Merge tag 'perf-core-for-mingo-20160323' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / include / linux / skbuff.h
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/bug.h>
22 #include <linux/cache.h>
23 #include <linux/rbtree.h>
24 #include <linux/socket.h>
25
26 #include <linux/atomic.h>
27 #include <asm/types.h>
28 #include <linux/spinlock.h>
29 #include <linux/net.h>
30 #include <linux/textsearch.h>
31 #include <net/checksum.h>
32 #include <linux/rcupdate.h>
33 #include <linux/hrtimer.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/netdev_features.h>
36 #include <linux/sched.h>
37 #include <net/flow_dissector.h>
38 #include <linux/splice.h>
39 #include <linux/in6.h>
40 #include <net/flow.h>
41
42 /* The interface for checksum offload between the stack and networking drivers
43 * is as follows...
44 *
45 * A. IP checksum related features
46 *
47 * Drivers advertise checksum offload capabilities in the features of a device.
48 * From the stack's point of view these are capabilities offered by the driver,
49 * a driver typically only advertises features that it is capable of offloading
50 * to its device.
51 *
52 * The checksum related features are:
53 *
54 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one
55 * IP (one's complement) checksum for any combination
56 * of protocols or protocol layering. The checksum is
57 * computed and set in a packet per the CHECKSUM_PARTIAL
58 * interface (see below).
59 *
60 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
61 * TCP or UDP packets over IPv4. These are specifically
62 * unencapsulated packets of the form IPv4|TCP or
63 * IPv4|UDP where the Protocol field in the IPv4 header
64 * is TCP or UDP. The IPv4 header may contain IP options
65 * This feature cannot be set in features for a device
66 * with NETIF_F_HW_CSUM also set. This feature is being
67 * DEPRECATED (see below).
68 *
69 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
70 * TCP or UDP packets over IPv6. These are specifically
71 * unencapsulated packets of the form IPv6|TCP or
72 * IPv4|UDP where the Next Header field in the IPv6
73 * header is either TCP or UDP. IPv6 extension headers
74 * are not supported with this feature. This feature
75 * cannot be set in features for a device with
76 * NETIF_F_HW_CSUM also set. This feature is being
77 * DEPRECATED (see below).
78 *
79 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
80 * This flag is used only used to disable the RX checksum
81 * feature for a device. The stack will accept receive
82 * checksum indication in packets received on a device
83 * regardless of whether NETIF_F_RXCSUM is set.
84 *
85 * B. Checksumming of received packets by device. Indication of checksum
86 * verification is in set skb->ip_summed. Possible values are:
87 *
88 * CHECKSUM_NONE:
89 *
90 * Device did not checksum this packet e.g. due to lack of capabilities.
91 * The packet contains full (though not verified) checksum in packet but
92 * not in skb->csum. Thus, skb->csum is undefined in this case.
93 *
94 * CHECKSUM_UNNECESSARY:
95 *
96 * The hardware you're dealing with doesn't calculate the full checksum
97 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
98 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
99 * if their checksums are okay. skb->csum is still undefined in this case
100 * though. A driver or device must never modify the checksum field in the
101 * packet even if checksum is verified.
102 *
103 * CHECKSUM_UNNECESSARY is applicable to following protocols:
104 * TCP: IPv6 and IPv4.
105 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
106 * zero UDP checksum for either IPv4 or IPv6, the networking stack
107 * may perform further validation in this case.
108 * GRE: only if the checksum is present in the header.
109 * SCTP: indicates the CRC in SCTP header has been validated.
110 *
111 * skb->csum_level indicates the number of consecutive checksums found in
112 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
113 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
114 * and a device is able to verify the checksums for UDP (possibly zero),
115 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
116 * two. If the device were only able to verify the UDP checksum and not
117 * GRE, either because it doesn't support GRE checksum of because GRE
118 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
119 * not considered in this case).
120 *
121 * CHECKSUM_COMPLETE:
122 *
123 * This is the most generic way. The device supplied checksum of the _whole_
124 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
125 * hardware doesn't need to parse L3/L4 headers to implement this.
126 *
127 * Note: Even if device supports only some protocols, but is able to produce
128 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
129 *
130 * CHECKSUM_PARTIAL:
131 *
132 * A checksum is set up to be offloaded to a device as described in the
133 * output description for CHECKSUM_PARTIAL. This may occur on a packet
134 * received directly from another Linux OS, e.g., a virtualized Linux kernel
135 * on the same host, or it may be set in the input path in GRO or remote
136 * checksum offload. For the purposes of checksum verification, the checksum
137 * referred to by skb->csum_start + skb->csum_offset and any preceding
138 * checksums in the packet are considered verified. Any checksums in the
139 * packet that are after the checksum being offloaded are not considered to
140 * be verified.
141 *
142 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
143 * in the skb->ip_summed for a packet. Values are:
144 *
145 * CHECKSUM_PARTIAL:
146 *
147 * The driver is required to checksum the packet as seen by hard_start_xmit()
148 * from skb->csum_start up to the end, and to record/write the checksum at
149 * offset skb->csum_start + skb->csum_offset. A driver may verify that the
150 * csum_start and csum_offset values are valid values given the length and
151 * offset of the packet, however they should not attempt to validate that the
152 * checksum refers to a legitimate transport layer checksum-- it is the
153 * purview of the stack to validate that csum_start and csum_offset are set
154 * correctly.
155 *
156 * When the stack requests checksum offload for a packet, the driver MUST
157 * ensure that the checksum is set correctly. A driver can either offload the
158 * checksum calculation to the device, or call skb_checksum_help (in the case
159 * that the device does not support offload for a particular checksum).
160 *
161 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
162 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
163 * checksum offload capability. If a device has limited checksum capabilities
164 * (for instance can only perform NETIF_F_IP_CSUM or NETIF_F_IPV6_CSUM as
165 * described above) a helper function can be called to resolve
166 * CHECKSUM_PARTIAL. The helper functions are skb_csum_off_chk*. The helper
167 * function takes a spec argument that describes the protocol layer that is
168 * supported for checksum offload and can be called for each packet. If a
169 * packet does not match the specification for offload, skb_checksum_help
170 * is called to resolve the checksum.
171 *
172 * CHECKSUM_NONE:
173 *
174 * The skb was already checksummed by the protocol, or a checksum is not
175 * required.
176 *
177 * CHECKSUM_UNNECESSARY:
178 *
179 * This has the same meaning on as CHECKSUM_NONE for checksum offload on
180 * output.
181 *
182 * CHECKSUM_COMPLETE:
183 * Not used in checksum output. If a driver observes a packet with this value
184 * set in skbuff, if should treat as CHECKSUM_NONE being set.
185 *
186 * D. Non-IP checksum (CRC) offloads
187 *
188 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
189 * offloading the SCTP CRC in a packet. To perform this offload the stack
190 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
191 * accordingly. Note the there is no indication in the skbuff that the
192 * CHECKSUM_PARTIAL refers to an SCTP checksum, a driver that supports
193 * both IP checksum offload and SCTP CRC offload must verify which offload
194 * is configured for a packet presumably by inspecting packet headers.
195 *
196 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
197 * offloading the FCOE CRC in a packet. To perform this offload the stack
198 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
199 * accordingly. Note the there is no indication in the skbuff that the
200 * CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
201 * both IP checksum offload and FCOE CRC offload must verify which offload
202 * is configured for a packet presumably by inspecting packet headers.
203 *
204 * E. Checksumming on output with GSO.
205 *
206 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
207 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
208 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
209 * part of the GSO operation is implied. If a checksum is being offloaded
210 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
211 * are set to refer to the outermost checksum being offload (two offloaded
212 * checksums are possible with UDP encapsulation).
213 */
214
215 /* Don't change this without changing skb_csum_unnecessary! */
216 #define CHECKSUM_NONE 0
217 #define CHECKSUM_UNNECESSARY 1
218 #define CHECKSUM_COMPLETE 2
219 #define CHECKSUM_PARTIAL 3
220
221 /* Maximum value in skb->csum_level */
222 #define SKB_MAX_CSUM_LEVEL 3
223
224 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
225 #define SKB_WITH_OVERHEAD(X) \
226 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
227 #define SKB_MAX_ORDER(X, ORDER) \
228 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
229 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
230 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
231
232 /* return minimum truesize of one skb containing X bytes of data */
233 #define SKB_TRUESIZE(X) ((X) + \
234 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
235 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
236
237 struct net_device;
238 struct scatterlist;
239 struct pipe_inode_info;
240 struct iov_iter;
241 struct napi_struct;
242
243 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
244 struct nf_conntrack {
245 atomic_t use;
246 };
247 #endif
248
249 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
250 struct nf_bridge_info {
251 atomic_t use;
252 enum {
253 BRNF_PROTO_UNCHANGED,
254 BRNF_PROTO_8021Q,
255 BRNF_PROTO_PPPOE
256 } orig_proto:8;
257 u8 pkt_otherhost:1;
258 u8 in_prerouting:1;
259 u8 bridged_dnat:1;
260 __u16 frag_max_size;
261 struct net_device *physindev;
262
263 /* always valid & non-NULL from FORWARD on, for physdev match */
264 struct net_device *physoutdev;
265 union {
266 /* prerouting: detect dnat in orig/reply direction */
267 __be32 ipv4_daddr;
268 struct in6_addr ipv6_daddr;
269
270 /* after prerouting + nat detected: store original source
271 * mac since neigh resolution overwrites it, only used while
272 * skb is out in neigh layer.
273 */
274 char neigh_header[8];
275 };
276 };
277 #endif
278
279 struct sk_buff_head {
280 /* These two members must be first. */
281 struct sk_buff *next;
282 struct sk_buff *prev;
283
284 __u32 qlen;
285 spinlock_t lock;
286 };
287
288 struct sk_buff;
289
290 /* To allow 64K frame to be packed as single skb without frag_list we
291 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
292 * buffers which do not start on a page boundary.
293 *
294 * Since GRO uses frags we allocate at least 16 regardless of page
295 * size.
296 */
297 #if (65536/PAGE_SIZE + 1) < 16
298 #define MAX_SKB_FRAGS 16UL
299 #else
300 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
301 #endif
302 extern int sysctl_max_skb_frags;
303
304 typedef struct skb_frag_struct skb_frag_t;
305
306 struct skb_frag_struct {
307 struct {
308 struct page *p;
309 } page;
310 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
311 __u32 page_offset;
312 __u32 size;
313 #else
314 __u16 page_offset;
315 __u16 size;
316 #endif
317 };
318
319 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
320 {
321 return frag->size;
322 }
323
324 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
325 {
326 frag->size = size;
327 }
328
329 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
330 {
331 frag->size += delta;
332 }
333
334 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
335 {
336 frag->size -= delta;
337 }
338
339 #define HAVE_HW_TIME_STAMP
340
341 /**
342 * struct skb_shared_hwtstamps - hardware time stamps
343 * @hwtstamp: hardware time stamp transformed into duration
344 * since arbitrary point in time
345 *
346 * Software time stamps generated by ktime_get_real() are stored in
347 * skb->tstamp.
348 *
349 * hwtstamps can only be compared against other hwtstamps from
350 * the same device.
351 *
352 * This structure is attached to packets as part of the
353 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
354 */
355 struct skb_shared_hwtstamps {
356 ktime_t hwtstamp;
357 };
358
359 /* Definitions for tx_flags in struct skb_shared_info */
360 enum {
361 /* generate hardware time stamp */
362 SKBTX_HW_TSTAMP = 1 << 0,
363
364 /* generate software time stamp when queueing packet to NIC */
365 SKBTX_SW_TSTAMP = 1 << 1,
366
367 /* device driver is going to provide hardware time stamp */
368 SKBTX_IN_PROGRESS = 1 << 2,
369
370 /* device driver supports TX zero-copy buffers */
371 SKBTX_DEV_ZEROCOPY = 1 << 3,
372
373 /* generate wifi status information (where possible) */
374 SKBTX_WIFI_STATUS = 1 << 4,
375
376 /* This indicates at least one fragment might be overwritten
377 * (as in vmsplice(), sendfile() ...)
