Merge commit 'gcl/next' into next
[deliverable/linux.git] / include / linux / skbuff.h
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/cache.h>
21
22 #include <asm/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/net.h>
26 #include <linux/textsearch.h>
27 #include <net/checksum.h>
28 #include <linux/rcupdate.h>
29 #include <linux/dmaengine.h>
30 #include <linux/hrtimer.h>
31
32 #define HAVE_ALLOC_SKB /* For the drivers to know */
33 #define HAVE_ALIGNABLE_SKB /* Ditto 8) */
34
35 /* Don't change this without changing skb_csum_unnecessary! */
36 #define CHECKSUM_NONE 0
37 #define CHECKSUM_UNNECESSARY 1
38 #define CHECKSUM_COMPLETE 2
39 #define CHECKSUM_PARTIAL 3
40
41 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
42 ~(SMP_CACHE_BYTES - 1))
43 #define SKB_WITH_OVERHEAD(X) \
44 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
45 #define SKB_MAX_ORDER(X, ORDER) \
46 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
47 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
48 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
49
50 /* A. Checksumming of received packets by device.
51 *
52 * NONE: device failed to checksum this packet.
53 * skb->csum is undefined.
54 *
55 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
56 * skb->csum is undefined.
57 * It is bad option, but, unfortunately, many of vendors do this.
58 * Apparently with secret goal to sell you new device, when you
59 * will add new protocol to your host. F.e. IPv6. 8)
60 *
61 * COMPLETE: the most generic way. Device supplied checksum of _all_
62 * the packet as seen by netif_rx in skb->csum.
63 * NOTE: Even if device supports only some protocols, but
64 * is able to produce some skb->csum, it MUST use COMPLETE,
65 * not UNNECESSARY.
66 *
67 * PARTIAL: identical to the case for output below. This may occur
68 * on a packet received directly from another Linux OS, e.g.,
69 * a virtualised Linux kernel on the same host. The packet can
70 * be treated in the same way as UNNECESSARY except that on
71 * output (i.e., forwarding) the checksum must be filled in
72 * by the OS or the hardware.
73 *
74 * B. Checksumming on output.
75 *
76 * NONE: skb is checksummed by protocol or csum is not required.
77 *
78 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
79 * from skb->csum_start to the end and to record the checksum
80 * at skb->csum_start + skb->csum_offset.
81 *
82 * Device must show its capabilities in dev->features, set
83 * at device setup time.
84 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
85 * everything.
86 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
87 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
88 * TCP/UDP over IPv4. Sigh. Vendors like this
89 * way by an unknown reason. Though, see comment above
90 * about CHECKSUM_UNNECESSARY. 8)
91 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
92 *
93 * Any questions? No questions, good. --ANK
94 */
95
96 struct net_device;
97 struct scatterlist;
98 struct pipe_inode_info;
99
100 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
101 struct nf_conntrack {
102 atomic_t use;
103 };
104 #endif
105
106 #ifdef CONFIG_BRIDGE_NETFILTER
107 struct nf_bridge_info {
108 atomic_t use;
109 struct net_device *physindev;
110 struct net_device *physoutdev;
111 unsigned int mask;
112 unsigned long data[32 / sizeof(unsigned long)];
113 };
114 #endif
115
116 struct sk_buff_head {
117 /* These two members must be first. */
118 struct sk_buff *next;
119 struct sk_buff *prev;
120
121 __u32 qlen;
122 spinlock_t lock;
123 };
124
125 struct sk_buff;
126
127 /* To allow 64K frame to be packed as single skb without frag_list */
128 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
129
130 typedef struct skb_frag_struct skb_frag_t;
131
132 struct skb_frag_struct {
133 struct page *page;
134 __u32 page_offset;
135 __u32 size;
136 };
137
138 /* This data is invariant across clones and lives at
139 * the end of the header data, ie. at skb->end.
140 */
141 struct skb_shared_info {
142 atomic_t dataref;
143 unsigned short nr_frags;
144 unsigned short gso_size;
145 /* Warning: this field is not always filled in (UFO)! */
146 unsigned short gso_segs;
147 unsigned short gso_type;
148 __be32 ip6_frag_id;
149 #ifdef CONFIG_HAS_DMA
150 unsigned int num_dma_maps;
151 #endif
152 struct sk_buff *frag_list;
153 skb_frag_t frags[MAX_SKB_FRAGS];
154 #ifdef CONFIG_HAS_DMA
155 dma_addr_t dma_maps[MAX_SKB_FRAGS + 1];
156 #endif
157 };
158
159 /* We divide dataref into two halves. The higher 16 bits hold references
160 * to the payload part of skb->data. The lower 16 bits hold references to
161 * the entire skb->data. A clone of a headerless skb holds the length of
162 * the header in skb->hdr_len.
163 *
164 * All users must obey the rule that the skb->data reference count must be
165 * greater than or equal to the payload reference count.
166 *
167 * Holding a reference to the payload part means that the user does not
168 * care about modifications to the header part of skb->data.
