vlan_tci;
341
342 sk_buff_data_t transport_header;
343 sk_buff_data_t network_header;
344 sk_buff_data_t mac_header;
345 /* These elements must be at the end, see alloc_skb() for details. */
346 sk_buff_data_t tail;
347 sk_buff_data_t end;
348 unsigned char *head,
349 *data;
350 unsigned int truesize;
351 atomic_t users;
352 };
353
354 #ifdef __KERNEL__
355 /*
356 * Handling routines are only of interest to the kernel
357 */
358 #include <linux/slab.h>
359
360 #include <asm/system.h>
361
362 #ifdef CONFIG_HAS_DMA
363 #include <linux/dma-mapping.h>
364 extern int skb_dma_map(struct device *dev, struct sk_buff *skb,
365 enum dma_data_direction dir);
366 extern void skb_dma_unmap(struct device *dev, struct sk_buff *skb,
367 enum dma_data_direction dir);
368 #endif
369
370 extern void kfree_skb(struct sk_buff *skb);
371 extern void __kfree_skb(struct sk_buff *skb);
372 extern struct sk_buff *__alloc_skb(unsigned int size,
373 gfp_t priority, int fclone, int node);
374 static inline struct sk_buff *alloc_skb(unsigned int size,
375 gfp_t priority)
376 {
377 return __alloc_skb(size, priority, 0, -1);
378 }
379
380 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
381 gfp_t priority)
382 {
383 return __alloc_skb(size, priority, 1, -1);
384 }
385
386 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
387 extern struct sk_buff *skb_clone(struct sk_buff *skb,
388 gfp_t priority);
389 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
390 gfp_t priority);
391 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
392 gfp_t gfp_mask);
393 extern int pskb_expand_head(struct sk_buff *skb,
394 int nhead, int ntail,
395 gfp_t gfp_mask);
396 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
397 unsigned int headroom);
398 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
399 int newheadroom, int newtailroom,
400 gfp_t priority);
401 extern int skb_to_sgvec(struct sk_buff *skb,
402 struct scatterlist *sg, int offset,
403 int len);
404 extern int skb_cow_data(struct sk_buff *skb, int tailbits,
405 struct sk_buff **trailer);
406 extern int skb_pad(struct sk_buff *skb, int pad);
407 #define dev_kfree_skb(a) kfree_skb(a)
408 extern void skb_over_panic(struct sk_buff *skb, int len,
409 void *here);
410 extern void skb_under_panic(struct sk_buff *skb, int len,
411 void *here);
412 extern void skb_truesize_bug(struct sk_buff *skb);
413
414 static inline void skb_truesize_check(struct sk_buff *skb)
415 {
416 int len = sizeof(struct sk_buff) + skb->len;
417
418 if (unlikely((int)skb->truesize < len))
419 skb_truesize_bug(skb);
420 }
421
422 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
423 int getfrag(void *from, char *to, int offset,
424 int len,int odd, struct sk_buff *skb),
425 void *from, int length);
426
427 struct skb_seq_state
428 {
429 __u32 lower_offset;
430 __u32 upper_offset;
431 __u32 frag_idx;
432 __u32 stepped_offset;
433 struct sk_buff *root_skb;
434 struct sk_buff *cur_skb;
435 __u8 *frag_data;
436 };
437
438 extern void skb_prepare_seq_read(struct sk_buff *skb,
439 unsigned int from, unsigned int to,
440 struct skb_seq_state *st);
441 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
442 struct skb_seq_state *st);
443 extern void skb_abort_seq_read(struct skb_seq_state *st);
444
445 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
446 unsigned int to, struct ts_config *config,
447 struct ts_state *state);
448
449 #ifdef NET_SKBUFF_DATA_USES_OFFSET
450 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
451 {
452 return skb->head + skb->end;
453 }
454 #else
455 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
456 {
457 return skb->end;
458 }
459 #endif
460
461 /* Internal */
462 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
463
464 /**
465 * skb_queue_empty - check if a queue is empty
466 * @list: queue head
467 *
468 * Returns true if the queue is empty, false otherwise.
469 */
470 static inline int skb_queue_empty(const struct sk_buff_head *list)
471 {
472 return list->next == (struct sk_buff *)list;
473 }
474
475 /**
476 * skb_get - reference buffer
477 * @skb: buffer to reference
478 *
479 * Makes another reference to a socket buffer and returns a pointer
480 * to the buffer.
481 */
482 static inline struct sk_buff *skb_get(struct sk_buff *skb)
483 {
484 atomic_inc(&skb->users);
485 return skb;
486 }
487
488 /*
489 * If users == 1, we are the only owner and are can avoid redundant
490 * atomic change.
491 */
492
493 /**
494 * skb_cloned - is the buffer a clone
495 * @skb: buffer to check
496 *
497 * Returns true if the buffer was generated with skb_clone() and is
498 * one of multiple shared copies of the buffer. Cloned buffers are
499 * shared data so must not be written to under normal circumstances.
