net: better skb->sender_cpu and skb->napi_id cohabitation
[deliverable/linux.git] / include / linux / skbuff.h
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/bug.h>
22 #include <linux/cache.h>
23 #include <linux/rbtree.h>
24 #include <linux/socket.h>
25
26 #include <linux/atomic.h>
27 #include <asm/types.h>
28 #include <linux/spinlock.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32 #include <linux/rcupdate.h>
33 #include <linux/hrtimer.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/netdev_features.h>
36 #include <linux/sched.h>
37 #include <net/flow_dissector.h>
38 #include <linux/splice.h>
39 #include <linux/in6.h>
40 #include <net/flow.h>
41
42 /* A. Checksumming of received packets by device.
43 *
44 * CHECKSUM_NONE:
45 *
46 * Device failed to checksum this packet e.g. due to lack of capabilities.
47 * The packet contains full (though not verified) checksum in packet but
48 * not in skb->csum. Thus, skb->csum is undefined in this case.
49 *
50 * CHECKSUM_UNNECESSARY:
51 *
52 * The hardware you're dealing with doesn't calculate the full checksum
53 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
54 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
55 * if their checksums are okay. skb->csum is still undefined in this case
56 * though. It is a bad option, but, unfortunately, nowadays most vendors do
57 * this. Apparently with the secret goal to sell you new devices, when you
58 * will add new protocol to your host, f.e. IPv6 8)
59 *
60 * CHECKSUM_UNNECESSARY is applicable to following protocols:
61 * TCP: IPv6 and IPv4.
62 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
63 * zero UDP checksum for either IPv4 or IPv6, the networking stack
64 * may perform further validation in this case.
65 * GRE: only if the checksum is present in the header.
66 * SCTP: indicates the CRC in SCTP header has been validated.
67 *
68 * skb->csum_level indicates the number of consecutive checksums found in
69 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
70 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
71 * and a device is able to verify the checksums for UDP (possibly zero),
72 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
73 * two. If the device were only able to verify the UDP checksum and not
74 * GRE, either because it doesn't support GRE checksum of because GRE
75 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
76 * not considered in this case).
77 *
78 * CHECKSUM_COMPLETE:
79 *
80 * This is the most generic way. The device supplied checksum of the _whole_
81 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
82 * hardware doesn't need to parse L3/L4 headers to implement this.
83 *
84 * Note: Even if device supports only some protocols, but is able to produce
85 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
86 *
87 * CHECKSUM_PARTIAL:
88 *
89 * A checksum is set up to be offloaded to a device as described in the
90 * output description for CHECKSUM_PARTIAL. This may occur on a packet
91 * received directly from another Linux OS, e.g., a virtualized Linux kernel
92 * on the same host, or it may be set in the input path in GRO or remote
93 * checksum offload. For the purposes of checksum verification, the checksum
94 * referred to by skb->csum_start + skb->csum_offset and any preceding
95 * checksums in the packet are considered verified. Any checksums in the
96 * packet that are after the checksum being offloaded are not considered to
97 * be verified.
98 *
99 * B. Checksumming on output.
100 *
101 * CHECKSUM_NONE:
102 *
103 * The skb was already checksummed by the protocol, or a checksum is not
104 * required.
105 *
106 * CHECKSUM_PARTIAL:
107 *
108 * The device is required to checksum the packet as seen by hard_start_xmit()
109 * from skb->csum_start up to the end, and to record/write the checksum at
110 * offset skb->csum_start + skb->csum_offset.
111 *
112 * The device must show its capabilities in dev->features, set up at device
113 * setup time, e.g. netdev_features.h:
114 *
115 * NETIF_F_HW_CSUM - It's a clever device, it's able to checksum everything.
116 * NETIF_F_IP_CSUM - Device is dumb, it's able to checksum only TCP/UDP over
117 * IPv4. Sigh. Vendors like this way for an unknown reason.
118 * Though, see comment above about CHECKSUM_UNNECESSARY. 8)
119 * NETIF_F_IPV6_CSUM - About as dumb as the last one but does IPv6 instead.
120 * NETIF_F_... - Well, you get the picture.
121 *
122 * CHECKSUM_UNNECESSARY:
123 *
124 * Normally, the device will do per protocol specific checksumming. Protocol
125 * implementations that do not want the NIC to perform the checksum
126 * calculation should use this flag in their outgoing skbs.
127 *
128 * NETIF_F_FCOE_CRC - This indicates that the device can do FCoE FC CRC
129 * offload. Correspondingly, the FCoE protocol driver
130 * stack should use CHECKSUM_UNNECESSARY.
131 *
132 * Any questions? No questions, good. --ANK
133 */
134
135 /* Don't change this without changing skb_csum_unnecessary! */
136 #define CHECKSUM_NONE 0
137 #define CHECKSUM_UNNECESSARY 1
138 #define CHECKSUM_COMPLETE 2
139 #define CHECKSUM_PARTIAL 3
140
141 /* Maximum value in skb->csum_level */
142 #define SKB_MAX_CSUM_LEVEL 3
143
144 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
145 #define SKB_WITH_OVERHEAD(X) \
146 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
147 #define SKB_MAX_ORDER(X, ORDER) \
148 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
149 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
150 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
151
152 /* return minimum truesize of one skb containing X bytes of data */
153 #define SKB_TRUESIZE(X) ((X) + \
154 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
155 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
156
157 struct net_device;
158 struct scatterlist;
159 struct pipe_inode_info;
160 struct iov_iter;
161 struct napi_struct;
162
163 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
164 struct nf_conntrack {
165 atomic_t use;
166 };
167 #endif
168
169 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
170 struct nf_bridge_info {
171 atomic_t use;
172 enum {
173 BRNF_PROTO_UNCHANGED,
174 BRNF_PROTO_8021Q,
175 BRNF_PROTO_PPPOE
176 } orig_proto:8;
177 u8 pkt_otherhost:1;
178 u8 in_prerouting:1;
179 u8 bridged_dnat:1;
180 __u16 frag_max_size;
181 struct net_device *physindev;
182
183 /* always valid & non-NULL from FORWARD on, for physdev match */
184 struct net_device *physoutdev;
185 union {
186 /* prerouting: detect dnat in orig/reply direction */
187 __be32 ipv4_daddr;
188 struct in6_addr ipv6_daddr;
189
190 /* after prerouting + nat detected: store original source
191 * mac since neigh resolution overwrites it, only used while
192 * skb is out in neigh layer.
193 */
194 char neigh_header[8];
195 };
196 };
197 #endif
198
199 struct sk_buff_head {
200 /* These two members must be first. */
201 struct sk_buff *next;
202 struct sk_buff *prev;
203
204 __u32 qlen;
205 spinlock_t lock;
206 };
207
208 struct sk_buff;
209
210 /* To allow 64K frame to be packed as single skb without frag_list we
211 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
212 * buffers which do not start on a page boundary.
213 *
214 * Since GRO uses frags we allocate at least 16 regardless of page
215 * size.
216 */
217 #if (65536/PAGE_SIZE + 1) < 16
218 #define MAX_SKB_FRAGS 16UL
219 #else
220 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
221 #endif
222
223 typedef struct skb_frag_struct skb_frag_t;
224
225 struct skb_frag_struct {
226 struct {
227 struct page *p;
228 } page;
229 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
230 __u32 page_offset;
231 __u32 size;
232 #else
233 __u16 page_offset;
234 __u16 size;
235 #endif
236 };
237
238 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
239 {
240 return frag->size;
241 }
242
243 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
244 {
245 frag->size = size;
246 }
247
248 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
249 {
250 frag->size += delta;
251 }
252
253 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
254 {
255 frag->size -= delta;
256 }
257
258 #define HAVE_HW_TIME_STAMP
259
260 /**
261 * struct skb_shared_hwtstamps - hardware time stamps
262 * @hwtstamp: hardware time stamp transformed into duration
263 * since arbitrary point in time
264 *
265 * Software time stamps generated by ktime_get_real() are stored in
266 * skb->tstamp.
267 *
268 * hwtstamps can only be compared against other hwtstamps from
269 * the same device.
270 *
271 * This structure is attached to packets as part of the
272 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
273 */
274 struct skb_shared_hwtstamps {
275 ktime_t hwtstamp;
276 };
277
278 /* Definitions for tx_flags in struct skb_shared_info */
279 enum {
280 /* generate hardware time stamp */
281 SKBTX_HW_TSTAMP = 1 << 0,
282
283 /* generate software time stamp when queueing packet to NIC */
284 SKBTX_SW_TSTAMP = 1 << 1,
285
286 /* device driver is going to provide hardware time stamp */
287 SKBTX_IN_PROGRESS = 1 << 2,
288
289 /* device driver supports TX zero-copy buffers */
290 SKBTX_DEV_ZEROCOPY = 1 << 3,
291
292 /* generate wifi status information (where possible) */
293 SKBTX_WIFI_STATUS = 1 << 4,
294
295 /* This indicates at least one fragment might be overwritten
296 * (as in vmsplice(), sendfile() ...)
297 * If we need to compute a TX checksum, we'll need to copy
298 * all frags to avoid possible bad checksum
299 */
300 SKBTX_SHARED_FRAG = 1 << 5,
301
302 /* generate software time stamp when entering packet scheduling */
303 SKBTX_SCHED_TSTAMP = 1 << 6,
304
305 /* generate software timestamp on peer data acknowledgment */
306 SKBTX_ACK_TSTAMP = 1 << 7,
307 };
308
309 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
310 SKBTX_SCHED_TSTAMP | \
311 SKBTX_ACK_TSTAMP)
312 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
313
314 /*
315 * The callback notifies userspace to release buffers when skb DMA is done in
316 * lower device, the skb last reference should be 0 when calling this.
317 * The zerocopy_success argument is true if zero copy transmit occurred,
318 * false on data copy or out of memory error caused by data copy attempt.
319 * The ctx field is used to track device context.
320 * The desc field is used to track userspace buffer index.
321 */
322 struct ubuf_info {
323 void (*callback)(struct ubuf_info *, bool zerocopy_success);
324 void *ctx;
325 unsigned long desc;
326 };
327
328 /* This data is invariant across clones and lives at
329 * the end of the header data, ie. at skb->end.
330 */
331 struct skb_shared_info {
332 unsigned char nr_frags;
333 __u8 tx_flags;
334 unsigned short gso_size;
335 /* Warning: this field is not always filled in (UFO)! */
336 unsigned short gso_segs;
337 unsigned short gso_type;
338 struct sk_buff *frag_list;
339 struct skb_shared_hwtstamps hwtstamps;
340 u32 tskey;
341 __be32 ip6_frag_id;
342
343 /*
344 * Warning : all fields before dataref are cleared in __alloc_skb()
345 */
346 atomic_t dataref;
347
348 /* Intermediate layers must ensure that destructor_arg
349 * remains valid until skb destructor */
350 void * destructor_arg;
351
352 /* must be last field, see pskb_expand_head() */
353 skb_frag_t frags[MAX_SKB_FRAGS];
354 };
355
356 /* We divide dataref into two halves. The higher 16 bits hold references
357 * to the payload part of skb->data. The lower 16 bits hold references to
358 * the entire skb->data. A clone of a headerless skb holds the length of
359 * the header in skb->hdr_len.
360 *
361 * All users must obey the rule that the skb->data reference count must be
362 * greater than or equal to the payload reference count.
363 *
364 * Holding a reference to the payload part means that the user does not
365 * care about modifications to the header part of skb->data.
366 */
367 #define SKB_DATAREF_SHIFT 16
368 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
369
370
371 enum {
372 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
373 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
374 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
375 };
376
377 enum {
378 SKB_GSO_TCPV4 = 1 << 0,
379 SKB_GSO_UDP = 1 << 1,
380
381 /* This indicates the skb is from an untrusted source. */
382 SKB_GSO_DODGY = 1 << 2,
383
384 /* This indicates the tcp segment has CWR set. */
385 SKB_GSO_TCP_ECN = 1 << 3,
386
387 SKB_GSO_TCPV6 = 1 << 4,
388
389 SKB_GSO_FCOE = 1 << 5,
390
391 SKB_GSO_GRE = 1 << 6,
392
393 SKB_GSO_GRE_CSUM = 1 << 7,
394
395 SKB_GSO_IPIP = 1 << 8,
396
397 SKB_GSO_SIT = 1 << 9,
398
399 SKB_GSO_UDP_TUNNEL = 1 << 10,
400
401 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
402
403 SKB_GSO_TUNNEL_REMCSUM = 1 << 12,
404 };
405
406 #if BITS_PER_LONG > 32
407 #define NET_SKBUFF_DATA_USES_OFFSET 1
408 #endif
409
410 #ifdef NET_SKBUFF_DATA_USES_OFFSET
411 typedef unsigned int sk_buff_data_t;
412 #else
413 typedef unsigned char *sk_buff_data_t;
414 #endif
415
416 /**
417 * struct skb_mstamp - multi resolution time stamps
418 * @stamp_us: timestamp in us resolution
419 * @stamp_jiffies: timestamp in jiffies
420 */
421 struct skb_mstamp {
422 union {
423 u64 v64;
424 struct {
425 u32 stamp_us;
426 u32 stamp_jiffies;
427 };
428 };
429 };
430
431 /**
432 * skb_mstamp_get - get current timestamp
433 * @cl: place to store timestamps
434 */
435 static inline void skb_mstamp_get(struct skb_mstamp *cl)
436 {
437 u64 val = local_clock();
438
439 do_div(val, NSEC_PER_USEC);
440 cl->stamp_us = (u32)val;
441 cl->stamp_jiffies = (u32)jiffies;
442 }
443
444 /**
445 * skb_mstamp_delta - compute the difference in usec between two skb_mstamp
446 * @t1: pointer to newest sample
447 * @t0: pointer to oldest sample
448 */
449 static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1,
450 const struct skb_mstamp *t0)
451 {
452 s32 delta_us = t1->stamp_us - t0->stamp_us;
453 u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies;
454
455 /* If delta_us is negative, this might be because interval is too big,
456 * or local_clock() drift is too big : fallback using jiffies.