169 */
170 #define SKB_DATAREF_SHIFT 16
171 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
172
173
174 enum {
175 SKB_FCLONE_UNAVAILABLE,
176 SKB_FCLONE_ORIG,
177 SKB_FCLONE_CLONE,
178 };
179
180 enum {
181 SKB_GSO_TCPV4 = 1 << 0,
182 SKB_GSO_UDP = 1 << 1,
183
184 /* This indicates the skb is from an untrusted source. */
185 SKB_GSO_DODGY = 1 << 2,
186
187 /* This indicates the tcp segment has CWR set. */
188 SKB_GSO_TCP_ECN = 1 << 3,
189
190 SKB_GSO_TCPV6 = 1 << 4,
191 };
192
193 #if BITS_PER_LONG > 32
194 #define NET_SKBUFF_DATA_USES_OFFSET 1
195 #endif
196
197 #ifdef NET_SKBUFF_DATA_USES_OFFSET
198 typedef unsigned int sk_buff_data_t;
199 #else
200 typedef unsigned char *sk_buff_data_t;
201 #endif
202
203 /**
204 * struct sk_buff - socket buffer
205 * @next: Next buffer in list
206 * @prev: Previous buffer in list
207 * @sk: Socket we are owned by
208 * @tstamp: Time we arrived
209 * @dev: Device we arrived on/are leaving by
210 * @transport_header: Transport layer header
211 * @network_header: Network layer header
212 * @mac_header: Link layer header
213 * @dst: destination entry
214 * @sp: the security path, used for xfrm
215 * @cb: Control buffer. Free for use by every layer. Put private vars here
216 * @len: Length of actual data
217 * @data_len: Data length
218 * @mac_len: Length of link layer header
219 * @hdr_len: writable header length of cloned skb
220 * @csum: Checksum (must include start/offset pair)
221 * @csum_start: Offset from skb->head where checksumming should start
222 * @csum_offset: Offset from csum_start where checksum should be stored
223 * @local_df: allow local fragmentation
224 * @cloned: Head may be cloned (check refcnt to be sure)
225 * @nohdr: Payload reference only, must not modify header
226 * @pkt_type: Packet class
227 * @fclone: skbuff clone status
228 * @ip_summed: Driver fed us an IP checksum
229 * @priority: Packet queueing priority
230 * @users: User count - see {datagram,tcp}.c
231 * @protocol: Packet protocol from driver
232 * @truesize: Buffer size
233 * @head: Head of buffer
234 * @data: Data head pointer
235 * @tail: Tail pointer
236 * @end: End pointer
237 * @destructor: Destruct function
238 * @mark: Generic packet mark
239 * @nfct: Associated connection, if any
240 * @ipvs_property: skbuff is owned by ipvs
241 * @peeked: this packet has been seen already, so stats have been
242 * done for it, don't do them again
243 * @nf_trace: netfilter packet trace flag
244 * @nfctinfo: Relationship of this skb to the connection
245 * @nfct_reasm: netfilter conntrack re-assembly pointer
246 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
247 * @iif: ifindex of device we arrived on
248 * @queue_mapping: Queue mapping for multiqueue devices
249 * @tc_index: Traffic control index
250 * @tc_verd: traffic control verdict
251 * @ndisc_nodetype: router type (from link layer)
252 * @do_not_encrypt: set to prevent encryption of this frame
253 * @requeue: set to indicate that the wireless core should attempt
254 * a software retry on this frame if we failed to
255 * receive an ACK for it
256 * @dma_cookie: a cookie to one of several possible DMA operations
257 * done by skb DMA functions
258 * @secmark: security marking
259 * @vlan_tci: vlan tag control information
260 */
261
262 struct sk_buff {
263 /* These two members must be first. */
264 struct sk_buff *next;
265 struct sk_buff *prev;
266
267 struct sock *sk;
268 ktime_t tstamp;
269 struct net_device *dev;
270
271 union {
272 struct dst_entry *dst;
273 struct rtable *rtable;
274 };
275 #ifdef CONFIG_XFRM
276 struct sec_path *sp;
277 #endif
278 /*
279 * This is the control buffer. It is free to use for every
280 * layer. Please put your private variables there. If you
281 * want to keep them across layers you have to do a skb_clone()
282 * first. This is owned by whoever has the skb queued ATM.
283 */
284 char cb[48];
285
286 unsigned int len,
287 data_len;
288 __u16 mac_len,
289 hdr_len;
290 union {
291 __wsum csum;
292 struct {
293 __u16 csum_start;
294 __u16 csum_offset;
295 };
296 };
297 __u32 priority;
298 __u8 local_df:1,
299 cloned:1,
300 ip_summed:2,
301 nohdr:1,
302 nfctinfo:3;
303 __u8 pkt_type:3,
304 fclone:2,
305 ipvs_property:1,
306 peeked:1,
307 nf_trace:1;
308 __be16 protocol;
309
310 void (*destructor)(struct sk_buff *skb);
311 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
312 struct nf_conntrack *nfct;
313 struct sk_buff *nfct_reasm;
314 #endif
315 #ifdef CONFIG_BRIDGE_NETFILTER
316 struct nf_bridge_info *nf_bridge;
317 #endif
318
319 int iif;
320 __u16 queue_mapping;
321 #ifdef CONFIG_NET_SCHED
322 __u16 tc_index; /* traffic control index */
323 #ifdef CONFIG_NET_CLS_ACT
324 __u16 tc_verd; /* traffic control verdict */
325 #endif
326 #endif
327 #ifdef CONFIG_IPV6_NDISC_NODETYPE
328 __u8 ndisc_nodetype:2;
329 #endif
330 #if defined(CONFIG_MAC80211) || defined(CONFIG_MAC80211_MODULE)
331 __u8 do_not_encrypt:1;
332 __u8 requeue:1;
333 #endif
334 /* 0/13/14 bit hole */
335
336 #ifdef CONFIG_NET_DMA
337 dma_cookie_t dma_cookie;
338 #endif
339 #ifdef CONFIG_NETWORK_SECMARK
340 __u32 secmark;
341 #endif
342
343 __u32 mark;
344
345 __u16 vlan_tci;
346
347 sk_buff_data_t transport_header;
348 sk_buff_data_t network_header;
349 sk_buff_data_t mac_header;
350 /* These elements must be at the end, see alloc_skb() for details. */
351 sk_buff_data_t tail;
352 sk_buff_data_t end;
353 unsigned char *head,
354 *data;
355 unsigned int truesize;
356 atomic_t users;
357 };
358
359 #ifdef __KERNEL__
360 /*
361 * Handling routines are only of interest to the kernel
362 */
363 #include <linux/slab.h>
364
365 #include <asm/system.h>
366
367 #ifdef CONFIG_HAS_DMA
368 #include <linux/dma-mapping.h>
369 extern int skb_dma_map(struct device *dev, struct sk_buff *skb,
370 enum dma_data_direction dir);
371 extern void skb_dma_unmap(struct device *dev, struct sk_buff *skb,
372 enum dma_data_direction dir);
373 #endif
374
375 extern void kfree_skb(struct sk_buff *skb);
376 extern void __kfree_skb(struct sk_buff *skb);
377 extern struct sk_buff *__alloc_skb(unsigned int size,
378 gfp_t priority, int fclone, int node);
379 static inline struct sk_buff *alloc_skb(unsigned int size,
380 gfp_t priority)
381 {
382 return __alloc_skb(size, priority, 0, -1);
383 }
384
385 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
386 gfp_t priority)
387 {
388 return __alloc_skb(size, priority, 1, -1);
389 }
390
391 extern int skb_recycle_check(struct sk_buff *skb, int skb_size);
392
393 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
394 extern struct sk_buff *skb_clone(struct sk_buff *skb,
395 gfp_t priority);
396 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
397 gfp_t priority);
398 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
399 gfp_t gfp_mask);
400 extern int pskb_expand_head(struct sk_buff *skb,
401 int nhead, int ntail,
402 gfp_t gfp_mask);
403 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
404 unsigned int headroom);
405 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
406 int newheadroom, int newtailroom,
407 gfp_t priority);
408 extern int skb_to_sgvec(struct sk_buff *skb,
409 struct scatterlist *sg, int offset,
410 int len);
411 extern int skb_cow_data(struct sk_buff *skb, int tailbits,
412 struct sk_buff **trailer);
413 extern int skb_pad(struct sk_buff *skb, int pad);
414 #define dev_kfree_skb(a) kfree_skb(a)
415 extern void skb_over_panic(struct sk_buff *skb, int len,
416 void *here);
417 extern void skb_under_panic(struct sk_buff *skb, int len,
418 void *here);
419 extern void skb_truesize_bug(struct sk_buff *skb);
420
421 static inline void skb_truesize_check(struct sk_buff *skb)
422 {
423 int len = sizeof(struct sk_buff) + skb->len;
424
425 if (unlikely((int)skb->truesize < len))
426 skb_truesize_bug(skb);
427 }
428
429 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
430 int getfrag(void *from, char *to, int offset,
431 int len,int odd, struct sk_buff *skb),
432 void *from, int length);
433
434 struct skb_seq_state
435 {
436 __u32 lower_offset;
437 __u32 upper_offset;
438 __u32 frag_idx;
439 __u32 stepped_offset;
440 struct sk_buff *root_skb;
441 struct sk_buff *cur_skb;
442 __u8 *frag_data;
443 };
444
445 extern void skb_prepare_seq_read(struct sk_buff *skb,
446 unsigned int from, unsigned int to,
447 struct skb_seq_state *st);
448 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
449 struct skb_seq_state *st);
450 extern void skb_abort_seq_read(struct skb_seq_state *st);
451
452 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
453 unsigned int to, struct ts_config *config,
454 struct ts_state *state);
455
456 #ifdef NET_SKBUFF_DATA_USES_OFFSET
457 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
458 {
459 return skb->head + skb->end;
460 }
461 #else
462 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
463 {
464 return skb->end;
465 }
466 #endif
467
468 /* Internal */
469 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
470
471 /**
472 * skb_queue_empty - check if a queue is empty
473 * @list: queue head
474 *
475 * Returns true if the queue is empty, false otherwise.