500 */
501 static inline int skb_cloned(const struct sk_buff *skb)
502 {
503 return skb->cloned &&
504 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
505 }
506
507 /**
508 * skb_header_cloned - is the header a clone
509 * @skb: buffer to check
510 *
511 * Returns true if modifying the header part of the buffer requires
512 * the data to be copied.
513 */
514 static inline int skb_header_cloned(const struct sk_buff *skb)
515 {
516 int dataref;
517
518 if (!skb->cloned)
519 return 0;
520
521 dataref = atomic_read(&skb_shinfo(skb)->dataref);
522 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
523 return dataref != 1;
524 }
525
526 /**
527 * skb_header_release - release reference to header
528 * @skb: buffer to operate on
529 *
530 * Drop a reference to the header part of the buffer. This is done
531 * by acquiring a payload reference. You must not read from the header
532 * part of skb->data after this.
533 */
534 static inline void skb_header_release(struct sk_buff *skb)
535 {
536 BUG_ON(skb->nohdr);
537 skb->nohdr = 1;
538 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
539 }
540
541 /**
542 * skb_shared - is the buffer shared
543 * @skb: buffer to check
544 *
545 * Returns true if more than one person has a reference to this
546 * buffer.
547 */
548 static inline int skb_shared(const struct sk_buff *skb)
549 {
550 return atomic_read(&skb->users) != 1;
551 }
552
553 /**
554 * skb_share_check - check if buffer is shared and if so clone it
555 * @skb: buffer to check
556 * @pri: priority for memory allocation
557 *
558 * If the buffer is shared the buffer is cloned and the old copy
559 * drops a reference. A new clone with a single reference is returned.
560 * If the buffer is not shared the original buffer is returned. When
561 * being called from interrupt status or with spinlocks held pri must
562 * be GFP_ATOMIC.
563 *
564 * NULL is returned on a memory allocation failure.
565 */
566 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
567 gfp_t pri)
568 {
569 might_sleep_if(pri & __GFP_WAIT);
570 if (skb_shared(skb)) {
571 struct sk_buff *nskb = skb_clone(skb, pri);
572 kfree_skb(skb);
573 skb = nskb;
574 }
575 return skb;
576 }
577
578 /*
579 * Copy shared buffers into a new sk_buff. We effectively do COW on
580 * packets to handle cases where we have a local reader and forward
581 * and a couple of other messy ones. The normal one is tcpdumping
582 * a packet thats being forwarded.
583 */
584
585 /**
586 * skb_unshare - make a copy of a shared buffer
587 * @skb: buffer to check
588 * @pri: priority for memory allocation
589 *
590 * If the socket buffer is a clone then this function creates a new
591 * copy of the data, drops a reference count on the old copy and returns
592 * the new copy with the reference count at 1. If the buffer is not a clone
593 * the original buffer is returned. When called with a spinlock held or
594 * from interrupt state @pri must be %GFP_ATOMIC
595 *
596 * %NULL is returned on a memory allocation failure.
597 */
598 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
599 gfp_t pri)
600 {
601 might_sleep_if(pri & __GFP_WAIT);
602 if (skb_cloned(skb)) {
603 struct sk_buff *nskb = skb_copy(skb, pri);
604 kfree_skb(skb); /* Free our shared copy */
605 skb = nskb;
606 }
607 return skb;
608 }
609
610 /**
611 * skb_peek
612 * @list_: list to peek at
613 *
614 * Peek an &sk_buff. Unlike most other operations you _MUST_
615 * be careful with this one. A peek leaves the buffer on the
616 * list and someone else may run off with it. You must hold
617 * the appropriate locks or have a private queue to do this.
618 *
619 * Returns %NULL for an empty list or a pointer to the head element.
620 * The reference count is not incremented and the reference is therefore
621 * volatile. Use with caution.
622 */
623 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
624 {
625 struct sk_buff *list = ((struct sk_buff *)list_)->next;
626 if (list == (struct sk_buff *)list_)
627 list = NULL;
628 return list;
629 }
630
631 /**
632 * skb_peek_tail
633 * @list_: list to peek at
634 *
635 * Peek an &sk_buff. Unlike most other operations you _MUST_
636 * be careful with this one. A peek leaves the buffer on the
637 * list and someone else may run off with it. You must hold
638 * the appropriate locks or have a private queue to do this.
639 *
640 * Returns %NULL for an empty list or a pointer to the tail element.
641 * The reference count is not incremented and the reference is therefore
642 * volatile. Use with caution.
643 */
644 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
645 {
646 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
647 if (list == (struct sk_buff *)list_)
648 list = NULL;
649 return list;
650 }
651
652 /**
653 * skb_queue_len - get queue length
654 * @list_: list to measure
655 *
656 * Return the length of an &sk_buff queue.