457 */
458 if (delta_us <= 0 ||
459 delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ)))
460
461 delta_us = jiffies_to_usecs(delta_jiffies);
462
463 return delta_us;
464 }
465
466 static inline bool skb_mstamp_after(const struct skb_mstamp *t1,
467 const struct skb_mstamp *t0)
468 {
469 s32 diff = t1->stamp_jiffies - t0->stamp_jiffies;
470
471 if (!diff)
472 diff = t1->stamp_us - t0->stamp_us;
473 return diff > 0;
474 }
475
476 /**
477 * struct sk_buff - socket buffer
478 * @next: Next buffer in list
479 * @prev: Previous buffer in list
480 * @tstamp: Time we arrived/left
481 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
482 * @sk: Socket we are owned by
483 * @dev: Device we arrived on/are leaving by
484 * @cb: Control buffer. Free for use by every layer. Put private vars here
485 * @_skb_refdst: destination entry (with norefcount bit)
486 * @sp: the security path, used for xfrm
487 * @len: Length of actual data
488 * @data_len: Data length
489 * @mac_len: Length of link layer header
490 * @hdr_len: writable header length of cloned skb
491 * @csum: Checksum (must include start/offset pair)
492 * @csum_start: Offset from skb->head where checksumming should start
493 * @csum_offset: Offset from csum_start where checksum should be stored
494 * @priority: Packet queueing priority
495 * @ignore_df: allow local fragmentation
496 * @cloned: Head may be cloned (check refcnt to be sure)
497 * @ip_summed: Driver fed us an IP checksum
498 * @nohdr: Payload reference only, must not modify header
499 * @nfctinfo: Relationship of this skb to the connection
500 * @pkt_type: Packet class
501 * @fclone: skbuff clone status
502 * @ipvs_property: skbuff is owned by ipvs
503 * @peeked: this packet has been seen already, so stats have been
504 * done for it, don't do them again
505 * @nf_trace: netfilter packet trace flag
506 * @protocol: Packet protocol from driver
507 * @destructor: Destruct function
508 * @nfct: Associated connection, if any
509 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
510 * @skb_iif: ifindex of device we arrived on
511 * @tc_index: Traffic control index
512 * @tc_verd: traffic control verdict
513 * @hash: the packet hash
514 * @queue_mapping: Queue mapping for multiqueue devices
515 * @xmit_more: More SKBs are pending for this queue
516 * @ndisc_nodetype: router type (from link layer)
517 * @ooo_okay: allow the mapping of a socket to a queue to be changed
518 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
519 * ports.
520 * @sw_hash: indicates hash was computed in software stack
521 * @wifi_acked_valid: wifi_acked was set
522 * @wifi_acked: whether frame was acked on wifi or not
523 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
524 * @napi_id: id of the NAPI struct this skb came from
525 * @secmark: security marking
526 * @offload_fwd_mark: fwding offload mark
527 * @mark: Generic packet mark
528 * @vlan_proto: vlan encapsulation protocol
529 * @vlan_tci: vlan tag control information
530 * @inner_protocol: Protocol (encapsulation)
531 * @inner_transport_header: Inner transport layer header (encapsulation)
532 * @inner_network_header: Network layer header (encapsulation)
533 * @inner_mac_header: Link layer header (encapsulation)
534 * @transport_header: Transport layer header
535 * @network_header: Network layer header
536 * @mac_header: Link layer header
537 * @tail: Tail pointer
538 * @end: End pointer
539 * @head: Head of buffer
540 * @data: Data head pointer
541 * @truesize: Buffer size
542 * @users: User count - see {datagram,tcp}.c
543 */
544
545 struct sk_buff {
546 union {
547 struct {
548 /* These two members must be first. */
549 struct sk_buff *next;
550 struct sk_buff *prev;
551
552 union {
553 ktime_t tstamp;
554 struct skb_mstamp skb_mstamp;
555 };
556 };
557 struct rb_node rbnode; /* used in netem & tcp stack */
558 };
559 struct sock *sk;
560 struct net_device *dev;
561
562 /*
563 * This is the control buffer. It is free to use for every
564 * layer. Please put your private variables there. If you
565 * want to keep them across layers you have to do a skb_clone()
566 * first. This is owned by whoever has the skb queued ATM.
567 */
568 char cb[48] __aligned(8);
569
570 unsigned long _skb_refdst;
571 void (*destructor)(struct sk_buff *skb);
572 #ifdef CONFIG_XFRM
573 struct sec_path *sp;
574 #endif
575 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
576 struct nf_conntrack *nfct;
577 #endif
578 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
579 struct nf_bridge_info *nf_bridge;
580 #endif
581 unsigned int len,
582 data_len;
583 __u16 mac_len,
584 hdr_len;
585
586 /* Following fields are _not_ copied in __copy_skb_header()
587 * Note that queue_mapping is here mostly to fill a hole.
588 */
589 kmemcheck_bitfield_begin(flags1);
590 __u16 queue_mapping;
591 __u8 cloned:1,
592 nohdr:1,
593 fclone:2,
594 peeked:1,
595 head_frag:1,
596 xmit_more:1;
597 /* one bit hole */
598 kmemcheck_bitfield_end(flags1);
599
600 /* fields enclosed in headers_start/headers_end are copied
601 * using a single memcpy() in __copy_skb_header()
602 */
603 /* private: */
604 __u32 headers_start[0];
605 /* public: */
606
607 /* if you move pkt_type around you also must adapt those constants */
608 #ifdef __BIG_ENDIAN_BITFIELD
609 #define PKT_TYPE_MAX (7 << 5)
610 #else
611 #define PKT_TYPE_MAX 7
612 #endif
613 #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset)
614
615 __u8 __pkt_type_offset[0];
616 __u8 pkt_type:3;
617 __u8 pfmemalloc:1;
618 __u8 ignore_df:1;
619 __u8 nfctinfo:3;
620
621 __u8 nf_trace:1;
622 __u8 ip_summed:2;
623 __u8 ooo_okay:1;
624 __u8 l4_hash:1;
625 __u8 sw_hash:1;
626 __u8 wifi_acked_valid:1;
627 __u8 wifi_acked:1;
628
629 __u8 no_fcs:1;
630 /* Indicates the inner headers are valid in the skbuff. */
631 __u8 encapsulation:1;
632 __u8 encap_hdr_csum:1;
633 __u8 csum_valid:1;
634 __u8 csum_complete_sw:1;
635 __u8 csum_level:2;
636 __u8 csum_bad:1;
637
638 #ifdef CONFIG_IPV6_NDISC_NODETYPE
639 __u8 ndisc_nodetype:2;
640 #endif
641 __u8 ipvs_property:1;
642 __u8 inner_protocol_type:1;
643 __u8 remcsum_offload:1;
644 /* 3 or 5 bit hole */
645
646 #ifdef CONFIG_NET_SCHED
647 __u16 tc_index; /* traffic control index */
648 #ifdef CONFIG_NET_CLS_ACT
649 __u16 tc_verd; /* traffic control verdict */
650 #endif
651 #endif
652
653 union {
654 __wsum csum;
655 struct {
656 __u16 csum_start;
657 __u16 csum_offset;
658 };
659 };
660 __u32 priority;
661 int skb_iif;
662 __u32 hash;
663 __be16 vlan_proto;
664 __u16 vlan_tci;
665 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
666 union {
667 unsigned int napi_id;
668 unsigned int sender_cpu;
669 };
670 #endif
671 union {
672 #ifdef CONFIG_NETWORK_SECMARK
673 __u32 secmark;
674 #endif
675 #ifdef CONFIG_NET_SWITCHDEV
676 __u32 offload_fwd_mark;
677 #endif
678 };
679
680 union {
681 __u32 mark;
682 __u32 reserved_tailroom;
683 };
684
685 union {
686 __be16 inner_protocol;
687 __u8 inner_ipproto;
688 };
689
690 __u16 inner_transport_header;
691 __u16 inner_network_header;
692 __u16 inner_mac_header;
693
694 __be16 protocol;
695 __u16 transport_header;
696 __u16 network_header;
697 __u16 mac_header;
698
699 /* private: */
700 __u32 headers_end[0];
701 /* public: */
702
703 /* These elements must be at the end, see alloc_skb() for details. */
704 sk_buff_data_t tail;
705 sk_buff_data_t end;
706 unsigned char *head,
707 *data;
708 unsigned int truesize;
709 atomic_t users;
710 };
711
712 #ifdef __KERNEL__
713 /*
714 * Handling routines are only of interest to the kernel
715 */
716 #include <linux/slab.h>
717
718
719 #define SKB_ALLOC_FCLONE 0x01
720 #define SKB_ALLOC_RX 0x02
721 #define SKB_ALLOC_NAPI 0x04
722
723 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
724 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
725 {
726 return unlikely(skb->pfmemalloc);
727 }
728
729 /*
730 * skb might have a dst pointer attached, refcounted or not.
731 * _skb_refdst low order bit is set if refcount was _not_ taken
732 */
733 #define SKB_DST_NOREF 1UL
734 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
735
736 /**
737 * skb_dst - returns skb dst_entry
738 * @skb: buffer
739 *
740 * Returns skb dst_entry, regardless of reference taken or not.
741 */
742 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
743 {
744 /* If refdst was not refcounted, check we still are in a
745 * rcu_read_lock section
746 */
747 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
748 !rcu_read_lock_held() &&
749 !rcu_read_lock_bh_held());
750 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
751 }
752
753 /**
754 * skb_dst_set - sets skb dst
755 * @skb: buffer
756 * @dst: dst entry
757 *
758 * Sets skb dst, assuming a reference was taken on dst and should
759 * be released by skb_dst_drop()
760 */
761 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
762 {
763 skb->_skb_refdst = (unsigned long)dst;
764 }
765
766 /**
767 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
768 * @skb: buffer
769 * @dst: dst entry
770 *
771 * Sets skb dst, assuming a reference was not taken on dst.
772 * If dst entry is cached, we do not take reference and dst_release
773 * will be avoided by refdst_drop. If dst entry is not cached, we take
774 * reference, so that last dst_release can destroy the dst immediately.
775 */
776 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
777 {
778 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
779 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
780 }
781
782 /**
783 * skb_dst_is_noref - Test if skb dst isn't refcounted
784 * @skb: buffer
785 */
786 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
787 {
788 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
789 }
790
791 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
792 {
793 return (struct rtable *)skb_dst(skb);
794 }
795
796 void kfree_skb(struct sk_buff *skb);
797 void kfree_skb_list(struct sk_buff *segs);
798 void skb_tx_error(struct sk_buff *skb);
799 void consume_skb(struct sk_buff *skb);
800 void __kfree_skb(struct sk_buff *skb);
801 extern struct kmem_cache *skbuff_head_cache;
802
803 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
804 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
805 bool *fragstolen, int *delta_truesize);
806
807 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
808 int node);
809 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
810 struct sk_buff *build_skb(void *data, unsigned int frag_size);
811 static inline struct sk_buff *alloc_skb(unsigned int size,
812 gfp_t priority)
813 {
814 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
815 }
816
817 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
818 unsigned long data_len,
819 int max_page_order,
820 int *errcode,
821 gfp_t gfp_mask);
822
823 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
824 struct sk_buff_fclones {
825 struct sk_buff skb1;
826
827 struct sk_buff skb2;
828
829 atomic_t fclone_ref;
830 };
831
832 /**
833 * skb_fclone_busy - check if fclone is busy
834 * @skb: buffer
835 *
836 * Returns true is skb is a fast clone, and its clone is not freed.