476 */
477 static inline int skb_queue_empty(const struct sk_buff_head *list)
478 {
479 return list->next == (struct sk_buff *)list;
480 }
481
482 /**
483 * skb_queue_is_last - check if skb is the last entry in the queue
484 * @list: queue head
485 * @skb: buffer
486 *
487 * Returns true if @skb is the last buffer on the list.
488 */
489 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
490 const struct sk_buff *skb)
491 {
492 return (skb->next == (struct sk_buff *) list);
493 }
494
495 /**
496 * skb_queue_is_first - check if skb is the first entry in the queue
497 * @list: queue head
498 * @skb: buffer
499 *
500 * Returns true if @skb is the first buffer on the list.
501 */
502 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
503 const struct sk_buff *skb)
504 {
505 return (skb->prev == (struct sk_buff *) list);
506 }
507
508 /**
509 * skb_queue_next - return the next packet in the queue
510 * @list: queue head
511 * @skb: current buffer
512 *
513 * Return the next packet in @list after @skb. It is only valid to
514 * call this if skb_queue_is_last() evaluates to false.
515 */
516 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
517 const struct sk_buff *skb)
518 {
519 /* This BUG_ON may seem severe, but if we just return then we
520 * are going to dereference garbage.
521 */
522 BUG_ON(skb_queue_is_last(list, skb));
523 return skb->next;
524 }
525
526 /**
527 * skb_queue_prev - return the prev packet in the queue
528 * @list: queue head
529 * @skb: current buffer
530 *
531 * Return the prev packet in @list before @skb. It is only valid to
532 * call this if skb_queue_is_first() evaluates to false.
533 */
534 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
535 const struct sk_buff *skb)
536 {
537 /* This BUG_ON may seem severe, but if we just return then we
538 * are going to dereference garbage.
539 */
540 BUG_ON(skb_queue_is_first(list, skb));
541 return skb->prev;
542 }
543
544 /**
545 * skb_get - reference buffer
546 * @skb: buffer to reference
547 *
548 * Makes another reference to a socket buffer and returns a pointer
549 * to the buffer.
550 */
551 static inline struct sk_buff *skb_get(struct sk_buff *skb)
552 {
553 atomic_inc(&skb->users);
554 return skb;
555 }
556
557 /*
558 * If users == 1, we are the only owner and are can avoid redundant
559 * atomic change.
560 */
561
562 /**
563 * skb_cloned - is the buffer a clone
564 * @skb: buffer to check
565 *
566 * Returns true if the buffer was generated with skb_clone() and is
567 * one of multiple shared copies of the buffer. Cloned buffers are
568 * shared data so must not be written to under normal circumstances.
569 */
570 static inline int skb_cloned(const struct sk_buff *skb)
571 {
572 return skb->cloned &&
573 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
574 }
575
576 /**
577 * skb_header_cloned - is the header a clone
578 * @skb: buffer to check
579 *
580 * Returns true if modifying the header part of the buffer requires
581 * the data to be copied.
582 */
583 static inline int skb_header_cloned(const struct sk_buff *skb)
584 {
585 int dataref;
586
587 if (!skb->cloned)
588 return 0;
589
590 dataref = atomic_read(&skb_shinfo(skb)->dataref);
591 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
592 return dataref != 1;
593 }
594
595 /**
596 * skb_header_release - release reference to header
597 * @skb: buffer to operate on
598 *
599 * Drop a reference to the header part of the buffer. This is done
600 * by acquiring a payload reference. You must not read from the header
601 * part of skb->data after this.
602 */
603 static inline void skb_header_release(struct sk_buff *skb)
604 {
605 BUG_ON(skb->nohdr);
606 skb->nohdr = 1;
607 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
608 }
609
610 /**
611 * skb_shared - is the buffer shared
612 * @skb: buffer to check
613 *
614 * Returns true if more than one person has a reference to this
615 * buffer.
616 */
617 static inline int skb_shared(const struct sk_buff *skb)
618 {
619 return atomic_read(&skb->users) != 1;
620 }
621
622 /**
623 * skb_share_check - check if buffer is shared and if so clone it
624 * @skb: buffer to check
625 * @pri: priority for memory allocation
626 *
627 * If the buffer is shared the buffer is cloned and the old copy
628 * drops a reference. A new clone with a single reference is returned.
629 * If the buffer is not shared the original buffer is returned. When
630 * being called from interrupt status or with spinlocks held pri must
631 * be GFP_ATOMIC.
632 *
633 * NULL is returned on a memory allocation failure.
634 */
635 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
636 gfp_t pri)
637 {
638 might_sleep_if(pri & __GFP_WAIT);
639 if (skb_shared(skb)) {
640 struct sk_buff *nskb = skb_clone(skb, pri);
641 kfree_skb(skb);
642 skb = nskb;
643 }
644 return skb;
645 }
646
647 /*
648 * Copy shared buffers into a new sk_buff. We effectively do COW on
649 * packets to handle cases where we have a local reader and forward
650 * and a couple of other messy ones. The normal one is tcpdumping
651 * a packet thats being forwarded.
652 */
653
654 /**
655 * skb_unshare - make a copy of a shared buffer
656 * @skb: buffer to check
657 * @pri: priority for memory allocation
658 *
659 * If the socket buffer is a clone then this function creates a new
660 * copy of the data, drops a reference count on the old copy and returns
661 * the new copy with the reference count at 1. If the buffer is not a clone
662 * the original buffer is returned. When called with a spinlock held or
663 * from interrupt state @pri must be %GFP_ATOMIC
664 *
665 * %NULL is returned on a memory allocation failure.