657 */
658 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
659 {
660 return list_->qlen;
661 }
662
663 /*
664 * This function creates a split out lock class for each invocation;
665 * this is needed for now since a whole lot of users of the skb-queue
666 * infrastructure in drivers have different locking usage (in hardirq)
667 * than the networking core (in softirq only). In the long run either the
668 * network layer or drivers should need annotation to consolidate the
669 * main types of usage into 3 classes.
670 */
671 static inline void skb_queue_head_init(struct sk_buff_head *list)
672 {
673 spin_lock_init(&list->lock);
674 list->prev = list->next = (struct sk_buff *)list;
675 list->qlen = 0;
676 }
677
678 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
679 struct lock_class_key *class)
680 {
681 skb_queue_head_init(list);
682 lockdep_set_class(&list->lock, class);
683 }
684
685 /*
686 * Insert an sk_buff on a list.
687 *
688 * The "__skb_xxxx()" functions are the non-atomic ones that
689 * can only be called with interrupts disabled.
690 */
691 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
692 static inline void __skb_insert(struct sk_buff *newsk,
693 struct sk_buff *prev, struct sk_buff *next,
694 struct sk_buff_head *list)
695 {
696 newsk->next = next;
697 newsk->prev = prev;
698 next->prev = prev->next = newsk;
699 list->qlen++;
700 }
701
702 /**
703 * __skb_queue_after - queue a buffer at the list head
704 * @list: list to use
705 * @prev: place after this buffer
706 * @newsk: buffer to queue
707 *
708 * Queue a buffer int the middle of a list. This function takes no locks
709 * and you must therefore hold required locks before calling it.
710 *
711 * A buffer cannot be placed on two lists at the same time.
712 */
713 static inline void __skb_queue_after(struct sk_buff_head *list,
714 struct sk_buff *prev,
715 struct sk_buff *newsk)
716 {
717 __skb_insert(newsk, prev, prev->next, list);
718 }
719
720 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
721 struct sk_buff_head *list);
722
723 static inline void __skb_queue_before(struct sk_buff_head *list,
724 struct sk_buff *next,
725 struct sk_buff *newsk)
726 {
727 __skb_insert(newsk, next->prev, next, list);
728 }
729
730 /**
731 * __skb_queue_head - queue a buffer at the list head
732 * @list: list to use
733 * @newsk: buffer to queue
734 *
735 * Queue a buffer at the start of a list. This function takes no locks
736 * and you must therefore hold required locks before calling it.
737 *
738 * A buffer cannot be placed on two lists at the same time.
739 */
740 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
741 static inline void __skb_queue_head(struct sk_buff_head *list,
742 struct sk_buff *newsk)
743 {
744 __skb_queue_after(list, (struct sk_buff *)list, newsk);
745 }
746
747 /**
748 * __skb_queue_tail - queue a buffer at the list tail
749 * @list: list to use
750 * @newsk: buffer to queue
751 *
752 * Queue a buffer at the end of a list. This function takes no locks
753 * and you must therefore hold required locks before calling it.
754 *
755 * A buffer cannot be placed on two lists at the same time.
756 */
757 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
758 static inline void __skb_queue_tail(struct sk_buff_head *list,
759 struct sk_buff *newsk)
760 {
761 __skb_queue_before(list, (struct sk_buff *)list, newsk);
762 }
763
764 /*
765 * remove sk_buff from list. _Must_ be called atomically, and with
766 * the list known..
767 */
768 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
769 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
770 {
771 struct sk_buff *next, *prev;
772
773 list->qlen--;
774 next = skb->next;
775 prev = skb->prev;
776 skb->next = skb->prev = NULL;
777 next->prev = prev;
778 prev->next = next;
779 }
780
781 /**
782 * __skb_dequeue - remove from the head of the queue
783 * @list: list to dequeue from
784 *
785 * Remove the head of the list. This function does not take any locks
786 * so must be used with appropriate locks held only. The head item is
787 * returned or %NULL if the list is empty.
788 */
789 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
790 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
791 {
792 struct sk_buff *skb = skb_peek(list);
793 if (skb)
794 __skb_unlink(skb, list);
795 return skb;
796 }
797
798 /**
799 * __skb_dequeue_tail - remove from the tail of the queue
800 * @list: list to dequeue from
801 *
802 * Remove the tail of the list. This function does not take any locks
803 * so must be used with appropriate locks held only. The tail item is
804 * returned or %NULL if the list is empty.