837 * Some drivers call skb_orphan() in their ndo_start_xmit(),
838 * so we also check that this didnt happen.
839 */
840 static inline bool skb_fclone_busy(const struct sock *sk,
841 const struct sk_buff *skb)
842 {
843 const struct sk_buff_fclones *fclones;
844
845 fclones = container_of(skb, struct sk_buff_fclones, skb1);
846
847 return skb->fclone == SKB_FCLONE_ORIG &&
848 atomic_read(&fclones->fclone_ref) > 1 &&
849 fclones->skb2.sk == sk;
850 }
851
852 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
853 gfp_t priority)
854 {
855 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
856 }
857
858 struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
859 static inline struct sk_buff *alloc_skb_head(gfp_t priority)
860 {
861 return __alloc_skb_head(priority, -1);
862 }
863
864 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
865 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
866 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
867 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
868 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
869 gfp_t gfp_mask, bool fclone);
870 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
871 gfp_t gfp_mask)
872 {
873 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
874 }
875
876 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
877 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
878 unsigned int headroom);
879 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
880 int newtailroom, gfp_t priority);
881 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
882 int offset, int len);
883 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
884 int len);
885 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
886 int skb_pad(struct sk_buff *skb, int pad);
887 #define dev_kfree_skb(a) consume_skb(a)
888
889 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
890 int getfrag(void *from, char *to, int offset,
891 int len, int odd, struct sk_buff *skb),
892 void *from, int length);
893
894 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
895 int offset, size_t size);
896
897 struct skb_seq_state {
898 __u32 lower_offset;
899 __u32 upper_offset;
900 __u32 frag_idx;
901 __u32 stepped_offset;
902 struct sk_buff *root_skb;
903 struct sk_buff *cur_skb;
904 __u8 *frag_data;
905 };
906
907 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
908 unsigned int to, struct skb_seq_state *st);
909 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
910 struct skb_seq_state *st);
911 void skb_abort_seq_read(struct skb_seq_state *st);
912
913 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
914 unsigned int to, struct ts_config *config);
915
916 /*
917 * Packet hash types specify the type of hash in skb_set_hash.
918 *
919 * Hash types refer to the protocol layer addresses which are used to
920 * construct a packet's hash. The hashes are used to differentiate or identify
921 * flows of the protocol layer for the hash type. Hash types are either
922 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
923 *
924 * Properties of hashes:
925 *
926 * 1) Two packets in different flows have different hash values
927 * 2) Two packets in the same flow should have the same hash value
928 *
929 * A hash at a higher layer is considered to be more specific. A driver should
930 * set the most specific hash possible.
931 *
932 * A driver cannot indicate a more specific hash than the layer at which a hash
933 * was computed. For instance an L3 hash cannot be set as an L4 hash.
934 *
935 * A driver may indicate a hash level which is less specific than the
936 * actual layer the hash was computed on. For instance, a hash computed
937 * at L4 may be considered an L3 hash. This should only be done if the
938 * driver can't unambiguously determine that the HW computed the hash at
939 * the higher layer. Note that the "should" in the second property above
940 * permits this.
941 */
942 enum pkt_hash_types {
943 PKT_HASH_TYPE_NONE, /* Undefined type */
944 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
945 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
946 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
947 };
948
949 static inline void skb_clear_hash(struct sk_buff *skb)
950 {
951 skb->hash = 0;
952 skb->sw_hash = 0;
953 skb->l4_hash = 0;
954 }
955
956 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
957 {
958 if (!skb->l4_hash)
959 skb_clear_hash(skb);
960 }
961
962 static inline void
963 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
964 {
965 skb->l4_hash = is_l4;
966 skb->sw_hash = is_sw;
967 skb->hash = hash;
968 }
969
970 static inline void
971 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
972 {
973 /* Used by drivers to set hash from HW */
974 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
975 }
976
977 static inline void
978 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
979 {
980 __skb_set_hash(skb, hash, true, is_l4);
981 }
982
983 void __skb_get_hash(struct sk_buff *skb);
984 u32 skb_get_poff(const struct sk_buff *skb);
985 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
986 const struct flow_keys *keys, int hlen);
987 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
988 void *data, int hlen_proto);
989
990 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
991 int thoff, u8 ip_proto)
992 {
993 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
994 }
995
996 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
997 const struct flow_dissector_key *key,
998 unsigned int key_count);
999
1000 bool __skb_flow_dissect(const struct sk_buff *skb,
1001 struct flow_dissector *flow_dissector,
1002 void *target_container,
1003 void *data, __be16 proto, int nhoff, int hlen,
1004 unsigned int flags);
1005
1006 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1007 struct flow_dissector *flow_dissector,
1008 void *target_container, unsigned int flags)
1009 {
1010 return __skb_flow_dissect(skb, flow_dissector, target_container,
1011 NULL, 0, 0, 0, flags);
1012 }
1013
1014 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1015 struct flow_keys *flow,
1016 unsigned int flags)
1017 {
1018 memset(flow, 0, sizeof(*flow));
1019 return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1020 NULL, 0, 0, 0, flags);
1021 }
1022
1023 static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow,
1024 void *data, __be16 proto,
1025 int nhoff, int hlen,
1026 unsigned int flags)
1027 {
1028 memset(flow, 0, sizeof(*flow));
1029 return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow,
1030 data, proto, nhoff, hlen, flags);
1031 }
1032
1033 static inline __u32 skb_get_hash(struct sk_buff *skb)
1034 {
1035 if (!skb->l4_hash && !skb->sw_hash)
1036 __skb_get_hash(skb);
1037
1038 return skb->hash;
1039 }
1040
1041 __u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6);
1042
1043 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1044 {
1045 if (!skb->l4_hash && !skb->sw_hash) {
1046 struct flow_keys keys;
1047 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
1048
1049 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1050 }
1051
1052 return skb->hash;
1053 }
1054
1055 __u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl);
1056
1057 static inline __u32 skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4)
1058 {
1059 if (!skb->l4_hash && !skb->sw_hash) {
1060 struct flow_keys keys;
1061 __u32 hash = __get_hash_from_flowi4(fl4, &keys);
1062
1063 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1064 }
1065
1066 return skb->hash;
1067 }
1068
1069 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1070
1071 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1072 {
1073 return skb->hash;
1074 }
1075
1076 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1077 {
1078 to->hash = from->hash;
1079 to->sw_hash = from->sw_hash;
1080 to->l4_hash = from->l4_hash;
1081 };
1082
1083 static inline void skb_sender_cpu_clear(struct sk_buff *skb)
1084 {
1085 }
1086
1087 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1088 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1089 {
1090 return skb->head + skb->end;
1091 }
1092
1093 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1094 {
1095 return skb->end;
1096 }
1097 #else
1098 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1099 {
1100 return skb->end;
1101 }
1102
1103 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1104 {
1105 return skb->end - skb->head;
1106 }
1107 #endif
1108
1109 /* Internal */
1110 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1111
1112 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1113 {
1114 return &skb_shinfo(skb)->hwtstamps;
1115 }
1116
1117 /**
1118 * skb_queue_empty - check if a queue is empty
1119 * @list: queue head
1120 *
1121 * Returns true if the queue is empty, false otherwise.
1122 */
1123 static inline int skb_queue_empty(const struct sk_buff_head *list)
1124 {
1125 return list->next == (const struct sk_buff *) list;
1126 }
1127
1128 /**
1129 * skb_queue_is_last - check if skb is the last entry in the queue
1130 * @list: queue head
1131 * @skb: buffer
1132 *
1133 * Returns true if @skb is the last buffer on the list.
1134 */
1135 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1136 const struct sk_buff *skb)
1137 {
1138 return skb->next == (const struct sk_buff *) list;
1139 }
1140
1141 /**
1142 * skb_queue_is_first - check if skb is the first entry in the queue
1143 * @list: queue head
1144 * @skb: buffer
1145 *
1146 * Returns true if @skb is the first buffer on the list.
1147 */
1148 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1149 const struct sk_buff *skb)
1150 {
1151 return skb->prev == (const struct sk_buff *) list;
1152 }
1153
1154 /**
1155 * skb_queue_next - return the next packet in the queue
1156 * @list: queue head
1157 * @skb: current buffer
1158 *
1159 * Return the next packet in @list after @skb. It is only valid to
1160 * call this if skb_queue_is_last() evaluates to false.
1161 */
1162 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1163 const struct sk_buff *skb)
1164 {
1165 /* This BUG_ON may seem severe, but if we just return then we
1166 * are going to dereference garbage.
1167 */
1168 BUG_ON(skb_queue_is_last(list, skb));
1169 return skb->next;
1170 }
1171
1172 /**
1173 * skb_queue_prev - return the prev packet in the queue
1174 * @list: queue head
1175 * @skb: current buffer
1176 *
1177 * Return the prev packet in @list before @skb. It is only valid to
1178 * call this if skb_queue_is_first() evaluates to false.
1179 */
1180 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1181 const struct sk_buff *skb)
1182 {
1183 /* This BUG_ON may seem severe, but if we just return then we
1184 * are going to dereference garbage.
1185 */
1186 BUG_ON(skb_queue_is_first(list, skb));
1187 return skb->prev;
1188 }
1189
1190 /**
1191 * skb_get - reference buffer
1192 * @skb: buffer to reference
1193 *
1194 * Makes another reference to a socket buffer and returns a pointer
1195 * to the buffer.
1196 */
1197 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1198 {
1199 atomic_inc(&skb->users);
1200 return skb;
1201 }
1202
1203 /*
1204 * If users == 1, we are the only owner and are can avoid redundant
1205 * atomic change.
1206 */
1207
1208 /**
1209 * skb_cloned - is the buffer a clone
1210 * @skb: buffer to check
1211 *
1212 * Returns true if the buffer was generated with skb_clone() and is
1213 * one of multiple shared copies of the buffer. Cloned buffers are
1214 * shared data so must not be written to under normal circumstances.
1215 */
1216 static inline int skb_cloned(const struct sk_buff *skb)
1217 {
1218 return skb->cloned &&
1219 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1220 }
1221
1222 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1223 {
1224 might_sleep_if(gfpflags_allow_blocking(pri));
1225
1226 if (skb_cloned(skb))
1227 return pskb_expand_head(skb, 0, 0, pri);
1228
1229 return 0;
1230 }
1231
1232 /**
1233 * skb_header_cloned - is the header a clone
1234 * @skb: buffer to check
1235 *
1236 * Returns true if modifying the header part of the buffer requires
1237 * the data to be copied.
1238 */
1239 static inline int skb_header_cloned(const struct sk_buff *skb)
1240 {
1241 int dataref;
1242
1243 if (!skb->cloned)
1244 return 0;
1245
1246 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1247 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1248 return dataref != 1;
1249 }
1250
1251 /**
1252 * skb_header_release - release reference to header
1253 * @skb: buffer to operate on
1254 *
1255 * Drop a reference to the header part of the buffer. This is done
1256 * by acquiring a payload reference. You must not read from the header
1257 * part of skb->data after this.
1258 * Note : Check if you can use __skb_header_release() instead.
1259 */
1260 static inline void skb_header_release(struct sk_buff *skb)
1261 {
1262 BUG_ON(skb->nohdr);
1263 skb->nohdr = 1;
1264 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
1265 }
1266
1267 /**
1268 * __skb_header_release - release reference to header
1269 * @skb: buffer to operate on
1270 *
1271 * Variant of skb_header_release() assuming skb is private to caller.
1272 * We can avoid one atomic operation.
1273 */
1274 static inline void __skb_header_release(struct sk_buff *skb)
1275 {
1276 skb->nohdr = 1;
1277 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1278 }
1279
1280
1281 /**
1282 * skb_shared - is the buffer shared
1283 * @skb: buffer to check
1284 *
1285 * Returns true if more than one person has a reference to this
1286 * buffer.
1287 */
1288 static inline int skb_shared(const struct sk_buff *skb)
1289 {
1290 return atomic_read(&skb->users) != 1;
1291 }
1292
1293 /**
1294 * skb_share_check - check if buffer is shared and if so clone it
1295 * @skb: buffer to check
1296 * @pri: priority for memory allocation
1297 *
1298 * If the buffer is shared the buffer is cloned and the old copy
1299 * drops a reference. A new clone with a single reference is returned.
1300 * If the buffer is not shared the original buffer is returned. When
1301 * being called from interrupt status or with spinlocks held pri must
1302 * be GFP_ATOMIC.
1303 *
1304 * NULL is returned on a memory allocation failure.