666 */
667 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
668 gfp_t pri)
669 {
670 might_sleep_if(pri & __GFP_WAIT);
671 if (skb_cloned(skb)) {
672 struct sk_buff *nskb = skb_copy(skb, pri);
673 kfree_skb(skb); /* Free our shared copy */
674 skb = nskb;
675 }
676 return skb;
677 }
678
679 /**
680 * skb_peek
681 * @list_: list to peek at
682 *
683 * Peek an &sk_buff. Unlike most other operations you _MUST_
684 * be careful with this one. A peek leaves the buffer on the
685 * list and someone else may run off with it. You must hold
686 * the appropriate locks or have a private queue to do this.
687 *
688 * Returns %NULL for an empty list or a pointer to the head element.
689 * The reference count is not incremented and the reference is therefore
690 * volatile. Use with caution.
691 */
692 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
693 {
694 struct sk_buff *list = ((struct sk_buff *)list_)->next;
695 if (list == (struct sk_buff *)list_)
696 list = NULL;
697 return list;
698 }
699
700 /**
701 * skb_peek_tail
702 * @list_: list to peek at
703 *
704 * Peek an &sk_buff. Unlike most other operations you _MUST_
705 * be careful with this one. A peek leaves the buffer on the
706 * list and someone else may run off with it. You must hold
707 * the appropriate locks or have a private queue to do this.
708 *
709 * Returns %NULL for an empty list or a pointer to the tail element.
710 * The reference count is not incremented and the reference is therefore
711 * volatile. Use with caution.
712 */
713 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
714 {
715 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
716 if (list == (struct sk_buff *)list_)
717 list = NULL;
718 return list;
719 }
720
721 /**
722 * skb_queue_len - get queue length
723 * @list_: list to measure
724 *
725 * Return the length of an &sk_buff queue.
726 */
727 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
728 {
729 return list_->qlen;
730 }
731
732 /**
733 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
734 * @list: queue to initialize
735 *
736 * This initializes only the list and queue length aspects of
737 * an sk_buff_head object. This allows to initialize the list
738 * aspects of an sk_buff_head without reinitializing things like
739 * the spinlock. It can also be used for on-stack sk_buff_head
740 * objects where the spinlock is known to not be used.
741 */
742 static inline void __skb_queue_head_init(struct sk_buff_head *list)
743 {
744 list->prev = list->next = (struct sk_buff *)list;
745 list->qlen = 0;
746 }
747
748 /*
749 * This function creates a split out lock class for each invocation;
750 * this is needed for now since a whole lot of users of the skb-queue
751 * infrastructure in drivers have different locking usage (in hardirq)
752 * than the networking core (in softirq only). In the long run either the
753 * network layer or drivers should need annotation to consolidate the
754 * main types of usage into 3 classes.
755 */
756 static inline void skb_queue_head_init(struct sk_buff_head *list)
757 {
758 spin_lock_init(&list->lock);
759 __skb_queue_head_init(list);
760 }
761
762 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
763 struct lock_class_key *class)
764 {
765 skb_queue_head_init(list);
766 lockdep_set_class(&list->lock, class);
767 }
768
769 /*
770 * Insert an sk_buff on a list.
771 *
772 * The "__skb_xxxx()" functions are the non-atomic ones that
773 * can only be called with interrupts disabled.
774 */
775 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
776 static inline void __skb_insert(struct sk_buff *newsk,
777 struct sk_buff *prev, struct sk_buff *next,
778 struct sk_buff_head *list)
779 {
780 newsk->next = next;
781 newsk->prev = prev;
782 next->prev = prev->next = newsk;
783 list->qlen++;
784 }
785
786 static inline void __skb_queue_splice(const struct sk_buff_head *list,
787 struct sk_buff *prev,
788 struct sk_buff *next)
789 {
790 struct sk_buff *first = list->next;
791 struct sk_buff *last = list->prev;
792
793 first->prev = prev;
794 prev->next = first;
795
796 last->next = next;
797 next->prev = last;
798 }
799
800 /**
801 * skb_queue_splice - join two skb lists, this is designed for stacks
802 * @list: the new list to add
803 * @head: the place to add it in the first list
804 */
805 static inline void skb_queue_splice(const struct sk_buff_head *list,
806 struct sk_buff_head *head)
807 {
808 if (!skb_queue_empty(list)) {
809 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
810 head->qlen += list->qlen;
811 }
812 }
813
814 /**
815 * skb_queue_splice - join two skb lists and reinitialise the emptied list
816 * @list: the new list to add
817 * @head: the place to add it in the first list
818 *
819 * The list at @list is reinitialised
820 */
821 static inline void skb_queue_splice_init(struct sk_buff_head *list,
822 struct sk_buff_head *head)
823 {
824 if (!skb_queue_empty(list)) {
825 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
826 head->qlen += list->qlen;
827 __skb_queue_head_init(list);
828 }
829 }
830
831 /**
832 * skb_queue_splice_tail - join two skb lists, each list being a queue
833 * @list: the new list to add
834 * @head: the place to add it in the first list
835 */
836 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
837 struct sk_buff_head *head)
838 {
839 if (!skb_queue_empty(list)) {
840 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
841 head->qlen += list->qlen;
842 }
843 }
844
845 /**
846 * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
847 * @list: the new list to add
848 * @head: the place to add it in the first list
849 *
850 * Each of the lists is a queue.
851 * The list at @list is reinitialised
852 */
853 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
854 struct sk_buff_head *head)
855 {
856 if (!skb_queue_empty(list)) {
857 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
858 head->qlen += list->qlen;
859 __skb_queue_head_init(list);
860 }
861 }
862
863 /**
864 * __skb_queue_after - queue a buffer at the list head
865 * @list: list to use
866 * @prev: place after this buffer
867 * @newsk: buffer to queue
868 *
869 * Queue a buffer int the middle of a list. This function takes no locks
870 * and you must therefore hold required locks before calling it.
871 *
872 * A buffer cannot be placed on two lists at the same time.
873 */
874 static inline void __skb_queue_after(struct sk_buff_head *list,
875 struct sk_buff *prev,
876 struct sk_buff *newsk)
877 {
878 __skb_insert(newsk, prev, prev->next, list);
879 }
880
881 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
882 struct sk_buff_head *list);
883
884 static inline void __skb_queue_before(struct sk_buff_head *list,
885 struct sk_buff *next,
886 struct sk_buff *newsk)
887 {
888 __skb_insert(newsk, next->prev, next, list);
889 }
890
891 /**
892 * __skb_queue_head - queue a buffer at the list head
893 * @list: list to use
894 * @newsk: buffer to queue
895 *
896 * Queue a buffer at the start of a list. This function takes no locks
897 * and you must therefore hold required locks before calling it.
898 *
899 * A buffer cannot be placed on two lists at the same time.
900 */
901 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
902 static inline void __skb_queue_head(struct sk_buff_head *list,
903 struct sk_buff *newsk)
904 {
905 __skb_queue_after(list, (struct sk_buff *)list, newsk);
906 }
907
908 /**
909 * __skb_queue_tail - queue a buffer at the list tail
910 * @list: list to use
911 * @newsk: buffer to queue
912 *
913 * Queue a buffer at the end of a list. This function takes no locks
914 * and you must therefore hold required locks before calling it.
915 *
916 * A buffer cannot be placed on two lists at the same time.