805 */
806 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
807 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
808 {
809 struct sk_buff *skb = skb_peek_tail(list);
810 if (skb)
811 __skb_unlink(skb, list);
812 return skb;
813 }
814
815
816 static inline int skb_is_nonlinear(const struct sk_buff *skb)
817 {
818 return skb->data_len;
819 }
820
821 static inline unsigned int skb_headlen(const struct sk_buff *skb)
822 {
823 return skb->len - skb->data_len;
824 }
825
826 static inline int skb_pagelen(const struct sk_buff *skb)
827 {
828 int i, len = 0;
829
830 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
831 len += skb_shinfo(skb)->frags[i].size;
832 return len + skb_headlen(skb);
833 }
834
835 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
836 struct page *page, int off, int size)
837 {
838 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
839
840 frag->page = page;
841 frag->page_offset = off;
842 frag->size = size;
843 skb_shinfo(skb)->nr_frags = i + 1;
844 }
845
846 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
847 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
848 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
849
850 #ifdef NET_SKBUFF_DATA_USES_OFFSET
851 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
852 {
853 return skb->head + skb->tail;
854 }
855
856 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
857 {
858 skb->tail = skb->data - skb->head;
859 }
860
861 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
862 {
863 skb_reset_tail_pointer(skb);
864 skb->tail += offset;
865 }
866 #else /* NET_SKBUFF_DATA_USES_OFFSET */
867 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
868 {
869 return skb->tail;
870 }
871
872 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
873 {
874 skb->tail = skb->data;
875 }
876
877 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
878 {
879 skb->tail = skb->data + offset;
880 }
881
882 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
883
884 /*
885 * Add data to an sk_buff
886 */
887 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
888 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
889 {
890 unsigned char *tmp = skb_tail_pointer(skb);
891 SKB_LINEAR_ASSERT(skb);
892 skb->tail += len;
893 skb->len += len;
894 return tmp;
895 }
896
897 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
898 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
899 {
900 skb->data -= len;
901 skb->len += len;
902 return skb->data;
903 }
904
905 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
906 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
907 {
908 skb->len -= len;
909 BUG_ON(skb->len < skb->data_len);
910 return skb->data += len;
911 }
912
913 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
914
915 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
916 {
917 if (len > skb_headlen(skb) &&
918 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
919 return NULL;
920 skb->len -= len;
921 return skb->data += len;
922 }
923
924 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
925 {
926 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
927 }
928
929 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
930 {
931 if (likely(len <= skb_headlen(skb)))
932 return 1;
933 if (unlikely(len > skb->len))
934 return 0;
935 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
936 }
937
938 /**
939 * skb_headroom - bytes at buffer head
940 * @skb: buffer to check
941 *
942 * Return the number of bytes of free space at the head of an &sk_buff.
943 */
944 static inline unsigned int skb_headroom(const struct sk_buff *skb)
945 {
946 return skb->data - skb->head;
947 }
948
949 /**
950 * skb_tailroom - bytes at buffer end
951 * @skb: buffer to check
952 *
953 * Return the number of bytes of free space at the tail of an sk_buff
954 */
955 static inline int skb_tailroom(const struct sk_buff *skb)
956 {
957 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
958 }
959
960 /**
961 * skb_reserve - adjust headroom
962 * @skb: buffer to alter
963 * @len: bytes to move
964 *
965 * Increase the headroom of an empty &sk_buff by reducing the tail
966 * room. This is only allowed for an empty buffer.
967 */
968 static inline void skb_reserve(struct sk_buff *skb, int len)
969 {
970 skb->data += len;
971 skb->tail += len;
972 }
973
974 #ifdef NET_SKBUFF_DATA_USES_OFFSET
975 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
976 {
977 return skb->head + skb->transport_header;
978 }
979
980 static inline void skb_reset_transport_header(struct sk_buff *skb)
981 {
982 skb->transport_header = skb->data - skb->head;
983 }
984
985 static inline void skb_set_transport_header(struct sk_buff *skb,
986 const int offset)
987 {
988 skb_reset_transport_header(skb);
989 skb->transport_header += offset;
990 }
991
992 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
993 {
994 return skb->head + skb->network_header;
995 }
996
997 static inline void skb_reset_network_header(struct sk_buff *skb)
998 {
999 skb->network_header = skb->data - skb->head;
1000 }
1001
1002 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1003 {
1004 skb_reset_network_header(skb);
1005 skb->network_header += offset;
1006 }
1007
1008 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1009 {
1010 return skb->head + skb->mac_header;
1011 }
1012
1013 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1014 {
1015 return skb->mac_header != ~0U;
1016 }
1017
1018 static inline void skb_reset_mac_header(struct sk_buff *skb)
1019 {
1020 skb->mac_header = skb->data - skb->head;
1021 }
1022
1023 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1024 {
1025 skb_reset_mac_header(skb);
1026 skb->mac_header += offset;
1027 }
1028
1029 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1030
1031 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1032 {
1033 return skb->transport_header;
1034 }
1035
1036 static inline void skb_reset_transport_header(struct sk_buff *skb)
1037 {
1038 skb->transport_header = skb->data;
1039 }
1040
1041 static inline void skb_set_transport_header(struct sk_buff *skb,
1042 const int offset)
1043 {
1044 skb->transport_header = skb->data + offset;
1045 }
1046
1047 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1048 {
1049 return skb->network_header;
1050 }
1051
1052 static inline void skb_reset_network_header(struct sk_buff *skb)
1053 {
1054 skb->network_header = skb->data;
1055 }
1056
1057 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1058 {
1059 skb->network_header = skb->data + offset;
1060 }
1061
1062 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1063 {
1064 return skb->mac_header;
1065 }
1066
1067 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1068 {
1069 return skb->mac_header != NULL;
1070 }
1071
1072 static inline void skb_reset_mac_header(struct sk_buff *skb)
1073 {
1074 skb->mac_header = skb->data;
1075 }
1076
1077 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1078 {
1079 skb->mac_header = skb->data + offset;
1080 }
1081 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1082
1083 static inline int skb_transport_offset(const struct sk_buff *skb)
1084 {
1085 return skb_transport_header(skb) - skb->data;
1086 }
1087
1088 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1089 {
1090 return skb->transport_header - skb->network_header;
1091 }
1092
1093 static inline int skb_network_offset(const struct sk_buff *skb)
1094 {
1095 return skb_network_header(skb) - skb->data;
1096 }
1097
1098 /*
1099 * CPUs often take a performance hit when accessing unaligned memory
1100 * locations. The actual performance hit varies, it can be small if the
1101 * hardware handles it or large if we have to take an exception and fix it
1102 * in software.