378 * If we need to compute a TX checksum, we'll need to copy
379 * all frags to avoid possible bad checksum
380 */
381 SKBTX_SHARED_FRAG = 1 << 5,
382
383 /* generate software time stamp when entering packet scheduling */
384 SKBTX_SCHED_TSTAMP = 1 << 6,
385
386 /* generate software timestamp on peer data acknowledgment */
387 SKBTX_ACK_TSTAMP = 1 << 7,
388 };
389
390 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
391 SKBTX_SCHED_TSTAMP | \
392 SKBTX_ACK_TSTAMP)
393 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
394
395 /*
396 * The callback notifies userspace to release buffers when skb DMA is done in
397 * lower device, the skb last reference should be 0 when calling this.
398 * The zerocopy_success argument is true if zero copy transmit occurred,
399 * false on data copy or out of memory error caused by data copy attempt.
400 * The ctx field is used to track device context.
401 * The desc field is used to track userspace buffer index.
402 */
403 struct ubuf_info {
404 void (*callback)(struct ubuf_info *, bool zerocopy_success);
405 void *ctx;
406 unsigned long desc;
407 };
408
409 /* This data is invariant across clones and lives at
410 * the end of the header data, ie. at skb->end.
411 */
412 struct skb_shared_info {
413 unsigned char nr_frags;
414 __u8 tx_flags;
415 unsigned short gso_size;
416 /* Warning: this field is not always filled in (UFO)! */
417 unsigned short gso_segs;
418 unsigned short gso_type;
419 struct sk_buff *frag_list;
420 struct skb_shared_hwtstamps hwtstamps;
421 u32 tskey;
422 __be32 ip6_frag_id;
423
424 /*
425 * Warning : all fields before dataref are cleared in __alloc_skb()
426 */
427 atomic_t dataref;
428
429 /* Intermediate layers must ensure that destructor_arg
430 * remains valid until skb destructor */
431 void * destructor_arg;
432
433 /* must be last field, see pskb_expand_head() */
434 skb_frag_t frags[MAX_SKB_FRAGS];
435 };
436
437 /* We divide dataref into two halves. The higher 16 bits hold references
438 * to the payload part of skb->data. The lower 16 bits hold references to
439 * the entire skb->data. A clone of a headerless skb holds the length of
440 * the header in skb->hdr_len.
441 *
442 * All users must obey the rule that the skb->data reference count must be
443 * greater than or equal to the payload reference count.
444 *
445 * Holding a reference to the payload part means that the user does not
446 * care about modifications to the header part of skb->data.
447 */
448 #define SKB_DATAREF_SHIFT 16
449 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
450
451
452 enum {
453 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
454 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
455 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
456 };
457
458 enum {
459 SKB_GSO_TCPV4 = 1 << 0,
460 SKB_GSO_UDP = 1 << 1,
461
462 /* This indicates the skb is from an untrusted source. */
463 SKB_GSO_DODGY = 1 << 2,
464
465 /* This indicates the tcp segment has CWR set. */
466 SKB_GSO_TCP_ECN = 1 << 3,
467
468 SKB_GSO_TCPV6 = 1 << 4,
469
470 SKB_GSO_FCOE = 1 << 5,
471
472 SKB_GSO_GRE = 1 << 6,
473
474 SKB_GSO_GRE_CSUM = 1 << 7,
475
476 SKB_GSO_IPIP = 1 << 8,
477
478 SKB_GSO_SIT = 1 << 9,
479
480 SKB_GSO_UDP_TUNNEL = 1 << 10,
481
482 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
483
484 SKB_GSO_TUNNEL_REMCSUM = 1 << 12,
485 };
486
487 #if BITS_PER_LONG > 32
488 #define NET_SKBUFF_DATA_USES_OFFSET 1
489 #endif
490
491 #ifdef NET_SKBUFF_DATA_USES_OFFSET
492 typedef unsigned int sk_buff_data_t;
493 #else
494 typedef unsigned char *sk_buff_data_t;
495 #endif
496
497 /**
498 * struct skb_mstamp - multi resolution time stamps
499 * @stamp_us: timestamp in us resolution
500 * @stamp_jiffies: timestamp in jiffies
501 */
502 struct skb_mstamp {
503 union {
504 u64 v64;
505 struct {
506 u32 stamp_us;
507 u32 stamp_jiffies;
508 };
509 };
510 };
511
512 /**
513 * skb_mstamp_get - get current timestamp
514 * @cl: place to store timestamps
515 */
516 static inline void skb_mstamp_get(struct skb_mstamp *cl)
517 {
518 u64 val = local_clock();
519
520 do_div(val, NSEC_PER_USEC);
521 cl->stamp_us = (u32)val;
522 cl->stamp_jiffies = (u32)jiffies;
523 }
524
525 /**
526 * skb_mstamp_delta - compute the difference in usec between two skb_mstamp
527 * @t1: pointer to newest sample
528 * @t0: pointer to oldest sample
529 */
530 static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1,
531 const struct skb_mstamp *t0)
532 {
533 s32 delta_us = t1->stamp_us - t0->stamp_us;
534 u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies;
535
536 /* If delta_us is negative, this might be because interval is too big,
537 * or local_clock() drift is too big : fallback using jiffies.
538 */
539 if (delta_us <= 0 ||
540 delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ)))
541
542 delta_us = jiffies_to_usecs(delta_jiffies);
543
544 return delta_us;
545 }
546
547 static inline bool skb_mstamp_after(const struct skb_mstamp *t1,
548 const struct skb_mstamp *t0)
549 {
550 s32 diff = t1->stamp_jiffies - t0->stamp_jiffies;
551
552 if (!diff)
553 diff = t1->stamp_us - t0->stamp_us;
554 return diff > 0;
555 }
556
557 /**
558 * struct sk_buff - socket buffer
559 * @next: Next buffer in list
560 * @prev: Previous buffer in list
561 * @tstamp: Time we arrived/left
562 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
563 * @sk: Socket we are owned by
564 * @dev: Device we arrived on/are leaving by
565 * @cb: Control buffer. Free for use by every layer. Put private vars here
566 * @_skb_refdst: destination entry (with norefcount bit)
567 * @sp: the security path, used for xfrm
568 * @len: Length of actual data
569 * @data_len: Data length
570 * @mac_len: Length of link layer header
571 * @hdr_len: writable header length of cloned skb
572 * @csum: Checksum (must include start/offset pair)
573 * @csum_start: Offset from skb->head where checksumming should start
574 * @csum_offset: Offset from csum_start where checksum should be stored
575 * @priority: Packet queueing priority
576 * @ignore_df: allow local fragmentation
577 * @cloned: Head may be cloned (check refcnt to be sure)
578 * @ip_summed: Driver fed us an IP checksum
579 * @nohdr: Payload reference only, must not modify header
580 * @nfctinfo: Relationship of this skb to the connection
581 * @pkt_type: Packet class
582 * @fclone: skbuff clone status
583 * @ipvs_property: skbuff is owned by ipvs
584 * @peeked: this packet has been seen already, so stats have been
585 * done for it, don't do them again
586 * @nf_trace: netfilter packet trace flag
587 * @protocol: Packet protocol from driver
588 * @destructor: Destruct function
589 * @nfct: Associated connection, if any
590 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
591 * @skb_iif: ifindex of device we arrived on
592 * @tc_index: Traffic control index
593 * @tc_verd: traffic control verdict
594 * @hash: the packet hash
595 * @queue_mapping: Queue mapping for multiqueue devices
596 * @xmit_more: More SKBs are pending for this queue
597 * @ndisc_nodetype: router type (from link layer)
598 * @ooo_okay: allow the mapping of a socket to a queue to be changed
599 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
600 * ports.
601 * @sw_hash: indicates hash was computed in software stack
602 * @wifi_acked_valid: wifi_acked was set
603 * @wifi_acked: whether frame was acked on wifi or not
604 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
605 * @napi_id: id of the NAPI struct this skb came from
606 * @secmark: security marking
607 * @offload_fwd_mark: fwding offload mark
608 * @mark: Generic packet mark
609 * @vlan_proto: vlan encapsulation protocol
610 * @vlan_tci: vlan tag control information
611 * @inner_protocol: Protocol (encapsulation)
612 * @inner_transport_header: Inner transport layer header (encapsulation)
613 * @inner_network_header: Network layer header (encapsulation)
614 * @inner_mac_header: Link layer header (encapsulation)
615 * @transport_header: Transport layer header
616 * @network_header: Network layer header
617 * @mac_header: Link layer header
618 * @tail: Tail pointer
619 * @end: End pointer
620 * @head: Head of buffer
621 * @data: Data head pointer
622 * @truesize: Buffer size
623 * @users: User count - see {datagram,tcp}.c
624 */
625
626 struct sk_buff {
627 union {
628 struct {
629 /* These two members must be first. */
630 struct sk_buff *next;
631 struct sk_buff *prev;
632
633 union {
634 ktime_t tstamp;
635 struct skb_mstamp skb_mstamp;
636 };
637 };
638 struct rb_node rbnode; /* used in netem & tcp stack */
639 };
640 struct sock *sk;
641 struct net_device *dev;
642
643 /*
644 * This is the control buffer. It is free to use for every
645 * layer. Please put your private variables there. If you
646 * want to keep them across layers you have to do a skb_clone()
647 * first. This is owned by whoever has the skb queued ATM.
648 */
649 char cb[48] __aligned(8);
650
651 unsigned long _skb_refdst;
652 void (*destructor)(struct sk_buff *skb);
653 #ifdef CONFIG_XFRM
654 struct sec_path *sp;
655 #endif
656 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
657 struct nf_conntrack *nfct;
658 #endif
659 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
660 struct nf_bridge_info *nf_bridge;
661 #endif
662 unsigned int len,
663 data_len;
664 __u16 mac_len,
665 hdr_len;
666
667 /* Following fields are _not_ copied in __copy_skb_header()
668 * Note that queue_mapping is here mostly to fill a hole.
669 */
670 kmemcheck_bitfield_begin(flags1);
671 __u16 queue_mapping;
672 __u8 cloned:1,
673 nohdr:1,
674 fclone:2,
675 peeked:1,
676 head_frag:1,
677 xmit_more:1;
678 /* one bit hole */
679 kmemcheck_bitfield_end(flags1);
680
681 /* fields enclosed in headers_start/headers_end are copied
682 * using a single memcpy() in __copy_skb_header()
683 */
684 /* private: */
685 __u32 headers_start[0];
686 /* public: */
687
688 /* if you move pkt_type around you also must adapt those constants */
689 #ifdef __BIG_ENDIAN_BITFIELD
690 #define PKT_TYPE_MAX (7 << 5)
691 #else
692 #define PKT_TYPE_MAX 7
693 #endif
694 #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset)
695
696 __u8 __pkt_type_offset[0];
697 __u8 pkt_type:3;
698 __u8 pfmemalloc:1;
699 __u8 ignore_df:1;
700 __u8 nfctinfo:3;
701
702 __u8 nf_trace:1;
703 __u8 ip_summed:2;
704 __u8 ooo_okay:1;
705 __u8 l4_hash:1;
706 __u8 sw_hash:1;
707 __u8 wifi_acked_valid:1;
708 __u8 wifi_acked:1;
709
710 __u8 no_fcs:1;
711 /* Indicates the inner headers are valid in the skbuff. */
712 __u8 encapsulation:1;
713 __u8 encap_hdr_csum:1;
714 __u8 csum_valid:1;
715 __u8 csum_complete_sw:1;
716 __u8 csum_level:2;
717 __u8 csum_bad:1;
718
719 #ifdef CONFIG_IPV6_NDISC_NODETYPE
720 __u8 ndisc_nodetype:2;
721 #endif
722 __u8 ipvs_property:1;
723 __u8 inner_protocol_type:1;
724 __u8 remcsum_offload:1;
725 /* 3 or 5 bit hole */
726
727 #ifdef CONFIG_NET_SCHED
728 __u16 tc_index; /* traffic control index */
729 #ifdef CONFIG_NET_CLS_ACT
730 __u16 tc_verd; /* traffic control verdict */
731 #endif
732 #endif
733
734 union {
735 __wsum csum;
736 struct {
737 __u16 csum_start;
738 __u16 csum_offset;
739 };
740 };
741 __u32 priority;
742 int skb_iif;
743 __u32 hash;
744 __be16 vlan_proto;
745 __u16 vlan_tci;
746 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
747 union {
748 unsigned int napi_id;
749 unsigned int sender_cpu;
750 };
751 #endif
752 union {
753 #ifdef CONFIG_NETWORK_SECMARK
754 __u32 secmark;
755 #endif
756 #ifdef CONFIG_NET_SWITCHDEV
757 __u32 offload_fwd_mark;
758 #endif
759 };
760
761 union {
762 __u32 mark;
763 __u32 reserved_tailroom;
764 };
765
766 union {
767 __be16 inner_protocol;
768 __u8 inner_ipproto;
769 };
770
771 __u16 inner_transport_header;
772 __u16 inner_network_header;
773 __u16 inner_mac_header;
774
775 __be16 protocol;
776 __u16 transport_header;
777 __u16 network_header;
778 __u16 mac_header;
779
780 /* private: */
781 __u32 headers_end[0];
782 /* public: */
783
784 /* These elements must be at the end, see alloc_skb() for details. */
785 sk_buff_data_t tail;
786 sk_buff_data_t end;
787 unsigned char *head,
788 *data;
789 unsigned int truesize;
790 atomic_t users;
791 };
792
793 #ifdef __KERNEL__
794 /*
795 * Handling routines are only of interest to the kernel
796 */
797 #include <linux/slab.h>
798
799
800 #define SKB_ALLOC_FCLONE 0x01
801 #define SKB_ALLOC_RX 0x02
802 #define SKB_ALLOC_NAPI 0x04
803
804 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
805 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
806 {
807 return unlikely(skb->pfmemalloc);
808 }
809
810 /*
811 * skb might have a dst pointer attached, refcounted or not.