917 */
918 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
919 static inline void __skb_queue_tail(struct sk_buff_head *list,
920 struct sk_buff *newsk)
921 {
922 __skb_queue_before(list, (struct sk_buff *)list, newsk);
923 }
924
925 /*
926 * remove sk_buff from list. _Must_ be called atomically, and with
927 * the list known..
928 */
929 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
930 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
931 {
932 struct sk_buff *next, *prev;
933
934 list->qlen--;
935 next = skb->next;
936 prev = skb->prev;
937 skb->next = skb->prev = NULL;
938 next->prev = prev;
939 prev->next = next;
940 }
941
942 /**
943 * __skb_dequeue - remove from the head of the queue
944 * @list: list to dequeue from
945 *
946 * Remove the head of the list. This function does not take any locks
947 * so must be used with appropriate locks held only. The head item is
948 * returned or %NULL if the list is empty.
949 */
950 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
951 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
952 {
953 struct sk_buff *skb = skb_peek(list);
954 if (skb)
955 __skb_unlink(skb, list);
956 return skb;
957 }
958
959 /**
960 * __skb_dequeue_tail - remove from the tail of the queue
961 * @list: list to dequeue from
962 *
963 * Remove the tail of the list. This function does not take any locks
964 * so must be used with appropriate locks held only. The tail item is
965 * returned or %NULL if the list is empty.
966 */
967 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
968 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
969 {
970 struct sk_buff *skb = skb_peek_tail(list);
971 if (skb)
972 __skb_unlink(skb, list);
973 return skb;
974 }
975
976
977 static inline int skb_is_nonlinear(const struct sk_buff *skb)
978 {
979 return skb->data_len;
980 }
981
982 static inline unsigned int skb_headlen(const struct sk_buff *skb)
983 {
984 return skb->len - skb->data_len;
985 }
986
987 static inline int skb_pagelen(const struct sk_buff *skb)
988 {
989 int i, len = 0;
990
991 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
992 len += skb_shinfo(skb)->frags[i].size;
993 return len + skb_headlen(skb);
994 }
995
996 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
997 struct page *page, int off, int size)
998 {
999 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1000
1001 frag->page = page;
1002 frag->page_offset = off;
1003 frag->size = size;
1004 skb_shinfo(skb)->nr_frags = i + 1;
1005 }
1006
1007 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1008 int off, int size);
1009
1010 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1011 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
1012 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1013
1014 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1015 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1016 {
1017 return skb->head + skb->tail;
1018 }
1019
1020 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1021 {
1022 skb->tail = skb->data - skb->head;
1023 }
1024
1025 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1026 {
1027 skb_reset_tail_pointer(skb);
1028 skb->tail += offset;
1029 }
1030 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1031 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1032 {
1033 return skb->tail;
1034 }
1035
1036 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1037 {
1038 skb->tail = skb->data;
1039 }
1040
1041 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1042 {
1043 skb->tail = skb->data + offset;
1044 }
1045
1046 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1047
1048 /*
1049 * Add data to an sk_buff
1050 */
1051 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1052 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1053 {
1054 unsigned char *tmp = skb_tail_pointer(skb);
1055 SKB_LINEAR_ASSERT(skb);
1056 skb->tail += len;
1057 skb->len += len;
1058 return tmp;
1059 }
1060
1061 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1062 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1063 {
1064 skb->data -= len;
1065 skb->len += len;
1066 return skb->data;
1067 }
1068
1069 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1070 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1071 {
1072 skb->len -= len;
1073 BUG_ON(skb->len < skb->data_len);
1074 return skb->data += len;
1075 }
1076
1077 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1078
1079 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1080 {
1081 if (len > skb_headlen(skb) &&
1082 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1083 return NULL;
1084 skb->len -= len;
1085 return skb->data += len;
1086 }
1087
1088 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1089 {
1090 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1091 }
1092
1093 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1094 {
1095 if (likely(len <= skb_headlen(skb)))
1096 return 1;
1097 if (unlikely(len > skb->len))
1098 return 0;
1099 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1100 }
1101
1102 /**
1103 * skb_headroom - bytes at buffer head
1104 * @skb: buffer to check
1105 *
1106 * Return the number of bytes of free space at the head of an &sk_buff.
1107 */
1108 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1109 {
1110 return skb->data - skb->head;
1111 }
1112
1113 /**
1114 * skb_tailroom - bytes at buffer end
1115 * @skb: buffer to check
1116 *
1117 * Return the number of bytes of free space at the tail of an sk_buff
1118 */
1119 static inline int skb_tailroom(const struct sk_buff *skb)
1120 {
1121 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1122 }
1123
1124 /**
1125 * skb_reserve - adjust headroom
1126 * @skb: buffer to alter
1127 * @len: bytes to move
1128 *
1129 * Increase the headroom of an empty &sk_buff by reducing the tail
1130 * room. This is only allowed for an empty buffer.
1131 */
1132 static inline void skb_reserve(struct sk_buff *skb, int len)
1133 {
1134 skb->data += len;
1135 skb->tail += len;
1136 }
1137
1138 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1139 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1140 {
1141 return skb->head + skb->transport_header;
1142 }
1143
1144 static inline void skb_reset_transport_header(struct sk_buff *skb)
1145 {
1146 skb->transport_header = skb->data - skb->head;
1147 }
1148
1149 static inline void skb_set_transport_header(struct sk_buff *skb,
1150 const int offset)
1151 {
1152 skb_reset_transport_header(skb);
1153 skb->transport_header += offset;
1154 }
1155
1156 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1157 {
1158 return skb->head + skb->network_header;
1159 }
1160
1161 static inline void skb_reset_network_header(struct sk_buff *skb)
1162 {
1163 skb->network_header = skb->data - skb->head;
1164 }
1165
1166 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1167 {
1168 skb_reset_network_header(skb);
1169 skb->network_header += offset;
1170 }
1171
1172 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1173 {
1174 return skb->head + skb->mac_header;
1175 }
1176
1177 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1178 {
1179 return skb->mac_header != ~0U;
1180 }
1181
1182 static inline void skb_reset_mac_header(struct sk_buff *skb)
1183 {
1184 skb->mac_header = skb->data - skb->head;
1185 }
1186
1187 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1188 {
1189 skb_reset_mac_header(skb);
1190 skb->mac_header += offset;
1191 }
1192
1193 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1194
1195 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1196 {
1197 return skb->transport_header;
1198 }
1199
1200 static inline void skb_reset_transport_header(struct sk_buff *skb)
1201 {
1202 skb->transport_header = skb->data;
1203 }
1204
1205 static inline void skb_set_transport_header(struct sk_buff *skb,
1206 const int offset)
1207 {
1208 skb->transport_header = skb->data + offset;
1209 }
1210
1211 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1212 {
1213 return skb->network_header;
1214 }
1215
1216 static inline void skb_reset_network_header(struct sk_buff *skb)
1217 {
1218 skb->network_header = skb->data;
1219 }
1220
1221 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1222 {
1223 skb->network_header = skb->data + offset;
1224 }
1225
1226 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1227 {
1228 return skb->mac_header;
1229 }
1230
1231 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1232 {
1233 return skb->mac_header != NULL;
1234 }
1235
1236 static inline void skb_reset_mac_header(struct sk_buff *skb)
1237 {
1238 skb->mac_header = skb->data;
1239 }
1240
1241 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1242 {
1243 skb->mac_header = skb->data + offset;
1244 }
1245 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1246
1247 static inline int skb_transport_offset(const struct sk_buff *skb)
1248 {
1249 return skb_transport_header(skb) - skb->data;
1250 }
1251
1252 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1253 {
1254 return skb->transport_header - skb->network_header;
1255 }
1256
1257 static inline int skb_network_offset(const struct sk_buff *skb)
1258 {
1259 return skb_network_header(skb) - skb->data;
1260 }
1261
1262 /*
1263 * CPUs often take a performance hit when accessing unaligned memory
1264 * locations. The actual performance hit varies, it can be small if the
1265 * hardware handles it or large if we have to take an exception and fix it
1266 * in software.