1103 *
1104 * Since an ethernet header is 14 bytes network drivers often end up with
1105 * the IP header at an unaligned offset. The IP header can be aligned by
1106 * shifting the start of the packet by 2 bytes. Drivers should do this
1107 * with:
1108 *
1109 * skb_reserve(NET_IP_ALIGN);
1110 *
1111 * The downside to this alignment of the IP header is that the DMA is now
1112 * unaligned. On some architectures the cost of an unaligned DMA is high
1113 * and this cost outweighs the gains made by aligning the IP header.
1114 *
1115 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1116 * to be overridden.
1117 */
1118 #ifndef NET_IP_ALIGN
1119 #define NET_IP_ALIGN 2
1120 #endif
1121
1122 /*
1123 * The networking layer reserves some headroom in skb data (via
1124 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1125 * the header has to grow. In the default case, if the header has to grow
1126 * 16 bytes or less we avoid the reallocation.
1127 *
1128 * Unfortunately this headroom changes the DMA alignment of the resulting
1129 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1130 * on some architectures. An architecture can override this value,
1131 * perhaps setting it to a cacheline in size (since that will maintain
1132 * cacheline alignment of the DMA). It must be a power of 2.
1133 *
1134 * Various parts of the networking layer expect at least 16 bytes of
1135 * headroom, you should not reduce this.
1136 */
1137 #ifndef NET_SKB_PAD
1138 #define NET_SKB_PAD 16
1139 #endif
1140
1141 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1142
1143 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1144 {
1145 if (unlikely(skb->data_len)) {
1146 WARN_ON(1);
1147 return;
1148 }
1149 skb->len = len;
1150 skb_set_tail_pointer(skb, len);
1151 }
1152
1153 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1154
1155 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1156 {
1157 if (skb->data_len)
1158 return ___pskb_trim(skb, len);
1159 __skb_trim(skb, len);
1160 return 0;
1161 }
1162
1163 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1164 {
1165 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1166 }
1167
1168 /**
1169 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1170 * @skb: buffer to alter
1171 * @len: new length
1172 *
1173 * This is identical to pskb_trim except that the caller knows that
1174 * the skb is not cloned so we should never get an error due to out-
1175 * of-memory.
1176 */
1177 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1178 {
1179 int err = pskb_trim(skb, len);
1180 BUG_ON(err);
1181 }
1182
1183 /**
1184 * skb_orphan - orphan a buffer
1185 * @skb: buffer to orphan
1186 *
1187 * If a buffer currently has an owner then we call the owner's
1188 * destructor function and make the @skb unowned. The buffer continues
1189 * to exist but is no longer charged to its former owner.
1190 */
1191 static inline void skb_orphan(struct sk_buff *skb)
1192 {
1193 if (skb->destructor)
1194 skb->destructor(skb);
1195 skb->destructor = NULL;
1196 skb->sk = NULL;
1197 }
1198
1199 /**
1200 * __skb_queue_purge - empty a list
1201 * @list: list to empty
1202 *
1203 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1204 * the list and one reference dropped. This function does not take the
1205 * list lock and the caller must hold the relevant locks to use it.
1206 */
1207 extern void skb_queue_purge(struct sk_buff_head *list);
1208 static inline void __skb_queue_purge(struct sk_buff_head *list)
1209 {
1210 struct sk_buff *skb;
1211 while ((skb = __skb_dequeue(list)) != NULL)
1212 kfree_skb(skb);
1213 }
1214
1215 /**
1216 * __dev_alloc_skb - allocate an skbuff for receiving
1217 * @length: length to allocate
1218 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1219 *
1220 * Allocate a new &sk_buff and assign it a usage count of one. The
1221 * buffer has unspecified headroom built in. Users should allocate
1222 * the headroom they think they need without accounting for the
1223 * built in space. The built in space is used for optimisations.
1224 *
1225 * %NULL is returned if there is no free memory.