1305 */
1306 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1307 {
1308 might_sleep_if(gfpflags_allow_blocking(pri));
1309 if (skb_shared(skb)) {
1310 struct sk_buff *nskb = skb_clone(skb, pri);
1311
1312 if (likely(nskb))
1313 consume_skb(skb);
1314 else
1315 kfree_skb(skb);
1316 skb = nskb;
1317 }
1318 return skb;
1319 }
1320
1321 /*
1322 * Copy shared buffers into a new sk_buff. We effectively do COW on
1323 * packets to handle cases where we have a local reader and forward
1324 * and a couple of other messy ones. The normal one is tcpdumping
1325 * a packet thats being forwarded.
1326 */
1327
1328 /**
1329 * skb_unshare - make a copy of a shared buffer
1330 * @skb: buffer to check
1331 * @pri: priority for memory allocation
1332 *
1333 * If the socket buffer is a clone then this function creates a new
1334 * copy of the data, drops a reference count on the old copy and returns
1335 * the new copy with the reference count at 1. If the buffer is not a clone
1336 * the original buffer is returned. When called with a spinlock held or
1337 * from interrupt state @pri must be %GFP_ATOMIC
1338 *
1339 * %NULL is returned on a memory allocation failure.
1340 */
1341 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1342 gfp_t pri)
1343 {
1344 might_sleep_if(gfpflags_allow_blocking(pri));
1345 if (skb_cloned(skb)) {
1346 struct sk_buff *nskb = skb_copy(skb, pri);
1347
1348 /* Free our shared copy */
1349 if (likely(nskb))
1350 consume_skb(skb);
1351 else
1352 kfree_skb(skb);
1353 skb = nskb;
1354 }
1355 return skb;
1356 }
1357
1358 /**
1359 * skb_peek - peek at the head of an &sk_buff_head
1360 * @list_: list to peek at
1361 *
1362 * Peek an &sk_buff. Unlike most other operations you _MUST_
1363 * be careful with this one. A peek leaves the buffer on the
1364 * list and someone else may run off with it. You must hold
1365 * the appropriate locks or have a private queue to do this.
1366 *
1367 * Returns %NULL for an empty list or a pointer to the head element.
1368 * The reference count is not incremented and the reference is therefore
1369 * volatile. Use with caution.
1370 */
1371 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1372 {
1373 struct sk_buff *skb = list_->next;
1374
1375 if (skb == (struct sk_buff *)list_)
1376 skb = NULL;
1377 return skb;
1378 }
1379
1380 /**
1381 * skb_peek_next - peek skb following the given one from a queue
1382 * @skb: skb to start from
1383 * @list_: list to peek at
1384 *
1385 * Returns %NULL when the end of the list is met or a pointer to the
1386 * next element. The reference count is not incremented and the
1387 * reference is therefore volatile. Use with caution.
1388 */
1389 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1390 const struct sk_buff_head *list_)
1391 {
1392 struct sk_buff *next = skb->next;
1393
1394 if (next == (struct sk_buff *)list_)
1395 next = NULL;
1396 return next;
1397 }
1398
1399 /**
1400 * skb_peek_tail - peek at the tail of an &sk_buff_head
1401 * @list_: list to peek at
1402 *
1403 * Peek an &sk_buff. Unlike most other operations you _MUST_
1404 * be careful with this one. A peek leaves the buffer on the
1405 * list and someone else may run off with it. You must hold
1406 * the appropriate locks or have a private queue to do this.
1407 *
1408 * Returns %NULL for an empty list or a pointer to the tail element.
1409 * The reference count is not incremented and the reference is therefore
1410 * volatile. Use with caution.
1411 */
1412 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1413 {
1414 struct sk_buff *skb = list_->prev;
1415
1416 if (skb == (struct sk_buff *)list_)
1417 skb = NULL;
1418 return skb;
1419
1420 }
1421
1422 /**
1423 * skb_queue_len - get queue length
1424 * @list_: list to measure
1425 *
1426 * Return the length of an &sk_buff queue.
1427 */
1428 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1429 {
1430 return list_->qlen;
1431 }
1432
1433 /**
1434 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1435 * @list: queue to initialize
1436 *
1437 * This initializes only the list and queue length aspects of
1438 * an sk_buff_head object. This allows to initialize the list
1439 * aspects of an sk_buff_head without reinitializing things like
1440 * the spinlock. It can also be used for on-stack sk_buff_head
1441 * objects where the spinlock is known to not be used.
1442 */
1443 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1444 {
1445 list->prev = list->next = (struct sk_buff *)list;
1446 list->qlen = 0;
1447 }
1448
1449 /*
1450 * This function creates a split out lock class for each invocation;
1451 * this is needed for now since a whole lot of users of the skb-queue
1452 * infrastructure in drivers have different locking usage (in hardirq)
1453 * than the networking core (in softirq only). In the long run either the
1454 * network layer or drivers should need annotation to consolidate the
1455 * main types of usage into 3 classes.
1456 */
1457 static inline void skb_queue_head_init(struct sk_buff_head *list)
1458 {
1459 spin_lock_init(&list->lock);
1460 __skb_queue_head_init(list);
1461 }
1462
1463 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1464 struct lock_class_key *class)
1465 {
1466 skb_queue_head_init(list);
1467 lockdep_set_class(&list->lock, class);
1468 }
1469
1470 /*
1471 * Insert an sk_buff on a list.
1472 *
1473 * The "__skb_xxxx()" functions are the non-atomic ones that
1474 * can only be called with interrupts disabled.
1475 */
1476 void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1477 struct sk_buff_head *list);
1478 static inline void __skb_insert(struct sk_buff *newsk,
1479 struct sk_buff *prev, struct sk_buff *next,
1480 struct sk_buff_head *list)
1481 {
1482 newsk->next = next;
1483 newsk->prev = prev;
1484 next->prev = prev->next = newsk;
1485 list->qlen++;
1486 }
1487
1488 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1489 struct sk_buff *prev,
1490 struct sk_buff *next)
1491 {
1492 struct sk_buff *first = list->next;
1493 struct sk_buff *last = list->prev;
1494
1495 first->prev = prev;
1496 prev->next = first;
1497
1498 last->next = next;
1499 next->prev = last;
1500 }
1501
1502 /**
1503 * skb_queue_splice - join two skb lists, this is designed for stacks
1504 * @list: the new list to add
1505 * @head: the place to add it in the first list
1506 */
1507 static inline void skb_queue_splice(const struct sk_buff_head *list,
1508 struct sk_buff_head *head)
1509 {
1510 if (!skb_queue_empty(list)) {
1511 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1512 head->qlen += list->qlen;
1513 }
1514 }
1515
1516 /**
1517 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1518 * @list: the new list to add
1519 * @head: the place to add it in the first list
1520 *
1521 * The list at @list is reinitialised
1522 */
1523 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1524 struct sk_buff_head *head)
1525 {
1526 if (!skb_queue_empty(list)) {
1527 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1528 head->qlen += list->qlen;
1529 __skb_queue_head_init(list);
1530 }
1531 }
1532
1533 /**
1534 * skb_queue_splice_tail - join two skb lists, each list being a queue
1535 * @list: the new list to add
1536 * @head: the place to add it in the first list
1537 */
1538 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1539 struct sk_buff_head *head)
1540 {
1541 if (!skb_queue_empty(list)) {
1542 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1543 head->qlen += list->qlen;
1544 }
1545 }
1546
1547 /**
1548 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1549 * @list: the new list to add
1550 * @head: the place to add it in the first list
1551 *
1552 * Each of the lists is a queue.
1553 * The list at @list is reinitialised
1554 */
1555 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1556 struct sk_buff_head *head)
1557 {
1558 if (!skb_queue_empty(list)) {
1559 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1560 head->qlen += list->qlen;
1561 __skb_queue_head_init(list);
1562 }
1563 }
1564
1565 /**
1566 * __skb_queue_after - queue a buffer at the list head
1567 * @list: list to use
1568 * @prev: place after this buffer
1569 * @newsk: buffer to queue
1570 *
1571 * Queue a buffer int the middle of a list. This function takes no locks
1572 * and you must therefore hold required locks before calling it.
1573 *
1574 * A buffer cannot be placed on two lists at the same time.
1575 */
1576 static inline void __skb_queue_after(struct sk_buff_head *list,
1577 struct sk_buff *prev,
1578 struct sk_buff *newsk)
1579 {
1580 __skb_insert(newsk, prev, prev->next, list);
1581 }
1582
1583 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1584 struct sk_buff_head *list);
1585
1586 static inline void __skb_queue_before(struct sk_buff_head *list,
1587 struct sk_buff *next,
1588 struct sk_buff *newsk)
1589 {
1590 __skb_insert(newsk, next->prev, next, list);
1591 }
1592
1593 /**
1594 * __skb_queue_head - queue a buffer at the list head
1595 * @list: list to use
1596 * @newsk: buffer to queue
1597 *
1598 * Queue a buffer at the start of a list. This function takes no locks
1599 * and you must therefore hold required locks before calling it.
1600 *
1601 * A buffer cannot be placed on two lists at the same time.
1602 */
1603 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1604 static inline void __skb_queue_head(struct sk_buff_head *list,
1605 struct sk_buff *newsk)
1606 {
1607 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1608 }
1609
1610 /**
1611 * __skb_queue_tail - queue a buffer at the list tail
1612 * @list: list to use
1613 * @newsk: buffer to queue
1614 *
1615 * Queue a buffer at the end of a list. This function takes no locks
1616 * and you must therefore hold required locks before calling it.
1617 *
1618 * A buffer cannot be placed on two lists at the same time.
1619 */
1620 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1621 static inline void __skb_queue_tail(struct sk_buff_head *list,
1622 struct sk_buff *newsk)
1623 {
1624 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1625 }
1626
1627 /*
1628 * remove sk_buff from list. _Must_ be called atomically, and with
1629 * the list known..
1630 */
1631 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1632 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1633 {
1634 struct sk_buff *next, *prev;
1635
1636 list->qlen--;
1637 next = skb->next;
1638 prev = skb->prev;
1639 skb->next = skb->prev = NULL;
1640 next->prev = prev;
1641 prev->next = next;
1642 }
1643
1644 /**
1645 * __skb_dequeue - remove from the head of the queue
1646 * @list: list to dequeue from
1647 *
1648 * Remove the head of the list. This function does not take any locks
1649 * so must be used with appropriate locks held only. The head item is
1650 * returned or %NULL if the list is empty.
1651 */
1652 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1653 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1654 {
1655 struct sk_buff *skb = skb_peek(list);
1656 if (skb)
1657 __skb_unlink(skb, list);
1658 return skb;
1659 }
1660
1661 /**
1662 * __skb_dequeue_tail - remove from the tail of the queue
1663 * @list: list to dequeue from
1664 *
1665 * Remove the tail of the list. This function does not take any locks
1666 * so must be used with appropriate locks held only. The tail item is
1667 * returned or %NULL if the list is empty.
1668 */
1669 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1670 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1671 {
1672 struct sk_buff *skb = skb_peek_tail(list);
1673 if (skb)
1674 __skb_unlink(skb, list);
1675 return skb;
1676 }
1677
1678
1679 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1680 {
1681 return skb->data_len;
1682 }
1683
1684 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1685 {
1686 return skb->len - skb->data_len;
1687 }
1688
1689 static inline int skb_pagelen(const struct sk_buff *skb)
1690 {
1691 int i, len = 0;
1692
1693 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1694 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1695 return len + skb_headlen(skb);
1696 }
1697
1698 /**
1699 * __skb_fill_page_desc - initialise a paged fragment in an skb
1700 * @skb: buffer containing fragment to be initialised
1701 * @i: paged fragment index to initialise
1702 * @page: the page to use for this fragment
1703 * @off: the offset to the data with @page
1704 * @size: the length of the data
1705 *
1706 * Initialises the @i'th fragment of @skb to point to &size bytes at
1707 * offset @off within @page.
1708 *
1709 * Does not take any additional reference on the fragment.
1710 */
1711 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1712 struct page *page, int off, int size)
1713 {
1714 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1715
1716 /*
1717 * Propagate page pfmemalloc to the skb if we can. The problem is
1718 * that not all callers have unique ownership of the page but rely
1719 * on page_is_pfmemalloc doing the right thing(tm).
1720 */
1721 frag->page.p = page;
1722 frag->page_offset = off;
1723 skb_frag_size_set(frag, size);
1724
1725 page = compound_head(page);
1726 if (page_is_pfmemalloc(page))
1727 skb->pfmemalloc = true;
1728 }
1729
1730 /**
1731 * skb_fill_page_desc - initialise a paged fragment in an skb
1732 * @skb: buffer containing fragment to be initialised
1733 * @i: paged fragment index to initialise
1734 * @page: the page to use for this fragment
1735 * @off: the offset to the data with @page
1736 * @size: the length of the data
1737 *
1738 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1739 * @skb to point to @size bytes at offset @off within @page. In
1740 * addition updates @skb such that @i is the last fragment.