812 * _skb_refdst low order bit is set if refcount was _not_ taken
813 */
814 #define SKB_DST_NOREF 1UL
815 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
816
817 /**
818 * skb_dst - returns skb dst_entry
819 * @skb: buffer
820 *
821 * Returns skb dst_entry, regardless of reference taken or not.
822 */
823 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
824 {
825 /* If refdst was not refcounted, check we still are in a
826 * rcu_read_lock section
827 */
828 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
829 !rcu_read_lock_held() &&
830 !rcu_read_lock_bh_held());
831 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
832 }
833
834 /**
835 * skb_dst_set - sets skb dst
836 * @skb: buffer
837 * @dst: dst entry
838 *
839 * Sets skb dst, assuming a reference was taken on dst and should
840 * be released by skb_dst_drop()
841 */
842 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
843 {
844 skb->_skb_refdst = (unsigned long)dst;
845 }
846
847 /**
848 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
849 * @skb: buffer
850 * @dst: dst entry
851 *
852 * Sets skb dst, assuming a reference was not taken on dst.
853 * If dst entry is cached, we do not take reference and dst_release
854 * will be avoided by refdst_drop. If dst entry is not cached, we take
855 * reference, so that last dst_release can destroy the dst immediately.
856 */
857 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
858 {
859 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
860 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
861 }
862
863 /**
864 * skb_dst_is_noref - Test if skb dst isn't refcounted
865 * @skb: buffer
866 */
867 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
868 {
869 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
870 }
871
872 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
873 {
874 return (struct rtable *)skb_dst(skb);
875 }
876
877 void kfree_skb(struct sk_buff *skb);
878 void kfree_skb_list(struct sk_buff *segs);
879 void skb_tx_error(struct sk_buff *skb);
880 void consume_skb(struct sk_buff *skb);
881 void __kfree_skb(struct sk_buff *skb);
882 extern struct kmem_cache *skbuff_head_cache;
883
884 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
885 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
886 bool *fragstolen, int *delta_truesize);
887
888 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
889 int node);
890 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
891 struct sk_buff *build_skb(void *data, unsigned int frag_size);
892 static inline struct sk_buff *alloc_skb(unsigned int size,
893 gfp_t priority)
894 {
895 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
896 }
897
898 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
899 unsigned long data_len,
900 int max_page_order,
901 int *errcode,
902 gfp_t gfp_mask);
903
904 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
905 struct sk_buff_fclones {
906 struct sk_buff skb1;
907
908 struct sk_buff skb2;
909
910 atomic_t fclone_ref;
911 };
912
913 /**
914 * skb_fclone_busy - check if fclone is busy
915 * @skb: buffer
916 *
917 * Returns true if skb is a fast clone, and its clone is not freed.
918 * Some drivers call skb_orphan() in their ndo_start_xmit(),
919 * so we also check that this didnt happen.
920 */
921 static inline bool skb_fclone_busy(const struct sock *sk,
922 const struct sk_buff *skb)
923 {
924 const struct sk_buff_fclones *fclones;
925
926 fclones = container_of(skb, struct sk_buff_fclones, skb1);
927
928 return skb->fclone == SKB_FCLONE_ORIG &&
929 atomic_read(&fclones->fclone_ref) > 1 &&
930 fclones->skb2.sk == sk;
931 }
932
933 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
934 gfp_t priority)
935 {
936 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
937 }
938
939 struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
940 static inline struct sk_buff *alloc_skb_head(gfp_t priority)
941 {
942 return __alloc_skb_head(priority, -1);
943 }
944
945 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
946 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
947 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
948 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
949 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
950 gfp_t gfp_mask, bool fclone);
951 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
952 gfp_t gfp_mask)
953 {
954 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
955 }
956
957 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
958 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
959 unsigned int headroom);
960 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
961 int newtailroom, gfp_t priority);
962 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
963 int offset, int len);
964 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
965 int len);
966 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
967 int skb_pad(struct sk_buff *skb, int pad);
968 #define dev_kfree_skb(a) consume_skb(a)
969
970 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
971 int getfrag(void *from, char *to, int offset,
972 int len, int odd, struct sk_buff *skb),
973 void *from, int length);
974
975 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
976 int offset, size_t size);
977
978 struct skb_seq_state {
979 __u32 lower_offset;
980 __u32 upper_offset;
981 __u32 frag_idx;
982 __u32 stepped_offset;
983 struct sk_buff *root_skb;
984 struct sk_buff *cur_skb;
985 __u8 *frag_data;
986 };
987
988 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
989 unsigned int to, struct skb_seq_state *st);
990 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
991 struct skb_seq_state *st);
992 void skb_abort_seq_read(struct skb_seq_state *st);
993
994 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
995 unsigned int to, struct ts_config *config);
996
997 /*
998 * Packet hash types specify the type of hash in skb_set_hash.
999 *
1000 * Hash types refer to the protocol layer addresses which are used to
1001 * construct a packet's hash. The hashes are used to differentiate or identify
1002 * flows of the protocol layer for the hash type. Hash types are either
1003 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1004 *
1005 * Properties of hashes:
1006 *
1007 * 1) Two packets in different flows have different hash values
1008 * 2) Two packets in the same flow should have the same hash value
1009 *
1010 * A hash at a higher layer is considered to be more specific. A driver should
1011 * set the most specific hash possible.
1012 *
1013 * A driver cannot indicate a more specific hash than the layer at which a hash
1014 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1015 *
1016 * A driver may indicate a hash level which is less specific than the
1017 * actual layer the hash was computed on. For instance, a hash computed
1018 * at L4 may be considered an L3 hash. This should only be done if the
1019 * driver can't unambiguously determine that the HW computed the hash at
1020 * the higher layer. Note that the "should" in the second property above
1021 * permits this.
1022 */
1023 enum pkt_hash_types {
1024 PKT_HASH_TYPE_NONE, /* Undefined type */
1025 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
1026 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
1027 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
1028 };
1029
1030 static inline void skb_clear_hash(struct sk_buff *skb)
1031 {
1032 skb->hash = 0;
1033 skb->sw_hash = 0;
1034 skb->l4_hash = 0;
1035 }
1036
1037 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1038 {
1039 if (!skb->l4_hash)
1040 skb_clear_hash(skb);
1041 }
1042
1043 static inline void
1044 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1045 {
1046 skb->l4_hash = is_l4;
1047 skb->sw_hash = is_sw;
1048 skb->hash = hash;
1049 }
1050
1051 static inline void
1052 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1053 {
1054 /* Used by drivers to set hash from HW */
1055 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1056 }
1057
1058 static inline void
1059 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1060 {
1061 __skb_set_hash(skb, hash, true, is_l4);
1062 }
1063
1064 void __skb_get_hash(struct sk_buff *skb);
1065 u32 skb_get_poff(const struct sk_buff *skb);
1066 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1067 const struct flow_keys *keys, int hlen);
1068 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1069 void *data, int hlen_proto);
1070
1071 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1072 int thoff, u8 ip_proto)
1073 {
1074 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1075 }
1076
1077 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1078 const struct flow_dissector_key *key,
1079 unsigned int key_count);
1080
1081 bool __skb_flow_dissect(const struct sk_buff *skb,
1082 struct flow_dissector *flow_dissector,
1083 void *target_container,
1084 void *data, __be16 proto, int nhoff, int hlen,
1085 unsigned int flags);
1086
1087 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1088 struct flow_dissector *flow_dissector,
1089 void *target_container, unsigned int flags)
1090 {
1091 return __skb_flow_dissect(skb, flow_dissector, target_container,
1092 NULL, 0, 0, 0, flags);
1093 }
1094
1095 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1096 struct flow_keys *flow,
1097 unsigned int flags)
1098 {
1099 memset(flow, 0, sizeof(*flow));
1100 return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1101 NULL, 0, 0, 0, flags);
1102 }
1103
1104 static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow,
1105 void *data, __be16 proto,
1106 int nhoff, int hlen,
1107 unsigned int flags)
1108 {
1109 memset(flow, 0, sizeof(*flow));
1110 return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow,
1111 data, proto, nhoff, hlen, flags);
1112 }
1113
1114 static inline __u32 skb_get_hash(struct sk_buff *skb)
1115 {
1116 if (!skb->l4_hash && !skb->sw_hash)
1117 __skb_get_hash(skb);
1118
1119 return skb->hash;
1120 }
1121
1122 __u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6);
1123
1124 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1125 {
1126 if (!skb->l4_hash && !skb->sw_hash) {
1127 struct flow_keys keys;
1128 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
1129
1130 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1131 }
1132
1133 return skb->hash;
1134 }
1135
1136 __u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl);
1137
1138 static inline __u32 skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4)
1139 {
1140 if (!skb->l4_hash && !skb->sw_hash) {
1141 struct flow_keys keys;
1142 __u32 hash = __get_hash_from_flowi4(fl4, &keys);
1143
1144 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1145 }
1146
1147 return skb->hash;
1148 }
1149
1150 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1151
1152 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1153 {
1154 return skb->hash;
1155 }
1156
1157 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1158 {
1159 to->hash = from->hash;
1160 to->sw_hash = from->sw_hash;
1161 to->l4_hash = from->l4_hash;
1162 };
1163
1164 static inline void skb_sender_cpu_clear(struct sk_buff *skb)
1165 {
1166 }
1167
1168 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1169 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1170 {
1171 return skb->head + skb->end;
1172 }
1173
1174 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1175 {
1176 return skb->end;
1177 }
1178 #else
1179 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1180 {
1181 return skb->end;
1182 }
1183
1184 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1185 {
1186 return skb->end - skb->head;
1187 }
1188 #endif
1189
1190 /* Internal */
1191 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1192
1193 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1194 {
1195 return &skb_shinfo(skb)->hwtstamps;
1196 }
1197
1198 /**
1199 * skb_queue_empty - check if a queue is empty
1200 * @list: queue head
1201 *
1202 * Returns true if the queue is empty, false otherwise.
1203 */
1204 static inline int skb_queue_empty(const struct sk_buff_head *list)
1205 {
1206 return list->next == (const struct sk_buff *) list;
1207 }
1208
1209 /**
1210 * skb_queue_is_last - check if skb is the last entry in the queue
1211 * @list: queue head
1212 * @skb: buffer
1213 *
1214 * Returns true if @skb is the last buffer on the list.
1215 */
1216 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1217 const struct sk_buff *skb)
1218 {
1219 return skb->next == (const struct sk_buff *) list;
1220 }
1221
1222 /**
1223 * skb_queue_is_first - check if skb is the first entry in the queue
1224 * @list: queue head
1225 * @skb: buffer
1226 *
1227 * Returns true if @skb is the first buffer on the list.