1226 */
1227 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1228 gfp_t gfp_mask)
1229 {
1230 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1231 if (likely(skb))
1232 skb_reserve(skb, NET_SKB_PAD);
1233 return skb;
1234 }
1235
1236 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1237
1238 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1239 unsigned int length, gfp_t gfp_mask);
1240
1241 /**
1242 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1243 * @dev: network device to receive on
1244 * @length: length to allocate
1245 *
1246 * Allocate a new &sk_buff and assign it a usage count of one. The
1247 * buffer has unspecified headroom built in. Users should allocate
1248 * the headroom they think they need without accounting for the
1249 * built in space. The built in space is used for optimisations.
1250 *
1251 * %NULL is returned if there is no free memory. Although this function
1252 * allocates memory it can be called from an interrupt.
1253 */
1254 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1255 unsigned int length)
1256 {
1257 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1258 }
1259
1260 /**
1261 * skb_clone_writable - is the header of a clone writable
1262 * @skb: buffer to check
1263 * @len: length up to which to write
1264 *
1265 * Returns true if modifying the header part of the cloned buffer
1266 * does not requires the data to be copied.
1267 */
1268 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1269 {
1270 return !skb_header_cloned(skb) &&
1271 skb_headroom(skb) + len <= skb->hdr_len;
1272 }
1273
1274 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1275 int cloned)
1276 {
1277 int delta = 0;
1278
1279 if (headroom < NET_SKB_PAD)
1280 headroom = NET_SKB_PAD;
1281 if (headroom > skb_headroom(skb))
1282 delta = headroom - skb_headroom(skb);
1283
1284 if (delta || cloned)
1285 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1286 GFP_ATOMIC);
1287 return 0;
1288 }
1289
1290 /**
1291 * skb_cow - copy header of skb when it is required
1292 * @skb: buffer to cow
1293 * @headroom: needed headroom
1294 *
1295 * If the skb passed lacks sufficient headroom or its data part
1296 * is shared, data is reallocated. If reallocation fails, an error
1297 * is returned and original skb is not changed.
1298 *
1299 * The result is skb with writable area skb->head...skb->tail
1300 * and at least @headroom of space at head.
1301 */
1302 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1303 {
1304 return __skb_cow(skb, headroom, skb_cloned(skb));
1305 }
1306
1307 /**
1308 * skb_cow_head - skb_cow but only making the head writable
1309 * @skb: buffer to cow
1310 * @headroom: needed headroom
1311 *
1312 * This function is identical to skb_cow except that we replace the
1313 * skb_cloned check by skb_header_cloned. It should be used when
1314 * you only need to push on some header and do not need to modify
1315 * the data.
1316 */
1317 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1318 {
1319 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1320 }
1321
1322 /**
1323 * skb_padto - pad an skbuff up to a minimal size
1324 * @skb: buffer to pad
1325 * @len: minimal length
1326 *
1327 * Pads up a buffer to ensure the trailing bytes exist and are
1328 * blanked. If the buffer already contains sufficient data it
1329 * is untouched. Otherwise it is extended. Returns zero on
1330 * success. The skb is freed on error.
1331 */
1332
1333 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1334 {
1335 unsigned int size = skb->len;
1336 if (likely(size >= len))
1337 return 0;
1338 return skb_pad(skb, len - size);
1339 }
1340
1341 static inline int skb_add_data(struct sk_buff *skb,
1342 char __user *from, int copy)
1343 {
1344 const int off = skb->len;
1345
1346 if (skb->ip_summed == CHECKSUM_NONE) {
1347 int err = 0;
1348 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1349 copy, 0, &err);
1350 if (!err) {
1351 skb->csum = csum_block_add(skb->csum, csum, off);
1352 return 0;
1353 }
1354 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1355 return 0;
1356
1357 __skb_trim(skb, off);
1358 return -EFAULT;
1359 }
1360
1361 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1362 struct page *page, int off)
1363 {
1364 if (i) {
1365 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1366
1367 return page == frag->page &&
1368 off == frag->page_offset + frag->size;
1369 }
1370 return 0;
1371 }
1372
1373 static inline int __skb_linearize(struct sk_buff *skb)
1374 {
1375 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1376 }
1377
1378 /**
1379 * skb_linearize - convert paged skb to linear one
1380 * @skb: buffer to linarize
1381 *
1382 * If there is no free memory -ENOMEM is returned, otherwise zero
1383 * is returned and the old skb data released.
1384 */
1385 static inline int skb_linearize(struct sk_buff *skb)
1386 {
1387 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1388 }
1389
1390 /**
1391 * skb_linearize_cow - make sure skb is linear and writable
1392 * @skb: buffer to process
1393 *
1394 * If there is no free memory -ENOMEM is returned, otherwise zero
1395 * is returned and the old skb data released.
