[SK_BUFF]: Convert skb->tail to sk_buff_data_t
[deliverable/linux.git] / include / linux / skbuff.h
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/cache.h>
21
22 #include <asm/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/net.h>
26 #include <linux/textsearch.h>
27 #include <net/checksum.h>
28 #include <linux/rcupdate.h>
29 #include <linux/dmaengine.h>
30 #include <linux/hrtimer.h>
31
32 #define HAVE_ALLOC_SKB /* For the drivers to know */
33 #define HAVE_ALIGNABLE_SKB /* Ditto 8) */
34
35 #define CHECKSUM_NONE 0
36 #define CHECKSUM_PARTIAL 1
37 #define CHECKSUM_UNNECESSARY 2
38 #define CHECKSUM_COMPLETE 3
39
40 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
41 ~(SMP_CACHE_BYTES - 1))
42 #define SKB_WITH_OVERHEAD(X) \
43 (((X) - sizeof(struct skb_shared_info)) & \
44 ~(SMP_CACHE_BYTES - 1))
45 #define SKB_MAX_ORDER(X, ORDER) \
46 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
47 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
48 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
49
50 /* A. Checksumming of received packets by device.
51 *
52 * NONE: device failed to checksum this packet.
53 * skb->csum is undefined.
54 *
55 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
56 * skb->csum is undefined.
57 * It is bad option, but, unfortunately, many of vendors do this.
58 * Apparently with secret goal to sell you new device, when you
59 * will add new protocol to your host. F.e. IPv6. 8)
60 *
61 * COMPLETE: the most generic way. Device supplied checksum of _all_
62 * the packet as seen by netif_rx in skb->csum.
63 * NOTE: Even if device supports only some protocols, but
64 * is able to produce some skb->csum, it MUST use COMPLETE,
65 * not UNNECESSARY.
66 *
67 * B. Checksumming on output.
68 *
69 * NONE: skb is checksummed by protocol or csum is not required.
70 *
71 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
72 * from skb->transport_header to the end and to record the checksum
73 * at skb->transport_header + skb->csum.
74 *
75 * Device must show its capabilities in dev->features, set
76 * at device setup time.
77 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
78 * everything.
79 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
80 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
81 * TCP/UDP over IPv4. Sigh. Vendors like this
82 * way by an unknown reason. Though, see comment above
83 * about CHECKSUM_UNNECESSARY. 8)
84 *
85 * Any questions? No questions, good. --ANK
86 */
87
88 struct net_device;
89
90 #ifdef CONFIG_NETFILTER
91 struct nf_conntrack {
92 atomic_t use;
93 void (*destroy)(struct nf_conntrack *);
94 };
95
96 #ifdef CONFIG_BRIDGE_NETFILTER
97 struct nf_bridge_info {
98 atomic_t use;
99 struct net_device *physindev;
100 struct net_device *physoutdev;
101 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
102 struct net_device *netoutdev;
103 #endif
104 unsigned int mask;
105 unsigned long data[32 / sizeof(unsigned long)];
106 };
107 #endif
108
109 #endif
110
111 struct sk_buff_head {
112 /* These two members must be first. */
113 struct sk_buff *next;
114 struct sk_buff *prev;
115
116 __u32 qlen;
117 spinlock_t lock;
118 };
119
120 struct sk_buff;
121
122 /* To allow 64K frame to be packed as single skb without frag_list */
123 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
124
125 typedef struct skb_frag_struct skb_frag_t;
126
127 struct skb_frag_struct {
128 struct page *page;
129 __u16 page_offset;
130 __u16 size;
131 };
132
133 /* This data is invariant across clones and lives at
134 * the end of the header data, ie. at skb->end.
135 */
136 struct skb_shared_info {
137 atomic_t dataref;
138 unsigned short nr_frags;
139 unsigned short gso_size;
140 /* Warning: this field is not always filled in (UFO)! */
141 unsigned short gso_segs;
142 unsigned short gso_type;
143 __be32 ip6_frag_id;
144 struct sk_buff *frag_list;
145 skb_frag_t frags[MAX_SKB_FRAGS];
146 };
147
148 /* We divide dataref into two halves. The higher 16 bits hold references
149 * to the payload part of skb->data. The lower 16 bits hold references to
150 * the entire skb->data. It is up to the users of the skb to agree on
151 * where the payload starts.
152 *
153 * All users must obey the rule that the skb->data reference count must be
154 * greater than or equal to the payload reference count.
155 *
156 * Holding a reference to the payload part means that the user does not
157 * care about modifications to the header part of skb->data.