1741 *
1742 * Does not take any additional reference on the fragment.
1743 */
1744 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1745 struct page *page, int off, int size)
1746 {
1747 __skb_fill_page_desc(skb, i, page, off, size);
1748 skb_shinfo(skb)->nr_frags = i + 1;
1749 }
1750
1751 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1752 int size, unsigned int truesize);
1753
1754 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1755 unsigned int truesize);
1756
1757 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1758 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1759 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1760
1761 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1762 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1763 {
1764 return skb->head + skb->tail;
1765 }
1766
1767 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1768 {
1769 skb->tail = skb->data - skb->head;
1770 }
1771
1772 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1773 {
1774 skb_reset_tail_pointer(skb);
1775 skb->tail += offset;
1776 }
1777
1778 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1779 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1780 {
1781 return skb->tail;
1782 }
1783
1784 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1785 {
1786 skb->tail = skb->data;
1787 }
1788
1789 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1790 {
1791 skb->tail = skb->data + offset;
1792 }
1793
1794 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1795
1796 /*
1797 * Add data to an sk_buff
1798 */
1799 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
1800 unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1801 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1802 {
1803 unsigned char *tmp = skb_tail_pointer(skb);
1804 SKB_LINEAR_ASSERT(skb);
1805 skb->tail += len;
1806 skb->len += len;
1807 return tmp;
1808 }
1809
1810 unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1811 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1812 {
1813 skb->data -= len;
1814 skb->len += len;
1815 return skb->data;
1816 }
1817
1818 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1819 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1820 {
1821 skb->len -= len;
1822 BUG_ON(skb->len < skb->data_len);
1823 return skb->data += len;
1824 }
1825
1826 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1827 {
1828 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1829 }
1830
1831 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1832
1833 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1834 {
1835 if (len > skb_headlen(skb) &&
1836 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1837 return NULL;
1838 skb->len -= len;
1839 return skb->data += len;
1840 }
1841
1842 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1843 {
1844 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1845 }
1846
1847 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1848 {
1849 if (likely(len <= skb_headlen(skb)))
1850 return 1;
1851 if (unlikely(len > skb->len))
1852 return 0;
1853 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1854 }
1855
1856 /**
1857 * skb_headroom - bytes at buffer head
1858 * @skb: buffer to check
1859 *
1860 * Return the number of bytes of free space at the head of an &sk_buff.
1861 */
1862 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1863 {
1864 return skb->data - skb->head;
1865 }
1866
1867 /**
1868 * skb_tailroom - bytes at buffer end
1869 * @skb: buffer to check
1870 *
1871 * Return the number of bytes of free space at the tail of an sk_buff
1872 */
1873 static inline int skb_tailroom(const struct sk_buff *skb)
1874 {
1875 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1876 }
1877
1878 /**
1879 * skb_availroom - bytes at buffer end
1880 * @skb: buffer to check
1881 *
1882 * Return the number of bytes of free space at the tail of an sk_buff
1883 * allocated by sk_stream_alloc()
1884 */
1885 static inline int skb_availroom(const struct sk_buff *skb)
1886 {
1887 if (skb_is_nonlinear(skb))
1888 return 0;
1889
1890 return skb->end - skb->tail - skb->reserved_tailroom;
1891 }
1892
1893 /**
1894 * skb_reserve - adjust headroom
1895 * @skb: buffer to alter
1896 * @len: bytes to move
1897 *
1898 * Increase the headroom of an empty &sk_buff by reducing the tail
1899 * room. This is only allowed for an empty buffer.
1900 */
1901 static inline void skb_reserve(struct sk_buff *skb, int len)
1902 {
1903 skb->data += len;
1904 skb->tail += len;
1905 }
1906
1907 #define ENCAP_TYPE_ETHER 0
1908 #define ENCAP_TYPE_IPPROTO 1
1909
1910 static inline void skb_set_inner_protocol(struct sk_buff *skb,
1911 __be16 protocol)
1912 {
1913 skb->inner_protocol = protocol;
1914 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
1915 }
1916
1917 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
1918 __u8 ipproto)
1919 {
1920 skb->inner_ipproto = ipproto;
1921 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
1922 }
1923
1924 static inline void skb_reset_inner_headers(struct sk_buff *skb)
1925 {
1926 skb->inner_mac_header = skb->mac_header;
1927 skb->inner_network_header = skb->network_header;
1928 skb->inner_transport_header = skb->transport_header;
1929 }
1930
1931 static inline void skb_reset_mac_len(struct sk_buff *skb)
1932 {
1933 skb->mac_len = skb->network_header - skb->mac_header;
1934 }
1935
1936 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
1937 *skb)
1938 {
1939 return skb->head + skb->inner_transport_header;
1940 }
1941
1942 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
1943 {
1944 skb->inner_transport_header = skb->data - skb->head;
1945 }
1946
1947 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
1948 const int offset)
1949 {
1950 skb_reset_inner_transport_header(skb);
1951 skb->inner_transport_header += offset;
1952 }
1953
1954 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
1955 {
1956 return skb->head + skb->inner_network_header;
1957 }
1958
1959 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
1960 {
1961 skb->inner_network_header = skb->data - skb->head;
1962 }
1963
1964 static inline void skb_set_inner_network_header(struct sk_buff *skb,
1965 const int offset)
1966 {
1967 skb_reset_inner_network_header(skb);
1968 skb->inner_network_header += offset;
1969 }
1970
1971 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
1972 {
1973 return skb->head + skb->inner_mac_header;
1974 }
1975
1976 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
1977 {
1978 skb->inner_mac_header = skb->data - skb->head;
1979 }
1980
1981 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
1982 const int offset)
1983 {
1984 skb_reset_inner_mac_header(skb);
1985 skb->inner_mac_header += offset;
1986 }
1987 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
1988 {
1989 return skb->transport_header != (typeof(skb->transport_header))~0U;
1990 }
1991
1992 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1993 {
1994 return skb->head + skb->transport_header;
1995 }
1996
1997 static inline void skb_reset_transport_header(struct sk_buff *skb)
1998 {
1999 skb->transport_header = skb->data - skb->head;
2000 }
2001
2002 static inline void skb_set_transport_header(struct sk_buff *skb,
2003 const int offset)
2004 {
2005 skb_reset_transport_header(skb);
2006 skb->transport_header += offset;
2007 }
2008
2009 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2010 {
2011 return skb->head + skb->network_header;
2012 }
2013
2014 static inline void skb_reset_network_header(struct sk_buff *skb)
2015 {
2016 skb->network_header = skb->data - skb->head;
2017 }
2018
2019 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2020 {
2021 skb_reset_network_header(skb);
2022 skb->network_header += offset;
2023 }
2024
2025 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2026 {
2027 return skb->head + skb->mac_header;
2028 }
2029
2030 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2031 {
2032 return skb->mac_header != (typeof(skb->mac_header))~0U;
2033 }
2034
2035 static inline void skb_reset_mac_header(struct sk_buff *skb)
2036 {
2037 skb->mac_header = skb->data - skb->head;
2038 }
2039
2040 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2041 {
2042 skb_reset_mac_header(skb);
2043 skb->mac_header += offset;
2044 }
2045
2046 static inline void skb_pop_mac_header(struct sk_buff *skb)
2047 {
2048 skb->mac_header = skb->network_header;
2049 }
2050
2051 static inline void skb_probe_transport_header(struct sk_buff *skb,
2052 const int offset_hint)
2053 {
2054 struct flow_keys keys;
2055
2056 if (skb_transport_header_was_set(skb))
2057 return;
2058 else if (skb_flow_dissect_flow_keys(skb, &keys, 0))
2059 skb_set_transport_header(skb, keys.control.thoff);
2060 else
2061 skb_set_transport_header(skb, offset_hint);
2062 }
2063
2064 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2065 {
2066 if (skb_mac_header_was_set(skb)) {
2067 const unsigned char *old_mac = skb_mac_header(skb);
2068
2069 skb_set_mac_header(skb, -skb->mac_len);
2070 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2071 }
2072 }
2073
2074 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2075 {
2076 return skb->csum_start - skb_headroom(skb);
2077 }
2078
2079 static inline int skb_transport_offset(const struct sk_buff *skb)
2080 {
2081 return skb_transport_header(skb) - skb->data;
2082 }
2083
2084 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2085 {
2086 return skb->transport_header - skb->network_header;
2087 }
2088
2089 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2090 {
2091 return skb->inner_transport_header - skb->inner_network_header;
2092 }
2093
2094 static inline int skb_network_offset(const struct sk_buff *skb)
2095 {
2096 return skb_network_header(skb) - skb->data;
2097 }
2098
2099 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2100 {
2101 return skb_inner_network_header(skb) - skb->data;
2102 }
2103
2104 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2105 {
2106 return pskb_may_pull(skb, skb_network_offset(skb) + len);
2107 }
2108
2109 /*
2110 * CPUs often take a performance hit when accessing unaligned memory
2111 * locations. The actual performance hit varies, it can be small if the
2112 * hardware handles it or large if we have to take an exception and fix it
2113 * in software.
2114 *
2115 * Since an ethernet header is 14 bytes network drivers often end up with
2116 * the IP header at an unaligned offset. The IP header can be aligned by
2117 * shifting the start of the packet by 2 bytes. Drivers should do this
2118 * with:
2119 *
2120 * skb_reserve(skb, NET_IP_ALIGN);
2121 *
2122 * The downside to this alignment of the IP header is that the DMA is now
2123 * unaligned. On some architectures the cost of an unaligned DMA is high
2124 * and this cost outweighs the gains made by aligning the IP header.
2125 *
2126 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2127 * to be overridden.
2128 */
2129 #ifndef NET_IP_ALIGN
2130 #define NET_IP_ALIGN 2
2131 #endif
2132
2133 /*
2134 * The networking layer reserves some headroom in skb data (via
2135 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2136 * the header has to grow. In the default case, if the header has to grow
2137 * 32 bytes or less we avoid the reallocation.
2138 *
2139 * Unfortunately this headroom changes the DMA alignment of the resulting
2140 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2141 * on some architectures. An architecture can override this value,
2142 * perhaps setting it to a cacheline in size (since that will maintain
2143 * cacheline alignment of the DMA). It must be a power of 2.
2144 *
2145 * Various parts of the networking layer expect at least 32 bytes of
2146 * headroom, you should not reduce this.
2147 *
2148 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2149 * to reduce average number of cache lines per packet.
2150 * get_rps_cpus() for example only access one 64 bytes aligned block :
2151 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2152 */
2153 #ifndef NET_SKB_PAD
2154 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
2155 #endif
2156
2157 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2158
2159 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2160 {
2161 if (unlikely(skb_is_nonlinear(skb))) {
2162 WARN_ON(1);
2163 return;
2164 }
2165 skb->len = len;
2166 skb_set_tail_pointer(skb, len);
2167 }
2168
2169 void skb_trim(struct sk_buff *skb, unsigned int len);
2170
2171 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2172 {
2173 if (skb->data_len)
2174 return ___pskb_trim(skb, len);
2175 __skb_trim(skb, len);
2176 return 0;
2177 }
2178
2179 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2180 {
2181 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2182 }
2183
2184 /**
2185 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2186 * @skb: buffer to alter
2187 * @len: new length
2188 *
2189 * This is identical to pskb_trim except that the caller knows that
2190 * the skb is not cloned so we should never get an error due to out-
2191 * of-memory.
2192 */
2193 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2194 {
2195 int err = pskb_trim(skb, len);
2196 BUG_ON(err);
2197 }
2198
2199 /**
2200 * skb_orphan - orphan a buffer
2201 * @skb: buffer to orphan
2202 *
2203 * If a buffer currently has an owner then we call the owner's
2204 * destructor function and make the @skb unowned. The buffer continues
2205 * to exist but is no longer charged to its former owner.
2206 */
2207 static inline void skb_orphan(struct sk_buff *skb)
2208 {
2209 if (skb->destructor) {
2210 skb->destructor(skb);
2211 skb->destructor = NULL;
2212 skb->sk = NULL;
2213 } else {
2214 BUG_ON(skb->sk);
2215 }
2216 }
2217
2218 /**
2219 * skb_orphan_frags - orphan the frags contained in a buffer
2220 * @skb: buffer to orphan frags from
2221 * @gfp_mask: allocation mask for replacement pages
2222 *
2223 * For each frag in the SKB which needs a destructor (i.e. has an
2224 * owner) create a copy of that frag and release the original
2225 * page by calling the destructor.
2226 */
2227 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2228 {
2229 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
2230 return 0;
2231 return skb_copy_ubufs(skb, gfp_mask);
2232 }
2233
2234 /**
2235 * __skb_queue_purge - empty a list
2236 * @list: list to empty
2237 *
2238 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2239 * the list and one reference dropped. This function does not take the
2240 * list lock and the caller must hold the relevant locks to use it.