1228 */
1229 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1230 const struct sk_buff *skb)
1231 {
1232 return skb->prev == (const struct sk_buff *) list;
1233 }
1234
1235 /**
1236 * skb_queue_next - return the next packet in the queue
1237 * @list: queue head
1238 * @skb: current buffer
1239 *
1240 * Return the next packet in @list after @skb. It is only valid to
1241 * call this if skb_queue_is_last() evaluates to false.
1242 */
1243 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1244 const struct sk_buff *skb)
1245 {
1246 /* This BUG_ON may seem severe, but if we just return then we
1247 * are going to dereference garbage.
1248 */
1249 BUG_ON(skb_queue_is_last(list, skb));
1250 return skb->next;
1251 }
1252
1253 /**
1254 * skb_queue_prev - return the prev packet in the queue
1255 * @list: queue head
1256 * @skb: current buffer
1257 *
1258 * Return the prev packet in @list before @skb. It is only valid to
1259 * call this if skb_queue_is_first() evaluates to false.
1260 */
1261 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1262 const struct sk_buff *skb)
1263 {
1264 /* This BUG_ON may seem severe, but if we just return then we
1265 * are going to dereference garbage.
1266 */
1267 BUG_ON(skb_queue_is_first(list, skb));
1268 return skb->prev;
1269 }
1270
1271 /**
1272 * skb_get - reference buffer
1273 * @skb: buffer to reference
1274 *
1275 * Makes another reference to a socket buffer and returns a pointer
1276 * to the buffer.
1277 */
1278 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1279 {
1280 atomic_inc(&skb->users);
1281 return skb;
1282 }
1283
1284 /*
1285 * If users == 1, we are the only owner and are can avoid redundant
1286 * atomic change.
1287 */
1288
1289 /**
1290 * skb_cloned - is the buffer a clone
1291 * @skb: buffer to check
1292 *
1293 * Returns true if the buffer was generated with skb_clone() and is
1294 * one of multiple shared copies of the buffer. Cloned buffers are
1295 * shared data so must not be written to under normal circumstances.
1296 */
1297 static inline int skb_cloned(const struct sk_buff *skb)
1298 {
1299 return skb->cloned &&
1300 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1301 }
1302
1303 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1304 {
1305 might_sleep_if(gfpflags_allow_blocking(pri));
1306
1307 if (skb_cloned(skb))
1308 return pskb_expand_head(skb, 0, 0, pri);
1309
1310 return 0;
1311 }
1312
1313 /**
1314 * skb_header_cloned - is the header a clone
1315 * @skb: buffer to check
1316 *
1317 * Returns true if modifying the header part of the buffer requires
1318 * the data to be copied.
1319 */
1320 static inline int skb_header_cloned(const struct sk_buff *skb)
1321 {
1322 int dataref;
1323
1324 if (!skb->cloned)
1325 return 0;
1326
1327 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1328 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1329 return dataref != 1;
1330 }
1331
1332 /**
1333 * skb_header_release - release reference to header
1334 * @skb: buffer to operate on
1335 *
1336 * Drop a reference to the header part of the buffer. This is done
1337 * by acquiring a payload reference. You must not read from the header
1338 * part of skb->data after this.
1339 * Note : Check if you can use __skb_header_release() instead.
1340 */
1341 static inline void skb_header_release(struct sk_buff *skb)
1342 {
1343 BUG_ON(skb->nohdr);
1344 skb->nohdr = 1;
1345 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
1346 }
1347
1348 /**
1349 * __skb_header_release - release reference to header
1350 * @skb: buffer to operate on
1351 *
1352 * Variant of skb_header_release() assuming skb is private to caller.
1353 * We can avoid one atomic operation.
1354 */
1355 static inline void __skb_header_release(struct sk_buff *skb)
1356 {
1357 skb->nohdr = 1;
1358 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1359 }
1360
1361
1362 /**
1363 * skb_shared - is the buffer shared
1364 * @skb: buffer to check
1365 *
1366 * Returns true if more than one person has a reference to this
1367 * buffer.
1368 */
1369 static inline int skb_shared(const struct sk_buff *skb)
1370 {
1371 return atomic_read(&skb->users) != 1;
1372 }
1373
1374 /**
1375 * skb_share_check - check if buffer is shared and if so clone it
1376 * @skb: buffer to check
1377 * @pri: priority for memory allocation
1378 *
1379 * If the buffer is shared the buffer is cloned and the old copy
1380 * drops a reference. A new clone with a single reference is returned.
1381 * If the buffer is not shared the original buffer is returned. When
1382 * being called from interrupt status or with spinlocks held pri must
1383 * be GFP_ATOMIC.
1384 *
1385 * NULL is returned on a memory allocation failure.
1386 */
1387 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1388 {
1389 might_sleep_if(gfpflags_allow_blocking(pri));
1390 if (skb_shared(skb)) {
1391 struct sk_buff *nskb = skb_clone(skb, pri);
1392
1393 if (likely(nskb))
1394 consume_skb(skb);
1395 else
1396 kfree_skb(skb);
1397 skb = nskb;
1398 }
1399 return skb;
1400 }
1401
1402 /*
1403 * Copy shared buffers into a new sk_buff. We effectively do COW on
1404 * packets to handle cases where we have a local reader and forward
1405 * and a couple of other messy ones. The normal one is tcpdumping
1406 * a packet thats being forwarded.
1407 */
1408
1409 /**
1410 * skb_unshare - make a copy of a shared buffer
1411 * @skb: buffer to check
1412 * @pri: priority for memory allocation
1413 *
1414 * If the socket buffer is a clone then this function creates a new
1415 * copy of the data, drops a reference count on the old copy and returns
1416 * the new copy with the reference count at 1. If the buffer is not a clone
1417 * the original buffer is returned. When called with a spinlock held or
1418 * from interrupt state @pri must be %GFP_ATOMIC
1419 *
1420 * %NULL is returned on a memory allocation failure.
1421 */
1422 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1423 gfp_t pri)
1424 {
1425 might_sleep_if(gfpflags_allow_blocking(pri));
1426 if (skb_cloned(skb)) {
1427 struct sk_buff *nskb = skb_copy(skb, pri);
1428
1429 /* Free our shared copy */
1430 if (likely(nskb))
1431 consume_skb(skb);
1432 else
1433 kfree_skb(skb);
1434 skb = nskb;
1435 }
1436 return skb;
1437 }
1438
1439 /**
1440 * skb_peek - peek at the head of an &sk_buff_head
1441 * @list_: list to peek at
1442 *
1443 * Peek an &sk_buff. Unlike most other operations you _MUST_
1444 * be careful with this one. A peek leaves the buffer on the
1445 * list and someone else may run off with it. You must hold
1446 * the appropriate locks or have a private queue to do this.
1447 *
1448 * Returns %NULL for an empty list or a pointer to the head element.
1449 * The reference count is not incremented and the reference is therefore
1450 * volatile. Use with caution.
1451 */
1452 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1453 {
1454 struct sk_buff *skb = list_->next;
1455
1456 if (skb == (struct sk_buff *)list_)
1457 skb = NULL;
1458 return skb;
1459 }
1460
1461 /**
1462 * skb_peek_next - peek skb following the given one from a queue
1463 * @skb: skb to start from
1464 * @list_: list to peek at
1465 *
1466 * Returns %NULL when the end of the list is met or a pointer to the
1467 * next element. The reference count is not incremented and the
1468 * reference is therefore volatile. Use with caution.
1469 */
1470 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1471 const struct sk_buff_head *list_)
1472 {
1473 struct sk_buff *next = skb->next;
1474
1475 if (next == (struct sk_buff *)list_)
1476 next = NULL;
1477 return next;
1478 }
1479
1480 /**
1481 * skb_peek_tail - peek at the tail of an &sk_buff_head
1482 * @list_: list to peek at
1483 *
1484 * Peek an &sk_buff. Unlike most other operations you _MUST_
1485 * be careful with this one. A peek leaves the buffer on the
1486 * list and someone else may run off with it. You must hold
1487 * the appropriate locks or have a private queue to do this.
1488 *
1489 * Returns %NULL for an empty list or a pointer to the tail element.
1490 * The reference count is not incremented and the reference is therefore
1491 * volatile. Use with caution.
1492 */
1493 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1494 {
1495 struct sk_buff *skb = list_->prev;
1496
1497 if (skb == (struct sk_buff *)list_)
1498 skb = NULL;
1499 return skb;
1500
1501 }
1502
1503 /**
1504 * skb_queue_len - get queue length
1505 * @list_: list to measure
1506 *
1507 * Return the length of an &sk_buff queue.
1508 */
1509 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1510 {
1511 return list_->qlen;
1512 }
1513
1514 /**
1515 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1516 * @list: queue to initialize
1517 *
1518 * This initializes only the list and queue length aspects of
1519 * an sk_buff_head object. This allows to initialize the list
1520 * aspects of an sk_buff_head without reinitializing things like
1521 * the spinlock. It can also be used for on-stack sk_buff_head
1522 * objects where the spinlock is known to not be used.
1523 */
1524 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1525 {
1526 list->prev = list->next = (struct sk_buff *)list;
1527 list->qlen = 0;
1528 }
1529
1530 /*
1531 * This function creates a split out lock class for each invocation;
1532 * this is needed for now since a whole lot of users of the skb-queue
1533 * infrastructure in drivers have different locking usage (in hardirq)
1534 * than the networking core (in softirq only). In the long run either the
1535 * network layer or drivers should need annotation to consolidate the
1536 * main types of usage into 3 classes.
1537 */
1538 static inline void skb_queue_head_init(struct sk_buff_head *list)
1539 {
1540 spin_lock_init(&list->lock);
1541 __skb_queue_head_init(list);
1542 }
1543
1544 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1545 struct lock_class_key *class)
1546 {
1547 skb_queue_head_init(list);
1548 lockdep_set_class(&list->lock, class);
1549 }
1550
1551 /*
1552 * Insert an sk_buff on a list.
1553 *
1554 * The "__skb_xxxx()" functions are the non-atomic ones that
1555 * can only be called with interrupts disabled.
1556 */
1557 void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1558 struct sk_buff_head *list);
1559 static inline void __skb_insert(struct sk_buff *newsk,
1560 struct sk_buff *prev, struct sk_buff *next,
1561 struct sk_buff_head *list)
1562 {
1563 newsk->next = next;
1564 newsk->prev = prev;
1565 next->prev = prev->next = newsk;
1566 list->qlen++;
1567 }
1568
1569 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1570 struct sk_buff *prev,
1571 struct sk_buff *next)
1572 {
1573 struct sk_buff *first = list->next;
1574 struct sk_buff *last = list->prev;
1575
1576 first->prev = prev;
1577 prev->next = first;
1578
1579 last->next = next;
1580 next->prev = last;
1581 }
1582
1583 /**
1584 * skb_queue_splice - join two skb lists, this is designed for stacks
1585 * @list: the new list to add
1586 * @head: the place to add it in the first list
1587 */
1588 static inline void skb_queue_splice(const struct sk_buff_head *list,
1589 struct sk_buff_head *head)
1590 {
1591 if (!skb_queue_empty(list)) {
1592 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1593 head->qlen += list->qlen;
1594 }
1595 }
1596
1597 /**
1598 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1599 * @list: the new list to add
1600 * @head: the place to add it in the first list
1601 *
1602 * The list at @list is reinitialised
1603 */
1604 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1605 struct sk_buff_head *head)
1606 {
1607 if (!skb_queue_empty(list)) {
1608 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1609 head->qlen += list->qlen;
1610 __skb_queue_head_init(list);
1611 }
1612 }
1613
1614 /**
1615 * skb_queue_splice_tail - join two skb lists, each list being a queue
1616 * @list: the new list to add
1617 * @head: the place to add it in the first list
1618 */
1619 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1620 struct sk_buff_head *head)
1621 {
1622 if (!skb_queue_empty(list)) {
1623 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1624 head->qlen += list->qlen;
1625 }
1626 }
1627
1628 /**
1629 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1630 * @list: the new list to add
1631 * @head: the place to add it in the first list
1632 *
1633 * Each of the lists is a queue.