158 */
159 #define SKB_DATAREF_SHIFT 16
160 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
161
162
163 enum {
164 SKB_FCLONE_UNAVAILABLE,
165 SKB_FCLONE_ORIG,
166 SKB_FCLONE_CLONE,
167 };
168
169 enum {
170 SKB_GSO_TCPV4 = 1 << 0,
171 SKB_GSO_UDP = 1 << 1,
172
173 /* This indicates the skb is from an untrusted source. */
174 SKB_GSO_DODGY = 1 << 2,
175
176 /* This indicates the tcp segment has CWR set. */
177 SKB_GSO_TCP_ECN = 1 << 3,
178
179 SKB_GSO_TCPV6 = 1 << 4,
180 };
181
182 #if BITS_PER_LONG > 32
183 #define NET_SKBUFF_DATA_USES_OFFSET 1
184 #endif
185
186 #ifdef NET_SKBUFF_DATA_USES_OFFSET
187 typedef unsigned int sk_buff_data_t;
188 #else
189 typedef unsigned char *sk_buff_data_t;
190 #endif
191
192 /**
193 * struct sk_buff - socket buffer
194 * @next: Next buffer in list
195 * @prev: Previous buffer in list
196 * @sk: Socket we are owned by
197 * @tstamp: Time we arrived
198 * @dev: Device we arrived on/are leaving by
199 * @iif: ifindex of device we arrived on
200 * @h: Transport layer header
201 * @network_header: Network layer header
202 * @mac_header: Link layer header
203 * @dst: destination entry
204 * @sp: the security path, used for xfrm
205 * @cb: Control buffer. Free for use by every layer. Put private vars here
206 * @len: Length of actual data
207 * @data_len: Data length
208 * @mac_len: Length of link layer header
209 * @csum: Checksum
210 * @local_df: allow local fragmentation
211 * @cloned: Head may be cloned (check refcnt to be sure)
212 * @nohdr: Payload reference only, must not modify header
213 * @pkt_type: Packet class
214 * @fclone: skbuff clone status
215 * @ip_summed: Driver fed us an IP checksum
216 * @priority: Packet queueing priority
217 * @users: User count - see {datagram,tcp}.c
218 * @protocol: Packet protocol from driver
219 * @truesize: Buffer size
220 * @head: Head of buffer
221 * @data: Data head pointer
222 * @tail: Tail pointer
223 * @end: End pointer
224 * @destructor: Destruct function
225 * @mark: Generic packet mark
226 * @nfct: Associated connection, if any
227 * @ipvs_property: skbuff is owned by ipvs
228 * @nfctinfo: Relationship of this skb to the connection
229 * @nfct_reasm: netfilter conntrack re-assembly pointer
230 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
231 * @tc_index: Traffic control index
232 * @tc_verd: traffic control verdict
233 * @dma_cookie: a cookie to one of several possible DMA operations
234 * done by skb DMA functions
235 * @secmark: security marking
236 */
237
238 struct sk_buff {
239 /* These two members must be first. */
240 struct sk_buff *next;
241 struct sk_buff *prev;
242
243 struct sock *sk;
244 ktime_t tstamp;
245 struct net_device *dev;
246 int iif;
247 /* 4 byte hole on 64 bit*/
248
249 struct dst_entry *dst;
250 struct sec_path *sp;
251
252 /*
253 * This is the control buffer. It is free to use for every
254 * layer. Please put your private variables there. If you
255 * want to keep them across layers you have to do a skb_clone()
256 * first. This is owned by whoever has the skb queued ATM.
257 */
258 char cb[48];
259
260 unsigned int len,
261 data_len,
262 mac_len;
263 union {
264 __wsum csum;
265 __u32 csum_offset;
266 };
267 __u32 priority;
268 __u8 local_df:1,
269 cloned:1,
270 ip_summed:2,
271 nohdr:1,
272 nfctinfo:3;
273 __u8 pkt_type:3,
274 fclone:2,
275 ipvs_property:1;
276 __be16 protocol;
277
278 void (*destructor)(struct sk_buff *skb);
279 #ifdef CONFIG_NETFILTER
280 struct nf_conntrack *nfct;
281 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
282 struct sk_buff *nfct_reasm;
283 #endif
284 #ifdef CONFIG_BRIDGE_NETFILTER
285 struct nf_bridge_info *nf_bridge;
286 #endif
287 #endif /* CONFIG_NETFILTER */
288 #ifdef CONFIG_NET_SCHED
289 __u16 tc_index; /* traffic control index */
290 #ifdef CONFIG_NET_CLS_ACT
291 __u16 tc_verd; /* traffic control verdict */
292 #endif
293 #endif
294 #ifdef CONFIG_NET_DMA
295 dma_cookie_t dma_cookie;
296 #endif
297 #ifdef CONFIG_NETWORK_SECMARK
298 __u32 secmark;
299 #endif
300
301 __u32 mark;
302
303 sk_buff_data_t transport_header;
304 sk_buff_data_t network_header;
305 sk_buff_data_t mac_header;
306 /* These elements must be at the end, see alloc_skb() for details. */
307 sk_buff_data_t tail;
308 unsigned char *head,
309 *data,
310 *end;
311 unsigned int truesize;
312 atomic_t users;
313 };
314
315 #ifdef __KERNEL__
316 /*
317 * Handling routines are only of interest to the kernel
318 */
319 #include <linux/slab.h>
320
321 #include <asm/system.h>
322
323 extern void kfree_skb(struct sk_buff *skb);
324 extern void __kfree_skb(struct sk_buff *skb);
325 extern struct sk_buff *__alloc_skb(unsigned int size,
326 gfp_t priority, int fclone, int node);
327 static inline struct sk_buff *alloc_skb(unsigned int size,
328 gfp_t priority)
329 {
330 return __alloc_skb(size, priority, 0, -1);
331 }
332
333 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
334 gfp_t priority)
335 {
336 return __alloc_skb(size, priority, 1, -1);
337 }
338
339 extern void kfree_skbmem(struct sk_buff *skb);
340 extern struct sk_buff *skb_clone(struct sk_buff *skb,
341 gfp_t priority);
342 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
343 gfp_t priority);
344 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
345 gfp_t gfp_mask);
346 extern int pskb_expand_head(struct sk_buff *skb,
347 int nhead, int ntail,
348 gfp_t gfp_mask);
349 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
350 unsigned int headroom);
351 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
352 int newheadroom, int newtailroom,
353 gfp_t priority);
354 extern int skb_pad(struct sk_buff *skb, int pad);
355 #define dev_kfree_skb(a) kfree_skb(a)
356 extern void skb_over_panic(struct sk_buff *skb, int len,
357 void *here);
358 extern void skb_under_panic(struct sk_buff *skb, int len,
359 void *here);
360 extern void skb_truesize_bug(struct sk_buff *skb);
361
362 static inline void skb_truesize_check(struct sk_buff *skb)
363 {
364 if (unlikely((int)skb->truesize < sizeof(struct sk_buff) + skb->len))
365 skb_truesize_bug(skb);
366 }
367
368 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
369 int getfrag(void *from, char *to, int offset,
370 int len,int odd, struct sk_buff *skb),
371 void *from, int length);
372
373 struct skb_seq_state
374 {
375 __u32 lower_offset;
376 __u32 upper_offset;
377 __u32 frag_idx;
378 __u32 stepped_offset;
379 struct sk_buff *root_skb;
380 struct sk_buff *cur_skb;
381 __u8 *frag_data;
382 };
383
384 extern void skb_prepare_seq_read(struct sk_buff *skb,
385 unsigned int from, unsigned int to,
386 struct skb_seq_state *st);
387 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
388 struct skb_seq_state *st);
389 extern void skb_abort_seq_read(struct skb_seq_state *st);
390
391 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
392 unsigned int to, struct ts_config *config,
393 struct ts_state *state);
394
395 /* Internal */
396 #define skb_shinfo(SKB) ((struct skb_shared_info *)((SKB)->end))
397
398 /**
399 * skb_queue_empty - check if a queue is empty
400 * @list: queue head
401 *
402 * Returns true if the queue is empty, false otherwise.