2241 */
2242 void skb_queue_purge(struct sk_buff_head *list);
2243 static inline void __skb_queue_purge(struct sk_buff_head *list)
2244 {
2245 struct sk_buff *skb;
2246 while ((skb = __skb_dequeue(list)) != NULL)
2247 kfree_skb(skb);
2248 }
2249
2250 void *netdev_alloc_frag(unsigned int fragsz);
2251
2252 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2253 gfp_t gfp_mask);
2254
2255 /**
2256 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
2257 * @dev: network device to receive on
2258 * @length: length to allocate
2259 *
2260 * Allocate a new &sk_buff and assign it a usage count of one. The
2261 * buffer has unspecified headroom built in. Users should allocate
2262 * the headroom they think they need without accounting for the
2263 * built in space. The built in space is used for optimisations.
2264 *
2265 * %NULL is returned if there is no free memory. Although this function
2266 * allocates memory it can be called from an interrupt.
2267 */
2268 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2269 unsigned int length)
2270 {
2271 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2272 }
2273
2274 /* legacy helper around __netdev_alloc_skb() */
2275 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2276 gfp_t gfp_mask)
2277 {
2278 return __netdev_alloc_skb(NULL, length, gfp_mask);
2279 }
2280
2281 /* legacy helper around netdev_alloc_skb() */
2282 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2283 {
2284 return netdev_alloc_skb(NULL, length);
2285 }
2286
2287
2288 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2289 unsigned int length, gfp_t gfp)
2290 {
2291 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2292
2293 if (NET_IP_ALIGN && skb)
2294 skb_reserve(skb, NET_IP_ALIGN);
2295 return skb;
2296 }
2297
2298 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2299 unsigned int length)
2300 {
2301 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2302 }
2303
2304 static inline void skb_free_frag(void *addr)
2305 {
2306 __free_page_frag(addr);
2307 }
2308
2309 void *napi_alloc_frag(unsigned int fragsz);
2310 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2311 unsigned int length, gfp_t gfp_mask);
2312 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2313 unsigned int length)
2314 {
2315 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2316 }
2317
2318 /**
2319 * __dev_alloc_pages - allocate page for network Rx
2320 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2321 * @order: size of the allocation
2322 *
2323 * Allocate a new page.
2324 *
2325 * %NULL is returned if there is no free memory.
2326 */
2327 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2328 unsigned int order)
2329 {
2330 /* This piece of code contains several assumptions.
2331 * 1. This is for device Rx, therefor a cold page is preferred.
2332 * 2. The expectation is the user wants a compound page.
2333 * 3. If requesting a order 0 page it will not be compound
2334 * due to the check to see if order has a value in prep_new_page
2335 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2336 * code in gfp_to_alloc_flags that should be enforcing this.
2337 */
2338 gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC;
2339
2340 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2341 }
2342
2343 static inline struct page *dev_alloc_pages(unsigned int order)
2344 {
2345 return __dev_alloc_pages(GFP_ATOMIC, order);
2346 }
2347
2348 /**
2349 * __dev_alloc_page - allocate a page for network Rx
2350 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2351 *
2352 * Allocate a new page.
2353 *
2354 * %NULL is returned if there is no free memory.
2355 */
2356 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2357 {
2358 return __dev_alloc_pages(gfp_mask, 0);
2359 }
2360
2361 static inline struct page *dev_alloc_page(void)
2362 {
2363 return __dev_alloc_page(GFP_ATOMIC);
2364 }
2365
2366 /**
2367 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2368 * @page: The page that was allocated from skb_alloc_page
2369 * @skb: The skb that may need pfmemalloc set
2370 */
2371 static inline void skb_propagate_pfmemalloc(struct page *page,
2372 struct sk_buff *skb)
2373 {
2374 if (page_is_pfmemalloc(page))
2375 skb->pfmemalloc = true;
2376 }
2377
2378 /**
2379 * skb_frag_page - retrieve the page referred to by a paged fragment
2380 * @frag: the paged fragment
2381 *
2382 * Returns the &struct page associated with @frag.
2383 */
2384 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2385 {
2386 return frag->page.p;
2387 }
2388
2389 /**
2390 * __skb_frag_ref - take an addition reference on a paged fragment.
2391 * @frag: the paged fragment
2392 *
2393 * Takes an additional reference on the paged fragment @frag.
2394 */
2395 static inline void __skb_frag_ref(skb_frag_t *frag)
2396 {
2397 get_page(skb_frag_page(frag));
2398 }
2399
2400 /**
2401 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2402 * @skb: the buffer
2403 * @f: the fragment offset.
2404 *
2405 * Takes an additional reference on the @f'th paged fragment of @skb.
2406 */
2407 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2408 {
2409 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2410 }
2411
2412 /**
2413 * __skb_frag_unref - release a reference on a paged fragment.
2414 * @frag: the paged fragment
2415 *
2416 * Releases a reference on the paged fragment @frag.
2417 */
2418 static inline void __skb_frag_unref(skb_frag_t *frag)
2419 {
2420 put_page(skb_frag_page(frag));
2421 }
2422
2423 /**
2424 * skb_frag_unref - release a reference on a paged fragment of an skb.
2425 * @skb: the buffer
2426 * @f: the fragment offset
2427 *
2428 * Releases a reference on the @f'th paged fragment of @skb.
2429 */
2430 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2431 {
2432 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2433 }
2434
2435 /**
2436 * skb_frag_address - gets the address of the data contained in a paged fragment
2437 * @frag: the paged fragment buffer
2438 *
2439 * Returns the address of the data within @frag. The page must already
2440 * be mapped.
2441 */
2442 static inline void *skb_frag_address(const skb_frag_t *frag)
2443 {
2444 return page_address(skb_frag_page(frag)) + frag->page_offset;
2445 }
2446
2447 /**
2448 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2449 * @frag: the paged fragment buffer
2450 *
2451 * Returns the address of the data within @frag. Checks that the page
2452 * is mapped and returns %NULL otherwise.
2453 */
2454 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2455 {
2456 void *ptr = page_address(skb_frag_page(frag));
2457 if (unlikely(!ptr))
2458 return NULL;
2459
2460 return ptr + frag->page_offset;
2461 }
2462
2463 /**
2464 * __skb_frag_set_page - sets the page contained in a paged fragment
2465 * @frag: the paged fragment
2466 * @page: the page to set
2467 *
2468 * Sets the fragment @frag to contain @page.
2469 */
2470 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2471 {
2472 frag->page.p = page;
2473 }
2474
2475 /**
2476 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2477 * @skb: the buffer
2478 * @f: the fragment offset
2479 * @page: the page to set
2480 *
2481 * Sets the @f'th fragment of @skb to contain @page.
2482 */
2483 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2484 struct page *page)
2485 {
2486 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2487 }
2488
2489 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2490
2491 /**
2492 * skb_frag_dma_map - maps a paged fragment via the DMA API
2493 * @dev: the device to map the fragment to
2494 * @frag: the paged fragment to map
2495 * @offset: the offset within the fragment (starting at the
2496 * fragment's own offset)
2497 * @size: the number of bytes to map
2498 * @dir: the direction of the mapping (%PCI_DMA_*)
2499 *
2500 * Maps the page associated with @frag to @device.
2501 */
2502 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2503 const skb_frag_t *frag,
2504 size_t offset, size_t size,
2505 enum dma_data_direction dir)
2506 {
2507 return dma_map_page(dev, skb_frag_page(frag),
2508 frag->page_offset + offset, size, dir);
2509 }
2510
2511 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2512 gfp_t gfp_mask)
2513 {
2514 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2515 }
2516
2517
2518 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2519 gfp_t gfp_mask)
2520 {
2521 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2522 }
2523
2524
2525 /**
2526 * skb_clone_writable - is the header of a clone writable
2527 * @skb: buffer to check
2528 * @len: length up to which to write
2529 *
2530 * Returns true if modifying the header part of the cloned buffer
2531 * does not requires the data to be copied.
2532 */
2533 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2534 {
2535 return !skb_header_cloned(skb) &&
2536 skb_headroom(skb) + len <= skb->hdr_len;
2537 }
2538
2539 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2540 int cloned)
2541 {
2542 int delta = 0;
2543
2544 if (headroom > skb_headroom(skb))
2545 delta = headroom - skb_headroom(skb);
2546
2547 if (delta || cloned)
2548 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2549 GFP_ATOMIC);
2550 return 0;
2551 }
2552
2553 /**
2554 * skb_cow - copy header of skb when it is required
2555 * @skb: buffer to cow
2556 * @headroom: needed headroom
2557 *
2558 * If the skb passed lacks sufficient headroom or its data part
2559 * is shared, data is reallocated. If reallocation fails, an error
2560 * is returned and original skb is not changed.
2561 *
2562 * The result is skb with writable area skb->head...skb->tail
2563 * and at least @headroom of space at head.
2564 */
2565 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2566 {
2567 return __skb_cow(skb, headroom, skb_cloned(skb));
2568 }
2569
2570 /**
2571 * skb_cow_head - skb_cow but only making the head writable
2572 * @skb: buffer to cow
2573 * @headroom: needed headroom
2574 *
2575 * This function is identical to skb_cow except that we replace the
2576 * skb_cloned check by skb_header_cloned. It should be used when
2577 * you only need to push on some header and do not need to modify
2578 * the data.
2579 */
2580 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2581 {
2582 return __skb_cow(skb, headroom, skb_header_cloned(skb));
2583 }
2584
2585 /**
2586 * skb_padto - pad an skbuff up to a minimal size
2587 * @skb: buffer to pad
2588 * @len: minimal length
2589 *
2590 * Pads up a buffer to ensure the trailing bytes exist and are
2591 * blanked. If the buffer already contains sufficient data it
2592 * is untouched. Otherwise it is extended. Returns zero on
2593 * success. The skb is freed on error.
2594 */
2595 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2596 {
2597 unsigned int size = skb->len;
2598 if (likely(size >= len))
2599 return 0;
2600 return skb_pad(skb, len - size);
2601 }
2602
2603 /**
2604 * skb_put_padto - increase size and pad an skbuff up to a minimal size
2605 * @skb: buffer to pad
2606 * @len: minimal length
2607 *
2608 * Pads up a buffer to ensure the trailing bytes exist and are
2609 * blanked. If the buffer already contains sufficient data it
2610 * is untouched. Otherwise it is extended. Returns zero on
2611 * success. The skb is freed on error.
2612 */
2613 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2614 {
2615 unsigned int size = skb->len;
2616
2617 if (unlikely(size < len)) {
2618 len -= size;
2619 if (skb_pad(skb, len))
2620 return -ENOMEM;
2621 __skb_put(skb, len);
2622 }
2623 return 0;
2624 }
2625
2626 static inline int skb_add_data(struct sk_buff *skb,
2627 struct iov_iter *from, int copy)
2628 {
2629 const int off = skb->len;
2630
2631 if (skb->ip_summed == CHECKSUM_NONE) {
2632 __wsum csum = 0;
2633 if (csum_and_copy_from_iter(skb_put(skb, copy), copy,
2634 &csum, from) == copy) {
2635 skb->csum = csum_block_add(skb->csum, csum, off);
2636 return 0;
2637 }
2638 } else if (copy_from_iter(skb_put(skb, copy), copy, from) == copy)
2639 return 0;
2640
2641 __skb_trim(skb, off);
2642 return -EFAULT;
2643 }
2644
2645 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2646 const struct page *page, int off)
2647 {
2648 if (i) {
2649 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
2650
2651 return page == skb_frag_page(frag) &&
2652 off == frag->page_offset + skb_frag_size(frag);
2653 }
2654 return false;
2655 }
2656
2657 static inline int __skb_linearize(struct sk_buff *skb)
2658 {
2659 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2660 }
2661
2662 /**
2663 * skb_linearize - convert paged skb to linear one
2664 * @skb: buffer to linarize
2665 *
2666 * If there is no free memory -ENOMEM is returned, otherwise zero
2667 * is returned and the old skb data released.
2668 */
2669 static inline int skb_linearize(struct sk_buff *skb)
2670 {
2671 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2672 }
2673
2674 /**
2675 * skb_has_shared_frag - can any frag be overwritten
2676 * @skb: buffer to test
2677 *
2678 * Return true if the skb has at least one frag that might be modified
2679 * by an external entity (as in vmsplice()/sendfile())
2680 */
2681 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
2682 {
2683 return skb_is_nonlinear(skb) &&
2684 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2685 }
2686
2687 /**
2688 * skb_linearize_cow - make sure skb is linear and writable
2689 * @skb: buffer to process
2690 *
2691 * If there is no free memory -ENOMEM is returned, otherwise zero
2692 * is returned and the old skb data released.