1634 * The list at @list is reinitialised
1635 */
1636 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1637 struct sk_buff_head *head)
1638 {
1639 if (!skb_queue_empty(list)) {
1640 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1641 head->qlen += list->qlen;
1642 __skb_queue_head_init(list);
1643 }
1644 }
1645
1646 /**
1647 * __skb_queue_after - queue a buffer at the list head
1648 * @list: list to use
1649 * @prev: place after this buffer
1650 * @newsk: buffer to queue
1651 *
1652 * Queue a buffer int the middle of a list. This function takes no locks
1653 * and you must therefore hold required locks before calling it.
1654 *
1655 * A buffer cannot be placed on two lists at the same time.
1656 */
1657 static inline void __skb_queue_after(struct sk_buff_head *list,
1658 struct sk_buff *prev,
1659 struct sk_buff *newsk)
1660 {
1661 __skb_insert(newsk, prev, prev->next, list);
1662 }
1663
1664 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1665 struct sk_buff_head *list);
1666
1667 static inline void __skb_queue_before(struct sk_buff_head *list,
1668 struct sk_buff *next,
1669 struct sk_buff *newsk)
1670 {
1671 __skb_insert(newsk, next->prev, next, list);
1672 }
1673
1674 /**
1675 * __skb_queue_head - queue a buffer at the list head
1676 * @list: list to use
1677 * @newsk: buffer to queue
1678 *
1679 * Queue a buffer at the start of a list. This function takes no locks
1680 * and you must therefore hold required locks before calling it.
1681 *
1682 * A buffer cannot be placed on two lists at the same time.
1683 */
1684 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1685 static inline void __skb_queue_head(struct sk_buff_head *list,
1686 struct sk_buff *newsk)
1687 {
1688 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1689 }
1690
1691 /**
1692 * __skb_queue_tail - queue a buffer at the list tail
1693 * @list: list to use
1694 * @newsk: buffer to queue
1695 *
1696 * Queue a buffer at the end of a list. This function takes no locks
1697 * and you must therefore hold required locks before calling it.
1698 *
1699 * A buffer cannot be placed on two lists at the same time.
1700 */
1701 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1702 static inline void __skb_queue_tail(struct sk_buff_head *list,
1703 struct sk_buff *newsk)
1704 {
1705 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1706 }
1707
1708 /*
1709 * remove sk_buff from list. _Must_ be called atomically, and with
1710 * the list known..
1711 */
1712 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1713 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1714 {
1715 struct sk_buff *next, *prev;
1716
1717 list->qlen--;
1718 next = skb->next;
1719 prev = skb->prev;
1720 skb->next = skb->prev = NULL;
1721 next->prev = prev;
1722 prev->next = next;
1723 }
1724
1725 /**
1726 * __skb_dequeue - remove from the head of the queue
1727 * @list: list to dequeue from
1728 *
1729 * Remove the head of the list. This function does not take any locks
1730 * so must be used with appropriate locks held only. The head item is
1731 * returned or %NULL if the list is empty.
1732 */
1733 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1734 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1735 {
1736 struct sk_buff *skb = skb_peek(list);
1737 if (skb)
1738 __skb_unlink(skb, list);
1739 return skb;
1740 }
1741
1742 /**
1743 * __skb_dequeue_tail - remove from the tail of the queue
1744 * @list: list to dequeue from
1745 *
1746 * Remove the tail of the list. This function does not take any locks
1747 * so must be used with appropriate locks held only. The tail item is
1748 * returned or %NULL if the list is empty.
1749 */
1750 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1751 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1752 {
1753 struct sk_buff *skb = skb_peek_tail(list);
1754 if (skb)
1755 __skb_unlink(skb, list);
1756 return skb;
1757 }
1758
1759
1760 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1761 {
1762 return skb->data_len;
1763 }
1764
1765 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1766 {
1767 return skb->len - skb->data_len;
1768 }
1769
1770 static inline int skb_pagelen(const struct sk_buff *skb)
1771 {
1772 int i, len = 0;
1773
1774 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1775 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1776 return len + skb_headlen(skb);
1777 }
1778
1779 /**
1780 * __skb_fill_page_desc - initialise a paged fragment in an skb
1781 * @skb: buffer containing fragment to be initialised
1782 * @i: paged fragment index to initialise
1783 * @page: the page to use for this fragment
1784 * @off: the offset to the data with @page
1785 * @size: the length of the data
1786 *
1787 * Initialises the @i'th fragment of @skb to point to &size bytes at
1788 * offset @off within @page.
1789 *
1790 * Does not take any additional reference on the fragment.
1791 */
1792 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1793 struct page *page, int off, int size)
1794 {
1795 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1796
1797 /*
1798 * Propagate page pfmemalloc to the skb if we can. The problem is
1799 * that not all callers have unique ownership of the page but rely
1800 * on page_is_pfmemalloc doing the right thing(tm).
1801 */
1802 frag->page.p = page;
1803 frag->page_offset = off;
1804 skb_frag_size_set(frag, size);
1805
1806 page = compound_head(page);
1807 if (page_is_pfmemalloc(page))
1808 skb->pfmemalloc = true;
1809 }
1810
1811 /**
1812 * skb_fill_page_desc - initialise a paged fragment in an skb
1813 * @skb: buffer containing fragment to be initialised
1814 * @i: paged fragment index to initialise
1815 * @page: the page to use for this fragment
1816 * @off: the offset to the data with @page
1817 * @size: the length of the data
1818 *
1819 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1820 * @skb to point to @size bytes at offset @off within @page. In
1821 * addition updates @skb such that @i is the last fragment.
1822 *
1823 * Does not take any additional reference on the fragment.
1824 */
1825 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1826 struct page *page, int off, int size)
1827 {
1828 __skb_fill_page_desc(skb, i, page, off, size);
1829 skb_shinfo(skb)->nr_frags = i + 1;
1830 }
1831
1832 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1833 int size, unsigned int truesize);
1834
1835 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1836 unsigned int truesize);
1837
1838 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1839 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1840 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1841
1842 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1843 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1844 {
1845 return skb->head + skb->tail;
1846 }
1847
1848 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1849 {
1850 skb->tail = skb->data - skb->head;
1851 }
1852
1853 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1854 {
1855 skb_reset_tail_pointer(skb);
1856 skb->tail += offset;
1857 }
1858
1859 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1860 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1861 {
1862 return skb->tail;
1863 }
1864
1865 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1866 {
1867 skb->tail = skb->data;
1868 }
1869
1870 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1871 {
1872 skb->tail = skb->data + offset;
1873 }
1874
1875 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1876
1877 /*
1878 * Add data to an sk_buff
1879 */
1880 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
1881 unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1882 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1883 {
1884 unsigned char *tmp = skb_tail_pointer(skb);
1885 SKB_LINEAR_ASSERT(skb);
1886 skb->tail += len;
1887 skb->len += len;
1888 return tmp;
1889 }
1890
1891 unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1892 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1893 {
1894 skb->data -= len;
1895 skb->len += len;
1896 return skb->data;
1897 }
1898
1899 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1900 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1901 {
1902 skb->len -= len;
1903 BUG_ON(skb->len < skb->data_len);
1904 return skb->data += len;
1905 }
1906
1907 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1908 {
1909 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1910 }
1911
1912 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1913
1914 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1915 {
1916 if (len > skb_headlen(skb) &&
1917 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1918 return NULL;
1919 skb->len -= len;
1920 return skb->data += len;
1921 }
1922
1923 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1924 {
1925 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1926 }
1927
1928 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1929 {
1930 if (likely(len <= skb_headlen(skb)))
1931 return 1;
1932 if (unlikely(len > skb->len))
1933 return 0;
1934 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1935 }
1936
1937 /**
1938 * skb_headroom - bytes at buffer head
1939 * @skb: buffer to check
1940 *
1941 * Return the number of bytes of free space at the head of an &sk_buff.
1942 */
1943 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1944 {
1945 return skb->data - skb->head;
1946 }
1947
1948 /**
1949 * skb_tailroom - bytes at buffer end
1950 * @skb: buffer to check
1951 *
1952 * Return the number of bytes of free space at the tail of an sk_buff
1953 */
1954 static inline int skb_tailroom(const struct sk_buff *skb)
1955 {
1956 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1957 }
1958
1959 /**
1960 * skb_availroom - bytes at buffer end
1961 * @skb: buffer to check
1962 *
1963 * Return the number of bytes of free space at the tail of an sk_buff
1964 * allocated by sk_stream_alloc()
1965 */
1966 static inline int skb_availroom(const struct sk_buff *skb)
1967 {
1968 if (skb_is_nonlinear(skb))
1969 return 0;
1970
1971 return skb->end - skb->tail - skb->reserved_tailroom;
1972 }
1973
1974 /**
1975 * skb_reserve - adjust headroom
1976 * @skb: buffer to alter
1977 * @len: bytes to move
1978 *
1979 * Increase the headroom of an empty &sk_buff by reducing the tail
1980 * room. This is only allowed for an empty buffer.
1981 */
1982 static inline void skb_reserve(struct sk_buff *skb, int len)
1983 {
1984 skb->data += len;
1985 skb->tail += len;
1986 }
1987
1988 /**
1989 * skb_tailroom_reserve - adjust reserved_tailroom
1990 * @skb: buffer to alter
1991 * @mtu: maximum amount of headlen permitted
1992 * @needed_tailroom: minimum amount of reserved_tailroom
1993 *
1994 * Set reserved_tailroom so that headlen can be as large as possible but
1995 * not larger than mtu and tailroom cannot be smaller than
1996 * needed_tailroom.
1997 * The required headroom should already have been reserved before using
1998 * this function.