403 */
404 static inline int skb_queue_empty(const struct sk_buff_head *list)
405 {
406 return list->next == (struct sk_buff *)list;
407 }
408
409 /**
410 * skb_get - reference buffer
411 * @skb: buffer to reference
412 *
413 * Makes another reference to a socket buffer and returns a pointer
414 * to the buffer.
415 */
416 static inline struct sk_buff *skb_get(struct sk_buff *skb)
417 {
418 atomic_inc(&skb->users);
419 return skb;
420 }
421
422 /*
423 * If users == 1, we are the only owner and are can avoid redundant
424 * atomic change.
425 */
426
427 /**
428 * skb_cloned - is the buffer a clone
429 * @skb: buffer to check
430 *
431 * Returns true if the buffer was generated with skb_clone() and is
432 * one of multiple shared copies of the buffer. Cloned buffers are
433 * shared data so must not be written to under normal circumstances.
434 */
435 static inline int skb_cloned(const struct sk_buff *skb)
436 {
437 return skb->cloned &&
438 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
439 }
440
441 /**
442 * skb_header_cloned - is the header a clone
443 * @skb: buffer to check
444 *
445 * Returns true if modifying the header part of the buffer requires
446 * the data to be copied.
447 */
448 static inline int skb_header_cloned(const struct sk_buff *skb)
449 {
450 int dataref;
451
452 if (!skb->cloned)
453 return 0;
454
455 dataref = atomic_read(&skb_shinfo(skb)->dataref);
456 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
457 return dataref != 1;
458 }
459
460 /**
461 * skb_header_release - release reference to header
462 * @skb: buffer to operate on
463 *
464 * Drop a reference to the header part of the buffer. This is done
465 * by acquiring a payload reference. You must not read from the header
466 * part of skb->data after this.
467 */
468 static inline void skb_header_release(struct sk_buff *skb)
469 {
470 BUG_ON(skb->nohdr);
471 skb->nohdr = 1;
472 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
473 }
474
475 /**
476 * skb_shared - is the buffer shared
477 * @skb: buffer to check
478 *
479 * Returns true if more than one person has a reference to this
480 * buffer.
481 */
482 static inline int skb_shared(const struct sk_buff *skb)
483 {
484 return atomic_read(&skb->users) != 1;
485 }
486
487 /**
488 * skb_share_check - check if buffer is shared and if so clone it
489 * @skb: buffer to check
490 * @pri: priority for memory allocation
491 *
492 * If the buffer is shared the buffer is cloned and the old copy
493 * drops a reference. A new clone with a single reference is returned.
494 * If the buffer is not shared the original buffer is returned. When
495 * being called from interrupt status or with spinlocks held pri must
496 * be GFP_ATOMIC.
497 *
498 * NULL is returned on a memory allocation failure.
499 */
500 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
501 gfp_t pri)
502 {
503 might_sleep_if(pri & __GFP_WAIT);
504 if (skb_shared(skb)) {
505 struct sk_buff *nskb = skb_clone(skb, pri);
506 kfree_skb(skb);
507 skb = nskb;
508 }
509 return skb;
510 }
511
512 /*
513 * Copy shared buffers into a new sk_buff. We effectively do COW on
514 * packets to handle cases where we have a local reader and forward
515 * and a couple of other messy ones. The normal one is tcpdumping
516 * a packet thats being forwarded.
517 */
518
519 /**
520 * skb_unshare - make a copy of a shared buffer
521 * @skb: buffer to check
522 * @pri: priority for memory allocation
523 *
524 * If the socket buffer is a clone then this function creates a new
525 * copy of the data, drops a reference count on the old copy and returns
526 * the new copy with the reference count at 1. If the buffer is not a clone
527 * the original buffer is returned. When called with a spinlock held or
528 * from interrupt state @pri must be %GFP_ATOMIC
529 *
530 * %NULL is returned on a memory allocation failure.
531 */
532 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
533 gfp_t pri)
534 {
535 might_sleep_if(pri & __GFP_WAIT);
536 if (skb_cloned(skb)) {
537 struct sk_buff *nskb = skb_copy(skb, pri);
538 kfree_skb(skb); /* Free our shared copy */
539 skb = nskb;
540 }
541 return skb;
542 }
543
544 /**
545 * skb_peek
546 * @list_: list to peek at
547 *
548 * Peek an &sk_buff. Unlike most other operations you _MUST_
549 * be careful with this one. A peek leaves the buffer on the
550 * list and someone else may run off with it. You must hold
551 * the appropriate locks or have a private queue to do this.
552 *
553 * Returns %NULL for an empty list or a pointer to the head element.
554 * The reference count is not incremented and the reference is therefore
555 * volatile. Use with caution.
556 */
557 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
558 {
559 struct sk_buff *list = ((struct sk_buff *)list_)->next;
560 if (list == (struct sk_buff *)list_)
561 list = NULL;
562 return list;
563 }
564
565 /**
566 * skb_peek_tail
567 * @list_: list to peek at
568 *
569 * Peek an &sk_buff. Unlike most other operations you _MUST_
570 * be careful with this one. A peek leaves the buffer on the
571 * list and someone else may run off with it. You must hold
572 * the appropriate locks or have a private queue to do this.
573 *
574 * Returns %NULL for an empty list or a pointer to the tail element.
575 * The reference count is not incremented and the reference is therefore
576 * volatile. Use with caution.