1396 */
1397 static inline int skb_linearize_cow(struct sk_buff *skb)
1398 {
1399 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1400 __skb_linearize(skb) : 0;
1401 }
1402
1403 /**
1404 * skb_postpull_rcsum - update checksum for received skb after pull
1405 * @skb: buffer to update
1406 * @start: start of data before pull
1407 * @len: length of data pulled
1408 *
1409 * After doing a pull on a received packet, you need to call this to
1410 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1411 * CHECKSUM_NONE so that it can be recomputed from scratch.
1412 */
1413
1414 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1415 const void *start, unsigned int len)
1416 {
1417 if (skb->ip_summed == CHECKSUM_COMPLETE)
1418 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1419 }
1420
1421 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1422
1423 /**
1424 * pskb_trim_rcsum - trim received skb and update checksum
1425 * @skb: buffer to trim
1426 * @len: new length
1427 *
1428 * This is exactly the same as pskb_trim except that it ensures the
1429 * checksum of received packets are still valid after the operation.
1430 */
1431
1432 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1433 {
1434 if (likely(len >= skb->len))
1435 return 0;
1436 if (skb->ip_summed == CHECKSUM_COMPLETE)
1437 skb->ip_summed = CHECKSUM_NONE;
1438 return __pskb_trim(skb, len);
1439 }
1440
1441 #define skb_queue_walk(queue, skb) \
1442 for (skb = (queue)->next; \
1443 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1444 skb = skb->next)
1445
1446 #define skb_queue_walk_safe(queue, skb, tmp) \
1447 for (skb = (queue)->next, tmp = skb->next; \
1448 skb != (struct sk_buff *)(queue); \
1449 skb = tmp, tmp = skb->next)
1450
1451 #define skb_queue_reverse_walk(queue, skb) \
1452 for (skb = (queue)->prev; \
1453 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1454 skb = skb->prev)
1455
1456
1457 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
1458 int *peeked, int *err);
1459 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1460 int noblock, int *err);
1461 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1462 struct poll_table_struct *wait);
1463 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1464 int offset, struct iovec *to,
1465 int size);
1466 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1467 int hlen,
1468 struct iovec *iov);
1469 extern int skb_copy_datagram_from_iovec(struct sk_buff *skb,
1470 int offset,
1471 struct iovec *from,
1472 int len);
1473 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1474 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1475 unsigned int flags);
1476 extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
1477 int len, __wsum csum);
1478 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1479 void *to, int len);
1480 extern int skb_store_bits(struct sk_buff *skb, int offset,
1481 const void *from, int len);
1482 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
1483 int offset, u8 *to, int len,
1484 __wsum csum);
1485 extern int skb_splice_bits(struct sk_buff *skb,
1486 unsigned int offset,
1487 struct pipe_inode_info *pipe,
1488 unsigned int len,
1489 unsigned int flags);
1490 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1491 extern void skb_split(struct sk_buff *skb,
1492 struct sk_buff *skb1, const u32 len);
1493
1494 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1495
1496 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1497 int len, void *buffer)
1498 {
1499 int hlen = skb_headlen(skb);
1500
1501 if (hlen - offset >= len)
1502 return skb->data + offset;
1503
1504 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1505 return NULL;
1506
1507 return buffer;
1508 }
1509
1510 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1511 void *to,
1512 const unsigned int len)
1513 {
1514 memcpy(to, skb->data, len);
1515 }
1516
1517 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1518 const int offset, void *to,
1519 const unsigned int len)
1520 {
1521 memcpy(to, skb->data + offset, len);
1522 }
1523
1524 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1525 const void *from,
1526 const unsigned int len)
1527 {
1528 memcpy(skb->data, from, len);
1529 }
1530
1531 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1532 const int offset,
1533 const void *from,
1534 const unsigned int len)
1535 {
1536 memcpy(skb->data + offset, from, len);
1537 }
1538
1539 extern void skb_init(void);
1540
1541 /**
1542 * skb_get_timestamp - get timestamp from a skb
1543 * @skb: skb to get stamp from
1544 * @stamp: pointer to struct timeval to store stamp in
1545 *
1546 * Timestamps are stored in the skb as offsets to a base timestamp.
1547 * This function converts the offset back to a struct timeval and stores
1548 * it in stamp.
1549 */
1550 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1551 {
1552 *stamp = ktime_to_timeval(skb->tstamp);
1553 }
1554
1555 static inline void __net_timestamp(struct sk_buff *skb)
1556 {
1557 skb->tstamp = ktime_get_real();
1558 }
1559
1560 static inline ktime_t net_timedelta(ktime_t t)
1561 {
1562 return ktime_sub(ktime_get_real(), t);
1563 }
1564
1565 static inline ktime_t net_invalid_timestamp(void)
1566 {
1567 return ktime_set(0, 0);
1568 }
1569
1570 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1571 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1572
1573 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
1574 {
1575 return skb->ip_summed & CHECKSUM_UNNECESSARY;
1576 }
1577
1578 /**
1579 * skb_checksum_complete - Calculate checksum of an entire packet
1580 * @skb: packet to process
1581 *
1582 * This function calculates the checksum over the entire packet plus
1583 * the value of skb->csum. The latter can be used to supply the
1584 * checksum of a pseudo header as used by TCP/UDP. It returns the
1585 * checksum.