1999 */
2000 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2001 unsigned int needed_tailroom)
2002 {
2003 SKB_LINEAR_ASSERT(skb);
2004 if (mtu < skb_tailroom(skb) - needed_tailroom)
2005 /* use at most mtu */
2006 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2007 else
2008 /* use up to all available space */
2009 skb->reserved_tailroom = needed_tailroom;
2010 }
2011
2012 #define ENCAP_TYPE_ETHER 0
2013 #define ENCAP_TYPE_IPPROTO 1
2014
2015 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2016 __be16 protocol)
2017 {
2018 skb->inner_protocol = protocol;
2019 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2020 }
2021
2022 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2023 __u8 ipproto)
2024 {
2025 skb->inner_ipproto = ipproto;
2026 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2027 }
2028
2029 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2030 {
2031 skb->inner_mac_header = skb->mac_header;
2032 skb->inner_network_header = skb->network_header;
2033 skb->inner_transport_header = skb->transport_header;
2034 }
2035
2036 static inline void skb_reset_mac_len(struct sk_buff *skb)
2037 {
2038 skb->mac_len = skb->network_header - skb->mac_header;
2039 }
2040
2041 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2042 *skb)
2043 {
2044 return skb->head + skb->inner_transport_header;
2045 }
2046
2047 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2048 {
2049 return skb_inner_transport_header(skb) - skb->data;
2050 }
2051
2052 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2053 {
2054 skb->inner_transport_header = skb->data - skb->head;
2055 }
2056
2057 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2058 const int offset)
2059 {
2060 skb_reset_inner_transport_header(skb);
2061 skb->inner_transport_header += offset;
2062 }
2063
2064 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2065 {
2066 return skb->head + skb->inner_network_header;
2067 }
2068
2069 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2070 {
2071 skb->inner_network_header = skb->data - skb->head;
2072 }
2073
2074 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2075 const int offset)
2076 {
2077 skb_reset_inner_network_header(skb);
2078 skb->inner_network_header += offset;
2079 }
2080
2081 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2082 {
2083 return skb->head + skb->inner_mac_header;
2084 }
2085
2086 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2087 {
2088 skb->inner_mac_header = skb->data - skb->head;
2089 }
2090
2091 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2092 const int offset)
2093 {
2094 skb_reset_inner_mac_header(skb);
2095 skb->inner_mac_header += offset;
2096 }
2097 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2098 {
2099 return skb->transport_header != (typeof(skb->transport_header))~0U;
2100 }
2101
2102 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2103 {
2104 return skb->head + skb->transport_header;
2105 }
2106
2107 static inline void skb_reset_transport_header(struct sk_buff *skb)
2108 {
2109 skb->transport_header = skb->data - skb->head;
2110 }
2111
2112 static inline void skb_set_transport_header(struct sk_buff *skb,
2113 const int offset)
2114 {
2115 skb_reset_transport_header(skb);
2116 skb->transport_header += offset;
2117 }
2118
2119 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2120 {
2121 return skb->head + skb->network_header;
2122 }
2123
2124 static inline void skb_reset_network_header(struct sk_buff *skb)
2125 {
2126 skb->network_header = skb->data - skb->head;
2127 }
2128
2129 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2130 {
2131 skb_reset_network_header(skb);
2132 skb->network_header += offset;
2133 }
2134
2135 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2136 {
2137 return skb->head + skb->mac_header;
2138 }
2139
2140 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2141 {
2142 return skb->mac_header != (typeof(skb->mac_header))~0U;
2143 }
2144
2145 static inline void skb_reset_mac_header(struct sk_buff *skb)
2146 {
2147 skb->mac_header = skb->data - skb->head;
2148 }
2149
2150 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2151 {
2152 skb_reset_mac_header(skb);
2153 skb->mac_header += offset;
2154 }
2155
2156 static inline void skb_pop_mac_header(struct sk_buff *skb)
2157 {
2158 skb->mac_header = skb->network_header;
2159 }
2160
2161 static inline void skb_probe_transport_header(struct sk_buff *skb,
2162 const int offset_hint)
2163 {
2164 struct flow_keys keys;
2165
2166 if (skb_transport_header_was_set(skb))
2167 return;
2168 else if (skb_flow_dissect_flow_keys(skb, &keys, 0))
2169 skb_set_transport_header(skb, keys.control.thoff);
2170 else
2171 skb_set_transport_header(skb, offset_hint);
2172 }
2173
2174 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2175 {
2176 if (skb_mac_header_was_set(skb)) {
2177 const unsigned char *old_mac = skb_mac_header(skb);
2178
2179 skb_set_mac_header(skb, -skb->mac_len);
2180 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2181 }
2182 }
2183
2184 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2185 {
2186 return skb->csum_start - skb_headroom(skb);
2187 }
2188
2189 static inline int skb_transport_offset(const struct sk_buff *skb)
2190 {
2191 return skb_transport_header(skb) - skb->data;
2192 }
2193
2194 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2195 {
2196 return skb->transport_header - skb->network_header;
2197 }
2198
2199 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2200 {
2201 return skb->inner_transport_header - skb->inner_network_header;
2202 }
2203
2204 static inline int skb_network_offset(const struct sk_buff *skb)
2205 {
2206 return skb_network_header(skb) - skb->data;
2207 }
2208
2209 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2210 {
2211 return skb_inner_network_header(skb) - skb->data;
2212 }
2213
2214 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2215 {
2216 return pskb_may_pull(skb, skb_network_offset(skb) + len);
2217 }
2218
2219 /*
2220 * CPUs often take a performance hit when accessing unaligned memory
2221 * locations. The actual performance hit varies, it can be small if the
2222 * hardware handles it or large if we have to take an exception and fix it
2223 * in software.
2224 *
2225 * Since an ethernet header is 14 bytes network drivers often end up with
2226 * the IP header at an unaligned offset. The IP header can be aligned by
2227 * shifting the start of the packet by 2 bytes. Drivers should do this
2228 * with:
2229 *
2230 * skb_reserve(skb, NET_IP_ALIGN);
2231 *
2232 * The downside to this alignment of the IP header is that the DMA is now
2233 * unaligned. On some architectures the cost of an unaligned DMA is high
2234 * and this cost outweighs the gains made by aligning the IP header.
2235 *
2236 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2237 * to be overridden.
2238 */
2239 #ifndef NET_IP_ALIGN
2240 #define NET_IP_ALIGN 2
2241 #endif
2242
2243 /*
2244 * The networking layer reserves some headroom in skb data (via
2245 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2246 * the header has to grow. In the default case, if the header has to grow
2247 * 32 bytes or less we avoid the reallocation.
2248 *
2249 * Unfortunately this headroom changes the DMA alignment of the resulting
2250 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2251 * on some architectures. An architecture can override this value,
2252 * perhaps setting it to a cacheline in size (since that will maintain
2253 * cacheline alignment of the DMA). It must be a power of 2.
2254 *
2255 * Various parts of the networking layer expect at least 32 bytes of
2256 * headroom, you should not reduce this.
2257 *
2258 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2259 * to reduce average number of cache lines per packet.
2260 * get_rps_cpus() for example only access one 64 bytes aligned block :
2261 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2262 */
2263 #ifndef NET_SKB_PAD
2264 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
2265 #endif
2266
2267 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2268
2269 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2270 {
2271 if (unlikely(skb_is_nonlinear(skb))) {
2272 WARN_ON(1);
2273 return;
2274 }
2275 skb->len = len;
2276 skb_set_tail_pointer(skb, len);
2277 }
2278
2279 void skb_trim(struct sk_buff *skb, unsigned int len);
2280
2281 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2282 {
2283 if (skb->data_len)
2284 return ___pskb_trim(skb, len);
2285 __skb_trim(skb, len);
2286 return 0;
2287 }
2288
2289 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2290 {
2291 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2292 }
2293
2294 /**
2295 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2296 * @skb: buffer to alter
2297 * @len: new length
2298 *
2299 * This is identical to pskb_trim except that the caller knows that
2300 * the skb is not cloned so we should never get an error due to out-
2301 * of-memory.
2302 */
2303 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2304 {
2305 int err = pskb_trim(skb, len);
2306 BUG_ON(err);
2307 }
2308
2309 /**
2310 * skb_orphan - orphan a buffer
2311 * @skb: buffer to orphan
2312 *
2313 * If a buffer currently has an owner then we call the owner's
2314 * destructor function and make the @skb unowned. The buffer continues
2315 * to exist but is no longer charged to its former owner.
2316 */
2317 static inline void skb_orphan(struct sk_buff *skb)
2318 {
2319 if (skb->destructor) {
2320 skb->destructor(skb);
2321 skb->destructor = NULL;
2322 skb->sk = NULL;
2323 } else {
2324 BUG_ON(skb->sk);
2325 }
2326 }
2327
2328 /**
2329 * skb_orphan_frags - orphan the frags contained in a buffer
2330 * @skb: buffer to orphan frags from
2331 * @gfp_mask: allocation mask for replacement pages
2332 *
2333 * For each frag in the SKB which needs a destructor (i.e. has an
2334 * owner) create a copy of that frag and release the original
2335 * page by calling the destructor.
2336 */
2337 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2338 {
2339 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
2340 return 0;
2341 return skb_copy_ubufs(skb, gfp_mask);
2342 }
2343
2344 /**
2345 * __skb_queue_purge - empty a list
2346 * @list: list to empty
2347 *
2348 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2349 * the list and one reference dropped. This function does not take the
2350 * list lock and the caller must hold the relevant locks to use it.
2351 */
2352 void skb_queue_purge(struct sk_buff_head *list);
2353 static inline void __skb_queue_purge(struct sk_buff_head *list)
2354 {
2355 struct sk_buff *skb;
2356 while ((skb = __skb_dequeue(list)) != NULL)
2357 kfree_skb(skb);
2358 }
2359
2360 void *netdev_alloc_frag(unsigned int fragsz);
2361
2362 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2363 gfp_t gfp_mask);
2364
2365 /**
2366 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
2367 * @dev: network device to receive on
2368 * @length: length to allocate
2369 *
2370 * Allocate a new &sk_buff and assign it a usage count of one. The
2371 * buffer has unspecified headroom built in. Users should allocate
2372 * the headroom they think they need without accounting for the
2373 * built in space. The built in space is used for optimisations.
2374 *
2375 * %NULL is returned if there is no free memory. Although this function
2376 * allocates memory it can be called from an interrupt.
2377 */
2378 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2379 unsigned int length)
2380 {
2381 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2382 }
2383
2384 /* legacy helper around __netdev_alloc_skb() */
2385 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2386 gfp_t gfp_mask)
2387 {
2388 return __netdev_alloc_skb(NULL, length, gfp_mask);
2389 }
2390
2391 /* legacy helper around netdev_alloc_skb() */
2392 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2393 {
2394 return netdev_alloc_skb(NULL, length);
2395 }
2396
2397
2398 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2399 unsigned int length, gfp_t gfp)
2400 {
2401 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2402
2403 if (NET_IP_ALIGN && skb)
2404 skb_reserve(skb, NET_IP_ALIGN);
2405 return skb;
2406 }
2407
2408 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2409 unsigned int length)
2410 {
2411 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2412 }
2413
2414 static inline void skb_free_frag(void *addr)
2415 {
2416 __free_page_frag(addr);
2417 }
2418
2419 void *napi_alloc_frag(unsigned int fragsz);
2420 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2421 unsigned int length, gfp_t gfp_mask);
2422 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2423 unsigned int length)
2424 {
2425 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2426 }
2427
2428 /**
2429 * __dev_alloc_pages - allocate page for network Rx
2430 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2431 * @order: size of the allocation
2432 *
2433 * Allocate a new page.
2434 *
2435 * %NULL is returned if there is no free memory.
2436 */
2437 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2438 unsigned int order)
2439 {
2440 /* This piece of code contains several assumptions.
2441 * 1. This is for device Rx, therefor a cold page is preferred.
2442 * 2. The expectation is the user wants a compound page.
2443 * 3. If requesting a order 0 page it will not be compound
2444 * due to the check to see if order has a value in prep_new_page
2445 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2446 * code in gfp_to_alloc_flags that should be enforcing this.
2447 */
2448 gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC;
2449
2450 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2451 }
2452
2453 static inline struct page *dev_alloc_pages(unsigned int order)
2454 {
2455 return __dev_alloc_pages(GFP_ATOMIC, order);
2456 }
2457
2458 /**
2459 * __dev_alloc_page - allocate a page for network Rx
2460 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2461 *
2462 * Allocate a new page.
2463 *
2464 * %NULL is returned if there is no free memory.
2465 */
2466 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2467 {
2468 return __dev_alloc_pages(gfp_mask, 0);
2469 }
2470
2471 static inline struct page *dev_alloc_page(void)
2472 {
2473 return __dev_alloc_page(GFP_ATOMIC);
2474 }
2475
2476 /**
2477 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2478 * @page: The page that was allocated from skb_alloc_page
2479 * @skb: The skb that may need pfmemalloc set
2480 */
2481 static inline void skb_propagate_pfmemalloc(struct page *page,
2482 struct sk_buff *skb)
2483 {
2484 if (page_is_pfmemalloc(page))
2485 skb->pfmemalloc = true;
2486 }
2487
2488 /**
2489 * skb_frag_page - retrieve the page referred to by a paged fragment
2490 * @frag: the paged fragment
2491 *
2492 * Returns the &struct page associated with @frag.
2493 */
2494 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2495 {
2496 return frag->page.p;
2497 }
2498
2499 /**
2500 * __skb_frag_ref - take an addition reference on a paged fragment.
2501 * @frag: the paged fragment
2502 *
2503 * Takes an additional reference on the paged fragment @frag.
2504 */
2505 static inline void __skb_frag_ref(skb_frag_t *frag)
2506 {
2507 get_page(skb_frag_page(frag));
2508 }
2509
2510 /**
2511 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2512 * @skb: the buffer
2513 * @f: the fragment offset.
2514 *
2515 * Takes an additional reference on the @f'th paged fragment of @skb.
2516 */
2517 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2518 {
2519 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2520 }
2521
2522 /**
2523 * __skb_frag_unref - release a reference on a paged fragment.
2524 * @frag: the paged fragment
2525 *
2526 * Releases a reference on the paged fragment @frag.
2527 */
2528 static inline void __skb_frag_unref(skb_frag_t *frag)
2529 {
2530 put_page(skb_frag_page(frag));
2531 }
2532
2533 /**
2534 * skb_frag_unref - release a reference on a paged fragment of an skb.
2535 * @skb: the buffer
2536 * @f: the fragment offset
2537 *
2538 * Releases a reference on the @f'th paged fragment of @skb.