577 */
578 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
579 {
580 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
581 if (list == (struct sk_buff *)list_)
582 list = NULL;
583 return list;
584 }
585
586 /**
587 * skb_queue_len - get queue length
588 * @list_: list to measure
589 *
590 * Return the length of an &sk_buff queue.
591 */
592 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
593 {
594 return list_->qlen;
595 }
596
597 /*
598 * This function creates a split out lock class for each invocation;
599 * this is needed for now since a whole lot of users of the skb-queue
600 * infrastructure in drivers have different locking usage (in hardirq)
601 * than the networking core (in softirq only). In the long run either the
602 * network layer or drivers should need annotation to consolidate the
603 * main types of usage into 3 classes.
604 */
605 static inline void skb_queue_head_init(struct sk_buff_head *list)
606 {
607 spin_lock_init(&list->lock);
608 list->prev = list->next = (struct sk_buff *)list;
609 list->qlen = 0;
610 }
611
612 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
613 struct lock_class_key *class)
614 {
615 skb_queue_head_init(list);
616 lockdep_set_class(&list->lock, class);
617 }
618
619 /*
620 * Insert an sk_buff at the start of a list.
621 *
622 * The "__skb_xxxx()" functions are the non-atomic ones that
623 * can only be called with interrupts disabled.
624 */
625
626 /**
627 * __skb_queue_after - queue a buffer at the list head
628 * @list: list to use
629 * @prev: place after this buffer
630 * @newsk: buffer to queue
631 *
632 * Queue a buffer int the middle of a list. This function takes no locks
633 * and you must therefore hold required locks before calling it.
634 *
635 * A buffer cannot be placed on two lists at the same time.
636 */
637 static inline void __skb_queue_after(struct sk_buff_head *list,
638 struct sk_buff *prev,
639 struct sk_buff *newsk)
640 {
641 struct sk_buff *next;
642 list->qlen++;
643
644 next = prev->next;
645 newsk->next = next;
646 newsk->prev = prev;
647 next->prev = prev->next = newsk;
648 }
649
650 /**
651 * __skb_queue_head - queue a buffer at the list head
652 * @list: list to use
653 * @newsk: buffer to queue
654 *
655 * Queue a buffer at the start of a list. This function takes no locks
656 * and you must therefore hold required locks before calling it.
657 *
658 * A buffer cannot be placed on two lists at the same time.
659 */
660 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
661 static inline void __skb_queue_head(struct sk_buff_head *list,
662 struct sk_buff *newsk)
663 {
664 __skb_queue_after(list, (struct sk_buff *)list, newsk);
665 }
666
667 /**
668 * __skb_queue_tail - queue a buffer at the list tail
669 * @list: list to use
670 * @newsk: buffer to queue
671 *
672 * Queue a buffer at the end of a list. This function takes no locks
673 * and you must therefore hold required locks before calling it.
674 *
675 * A buffer cannot be placed on two lists at the same time.
676 */
677 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
678 static inline void __skb_queue_tail(struct sk_buff_head *list,
679 struct sk_buff *newsk)
680 {
681 struct sk_buff *prev, *next;
682
683 list->qlen++;
684 next = (struct sk_buff *)list;
685 prev = next->prev;
686 newsk->next = next;
687 newsk->prev = prev;
688 next->prev = prev->next = newsk;
689 }
690
691
692 /**
693 * __skb_dequeue - remove from the head of the queue
694 * @list: list to dequeue from
695 *
696 * Remove the head of the list. This function does not take any locks
697 * so must be used with appropriate locks held only. The head item is
698 * returned or %NULL if the list is empty.
699 */
700 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
701 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
702 {
703 struct sk_buff *next, *prev, *result;
704
705 prev = (struct sk_buff *) list;
706 next = prev->next;
707 result = NULL;
708 if (next != prev) {
709 result = next;
710 next = next->next;
711 list->qlen--;
712 next->prev = prev;
713 prev->next = next;
714 result->next = result->prev = NULL;
715 }
716 return result;
717 }
718
719
720 /*
721 * Insert a packet on a list.
722 */
723 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
724 static inline void __skb_insert(struct sk_buff *newsk,
725 struct sk_buff *prev, struct sk_buff *next,
726 struct sk_buff_head *list)
727 {
728 newsk->next = next;
729 newsk->prev = prev;
730 next->prev = prev->next = newsk;
731 list->qlen++;
732 }
733
734 /*
735 * Place a packet after a given packet in a list.
736 */
737 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
738 static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
739 {
740 __skb_insert(newsk, old, old->next, list);
741 }
742
743 /*
744 * remove sk_buff from list. _Must_ be called atomically, and with
745 * the list known..
746 */
747 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
748 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
749 {
750 struct sk_buff *next, *prev;
751
752 list->qlen--;
753 next = skb->next;
754 prev = skb->prev;
755 skb->next = skb->prev = NULL;
756 next->prev = prev;
757 prev->next = next;
758 }
759
760
761 /* XXX: more streamlined implementation */
762
763 /**
764 * __skb_dequeue_tail - remove from the tail of the queue
765 * @list: list to dequeue from
766 *
767 * Remove the tail of the list. This function does not take any locks
768 * so must be used with appropriate locks held only. The tail item is
769 * returned or %NULL if the list is empty.