2693 */
2694 static inline int skb_linearize_cow(struct sk_buff *skb)
2695 {
2696 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2697 __skb_linearize(skb) : 0;
2698 }
2699
2700 /**
2701 * skb_postpull_rcsum - update checksum for received skb after pull
2702 * @skb: buffer to update
2703 * @start: start of data before pull
2704 * @len: length of data pulled
2705 *
2706 * After doing a pull on a received packet, you need to call this to
2707 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2708 * CHECKSUM_NONE so that it can be recomputed from scratch.
2709 */
2710
2711 static inline void skb_postpull_rcsum(struct sk_buff *skb,
2712 const void *start, unsigned int len)
2713 {
2714 if (skb->ip_summed == CHECKSUM_COMPLETE)
2715 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2716 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
2717 skb_checksum_start_offset(skb) < 0)
2718 skb->ip_summed = CHECKSUM_NONE;
2719 }
2720
2721 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2722
2723 /**
2724 * pskb_trim_rcsum - trim received skb and update checksum
2725 * @skb: buffer to trim
2726 * @len: new length
2727 *
2728 * This is exactly the same as pskb_trim except that it ensures the
2729 * checksum of received packets are still valid after the operation.
2730 */
2731
2732 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2733 {
2734 if (likely(len >= skb->len))
2735 return 0;
2736 if (skb->ip_summed == CHECKSUM_COMPLETE)
2737 skb->ip_summed = CHECKSUM_NONE;
2738 return __pskb_trim(skb, len);
2739 }
2740
2741 #define skb_queue_walk(queue, skb) \
2742 for (skb = (queue)->next; \
2743 skb != (struct sk_buff *)(queue); \
2744 skb = skb->next)
2745
2746 #define skb_queue_walk_safe(queue, skb, tmp) \
2747 for (skb = (queue)->next, tmp = skb->next; \
2748 skb != (struct sk_buff *)(queue); \
2749 skb = tmp, tmp = skb->next)
2750
2751 #define skb_queue_walk_from(queue, skb) \
2752 for (; skb != (struct sk_buff *)(queue); \
2753 skb = skb->next)
2754
2755 #define skb_queue_walk_from_safe(queue, skb, tmp) \
2756 for (tmp = skb->next; \
2757 skb != (struct sk_buff *)(queue); \
2758 skb = tmp, tmp = skb->next)
2759
2760 #define skb_queue_reverse_walk(queue, skb) \
2761 for (skb = (queue)->prev; \
2762 skb != (struct sk_buff *)(queue); \
2763 skb = skb->prev)
2764
2765 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
2766 for (skb = (queue)->prev, tmp = skb->prev; \
2767 skb != (struct sk_buff *)(queue); \
2768 skb = tmp, tmp = skb->prev)
2769
2770 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
2771 for (tmp = skb->prev; \
2772 skb != (struct sk_buff *)(queue); \
2773 skb = tmp, tmp = skb->prev)
2774
2775 static inline bool skb_has_frag_list(const struct sk_buff *skb)
2776 {
2777 return skb_shinfo(skb)->frag_list != NULL;
2778 }
2779
2780 static inline void skb_frag_list_init(struct sk_buff *skb)
2781 {
2782 skb_shinfo(skb)->frag_list = NULL;
2783 }
2784
2785 #define skb_walk_frags(skb, iter) \
2786 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2787
2788 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2789 int *peeked, int *off, int *err);
2790 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
2791 int *err);
2792 unsigned int datagram_poll(struct file *file, struct socket *sock,
2793 struct poll_table_struct *wait);
2794 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
2795 struct iov_iter *to, int size);
2796 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
2797 struct msghdr *msg, int size)
2798 {
2799 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
2800 }
2801 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
2802 struct msghdr *msg);
2803 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
2804 struct iov_iter *from, int len);
2805 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
2806 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2807 void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb);
2808 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
2809 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
2810 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
2811 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
2812 int len, __wsum csum);
2813 ssize_t skb_socket_splice(struct sock *sk,
2814 struct pipe_inode_info *pipe,
2815 struct splice_pipe_desc *spd);
2816 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2817 struct pipe_inode_info *pipe, unsigned int len,
2818 unsigned int flags,
2819 ssize_t (*splice_cb)(struct sock *,
2820 struct pipe_inode_info *,
2821 struct splice_pipe_desc *));
2822 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2823 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
2824 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
2825 int len, int hlen);
2826 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
2827 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
2828 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
2829 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
2830 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
2831 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
2832 int skb_ensure_writable(struct sk_buff *skb, int write_len);
2833 int skb_vlan_pop(struct sk_buff *skb);
2834 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
2835
2836 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
2837 {
2838 return copy_from_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
2839 }
2840
2841 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
2842 {
2843 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
2844 }
2845
2846 struct skb_checksum_ops {
2847 __wsum (*update)(const void *mem, int len, __wsum wsum);
2848 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
2849 };
2850
2851 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2852 __wsum csum, const struct skb_checksum_ops *ops);
2853 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
2854 __wsum csum);
2855
2856 static inline void * __must_check
2857 __skb_header_pointer(const struct sk_buff *skb, int offset,
2858 int len, void *data, int hlen, void *buffer)
2859 {
2860 if (hlen - offset >= len)
2861 return data + offset;
2862
2863 if (!skb ||
2864 skb_copy_bits(skb, offset, buffer, len) < 0)
2865 return NULL;
2866
2867 return buffer;
2868 }
2869
2870 static inline void * __must_check
2871 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
2872 {
2873 return __skb_header_pointer(skb, offset, len, skb->data,
2874 skb_headlen(skb), buffer);
2875 }
2876
2877 /**
2878 * skb_needs_linearize - check if we need to linearize a given skb
2879 * depending on the given device features.
2880 * @skb: socket buffer to check
2881 * @features: net device features
2882 *
2883 * Returns true if either:
2884 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2885 * 2. skb is fragmented and the device does not support SG.
2886 */
2887 static inline bool skb_needs_linearize(struct sk_buff *skb,
2888 netdev_features_t features)
2889 {
2890 return skb_is_nonlinear(skb) &&
2891 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
2892 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
2893 }
2894
2895 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2896 void *to,
2897 const unsigned int len)
2898 {
2899 memcpy(to, skb->data, len);
2900 }
2901
2902 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2903 const int offset, void *to,
2904 const unsigned int len)
2905 {
2906 memcpy(to, skb->data + offset, len);
2907 }
2908
2909 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2910 const void *from,
2911 const unsigned int len)
2912 {
2913 memcpy(skb->data, from, len);
2914 }
2915
2916 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2917 const int offset,
2918 const void *from,
2919 const unsigned int len)
2920 {
2921 memcpy(skb->data + offset, from, len);
2922 }
2923
2924 void skb_init(void);
2925
2926 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2927 {
2928 return skb->tstamp;
2929 }
2930
2931 /**
2932 * skb_get_timestamp - get timestamp from a skb
2933 * @skb: skb to get stamp from
2934 * @stamp: pointer to struct timeval to store stamp in
2935 *
2936 * Timestamps are stored in the skb as offsets to a base timestamp.
2937 * This function converts the offset back to a struct timeval and stores
2938 * it in stamp.
2939 */
2940 static inline void skb_get_timestamp(const struct sk_buff *skb,
2941 struct timeval *stamp)
2942 {
2943 *stamp = ktime_to_timeval(skb->tstamp);
2944 }
2945
2946 static inline void skb_get_timestampns(const struct sk_buff *skb,
2947 struct timespec *stamp)
2948 {
2949 *stamp = ktime_to_timespec(skb->tstamp);
2950 }
2951
2952 static inline void __net_timestamp(struct sk_buff *skb)
2953 {
2954 skb->tstamp = ktime_get_real();
2955 }
2956
2957 static inline ktime_t net_timedelta(ktime_t t)
2958 {
2959 return ktime_sub(ktime_get_real(), t);
2960 }
2961
2962 static inline ktime_t net_invalid_timestamp(void)
2963 {
2964 return ktime_set(0, 0);
2965 }
2966
2967 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
2968
2969 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2970
2971 void skb_clone_tx_timestamp(struct sk_buff *skb);
2972 bool skb_defer_rx_timestamp(struct sk_buff *skb);
2973
2974 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2975
2976 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2977 {
2978 }
2979
2980 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2981 {
2982 return false;
2983 }
2984
2985 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2986
2987 /**
2988 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2989 *
2990 * PHY drivers may accept clones of transmitted packets for
2991 * timestamping via their phy_driver.txtstamp method. These drivers
2992 * must call this function to return the skb back to the stack with a
2993 * timestamp.
2994 *
2995 * @skb: clone of the the original outgoing packet
2996 * @hwtstamps: hardware time stamps
2997 *
2998 */
2999 void skb_complete_tx_timestamp(struct sk_buff *skb,
3000 struct skb_shared_hwtstamps *hwtstamps);
3001
3002 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3003 struct skb_shared_hwtstamps *hwtstamps,
3004 struct sock *sk, int tstype);
3005
3006 /**
3007 * skb_tstamp_tx - queue clone of skb with send time stamps
3008 * @orig_skb: the original outgoing packet
3009 * @hwtstamps: hardware time stamps, may be NULL if not available
3010 *
3011 * If the skb has a socket associated, then this function clones the
3012 * skb (thus sharing the actual data and optional structures), stores
3013 * the optional hardware time stamping information (if non NULL) or
3014 * generates a software time stamp (otherwise), then queues the clone
3015 * to the error queue of the socket. Errors are silently ignored.
3016 */
3017 void skb_tstamp_tx(struct sk_buff *orig_skb,
3018 struct skb_shared_hwtstamps *hwtstamps);
3019
3020 static inline void sw_tx_timestamp(struct sk_buff *skb)
3021 {
3022 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
3023 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
3024 skb_tstamp_tx(skb, NULL);
3025 }
3026
3027 /**
3028 * skb_tx_timestamp() - Driver hook for transmit timestamping
3029 *
3030 * Ethernet MAC Drivers should call this function in their hard_xmit()
3031 * function immediately before giving the sk_buff to the MAC hardware.
3032 *
3033 * Specifically, one should make absolutely sure that this function is
3034 * called before TX completion of this packet can trigger. Otherwise
3035 * the packet could potentially already be freed.
3036 *
3037 * @skb: A socket buffer.
3038 */
3039 static inline void skb_tx_timestamp(struct sk_buff *skb)
3040 {
3041 skb_clone_tx_timestamp(skb);
3042 sw_tx_timestamp(skb);
3043 }
3044
3045 /**
3046 * skb_complete_wifi_ack - deliver skb with wifi status
3047 *
3048 * @skb: the original outgoing packet
3049 * @acked: ack status
3050 *
3051 */
3052 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3053
3054 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3055 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3056
3057 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3058 {
3059 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3060 skb->csum_valid ||
3061 (skb->ip_summed == CHECKSUM_PARTIAL &&
3062 skb_checksum_start_offset(skb) >= 0));
3063 }
3064
3065 /**
3066 * skb_checksum_complete - Calculate checksum of an entire packet
3067 * @skb: packet to process
3068 *
3069 * This function calculates the checksum over the entire packet plus
3070 * the value of skb->csum. The latter can be used to supply the
3071 * checksum of a pseudo header as used by TCP/UDP. It returns the
3072 * checksum.
3073 *
3074 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
3075 * this function can be used to verify that checksum on received
3076 * packets. In that case the function should return zero if the
3077 * checksum is correct. In particular, this function will return zero
3078 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3079 * hardware has already verified the correctness of the checksum.
3080 */
3081 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3082 {
3083 return skb_csum_unnecessary(skb) ?
3084 0 : __skb_checksum_complete(skb);
3085 }
3086
3087 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3088 {
3089 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3090 if (skb->csum_level == 0)
3091 skb->ip_summed = CHECKSUM_NONE;
3092 else
3093 skb->csum_level--;
3094 }
3095 }
3096
3097 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3098 {
3099 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3100 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3101 skb->csum_level++;
3102 } else if (skb->ip_summed == CHECKSUM_NONE) {
3103 skb->ip_summed = CHECKSUM_UNNECESSARY;
3104 skb->csum_level = 0;
3105 }
3106 }
3107
3108 static inline void __skb_mark_checksum_bad(struct sk_buff *skb)
3109 {
3110 /* Mark current checksum as bad (typically called from GRO
3111 * path). In the case that ip_summed is CHECKSUM_NONE
3112 * this must be the first checksum encountered in the packet.
3113 * When ip_summed is CHECKSUM_UNNECESSARY, this is the first
3114 * checksum after the last one validated. For UDP, a zero
3115 * checksum can not be marked as bad.
3116 */
3117
3118 if (skb->ip_summed == CHECKSUM_NONE ||
3119 skb->ip_summed == CHECKSUM_UNNECESSARY)
3120 skb->csum_bad = 1;
3121 }
3122
3123 /* Check if we need to perform checksum complete validation.