2539 */
2540 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2541 {
2542 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2543 }
2544
2545 /**
2546 * skb_frag_address - gets the address of the data contained in a paged fragment
2547 * @frag: the paged fragment buffer
2548 *
2549 * Returns the address of the data within @frag. The page must already
2550 * be mapped.
2551 */
2552 static inline void *skb_frag_address(const skb_frag_t *frag)
2553 {
2554 return page_address(skb_frag_page(frag)) + frag->page_offset;
2555 }
2556
2557 /**
2558 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2559 * @frag: the paged fragment buffer
2560 *
2561 * Returns the address of the data within @frag. Checks that the page
2562 * is mapped and returns %NULL otherwise.
2563 */
2564 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2565 {
2566 void *ptr = page_address(skb_frag_page(frag));
2567 if (unlikely(!ptr))
2568 return NULL;
2569
2570 return ptr + frag->page_offset;
2571 }
2572
2573 /**
2574 * __skb_frag_set_page - sets the page contained in a paged fragment
2575 * @frag: the paged fragment
2576 * @page: the page to set
2577 *
2578 * Sets the fragment @frag to contain @page.
2579 */
2580 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2581 {
2582 frag->page.p = page;
2583 }
2584
2585 /**
2586 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2587 * @skb: the buffer
2588 * @f: the fragment offset
2589 * @page: the page to set
2590 *
2591 * Sets the @f'th fragment of @skb to contain @page.
2592 */
2593 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2594 struct page *page)
2595 {
2596 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2597 }
2598
2599 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2600
2601 /**
2602 * skb_frag_dma_map - maps a paged fragment via the DMA API
2603 * @dev: the device to map the fragment to
2604 * @frag: the paged fragment to map
2605 * @offset: the offset within the fragment (starting at the
2606 * fragment's own offset)
2607 * @size: the number of bytes to map
2608 * @dir: the direction of the mapping (%PCI_DMA_*)
2609 *
2610 * Maps the page associated with @frag to @device.
2611 */
2612 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2613 const skb_frag_t *frag,
2614 size_t offset, size_t size,
2615 enum dma_data_direction dir)
2616 {
2617 return dma_map_page(dev, skb_frag_page(frag),
2618 frag->page_offset + offset, size, dir);
2619 }
2620
2621 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2622 gfp_t gfp_mask)
2623 {
2624 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2625 }
2626
2627
2628 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2629 gfp_t gfp_mask)
2630 {
2631 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2632 }
2633
2634
2635 /**
2636 * skb_clone_writable - is the header of a clone writable
2637 * @skb: buffer to check
2638 * @len: length up to which to write
2639 *
2640 * Returns true if modifying the header part of the cloned buffer
2641 * does not requires the data to be copied.
2642 */
2643 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2644 {
2645 return !skb_header_cloned(skb) &&
2646 skb_headroom(skb) + len <= skb->hdr_len;
2647 }
2648
2649 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2650 int cloned)
2651 {
2652 int delta = 0;
2653
2654 if (headroom > skb_headroom(skb))
2655 delta = headroom - skb_headroom(skb);
2656
2657 if (delta || cloned)
2658 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2659 GFP_ATOMIC);
2660 return 0;
2661 }
2662
2663 /**
2664 * skb_cow - copy header of skb when it is required
2665 * @skb: buffer to cow
2666 * @headroom: needed headroom
2667 *
2668 * If the skb passed lacks sufficient headroom or its data part
2669 * is shared, data is reallocated. If reallocation fails, an error
2670 * is returned and original skb is not changed.
2671 *
2672 * The result is skb with writable area skb->head...skb->tail
2673 * and at least @headroom of space at head.
2674 */
2675 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2676 {
2677 return __skb_cow(skb, headroom, skb_cloned(skb));
2678 }
2679
2680 /**
2681 * skb_cow_head - skb_cow but only making the head writable
2682 * @skb: buffer to cow
2683 * @headroom: needed headroom
2684 *
2685 * This function is identical to skb_cow except that we replace the
2686 * skb_cloned check by skb_header_cloned. It should be used when
2687 * you only need to push on some header and do not need to modify
2688 * the data.
2689 */
2690 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2691 {
2692 return __skb_cow(skb, headroom, skb_header_cloned(skb));
2693 }
2694
2695 /**
2696 * skb_padto - pad an skbuff up to a minimal size
2697 * @skb: buffer to pad
2698 * @len: minimal length
2699 *
2700 * Pads up a buffer to ensure the trailing bytes exist and are
2701 * blanked. If the buffer already contains sufficient data it
2702 * is untouched. Otherwise it is extended. Returns zero on
2703 * success. The skb is freed on error.
2704 */
2705 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2706 {
2707 unsigned int size = skb->len;
2708 if (likely(size >= len))
2709 return 0;
2710 return skb_pad(skb, len - size);
2711 }
2712
2713 /**
2714 * skb_put_padto - increase size and pad an skbuff up to a minimal size
2715 * @skb: buffer to pad
2716 * @len: minimal length
2717 *
2718 * Pads up a buffer to ensure the trailing bytes exist and are
2719 * blanked. If the buffer already contains sufficient data it
2720 * is untouched. Otherwise it is extended. Returns zero on
2721 * success. The skb is freed on error.
2722 */
2723 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2724 {
2725 unsigned int size = skb->len;
2726
2727 if (unlikely(size < len)) {
2728 len -= size;
2729 if (skb_pad(skb, len))
2730 return -ENOMEM;
2731 __skb_put(skb, len);
2732 }
2733 return 0;
2734 }
2735
2736 static inline int skb_add_data(struct sk_buff *skb,
2737 struct iov_iter *from, int copy)
2738 {
2739 const int off = skb->len;
2740
2741 if (skb->ip_summed == CHECKSUM_NONE) {
2742 __wsum csum = 0;
2743 if (csum_and_copy_from_iter(skb_put(skb, copy), copy,
2744 &csum, from) == copy) {
2745 skb->csum = csum_block_add(skb->csum, csum, off);
2746 return 0;
2747 }
2748 } else if (copy_from_iter(skb_put(skb, copy), copy, from) == copy)
2749 return 0;
2750
2751 __skb_trim(skb, off);
2752 return -EFAULT;
2753 }
2754
2755 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2756 const struct page *page, int off)
2757 {
2758 if (i) {
2759 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
2760
2761 return page == skb_frag_page(frag) &&
2762 off == frag->page_offset + skb_frag_size(frag);
2763 }
2764 return false;
2765 }
2766
2767 static inline int __skb_linearize(struct sk_buff *skb)
2768 {
2769 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2770 }
2771
2772 /**
2773 * skb_linearize - convert paged skb to linear one
2774 * @skb: buffer to linarize
2775 *
2776 * If there is no free memory -ENOMEM is returned, otherwise zero
2777 * is returned and the old skb data released.
2778 */
2779 static inline int skb_linearize(struct sk_buff *skb)
2780 {
2781 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2782 }
2783
2784 /**
2785 * skb_has_shared_frag - can any frag be overwritten
2786 * @skb: buffer to test
2787 *
2788 * Return true if the skb has at least one frag that might be modified
2789 * by an external entity (as in vmsplice()/sendfile())
2790 */
2791 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
2792 {
2793 return skb_is_nonlinear(skb) &&
2794 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2795 }
2796
2797 /**
2798 * skb_linearize_cow - make sure skb is linear and writable
2799 * @skb: buffer to process
2800 *
2801 * If there is no free memory -ENOMEM is returned, otherwise zero
2802 * is returned and the old skb data released.
2803 */
2804 static inline int skb_linearize_cow(struct sk_buff *skb)
2805 {
2806 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2807 __skb_linearize(skb) : 0;
2808 }
2809
2810 /**
2811 * skb_postpull_rcsum - update checksum for received skb after pull
2812 * @skb: buffer to update
2813 * @start: start of data before pull
2814 * @len: length of data pulled
2815 *
2816 * After doing a pull on a received packet, you need to call this to
2817 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2818 * CHECKSUM_NONE so that it can be recomputed from scratch.
2819 */
2820
2821 static inline void skb_postpull_rcsum(struct sk_buff *skb,
2822 const void *start, unsigned int len)
2823 {
2824 if (skb->ip_summed == CHECKSUM_COMPLETE)
2825 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2826 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
2827 skb_checksum_start_offset(skb) < 0)
2828 skb->ip_summed = CHECKSUM_NONE;
2829 }
2830
2831 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2832
2833 static inline void skb_postpush_rcsum(struct sk_buff *skb,
2834 const void *start, unsigned int len)
2835 {
2836 /* For performing the reverse operation to skb_postpull_rcsum(),
2837 * we can instead of ...
2838 *
2839 * skb->csum = csum_add(skb->csum, csum_partial(start, len, 0));
2840 *
2841 * ... just use this equivalent version here to save a few
2842 * instructions. Feeding csum of 0 in csum_partial() and later
2843 * on adding skb->csum is equivalent to feed skb->csum in the
2844 * first place.
2845 */
2846 if (skb->ip_summed == CHECKSUM_COMPLETE)
2847 skb->csum = csum_partial(start, len, skb->csum);
2848 }
2849
2850 /**
2851 * pskb_trim_rcsum - trim received skb and update checksum
2852 * @skb: buffer to trim
2853 * @len: new length
2854 *
2855 * This is exactly the same as pskb_trim except that it ensures the
2856 * checksum of received packets are still valid after the operation.
2857 */
2858
2859 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2860 {
2861 if (likely(len >= skb->len))
2862 return 0;
2863 if (skb->ip_summed == CHECKSUM_COMPLETE)
2864 skb->ip_summed = CHECKSUM_NONE;
2865 return __pskb_trim(skb, len);
2866 }
2867
2868 #define skb_queue_walk(queue, skb) \
2869 for (skb = (queue)->next; \
2870 skb != (struct sk_buff *)(queue); \
2871 skb = skb->next)
2872
2873 #define skb_queue_walk_safe(queue, skb, tmp) \
2874 for (skb = (queue)->next, tmp = skb->next; \
2875 skb != (struct sk_buff *)(queue); \
2876 skb = tmp, tmp = skb->next)
2877
2878 #define skb_queue_walk_from(queue, skb) \
2879 for (; skb != (struct sk_buff *)(queue); \
2880 skb = skb->next)
2881
2882 #define skb_queue_walk_from_safe(queue, skb, tmp) \
2883 for (tmp = skb->next; \
2884 skb != (struct sk_buff *)(queue); \
2885 skb = tmp, tmp = skb->next)
2886
2887 #define skb_queue_reverse_walk(queue, skb) \
2888 for (skb = (queue)->prev; \
2889 skb != (struct sk_buff *)(queue); \
2890 skb = skb->prev)
2891
2892 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
2893 for (skb = (queue)->prev, tmp = skb->prev; \
2894 skb != (struct sk_buff *)(queue); \
2895 skb = tmp, tmp = skb->prev)
2896
2897 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
2898 for (tmp = skb->prev; \
2899 skb != (struct sk_buff *)(queue); \
2900 skb = tmp, tmp = skb->prev)
2901
2902 static inline bool skb_has_frag_list(const struct sk_buff *skb)
2903 {
2904 return skb_shinfo(skb)->frag_list != NULL;
2905 }
2906
2907 static inline void skb_frag_list_init(struct sk_buff *skb)
2908 {
2909 skb_shinfo(skb)->frag_list = NULL;
2910 }
2911
2912 #define skb_walk_frags(skb, iter) \
2913 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2914
2915
2916 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
2917 const struct sk_buff *skb);
2918 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
2919 int *peeked, int *off, int *err,
2920 struct sk_buff **last);
2921 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2922 int *peeked, int *off, int *err);
2923 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
2924 int *err);
2925 unsigned int datagram_poll(struct file *file, struct socket *sock,
2926 struct poll_table_struct *wait);
2927 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
2928 struct iov_iter *to, int size);
2929 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
2930 struct msghdr *msg, int size)
2931 {
2932 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
2933 }
2934 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
2935 struct msghdr *msg);
2936 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
2937 struct iov_iter *from, int len);
2938 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
2939 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2940 void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb);
2941 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
2942 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
2943 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
2944 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
2945 int len, __wsum csum);
2946 ssize_t skb_socket_splice(struct sock *sk,
2947 struct pipe_inode_info *pipe,
2948 struct splice_pipe_desc *spd);
2949 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2950 struct pipe_inode_info *pipe, unsigned int len,
2951 unsigned int flags,
2952 ssize_t (*splice_cb)(struct sock *,
2953 struct pipe_inode_info *,
2954 struct splice_pipe_desc *));
2955 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2956 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
2957 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
2958 int len, int hlen);
2959 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
2960 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
2961 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
2962 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
2963 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
2964 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
2965 int skb_ensure_writable(struct sk_buff *skb, int write_len);
2966 int skb_vlan_pop(struct sk_buff *skb);
2967 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
2968
2969 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
2970 {
2971 return copy_from_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
2972 }
2973
2974 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
2975 {
2976 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
2977 }
2978
2979 struct skb_checksum_ops {
2980 __wsum (*update)(const void *mem, int len, __wsum wsum);
2981 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
2982 };
2983
2984 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2985 __wsum csum, const struct skb_checksum_ops *ops);
2986 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
2987 __wsum csum);
2988
2989 static inline void * __must_check
2990 __skb_header_pointer(const struct sk_buff *skb, int offset,
2991 int len, void *data, int hlen, void *buffer)
2992 {
2993 if (hlen - offset >= len)
2994 return data + offset;
2995
2996 if (!skb ||
2997 skb_copy_bits(skb, offset, buffer, len) < 0)
2998 return NULL;
2999
3000 return buffer;
3001 }
3002
3003 static inline void * __must_check
3004 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3005 {
3006 return __skb_header_pointer(skb, offset, len, skb->data,
3007 skb_headlen(skb), buffer);
3008 }
3009
3010 /**
3011 * skb_needs_linearize - check if we need to linearize a given skb
3012 * depending on the given device features.