770 */
771 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
772 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
773 {
774 struct sk_buff *skb = skb_peek_tail(list);
775 if (skb)
776 __skb_unlink(skb, list);
777 return skb;
778 }
779
780
781 static inline int skb_is_nonlinear(const struct sk_buff *skb)
782 {
783 return skb->data_len;
784 }
785
786 static inline unsigned int skb_headlen(const struct sk_buff *skb)
787 {
788 return skb->len - skb->data_len;
789 }
790
791 static inline int skb_pagelen(const struct sk_buff *skb)
792 {
793 int i, len = 0;
794
795 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
796 len += skb_shinfo(skb)->frags[i].size;
797 return len + skb_headlen(skb);
798 }
799
800 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
801 struct page *page, int off, int size)
802 {
803 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
804
805 frag->page = page;
806 frag->page_offset = off;
807 frag->size = size;
808 skb_shinfo(skb)->nr_frags = i + 1;
809 }
810
811 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
812 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
813 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
814
815 #ifdef NET_SKBUFF_DATA_USES_OFFSET
816 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
817 {
818 return skb->head + skb->tail;
819 }
820
821 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
822 {
823 skb->tail = skb->data - skb->head;
824 }
825
826 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
827 {
828 skb_reset_tail_pointer(skb);
829 skb->tail += offset;
830 }
831 #else /* NET_SKBUFF_DATA_USES_OFFSET */
832 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
833 {
834 return skb->tail;
835 }
836
837 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
838 {
839 skb->tail = skb->data;
840 }
841
842 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
843 {
844 skb->tail = skb->data + offset;
845 }
846 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
847
848 /*
849 * Add data to an sk_buff
850 */
851 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
852 {
853 unsigned char *tmp = skb_tail_pointer(skb);
854 SKB_LINEAR_ASSERT(skb);
855 skb->tail += len;
856 skb->len += len;
857 return tmp;
858 }
859
860 /**
861 * skb_put - add data to a buffer
862 * @skb: buffer to use
863 * @len: amount of data to add
864 *
865 * This function extends the used data area of the buffer. If this would
866 * exceed the total buffer size the kernel will panic. A pointer to the
867 * first byte of the extra data is returned.
868 */
869 static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
870 {
871 unsigned char *tmp = skb_tail_pointer(skb);
872 SKB_LINEAR_ASSERT(skb);
873 skb->tail += len;
874 skb->len += len;
875 if (unlikely(skb_tail_pointer(skb) > skb->end))
876 skb_over_panic(skb, len, current_text_addr());
877 return tmp;
878 }
879
880 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
881 {
882 skb->data -= len;
883 skb->len += len;
884 return skb->data;
885 }
886
887 /**
888 * skb_push - add data to the start of a buffer
889 * @skb: buffer to use
890 * @len: amount of data to add
891 *
892 * This function extends the used data area of the buffer at the buffer
893 * start. If this would exceed the total buffer headroom the kernel will
894 * panic. A pointer to the first byte of the extra data is returned.
895 */
896 static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
897 {
898 skb->data -= len;
899 skb->len += len;
900 if (unlikely(skb->data<skb->head))
901 skb_under_panic(skb, len, current_text_addr());
902 return skb->data;
903 }
904
905 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
906 {
907 skb->len -= len;
908 BUG_ON(skb->len < skb->data_len);
909 return skb->data += len;
910 }
911
912 /**
913 * skb_pull - remove data from the start of a buffer
914 * @skb: buffer to use
915 * @len: amount of data to remove
916 *
917 * This function removes data from the start of a buffer, returning
918 * the memory to the headroom. A pointer to the next data in the buffer
919 * is returned. Once the data has been pulled future pushes will overwrite
920 * the old data.
921 */
922 static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
923 {
924 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
925 }
926
927 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
928
929 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
930 {
931 if (len > skb_headlen(skb) &&
932 !__pskb_pull_tail(skb, len-skb_headlen(skb)))
933 return NULL;
934 skb->len -= len;
935 return skb->data += len;
936 }
937
938 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
939 {
940 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
941 }
942
943 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
944 {
945 if (likely(len <= skb_headlen(skb)))
946 return 1;
947 if (unlikely(len > skb->len))
948 return 0;
949 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
950 }
951
952 /**
953 * skb_headroom - bytes at buffer head
954 * @skb: buffer to check
955 *
956 * Return the number of bytes of free space at the head of an &sk_buff.
957 */
958 static inline int skb_headroom(const struct sk_buff *skb)
959 {
960 return skb->data - skb->head;
961 }
962
963 /**
964 * skb_tailroom - bytes at buffer end
965 * @skb: buffer to check
966 *
967 * Return the number of bytes of free space at the tail of an sk_buff
968 */
969 static inline int skb_tailroom(const struct sk_buff *skb)
970 {
971 return skb_is_nonlinear(skb) ? 0 : skb->end - skb_tail_pointer(skb);
972 }
973
974 /**
975 * skb_reserve - adjust headroom
976 * @skb: buffer to alter
977 * @len: bytes to move
978 *
979 * Increase the headroom of an empty &sk_buff by reducing the tail
980 * room. This is only allowed for an empty buffer.