1586 *
1587 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
1588 * this function can be used to verify that checksum on received
1589 * packets. In that case the function should return zero if the
1590 * checksum is correct. In particular, this function will return zero
1591 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1592 * hardware has already verified the correctness of the checksum.
1593 */
1594 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
1595 {
1596 return skb_csum_unnecessary(skb) ?
1597 0 : __skb_checksum_complete(skb);
1598 }
1599
1600 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1601 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
1602 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1603 {
1604 if (nfct && atomic_dec_and_test(&nfct->use))
1605 nf_conntrack_destroy(nfct);
1606 }
1607 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1608 {
1609 if (nfct)
1610 atomic_inc(&nfct->use);
1611 }
1612 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1613 {
1614 if (skb)
1615 atomic_inc(&skb->users);
1616 }
1617 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1618 {
1619 if (skb)
1620 kfree_skb(skb);
1621 }
1622 #endif
1623 #ifdef CONFIG_BRIDGE_NETFILTER
1624 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1625 {
1626 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1627 kfree(nf_bridge);
1628 }
1629 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1630 {
1631 if (nf_bridge)
1632 atomic_inc(&nf_bridge->use);
1633 }
1634 #endif /* CONFIG_BRIDGE_NETFILTER */
1635 static inline void nf_reset(struct sk_buff *skb)
1636 {
1637 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1638 nf_conntrack_put(skb->nfct);
1639 skb->nfct = NULL;
1640 nf_conntrack_put_reasm(skb->nfct_reasm);
1641 skb->nfct_reasm = NULL;
1642 #endif
1643 #ifdef CONFIG_BRIDGE_NETFILTER
1644 nf_bridge_put(skb->nf_bridge);
1645 skb->nf_bridge = NULL;
1646 #endif
1647 }
1648
1649 /* Note: This doesn't put any conntrack and bridge info in dst. */
1650 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1651 {
1652 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1653 dst->nfct = src->nfct;
1654 nf_conntrack_get(src->nfct);
1655 dst->nfctinfo = src->nfctinfo;
1656 dst->nfct_reasm = src->nfct_reasm;
1657 nf_conntrack_get_reasm(src->nfct_reasm);
1658 #endif
1659 #ifdef CONFIG_BRIDGE_NETFILTER
1660 dst->nf_bridge = src->nf_bridge;
1661 nf_bridge_get(src->nf_bridge);
1662 #endif
1663 }
1664
1665 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1666 {
1667 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1668 nf_conntrack_put(dst->nfct);
1669 nf_conntrack_put_reasm(dst->nfct_reasm);
1670 #endif
1671 #ifdef CONFIG_BRIDGE_NETFILTER
1672 nf_bridge_put(dst->nf_bridge);
1673 #endif
1674 __nf_copy(dst, src);
1675 }
1676
1677 #ifdef CONFIG_NETWORK_SECMARK
1678 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1679 {
1680 to->secmark = from->secmark;
1681 }
1682
1683 static inline void skb_init_secmark(struct sk_buff *skb)
1684 {
1685 skb->secmark = 0;
1686 }
1687 #else
1688 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1689 { }
1690
1691 static inline void skb_init_secmark(struct sk_buff *skb)
1692 { }
1693 #endif
1694
1695 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
1696 {
1697 skb->queue_mapping = queue_mapping;
1698 }
1699
1700 static inline u16 skb_get_queue_mapping(struct sk_buff *skb)
1701 {
1702 return skb->queue_mapping;
1703 }
1704
1705 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
1706 {
1707 to->queue_mapping = from->queue_mapping;
1708 }
1709
1710 static inline int skb_is_gso(const struct sk_buff *skb)
1711 {
1712 return skb_shinfo(skb)->gso_size;
1713 }
1714
1715 static inline int skb_is_gso_v6(const struct sk_buff *skb)
1716 {
1717 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
1718 }
1719
1720 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
1721
1722 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
1723 {
1724 /* LRO sets gso_size but not gso_type, whereas if GSO is really
1725 * wanted then gso_type will be set. */
1726 struct skb_shared_info *shinfo = skb_shinfo(skb);
1727 if (shinfo->gso_size != 0 && unlikely(shinfo->gso_type == 0)) {
1728 __skb_warn_lro_forwarding(skb);
1729 return true;
1730 }
1731 return false;
1732 }
1733
1734 static inline void skb_forward_csum(struct sk_buff *skb)
1735 {
1736 /* Unfortunately we don't support this one. Any brave souls? */
1737 if (skb->ip_summed == CHECKSUM_COMPLETE)
1738 skb->ip_summed = CHECKSUM_NONE;
1739 }
1740
1741 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
1742 #endif /* __KERNEL__ */
1743 #endif /* _LINUX_SKBUFF_H */
This page took 0.089967 seconds and 5 git commands to generate.