1267 *
1268 * Since an ethernet header is 14 bytes network drivers often end up with
1269 * the IP header at an unaligned offset. The IP header can be aligned by
1270 * shifting the start of the packet by 2 bytes. Drivers should do this
1271 * with:
1272 *
1273 * skb_reserve(NET_IP_ALIGN);
1274 *
1275 * The downside to this alignment of the IP header is that the DMA is now
1276 * unaligned. On some architectures the cost of an unaligned DMA is high
1277 * and this cost outweighs the gains made by aligning the IP header.
1278 *
1279 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1280 * to be overridden.
1281 */
1282 #ifndef NET_IP_ALIGN
1283 #define NET_IP_ALIGN 2
1284 #endif
1285
1286 /*
1287 * The networking layer reserves some headroom in skb data (via
1288 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1289 * the header has to grow. In the default case, if the header has to grow
1290 * 16 bytes or less we avoid the reallocation.
1291 *
1292 * Unfortunately this headroom changes the DMA alignment of the resulting
1293 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1294 * on some architectures. An architecture can override this value,
1295 * perhaps setting it to a cacheline in size (since that will maintain
1296 * cacheline alignment of the DMA). It must be a power of 2.
1297 *
1298 * Various parts of the networking layer expect at least 16 bytes of
1299 * headroom, you should not reduce this.
1300 */
1301 #ifndef NET_SKB_PAD
1302 #define NET_SKB_PAD 16
1303 #endif
1304
1305 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1306
1307 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1308 {
1309 if (unlikely(skb->data_len)) {
1310 WARN_ON(1);
1311 return;
1312 }
1313 skb->len = len;
1314 skb_set_tail_pointer(skb, len);
1315 }
1316
1317 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1318
1319 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1320 {
1321 if (skb->data_len)
1322 return ___pskb_trim(skb, len);
1323 __skb_trim(skb, len);
1324 return 0;
1325 }
1326
1327 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1328 {
1329 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1330 }
1331
1332 /**
1333 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1334 * @skb: buffer to alter
1335 * @len: new length
1336 *
1337 * This is identical to pskb_trim except that the caller knows that
1338 * the skb is not cloned so we should never get an error due to out-
1339 * of-memory.
1340 */
1341 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1342 {
1343 int err = pskb_trim(skb, len);
1344 BUG_ON(err);
1345 }
1346
1347 /**
1348 * skb_orphan - orphan a buffer
1349 * @skb: buffer to orphan
1350 *
1351 * If a buffer currently has an owner then we call the owner's
1352 * destructor function and make the @skb unowned. The buffer continues
1353 * to exist but is no longer charged to its former owner.
1354 */
1355 static inline void skb_orphan(struct sk_buff *skb)
1356 {
1357 if (skb->destructor)
1358 skb->destructor(skb);
1359 skb->destructor = NULL;
1360 skb->sk = NULL;
1361 }
1362
1363 /**
1364 * __skb_queue_purge - empty a list
1365 * @list: list to empty
1366 *
1367 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1368 * the list and one reference dropped. This function does not take the
1369 * list lock and the caller must hold the relevant locks to use it.
1370 */
1371 extern void skb_queue_purge(struct sk_buff_head *list);
1372 static inline void __skb_queue_purge(struct sk_buff_head *list)
1373 {
1374 struct sk_buff *skb;
1375 while ((skb = __skb_dequeue(list)) != NULL)
1376 kfree_skb(skb);
1377 }
1378
1379 /**
1380 * __dev_alloc_skb - allocate an skbuff for receiving
1381 * @length: length to allocate
1382 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1383 *
1384 * Allocate a new &sk_buff and assign it a usage count of one. The
1385 * buffer has unspecified headroom built in. Users should allocate
1386 * the headroom they think they need without accounting for the
1387 * built in space. The built in space is used for optimisations.
1388 *
1389 * %NULL is returned if there is no free memory.
1390 */
1391 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1392 gfp_t gfp_mask)
1393 {
1394 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1395 if (likely(skb))
1396 skb_reserve(skb, NET_SKB_PAD);
1397 return skb;
1398 }
1399
1400 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1401
1402 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1403 unsigned int length, gfp_t gfp_mask);
1404
1405 /**
1406 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1407 * @dev: network device to receive on
1408 * @length: length to allocate
1409 *
1410 * Allocate a new &sk_buff and assign it a usage count of one. The
1411 * buffer has unspecified headroom built in. Users should allocate
1412 * the headroom they think they need without accounting for the
1413 * built in space. The built in space is used for optimisations.
1414 *
1415 * %NULL is returned if there is no free memory. Although this function
1416 * allocates memory it can be called from an interrupt.
1417 */
1418 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1419 unsigned int length)
1420 {
1421 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1422 }
1423
1424 extern struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask);
1425
1426 /**
1427 * netdev_alloc_page - allocate a page for ps-rx on a specific device
1428 * @dev: network device to receive on
1429 *
1430 * Allocate a new page node local to the specified device.
1431 *
1432 * %NULL is returned if there is no free memory.
1433 */
1434 static inline struct page *netdev_alloc_page(struct net_device *dev)
1435 {
1436 return __netdev_alloc_page(dev, GFP_ATOMIC);
1437 }
1438
1439 static inline void netdev_free_page(struct net_device *dev, struct page *page)
1440 {
1441 __free_page(page);
1442 }
1443
1444 /**
1445 * skb_clone_writable - is the header of a clone writable
1446 * @skb: buffer to check
1447 * @len: length up to which to write
1448 *
1449 * Returns true if modifying the header part of the cloned buffer
1450 * does not requires the data to be copied.