981 */
982 static inline void skb_reserve(struct sk_buff *skb, int len)
983 {
984 skb->data += len;
985 skb->tail += len;
986 }
987
988 #ifdef NET_SKBUFF_DATA_USES_OFFSET
989 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
990 {
991 return skb->head + skb->transport_header;
992 }
993
994 static inline void skb_reset_transport_header(struct sk_buff *skb)
995 {
996 skb->transport_header = skb->data - skb->head;
997 }
998
999 static inline void skb_set_transport_header(struct sk_buff *skb,
1000 const int offset)
1001 {
1002 skb_reset_transport_header(skb);
1003 skb->transport_header += offset;
1004 }
1005
1006 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1007 {
1008 return skb->head + skb->network_header;
1009 }
1010
1011 static inline void skb_reset_network_header(struct sk_buff *skb)
1012 {
1013 skb->network_header = skb->data - skb->head;
1014 }
1015
1016 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1017 {
1018 skb_reset_network_header(skb);
1019 skb->network_header += offset;
1020 }
1021
1022 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1023 {
1024 return skb->head + skb->mac_header;
1025 }
1026
1027 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1028 {
1029 return skb->mac_header != ~0U;
1030 }
1031
1032 static inline void skb_reset_mac_header(struct sk_buff *skb)
1033 {
1034 skb->mac_header = skb->data - skb->head;
1035 }
1036
1037 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1038 {
1039 skb_reset_mac_header(skb);
1040 skb->mac_header += offset;
1041 }
1042
1043 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1044
1045 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1046 {
1047 return skb->transport_header;
1048 }
1049
1050 static inline void skb_reset_transport_header(struct sk_buff *skb)
1051 {
1052 skb->transport_header = skb->data;
1053 }
1054
1055 static inline void skb_set_transport_header(struct sk_buff *skb,
1056 const int offset)
1057 {
1058 skb->transport_header = skb->data + offset;
1059 }
1060
1061 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1062 {
1063 return skb->network_header;
1064 }
1065
1066 static inline void skb_reset_network_header(struct sk_buff *skb)
1067 {
1068 skb->network_header = skb->data;
1069 }
1070
1071 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1072 {
1073 skb->network_header = skb->data + offset;
1074 }
1075
1076 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1077 {
1078 return skb->mac_header;
1079 }
1080
1081 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1082 {
1083 return skb->mac_header != NULL;
1084 }
1085
1086 static inline void skb_reset_mac_header(struct sk_buff *skb)
1087 {
1088 skb->mac_header = skb->data;
1089 }
1090
1091 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1092 {
1093 skb->mac_header = skb->data + offset;
1094 }
1095 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1096
1097 static inline int skb_transport_offset(const struct sk_buff *skb)
1098 {
1099 return skb_transport_header(skb) - skb->data;
1100 }
1101
1102 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1103 {
1104 return skb->transport_header - skb->network_header;
1105 }
1106
1107 static inline int skb_network_offset(const struct sk_buff *skb)
1108 {
1109 return skb_network_header(skb) - skb->data;
1110 }
1111
1112 /*
1113 * CPUs often take a performance hit when accessing unaligned memory
1114 * locations. The actual performance hit varies, it can be small if the
1115 * hardware handles it or large if we have to take an exception and fix it
1116 * in software.
1117 *
1118 * Since an ethernet header is 14 bytes network drivers often end up with
1119 * the IP header at an unaligned offset. The IP header can be aligned by
1120 * shifting the start of the packet by 2 bytes. Drivers should do this
1121 * with:
1122 *
1123 * skb_reserve(NET_IP_ALIGN);
1124 *
1125 * The downside to this alignment of the IP header is that the DMA is now
1126 * unaligned. On some architectures the cost of an unaligned DMA is high
1127 * and this cost outweighs the gains made by aligning the IP header.
1128 *
1129 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1130 * to be overridden.
1131 */
1132 #ifndef NET_IP_ALIGN
1133 #define NET_IP_ALIGN 2
1134 #endif
1135
1136 /*
1137 * The networking layer reserves some headroom in skb data (via
1138 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1139 * the header has to grow. In the default case, if the header has to grow
1140 * 16 bytes or less we avoid the reallocation.
1141 *
1142 * Unfortunately this headroom changes the DMA alignment of the resulting
1143 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1144 * on some architectures. An architecture can override this value,
1145 * perhaps setting it to a cacheline in size (since that will maintain
1146 * cacheline alignment of the DMA). It must be a power of 2.
1147 *
1148 * Various parts of the networking layer expect at least 16 bytes of
1149 * headroom, you should not reduce this.
1150 */
1151 #ifndef NET_SKB_PAD
1152 #define NET_SKB_PAD 16
1153 #endif
1154
1155 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1156
1157 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1158 {
1159 if (unlikely(skb->data_len)) {
1160 WARN_ON(1);
1161 return;
1162 }
1163 skb->len = len;
1164 skb_set_tail_pointer(skb, len);
1165 }
1166
1167 /**
1168 * skb_trim - remove end from a buffer
1169 * @skb: buffer to alter
1170 * @len: new length
1171 *
1172 * Cut the length of a buffer down by removing data from the tail. If
1173 * the buffer is already under the length specified it is not modified.
1174 * The skb must be linear.
1175 */
1176 static inline void skb_trim(struct sk_buff *skb, unsigned int len)
1177 {
1178 if (skb->len > len)
1179 __skb_trim(skb, len);
1180 }
1181
1182
1183 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1184 {
1185 if (skb->data_len)
1186 return ___pskb_trim(skb, len);
1187 __skb_trim(skb, len);
1188 return 0;
1189 }
1190
1191 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1192 {
1193 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1194 }
1195
1196 /**
1197 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1198 * @skb: buffer to alter
1199 * @len: new length
1200 *
1201 * This is identical to pskb_trim except that the caller knows that
1202 * the skb is not cloned so we should never get an error due to out-
1203 * of-memory.
1204 */
1205 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1206 {
1207 int err = pskb_trim(skb, len);
1208 BUG_ON(err);
1209 }
1210
1211 /**
1212 * skb_orphan - orphan a buffer
1213 * @skb: buffer to orphan
1214 *
1215 * If a buffer currently has an owner then we call the owner's
1216 * destructor function and make the @skb unowned. The buffer continues
1217 * to exist but is no longer charged to its former owner.
1218 */
1219 static inline void skb_orphan(struct sk_buff *skb)
1220 {
1221 if (skb->destructor)
1222 skb->destructor(skb);
1223 skb->destructor = NULL;
1224 skb->sk = NULL;
1225 }
1226
1227 /**
1228 * __skb_queue_purge - empty a list
1229 * @list: list to empty
1230 *
1231 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1232 * the list and one reference dropped. This function does not take the
1233 * list lock and the caller must hold the relevant locks to use it.
1234 */
1235 extern void skb_queue_purge(struct sk_buff_head *list);
1236 static inline void __skb_queue_purge(struct sk_buff_head *list)
1237 {
1238 struct sk_buff *skb;
1239 while ((skb = __skb_dequeue(list)) != NULL)
1240 kfree_skb(skb);
1241 }
1242
1243 /**
1244 * __dev_alloc_skb - allocate an skbuff for receiving
1245 * @length: length to allocate
1246 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1247 *
1248 * Allocate a new &sk_buff and assign it a usage count of one. The
1249 * buffer has unspecified headroom built in. Users should allocate
1250 * the headroom they think they need without accounting for the
1251 * built in space. The built in space is used for optimisations.
1252 *
1253 * %NULL is returned if there is no free memory.