3124 *
3125 * Returns true if checksum complete is needed, false otherwise
3126 * (either checksum is unnecessary or zero checksum is allowed).
3127 */
3128 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3129 bool zero_okay,
3130 __sum16 check)
3131 {
3132 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3133 skb->csum_valid = 1;
3134 __skb_decr_checksum_unnecessary(skb);
3135 return false;
3136 }
3137
3138 return true;
3139 }
3140
3141 /* For small packets <= CHECKSUM_BREAK peform checksum complete directly
3142 * in checksum_init.
3143 */
3144 #define CHECKSUM_BREAK 76
3145
3146 /* Unset checksum-complete
3147 *
3148 * Unset checksum complete can be done when packet is being modified
3149 * (uncompressed for instance) and checksum-complete value is
3150 * invalidated.
3151 */
3152 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3153 {
3154 if (skb->ip_summed == CHECKSUM_COMPLETE)
3155 skb->ip_summed = CHECKSUM_NONE;
3156 }
3157
3158 /* Validate (init) checksum based on checksum complete.
3159 *
3160 * Return values:
3161 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
3162 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3163 * checksum is stored in skb->csum for use in __skb_checksum_complete
3164 * non-zero: value of invalid checksum
3165 *
3166 */
3167 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3168 bool complete,
3169 __wsum psum)
3170 {
3171 if (skb->ip_summed == CHECKSUM_COMPLETE) {
3172 if (!csum_fold(csum_add(psum, skb->csum))) {
3173 skb->csum_valid = 1;
3174 return 0;
3175 }
3176 } else if (skb->csum_bad) {
3177 /* ip_summed == CHECKSUM_NONE in this case */
3178 return (__force __sum16)1;
3179 }
3180
3181 skb->csum = psum;
3182
3183 if (complete || skb->len <= CHECKSUM_BREAK) {
3184 __sum16 csum;
3185
3186 csum = __skb_checksum_complete(skb);
3187 skb->csum_valid = !csum;
3188 return csum;
3189 }
3190
3191 return 0;
3192 }
3193
3194 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3195 {
3196 return 0;
3197 }
3198
3199 /* Perform checksum validate (init). Note that this is a macro since we only
3200 * want to calculate the pseudo header which is an input function if necessary.
3201 * First we try to validate without any computation (checksum unnecessary) and
3202 * then calculate based on checksum complete calling the function to compute
3203 * pseudo header.
3204 *
3205 * Return values:
3206 * 0: checksum is validated or try to in skb_checksum_complete
3207 * non-zero: value of invalid checksum
3208 */
3209 #define __skb_checksum_validate(skb, proto, complete, \
3210 zero_okay, check, compute_pseudo) \
3211 ({ \
3212 __sum16 __ret = 0; \
3213 skb->csum_valid = 0; \
3214 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
3215 __ret = __skb_checksum_validate_complete(skb, \
3216 complete, compute_pseudo(skb, proto)); \
3217 __ret; \
3218 })
3219
3220 #define skb_checksum_init(skb, proto, compute_pseudo) \
3221 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3222
3223 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
3224 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3225
3226 #define skb_checksum_validate(skb, proto, compute_pseudo) \
3227 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3228
3229 #define skb_checksum_validate_zero_check(skb, proto, check, \
3230 compute_pseudo) \
3231 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3232
3233 #define skb_checksum_simple_validate(skb) \
3234 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3235
3236 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3237 {
3238 return (skb->ip_summed == CHECKSUM_NONE &&
3239 skb->csum_valid && !skb->csum_bad);
3240 }
3241
3242 static inline void __skb_checksum_convert(struct sk_buff *skb,
3243 __sum16 check, __wsum pseudo)
3244 {
3245 skb->csum = ~pseudo;
3246 skb->ip_summed = CHECKSUM_COMPLETE;
3247 }
3248
3249 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \
3250 do { \
3251 if (__skb_checksum_convert_check(skb)) \
3252 __skb_checksum_convert(skb, check, \
3253 compute_pseudo(skb, proto)); \
3254 } while (0)
3255
3256 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3257 u16 start, u16 offset)
3258 {
3259 skb->ip_summed = CHECKSUM_PARTIAL;
3260 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3261 skb->csum_offset = offset - start;
3262 }
3263
3264 /* Update skbuf and packet to reflect the remote checksum offload operation.
3265 * When called, ptr indicates the starting point for skb->csum when
3266 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3267 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3268 */
3269 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3270 int start, int offset, bool nopartial)
3271 {
3272 __wsum delta;
3273
3274 if (!nopartial) {
3275 skb_remcsum_adjust_partial(skb, ptr, start, offset);
3276 return;
3277 }
3278
3279 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3280 __skb_checksum_complete(skb);
3281 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3282 }
3283
3284 delta = remcsum_adjust(ptr, skb->csum, start, offset);
3285
3286 /* Adjust skb->csum since we changed the packet */
3287 skb->csum = csum_add(skb->csum, delta);
3288 }
3289
3290 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3291 void nf_conntrack_destroy(struct nf_conntrack *nfct);
3292 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3293 {
3294 if (nfct && atomic_dec_and_test(&nfct->use))
3295 nf_conntrack_destroy(nfct);
3296 }
3297 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3298 {
3299 if (nfct)
3300 atomic_inc(&nfct->use);
3301 }
3302 #endif
3303 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3304 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3305 {
3306 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
3307 kfree(nf_bridge);
3308 }
3309 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3310 {
3311 if (nf_bridge)
3312 atomic_inc(&nf_bridge->use);
3313 }
3314 #endif /* CONFIG_BRIDGE_NETFILTER */
3315 static inline void nf_reset(struct sk_buff *skb)
3316 {
3317 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3318 nf_conntrack_put(skb->nfct);
3319 skb->nfct = NULL;
3320 #endif
3321 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3322 nf_bridge_put(skb->nf_bridge);
3323 skb->nf_bridge = NULL;
3324 #endif
3325 }
3326
3327 static inline void nf_reset_trace(struct sk_buff *skb)
3328 {
3329 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3330 skb->nf_trace = 0;
3331 #endif
3332 }
3333
3334 /* Note: This doesn't put any conntrack and bridge info in dst. */
3335 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3336 bool copy)
3337 {
3338 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3339 dst->nfct = src->nfct;
3340 nf_conntrack_get(src->nfct);
3341 if (copy)
3342 dst->nfctinfo = src->nfctinfo;
3343 #endif
3344 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3345 dst->nf_bridge = src->nf_bridge;
3346 nf_bridge_get(src->nf_bridge);
3347 #endif
3348 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3349 if (copy)
3350 dst->nf_trace = src->nf_trace;
3351 #endif
3352 }
3353
3354 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3355 {
3356 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3357 nf_conntrack_put(dst->nfct);
3358 #endif
3359 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3360 nf_bridge_put(dst->nf_bridge);
3361 #endif
3362 __nf_copy(dst, src, true);
3363 }
3364
3365 #ifdef CONFIG_NETWORK_SECMARK
3366 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3367 {
3368 to->secmark = from->secmark;
3369 }
3370
3371 static inline void skb_init_secmark(struct sk_buff *skb)
3372 {
3373 skb->secmark = 0;
3374 }
3375 #else
3376 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3377 { }
3378
3379 static inline void skb_init_secmark(struct sk_buff *skb)
3380 { }
3381 #endif
3382
3383 static inline bool skb_irq_freeable(const struct sk_buff *skb)
3384 {
3385 return !skb->destructor &&
3386 #if IS_ENABLED(CONFIG_XFRM)
3387 !skb->sp &&
3388 #endif
3389 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3390 !skb->nfct &&
3391 #endif
3392 !skb->_skb_refdst &&
3393 !skb_has_frag_list(skb);
3394 }
3395
3396 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3397 {
3398 skb->queue_mapping = queue_mapping;
3399 }
3400
3401 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3402 {
3403 return skb->queue_mapping;
3404 }
3405
3406 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3407 {
3408 to->queue_mapping = from->queue_mapping;
3409 }
3410
3411 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3412 {
3413 skb->queue_mapping = rx_queue + 1;
3414 }
3415
3416 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3417 {
3418 return skb->queue_mapping - 1;
3419 }
3420
3421 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3422 {
3423 return skb->queue_mapping != 0;
3424 }
3425
3426 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3427 {
3428 #ifdef CONFIG_XFRM
3429 return skb->sp;
3430 #else
3431 return NULL;
3432 #endif
3433 }
3434
3435 /* Keeps track of mac header offset relative to skb->head.
3436 * It is useful for TSO of Tunneling protocol. e.g. GRE.
3437 * For non-tunnel skb it points to skb_mac_header() and for
3438 * tunnel skb it points to outer mac header.
3439 * Keeps track of level of encapsulation of network headers.
3440 */
3441 struct skb_gso_cb {
3442 int mac_offset;
3443 int encap_level;
3444 __u16 csum_start;
3445 };
3446 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb)
3447
3448 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3449 {
3450 return (skb_mac_header(inner_skb) - inner_skb->head) -
3451 SKB_GSO_CB(inner_skb)->mac_offset;
3452 }
3453
3454 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3455 {
3456 int new_headroom, headroom;
3457 int ret;
3458
3459 headroom = skb_headroom(skb);
3460 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3461 if (ret)
3462 return ret;
3463
3464 new_headroom = skb_headroom(skb);
3465 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3466 return 0;
3467 }
3468
3469 /* Compute the checksum for a gso segment. First compute the checksum value
3470 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
3471 * then add in skb->csum (checksum from csum_start to end of packet).
3472 * skb->csum and csum_start are then updated to reflect the checksum of the
3473 * resultant packet starting from the transport header-- the resultant checksum
3474 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
3475 * header.
3476 */
3477 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
3478 {
3479 int plen = SKB_GSO_CB(skb)->csum_start - skb_headroom(skb) -
3480 skb_transport_offset(skb);
3481 __wsum partial;
3482
3483 partial = csum_partial(skb_transport_header(skb), plen, skb->csum);
3484 skb->csum = res;
3485 SKB_GSO_CB(skb)->csum_start -= plen;
3486
3487 return csum_fold(partial);
3488 }
3489
3490 static inline bool skb_is_gso(const struct sk_buff *skb)
3491 {
3492 return skb_shinfo(skb)->gso_size;
3493 }
3494
3495 /* Note: Should be called only if skb_is_gso(skb) is true */
3496 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
3497 {
3498 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
3499 }
3500
3501 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
3502
3503 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
3504 {
3505 /* LRO sets gso_size but not gso_type, whereas if GSO is really
3506 * wanted then gso_type will be set. */
3507 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3508
3509 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
3510 unlikely(shinfo->gso_type == 0)) {
3511 __skb_warn_lro_forwarding(skb);
3512 return true;
3513 }
3514 return false;
3515 }
3516
3517 static inline void skb_forward_csum(struct sk_buff *skb)
3518 {
3519 /* Unfortunately we don't support this one. Any brave souls? */
3520 if (skb->ip_summed == CHECKSUM_COMPLETE)
3521 skb->ip_summed = CHECKSUM_NONE;
3522 }
3523
3524 /**
3525 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
3526 * @skb: skb to check
3527 *
3528 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
3529 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
3530 * use this helper, to document places where we make this assertion.
3531 */
3532 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
3533 {
3534 #ifdef DEBUG
3535 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
3536 #endif
3537 }
3538
3539 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
3540
3541 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
3542 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
3543 unsigned int transport_len,
3544 __sum16(*skb_chkf)(struct sk_buff *skb));
3545
3546 /**
3547 * skb_head_is_locked - Determine if the skb->head is locked down
3548 * @skb: skb to check
3549 *
3550 * The head on skbs build around a head frag can be removed if they are
3551 * not cloned. This function returns true if the skb head is locked down
3552 * due to either being allocated via kmalloc, or by being a clone with
3553 * multiple references to the head.
3554 */
3555 static inline bool skb_head_is_locked(const struct sk_buff *skb)
3556 {
3557 return !skb->head_frag || skb_cloned(skb);
3558 }
3559
3560 /**
3561 * skb_gso_network_seglen - Return length of individual segments of a gso packet
3562 *
3563 * @skb: GSO skb
3564 *
3565 * skb_gso_network_seglen is used to determine the real size of the
3566 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
3567 *
3568 * The MAC/L2 header is not accounted for.
3569 */
3570 static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
3571 {
3572 unsigned int hdr_len = skb_transport_header(skb) -
3573 skb_network_header(skb);
3574 return hdr_len + skb_gso_transport_seglen(skb);
3575 }
3576
3577 #endif /* __KERNEL__ */
3578 #endif /* _LINUX_SKBUFF_H */
This page took 0.105618 seconds and 5 git commands to generate.