1451 */
1452 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1453 {
1454 return !skb_header_cloned(skb) &&
1455 skb_headroom(skb) + len <= skb->hdr_len;
1456 }
1457
1458 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1459 int cloned)
1460 {
1461 int delta = 0;
1462
1463 if (headroom < NET_SKB_PAD)
1464 headroom = NET_SKB_PAD;
1465 if (headroom > skb_headroom(skb))
1466 delta = headroom - skb_headroom(skb);
1467
1468 if (delta || cloned)
1469 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1470 GFP_ATOMIC);
1471 return 0;
1472 }
1473
1474 /**
1475 * skb_cow - copy header of skb when it is required
1476 * @skb: buffer to cow
1477 * @headroom: needed headroom
1478 *
1479 * If the skb passed lacks sufficient headroom or its data part
1480 * is shared, data is reallocated. If reallocation fails, an error
1481 * is returned and original skb is not changed.
1482 *
1483 * The result is skb with writable area skb->head...skb->tail
1484 * and at least @headroom of space at head.
1485 */
1486 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1487 {
1488 return __skb_cow(skb, headroom, skb_cloned(skb));
1489 }
1490
1491 /**
1492 * skb_cow_head - skb_cow but only making the head writable
1493 * @skb: buffer to cow
1494 * @headroom: needed headroom
1495 *
1496 * This function is identical to skb_cow except that we replace the
1497 * skb_cloned check by skb_header_cloned. It should be used when
1498 * you only need to push on some header and do not need to modify
1499 * the data.
1500 */
1501 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1502 {
1503 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1504 }
1505
1506 /**
1507 * skb_padto - pad an skbuff up to a minimal size
1508 * @skb: buffer to pad
1509 * @len: minimal length
1510 *
1511 * Pads up a buffer to ensure the trailing bytes exist and are
1512 * blanked. If the buffer already contains sufficient data it
1513 * is untouched. Otherwise it is extended. Returns zero on
1514 * success. The skb is freed on error.
1515 */
1516
1517 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1518 {
1519 unsigned int size = skb->len;
1520 if (likely(size >= len))
1521 return 0;
1522 return skb_pad(skb, len - size);
1523 }
1524
1525 static inline int skb_add_data(struct sk_buff *skb,
1526 char __user *from, int copy)
1527 {
1528 const int off = skb->len;
1529
1530 if (skb->ip_summed == CHECKSUM_NONE) {
1531 int err = 0;
1532 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1533 copy, 0, &err);
1534 if (!err) {
1535 skb->csum = csum_block_add(skb->csum, csum, off);
1536 return 0;
1537 }
1538 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1539 return 0;
1540
1541 __skb_trim(skb, off);
1542 return -EFAULT;
1543 }
1544
1545 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1546 struct page *page, int off)
1547 {
1548 if (i) {
1549 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1550
1551 return page == frag->page &&
1552 off == frag->page_offset + frag->size;
1553 }
1554 return 0;
1555 }
1556
1557 static inline int __skb_linearize(struct sk_buff *skb)
1558 {
1559 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1560 }
1561
1562 /**
1563 * skb_linearize - convert paged skb to linear one
1564 * @skb: buffer to linarize
1565 *
1566 * If there is no free memory -ENOMEM is returned, otherwise zero
1567 * is returned and the old skb data released.
1568 */
1569 static inline int skb_linearize(struct sk_buff *skb)
1570 {
1571 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1572 }
1573
1574 /**
1575 * skb_linearize_cow - make sure skb is linear and writable
1576 * @skb: buffer to process
1577 *
1578 * If there is no free memory -ENOMEM is returned, otherwise zero
1579 * is returned and the old skb data released.
1580 */
1581 static inline int skb_linearize_cow(struct sk_buff *skb)
1582 {
1583 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1584 __skb_linearize(skb) : 0;
1585 }
1586
1587 /**
1588 * skb_postpull_rcsum - update checksum for received skb after pull
1589 * @skb: buffer to update
1590 * @start: start of data before pull
1591 * @len: length of data pulled
1592 *
1593 * After doing a pull on a received packet, you need to call this to
1594 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1595 * CHECKSUM_NONE so that it can be recomputed from scratch.
1596 */
1597
1598 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1599 const void *start, unsigned int len)
1600 {
1601 if (skb->ip_summed == CHECKSUM_COMPLETE)
1602 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1603 }
1604
1605 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1606
1607 /**
1608 * pskb_trim_rcsum - trim received skb and update checksum
1609 * @skb: buffer to trim
1610 * @len: new length
1611 *
1612 * This is exactly the same as pskb_trim except that it ensures the
1613 * checksum of received packets are still valid after the operation.
1614 */
1615
1616 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1617 {
1618 if (likely(len >= skb->len))
1619 return 0;
1620 if (skb->ip_summed == CHECKSUM_COMPLETE)
1621 skb->ip_summed = CHECKSUM_NONE;
1622 return __pskb_trim(skb, len);
1623 }
1624
1625 #define skb_queue_walk(queue, skb) \
1626 for (skb = (queue)->next; \
1627 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1628 skb = skb->next)
1629
1630 #define skb_queue_walk_safe(queue, skb, tmp) \
1631 for (skb = (queue)->next, tmp = skb->next; \
1632 skb != (struct sk_buff *)(queue); \
1633 skb = tmp, tmp = skb->next)
1634
1635 #define skb_queue_walk_from(queue, skb) \
1636 for (; prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1637 skb = skb->next)
1638
1639 #define skb_queue_walk_from_safe(queue, skb, tmp) \
1640 for (tmp = skb->next; \
1641 skb != (struct sk_buff *)(queue); \
1642 skb = tmp, tmp = skb->next)
1643
1644 #define skb_queue_reverse_walk(queue, skb) \
1645 for (skb = (queue)->prev; \
1646 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1647 skb = skb->prev)
1648
1649
1650 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
1651 int *peeked, int *err);
1652 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1653 int noblock, int *err);
1654 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1655 struct poll_table_struct *wait);
1656 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1657 int offset, struct iovec *to,
1658 int size);
1659 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1660 int hlen,
1661 struct iovec *iov);
1662 extern int skb_copy_datagram_from_iovec(struct sk_buff *skb,
1663 int offset,
1664 struct iovec *from,
1665 int len);
1666 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1667 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1668 unsigned int flags);
1669 extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
1670 int len, __wsum csum);
1671 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1672 void *to, int len);
1673 extern int skb_store_bits(struct sk_buff *skb, int offset,
1674 const void *from, int len);
1675 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
1676 int offset, u8 *to, int len,
1677 __wsum csum);
1678 extern int skb_splice_bits(struct sk_buff *skb,
1679 unsigned int offset,
1680 struct pipe_inode_info *pipe,
1681 unsigned int len,
1682 unsigned int flags);
1683 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1684 extern void skb_split(struct sk_buff *skb,
1685 struct sk_buff *skb1, const u32 len);
1686 extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
1687 int shiftlen);
1688
1689 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1690 extern int skb_gro_receive(struct sk_buff **head,
1691 struct sk_buff *skb);
1692
1693 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1694 int len, void *buffer)
1695 {
1696 int hlen = skb_headlen(skb);
1697
1698 if (hlen - offset >= len)
1699 return skb->data + offset;
1700
1701 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1702 return NULL;
1703
1704 return buffer;
1705 }
1706
1707 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1708 void *to,
1709 const unsigned int len)
1710 {
1711 memcpy(to, skb->data, len);
1712 }
1713
1714 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1715 const int offset, void *to,
1716 const unsigned int len)
1717 {
1718 memcpy(to, skb->data + offset, len);
1719 }
1720
1721 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1722 const void *from,
1723 const unsigned int len)
1724 {
1725 memcpy(skb->data, from, len);
1726 }
1727
1728 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1729 const int offset,
1730 const void *from,
1731 const unsigned int len)
1732 {
1733 memcpy(skb->data + offset, from, len);
1734 }
1735
1736 extern void skb_init(void);
1737
1738 /**
1739 * skb_get_timestamp - get timestamp from a skb
1740 * @skb: skb to get stamp from
1741 * @stamp: pointer to struct timeval to store stamp in
1742 *
1743 * Timestamps are stored in the skb as offsets to a base timestamp.