1254 */
1255 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1256 gfp_t gfp_mask)
1257 {
1258 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1259 if (likely(skb))
1260 skb_reserve(skb, NET_SKB_PAD);
1261 return skb;
1262 }
1263
1264 /**
1265 * dev_alloc_skb - allocate an skbuff for receiving
1266 * @length: length to allocate
1267 *
1268 * Allocate a new &sk_buff and assign it a usage count of one. The
1269 * buffer has unspecified headroom built in. Users should allocate
1270 * the headroom they think they need without accounting for the
1271 * built in space. The built in space is used for optimisations.
1272 *
1273 * %NULL is returned if there is no free memory. Although this function
1274 * allocates memory it can be called from an interrupt.
1275 */
1276 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1277 {
1278 return __dev_alloc_skb(length, GFP_ATOMIC);
1279 }
1280
1281 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1282 unsigned int length, gfp_t gfp_mask);
1283
1284 /**
1285 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1286 * @dev: network device to receive on
1287 * @length: length to allocate
1288 *
1289 * Allocate a new &sk_buff and assign it a usage count of one. The
1290 * buffer has unspecified headroom built in. Users should allocate
1291 * the headroom they think they need without accounting for the
1292 * built in space. The built in space is used for optimisations.
1293 *
1294 * %NULL is returned if there is no free memory. Although this function
1295 * allocates memory it can be called from an interrupt.
1296 */
1297 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1298 unsigned int length)
1299 {
1300 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1301 }
1302
1303 /**
1304 * skb_cow - copy header of skb when it is required
1305 * @skb: buffer to cow
1306 * @headroom: needed headroom
1307 *
1308 * If the skb passed lacks sufficient headroom or its data part
1309 * is shared, data is reallocated. If reallocation fails, an error
1310 * is returned and original skb is not changed.
1311 *
1312 * The result is skb with writable area skb->head...skb->tail
1313 * and at least @headroom of space at head.
1314 */
1315 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1316 {
1317 int delta = (headroom > NET_SKB_PAD ? headroom : NET_SKB_PAD) -
1318 skb_headroom(skb);
1319
1320 if (delta < 0)
1321 delta = 0;
1322
1323 if (delta || skb_cloned(skb))
1324 return pskb_expand_head(skb, (delta + (NET_SKB_PAD-1)) &
1325 ~(NET_SKB_PAD-1), 0, GFP_ATOMIC);
1326 return 0;
1327 }
1328
1329 /**
1330 * skb_padto - pad an skbuff up to a minimal size
1331 * @skb: buffer to pad
1332 * @len: minimal length
1333 *
1334 * Pads up a buffer to ensure the trailing bytes exist and are
1335 * blanked. If the buffer already contains sufficient data it
1336 * is untouched. Otherwise it is extended. Returns zero on
1337 * success. The skb is freed on error.
1338 */
1339
1340 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1341 {
1342 unsigned int size = skb->len;
1343 if (likely(size >= len))
1344 return 0;
1345 return skb_pad(skb, len-size);
1346 }
1347
1348 static inline int skb_add_data(struct sk_buff *skb,
1349 char __user *from, int copy)
1350 {
1351 const int off = skb->len;
1352
1353 if (skb->ip_summed == CHECKSUM_NONE) {
1354 int err = 0;
1355 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1356 copy, 0, &err);
1357 if (!err) {
1358 skb->csum = csum_block_add(skb->csum, csum, off);
1359 return 0;
1360 }
1361 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1362 return 0;
1363
1364 __skb_trim(skb, off);
1365 return -EFAULT;
1366 }
1367
1368 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1369 struct page *page, int off)
1370 {
1371 if (i) {
1372 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1373
1374 return page == frag->page &&
1375 off == frag->page_offset + frag->size;
1376 }
1377 return 0;
1378 }
1379
1380 static inline int __skb_linearize(struct sk_buff *skb)
1381 {
1382 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1383 }
1384
1385 /**
1386 * skb_linearize - convert paged skb to linear one
1387 * @skb: buffer to linarize
1388 *
1389 * If there is no free memory -ENOMEM is returned, otherwise zero
1390 * is returned and the old skb data released.
1391 */
1392 static inline int skb_linearize(struct sk_buff *skb)
1393 {
1394 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1395 }
1396
1397 /**
1398 * skb_linearize_cow - make sure skb is linear and writable
1399 * @skb: buffer to process
1400 *
1401 * If there is no free memory -ENOMEM is returned, otherwise zero
1402 * is returned and the old skb data released.
1403 */
1404 static inline int skb_linearize_cow(struct sk_buff *skb)
1405 {
1406 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1407 __skb_linearize(skb) : 0;
1408 }
1409
1410 /**
1411 * skb_postpull_rcsum - update checksum for received skb after pull
1412 * @skb: buffer to update
1413 * @start: start of data before pull
1414 * @len: length of data pulled
1415 *
1416 * After doing a pull on a received packet, you need to call this to
1417 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1418 * CHECKSUM_NONE so that it can be recomputed from scratch.
1419 */
1420
1421 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1422 const void *start, unsigned int len)
1423 {
1424 if (skb->ip_summed == CHECKSUM_COMPLETE)
1425 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1426 }
1427
1428 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1429
1430 /**
1431 * pskb_trim_rcsum - trim received skb and update checksum
1432 * @skb: buffer to trim
1433 * @len: new length
1434 *
1435 * This is exactly the same as pskb_trim except that it ensures the
1436 * checksum of received packets are still valid after the operation.
1437 */
1438
1439 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1440 {
1441 if (likely(len >= skb->len))
1442 return 0;
1443 if (skb->ip_summed == CHECKSUM_COMPLETE)
1444 skb->ip_summed = CHECKSUM_NONE;
1445 return __pskb_trim(skb, len);
1446 }
1447
1448 #define skb_queue_walk(queue, skb) \
1449 for (skb = (queue)->next; \
1450 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1451 skb = skb->next)
1452
1453 #define skb_queue_reverse_walk(queue, skb) \
1454 for (skb = (queue)->prev; \
1455 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1456 skb = skb->prev)
1457
1458
1459 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1460 int noblock, int *err);
1461 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1462 struct poll_table_struct *wait);
1463 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1464 int offset, struct iovec *to,
1465 int size);
1466 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1467 int hlen,
1468 struct iovec *iov);
1469 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1470 extern void skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1471 unsigned int flags);
1472 extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
1473 int len, __wsum csum);
1474 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1475 void *to, int len);
1476 extern int skb_store_bits(const struct sk_buff *skb, int offset,
1477 void *from, int len);
1478 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
1479 int offset, u8 *to, int len,
1480 __wsum csum);
1481 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1482 extern void skb_split(struct sk_buff *skb,
1483 struct sk_buff *skb1, const u32 len);
1484
1485 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1486
1487 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1488 int len, void *buffer)
1489 {
1490 int hlen = skb_headlen(skb);
1491
1492 if (hlen - offset >= len)
1493 return skb->data + offset;
1494
1495 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1496 return NULL;
1497
1498 return buffer;
1499 }
1500
1501 extern void skb_init(void);
1502 extern void skb_add_mtu(int mtu);
1503
1504 /**
1505 * skb_get_timestamp - get timestamp from a skb
1506 * @skb: skb to get stamp from
1507 * @stamp: pointer to struct timeval to store stamp in
1508 *
1509 * Timestamps are stored in the skb as offsets to a base timestamp.
1510 * This function converts the offset back to a struct timeval and stores
1511 * it in stamp.
1512 */
1513 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1514 {
1515 *stamp = ktime_to_timeval(skb->tstamp);
1516 }
1517
1518 static inline void __net_timestamp(struct sk_buff *skb)
1519 {
1520 skb->tstamp = ktime_get_real();
1521 }
1522
1523
1524 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1525 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1526
1527 /**
1528 * skb_checksum_complete - Calculate checksum of an entire packet
1529 * @skb: packet to process
1530 *
1531 * This function calculates the checksum over the entire packet plus
1532 * the value of skb->csum. The latter can be used to supply the
1533 * checksum of a pseudo header as used by TCP/UDP. It returns the
1534 * checksum.
1535 *
1536 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
1537 * this function can be used to verify that checksum on received
1538 * packets. In that case the function should return zero if the
1539 * checksum is correct. In particular, this function will return zero
1540 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1541 * hardware has already verified the correctness of the checksum.
1542 */
1543 static inline unsigned int skb_checksum_complete(struct sk_buff *skb)
1544 {
1545 return skb->ip_summed != CHECKSUM_UNNECESSARY &&
1546 __skb_checksum_complete(skb);
1547 }
1548
1549 #ifdef CONFIG_NETFILTER
1550 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1551 {
1552 if (nfct && atomic_dec_and_test(&nfct->use))
1553 nfct->destroy(nfct);
1554 }
1555 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1556 {
1557 if (nfct)
1558 atomic_inc(&nfct->use);
1559 }
1560 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1561 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1562 {
1563 if (skb)
1564 atomic_inc(&skb->users);
1565 }
1566 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1567 {
1568 if (skb)
1569 kfree_skb(skb);
1570 }
1571 #endif
1572 #ifdef CONFIG_BRIDGE_NETFILTER
1573 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1574 {
1575 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1576 kfree(nf_bridge);
1577 }
1578 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1579 {
1580 if (nf_bridge)
1581 atomic_inc(&nf_bridge->use);
1582 }
1583 #endif /* CONFIG_BRIDGE_NETFILTER */
1584 static inline void nf_reset(struct sk_buff *skb)
1585 {
1586 nf_conntrack_put(skb->nfct);
1587 skb->nfct = NULL;
1588 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1589 nf_conntrack_put_reasm(skb->nfct_reasm);
1590 skb->nfct_reasm = NULL;
1591 #endif
1592 #ifdef CONFIG_BRIDGE_NETFILTER
1593 nf_bridge_put(skb->nf_bridge);
1594 skb->nf_bridge = NULL;
1595 #endif
1596 }
1597
1598 /* Note: This doesn't put any conntrack and bridge info in dst. */
1599 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1600 {
1601 dst->nfct = src->nfct;
1602 nf_conntrack_get(src->nfct);
1603 dst->nfctinfo = src->nfctinfo;
1604 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1605 dst->nfct_reasm = src->nfct_reasm;
1606 nf_conntrack_get_reasm(src->nfct_reasm);
1607 #endif
1608 #ifdef CONFIG_BRIDGE_NETFILTER
1609 dst->nf_bridge = src->nf_bridge;
1610 nf_bridge_get(src->nf_bridge);
1611 #endif
1612 }
1613
1614 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1615 {
1616 nf_conntrack_put(dst->nfct);
1617 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1618 nf_conntrack_put_reasm(dst->nfct_reasm);
1619 #endif
1620 #ifdef CONFIG_BRIDGE_NETFILTER
1621 nf_bridge_put(dst->nf_bridge);
1622 #endif
1623 __nf_copy(dst, src);
1624 }
1625
1626 #else /* CONFIG_NETFILTER */
1627 static inline void nf_reset(struct sk_buff *skb) {}
1628 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src) {}
1629 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) {}
1630 #endif /* CONFIG_NETFILTER */
1631
1632 #ifdef CONFIG_NETWORK_SECMARK
1633 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1634 {
1635 to->secmark = from->secmark;
1636 }
1637
1638 static inline void skb_init_secmark(struct sk_buff *skb)
1639 {
1640 skb->secmark = 0;
1641 }
1642 #else
1643 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1644 { }
1645
1646 static inline void skb_init_secmark(struct sk_buff *skb)
1647 { }
1648 #endif
1649
1650 static inline int skb_is_gso(const struct sk_buff *skb)
1651 {
1652 return skb_shinfo(skb)->gso_size;
1653 }
1654
1655 #endif /* __KERNEL__ */
1656 #endif /* _LINUX_SKBUFF_H */
This page took 0.06612 seconds and 5 git commands to generate.