1744 * This function converts the offset back to a struct timeval and stores
1745 * it in stamp.
1746 */
1747 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1748 {
1749 *stamp = ktime_to_timeval(skb->tstamp);
1750 }
1751
1752 static inline void __net_timestamp(struct sk_buff *skb)
1753 {
1754 skb->tstamp = ktime_get_real();
1755 }
1756
1757 static inline ktime_t net_timedelta(ktime_t t)
1758 {
1759 return ktime_sub(ktime_get_real(), t);
1760 }
1761
1762 static inline ktime_t net_invalid_timestamp(void)
1763 {
1764 return ktime_set(0, 0);
1765 }
1766
1767 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1768 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1769
1770 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
1771 {
1772 return skb->ip_summed & CHECKSUM_UNNECESSARY;
1773 }
1774
1775 /**
1776 * skb_checksum_complete - Calculate checksum of an entire packet
1777 * @skb: packet to process
1778 *
1779 * This function calculates the checksum over the entire packet plus
1780 * the value of skb->csum. The latter can be used to supply the
1781 * checksum of a pseudo header as used by TCP/UDP. It returns the
1782 * checksum.
1783 *
1784 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
1785 * this function can be used to verify that checksum on received
1786 * packets. In that case the function should return zero if the
1787 * checksum is correct. In particular, this function will return zero
1788 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1789 * hardware has already verified the correctness of the checksum.
1790 */
1791 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
1792 {
1793 return skb_csum_unnecessary(skb) ?
1794 0 : __skb_checksum_complete(skb);
1795 }
1796
1797 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1798 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
1799 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1800 {
1801 if (nfct && atomic_dec_and_test(&nfct->use))
1802 nf_conntrack_destroy(nfct);
1803 }
1804 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1805 {
1806 if (nfct)
1807 atomic_inc(&nfct->use);
1808 }
1809 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1810 {
1811 if (skb)
1812 atomic_inc(&skb->users);
1813 }
1814 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1815 {
1816 if (skb)
1817 kfree_skb(skb);
1818 }
1819 #endif
1820 #ifdef CONFIG_BRIDGE_NETFILTER
1821 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1822 {
1823 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1824 kfree(nf_bridge);
1825 }
1826 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1827 {
1828 if (nf_bridge)
1829 atomic_inc(&nf_bridge->use);
1830 }
1831 #endif /* CONFIG_BRIDGE_NETFILTER */
1832 static inline void nf_reset(struct sk_buff *skb)
1833 {
1834 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1835 nf_conntrack_put(skb->nfct);
1836 skb->nfct = NULL;
1837 nf_conntrack_put_reasm(skb->nfct_reasm);
1838 skb->nfct_reasm = NULL;
1839 #endif
1840 #ifdef CONFIG_BRIDGE_NETFILTER
1841 nf_bridge_put(skb->nf_bridge);
1842 skb->nf_bridge = NULL;
1843 #endif
1844 }
1845
1846 /* Note: This doesn't put any conntrack and bridge info in dst. */
1847 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1848 {
1849 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1850 dst->nfct = src->nfct;
1851 nf_conntrack_get(src->nfct);
1852 dst->nfctinfo = src->nfctinfo;
1853 dst->nfct_reasm = src->nfct_reasm;
1854 nf_conntrack_get_reasm(src->nfct_reasm);
1855 #endif
1856 #ifdef CONFIG_BRIDGE_NETFILTER
1857 dst->nf_bridge = src->nf_bridge;
1858 nf_bridge_get(src->nf_bridge);
1859 #endif
1860 }
1861
1862 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1863 {
1864 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1865 nf_conntrack_put(dst->nfct);
1866 nf_conntrack_put_reasm(dst->nfct_reasm);
1867 #endif
1868 #ifdef CONFIG_BRIDGE_NETFILTER
1869 nf_bridge_put(dst->nf_bridge);
1870 #endif
1871 __nf_copy(dst, src);
1872 }
1873
1874 #ifdef CONFIG_NETWORK_SECMARK
1875 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1876 {
1877 to->secmark = from->secmark;
1878 }
1879
1880 static inline void skb_init_secmark(struct sk_buff *skb)
1881 {
1882 skb->secmark = 0;
1883 }
1884 #else
1885 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1886 { }
1887
1888 static inline void skb_init_secmark(struct sk_buff *skb)
1889 { }
1890 #endif
1891
1892 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
1893 {
1894 skb->queue_mapping = queue_mapping;
1895 }
1896
1897 static inline u16 skb_get_queue_mapping(struct sk_buff *skb)
1898 {
1899 return skb->queue_mapping;
1900 }
1901
1902 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
1903 {
1904 to->queue_mapping = from->queue_mapping;
1905 }
1906
1907 #ifdef CONFIG_XFRM
1908 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
1909 {
1910 return skb->sp;
1911 }
1912 #else
1913 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
1914 {
1915 return NULL;
1916 }
1917 #endif
1918
1919 static inline int skb_is_gso(const struct sk_buff *skb)
1920 {
1921 return skb_shinfo(skb)->gso_size;
1922 }
1923
1924 static inline int skb_is_gso_v6(const struct sk_buff *skb)
1925 {
1926 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
1927 }
1928
1929 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
1930
1931 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
1932 {
1933 /* LRO sets gso_size but not gso_type, whereas if GSO is really
1934 * wanted then gso_type will be set. */
1935 struct skb_shared_info *shinfo = skb_shinfo(skb);
1936 if (shinfo->gso_size != 0 && unlikely(shinfo->gso_type == 0)) {
1937 __skb_warn_lro_forwarding(skb);
1938 return true;
1939 }
1940 return false;
1941 }
1942
1943 static inline void skb_forward_csum(struct sk_buff *skb)
1944 {
1945 /* Unfortunately we don't support this one. Any brave souls? */
1946 if (skb->ip_summed == CHECKSUM_COMPLETE)
1947 skb->ip_summed = CHECKSUM_NONE;
1948 }
1949
1950 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
1951 #endif /* __KERNEL__ */
1952 #endif /* _LINUX_SKBUFF_H */
This page took 0.12917 seconds and 5 git commands to generate.