3013 * @skb: socket buffer to check
3014 * @features: net device features
3015 *
3016 * Returns true if either:
3017 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
3018 * 2. skb is fragmented and the device does not support SG.
3019 */
3020 static inline bool skb_needs_linearize(struct sk_buff *skb,
3021 netdev_features_t features)
3022 {
3023 return skb_is_nonlinear(skb) &&
3024 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3025 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3026 }
3027
3028 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3029 void *to,
3030 const unsigned int len)
3031 {
3032 memcpy(to, skb->data, len);
3033 }
3034
3035 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3036 const int offset, void *to,
3037 const unsigned int len)
3038 {
3039 memcpy(to, skb->data + offset, len);
3040 }
3041
3042 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3043 const void *from,
3044 const unsigned int len)
3045 {
3046 memcpy(skb->data, from, len);
3047 }
3048
3049 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3050 const int offset,
3051 const void *from,
3052 const unsigned int len)
3053 {
3054 memcpy(skb->data + offset, from, len);
3055 }
3056
3057 void skb_init(void);
3058
3059 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3060 {
3061 return skb->tstamp;
3062 }
3063
3064 /**
3065 * skb_get_timestamp - get timestamp from a skb
3066 * @skb: skb to get stamp from
3067 * @stamp: pointer to struct timeval to store stamp in
3068 *
3069 * Timestamps are stored in the skb as offsets to a base timestamp.
3070 * This function converts the offset back to a struct timeval and stores
3071 * it in stamp.
3072 */
3073 static inline void skb_get_timestamp(const struct sk_buff *skb,
3074 struct timeval *stamp)
3075 {
3076 *stamp = ktime_to_timeval(skb->tstamp);
3077 }
3078
3079 static inline void skb_get_timestampns(const struct sk_buff *skb,
3080 struct timespec *stamp)
3081 {
3082 *stamp = ktime_to_timespec(skb->tstamp);
3083 }
3084
3085 static inline void __net_timestamp(struct sk_buff *skb)
3086 {
3087 skb->tstamp = ktime_get_real();
3088 }
3089
3090 static inline ktime_t net_timedelta(ktime_t t)
3091 {
3092 return ktime_sub(ktime_get_real(), t);
3093 }
3094
3095 static inline ktime_t net_invalid_timestamp(void)
3096 {
3097 return ktime_set(0, 0);
3098 }
3099
3100 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3101
3102 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3103
3104 void skb_clone_tx_timestamp(struct sk_buff *skb);
3105 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3106
3107 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3108
3109 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3110 {
3111 }
3112
3113 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3114 {
3115 return false;
3116 }
3117
3118 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3119
3120 /**
3121 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3122 *
3123 * PHY drivers may accept clones of transmitted packets for
3124 * timestamping via their phy_driver.txtstamp method. These drivers
3125 * must call this function to return the skb back to the stack with a
3126 * timestamp.
3127 *
3128 * @skb: clone of the the original outgoing packet
3129 * @hwtstamps: hardware time stamps
3130 *
3131 */
3132 void skb_complete_tx_timestamp(struct sk_buff *skb,
3133 struct skb_shared_hwtstamps *hwtstamps);
3134
3135 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3136 struct skb_shared_hwtstamps *hwtstamps,
3137 struct sock *sk, int tstype);
3138
3139 /**
3140 * skb_tstamp_tx - queue clone of skb with send time stamps
3141 * @orig_skb: the original outgoing packet
3142 * @hwtstamps: hardware time stamps, may be NULL if not available
3143 *
3144 * If the skb has a socket associated, then this function clones the
3145 * skb (thus sharing the actual data and optional structures), stores
3146 * the optional hardware time stamping information (if non NULL) or
3147 * generates a software time stamp (otherwise), then queues the clone
3148 * to the error queue of the socket. Errors are silently ignored.
3149 */
3150 void skb_tstamp_tx(struct sk_buff *orig_skb,
3151 struct skb_shared_hwtstamps *hwtstamps);
3152
3153 static inline void sw_tx_timestamp(struct sk_buff *skb)
3154 {
3155 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
3156 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
3157 skb_tstamp_tx(skb, NULL);
3158 }
3159
3160 /**
3161 * skb_tx_timestamp() - Driver hook for transmit timestamping
3162 *
3163 * Ethernet MAC Drivers should call this function in their hard_xmit()
3164 * function immediately before giving the sk_buff to the MAC hardware.
3165 *
3166 * Specifically, one should make absolutely sure that this function is
3167 * called before TX completion of this packet can trigger. Otherwise
3168 * the packet could potentially already be freed.
3169 *
3170 * @skb: A socket buffer.
3171 */
3172 static inline void skb_tx_timestamp(struct sk_buff *skb)
3173 {
3174 skb_clone_tx_timestamp(skb);
3175 sw_tx_timestamp(skb);
3176 }
3177
3178 /**
3179 * skb_complete_wifi_ack - deliver skb with wifi status
3180 *
3181 * @skb: the original outgoing packet
3182 * @acked: ack status
3183 *
3184 */
3185 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3186
3187 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3188 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3189
3190 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3191 {
3192 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3193 skb->csum_valid ||
3194 (skb->ip_summed == CHECKSUM_PARTIAL &&
3195 skb_checksum_start_offset(skb) >= 0));
3196 }
3197
3198 /**
3199 * skb_checksum_complete - Calculate checksum of an entire packet
3200 * @skb: packet to process
3201 *
3202 * This function calculates the checksum over the entire packet plus
3203 * the value of skb->csum. The latter can be used to supply the
3204 * checksum of a pseudo header as used by TCP/UDP. It returns the
3205 * checksum.
3206 *
3207 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
3208 * this function can be used to verify that checksum on received
3209 * packets. In that case the function should return zero if the
3210 * checksum is correct. In particular, this function will return zero
3211 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3212 * hardware has already verified the correctness of the checksum.
3213 */
3214 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3215 {
3216 return skb_csum_unnecessary(skb) ?
3217 0 : __skb_checksum_complete(skb);
3218 }
3219
3220 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3221 {
3222 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3223 if (skb->csum_level == 0)
3224 skb->ip_summed = CHECKSUM_NONE;
3225 else
3226 skb->csum_level--;
3227 }
3228 }
3229
3230 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3231 {
3232 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3233 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3234 skb->csum_level++;
3235 } else if (skb->ip_summed == CHECKSUM_NONE) {
3236 skb->ip_summed = CHECKSUM_UNNECESSARY;
3237 skb->csum_level = 0;
3238 }
3239 }
3240
3241 static inline void __skb_mark_checksum_bad(struct sk_buff *skb)
3242 {
3243 /* Mark current checksum as bad (typically called from GRO
3244 * path). In the case that ip_summed is CHECKSUM_NONE
3245 * this must be the first checksum encountered in the packet.
3246 * When ip_summed is CHECKSUM_UNNECESSARY, this is the first
3247 * checksum after the last one validated. For UDP, a zero
3248 * checksum can not be marked as bad.
3249 */
3250
3251 if (skb->ip_summed == CHECKSUM_NONE ||
3252 skb->ip_summed == CHECKSUM_UNNECESSARY)
3253 skb->csum_bad = 1;
3254 }
3255
3256 /* Check if we need to perform checksum complete validation.
3257 *
3258 * Returns true if checksum complete is needed, false otherwise
3259 * (either checksum is unnecessary or zero checksum is allowed).
3260 */
3261 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3262 bool zero_okay,
3263 __sum16 check)
3264 {
3265 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3266 skb->csum_valid = 1;
3267 __skb_decr_checksum_unnecessary(skb);
3268 return false;
3269 }
3270
3271 return true;
3272 }
3273
3274 /* For small packets <= CHECKSUM_BREAK peform checksum complete directly
3275 * in checksum_init.
3276 */
3277 #define CHECKSUM_BREAK 76
3278
3279 /* Unset checksum-complete
3280 *
3281 * Unset checksum complete can be done when packet is being modified
3282 * (uncompressed for instance) and checksum-complete value is
3283 * invalidated.
3284 */
3285 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3286 {
3287 if (skb->ip_summed == CHECKSUM_COMPLETE)
3288 skb->ip_summed = CHECKSUM_NONE;
3289 }
3290
3291 /* Validate (init) checksum based on checksum complete.
3292 *
3293 * Return values:
3294 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
3295 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3296 * checksum is stored in skb->csum for use in __skb_checksum_complete
3297 * non-zero: value of invalid checksum
3298 *
3299 */
3300 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3301 bool complete,
3302 __wsum psum)
3303 {
3304 if (skb->ip_summed == CHECKSUM_COMPLETE) {
3305 if (!csum_fold(csum_add(psum, skb->csum))) {
3306 skb->csum_valid = 1;
3307 return 0;
3308 }
3309 } else if (skb->csum_bad) {
3310 /* ip_summed == CHECKSUM_NONE in this case */
3311 return (__force __sum16)1;
3312 }
3313
3314 skb->csum = psum;
3315
3316 if (complete || skb->len <= CHECKSUM_BREAK) {
3317 __sum16 csum;
3318
3319 csum = __skb_checksum_complete(skb);
3320 skb->csum_valid = !csum;
3321 return csum;
3322 }
3323
3324 return 0;
3325 }
3326
3327 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3328 {
3329 return 0;
3330 }
3331
3332 /* Perform checksum validate (init). Note that this is a macro since we only
3333 * want to calculate the pseudo header which is an input function if necessary.
3334 * First we try to validate without any computation (checksum unnecessary) and
3335 * then calculate based on checksum complete calling the function to compute
3336 * pseudo header.
3337 *
3338 * Return values:
3339 * 0: checksum is validated or try to in skb_checksum_complete
3340 * non-zero: value of invalid checksum
3341 */
3342 #define __skb_checksum_validate(skb, proto, complete, \
3343 zero_okay, check, compute_pseudo) \
3344 ({ \
3345 __sum16 __ret = 0; \
3346 skb->csum_valid = 0; \
3347 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
3348 __ret = __skb_checksum_validate_complete(skb, \
3349 complete, compute_pseudo(skb, proto)); \
3350 __ret; \
3351 })
3352
3353 #define skb_checksum_init(skb, proto, compute_pseudo) \
3354 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3355
3356 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
3357 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3358
3359 #define skb_checksum_validate(skb, proto, compute_pseudo) \
3360 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3361
3362 #define skb_checksum_validate_zero_check(skb, proto, check, \
3363 compute_pseudo) \
3364 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3365
3366 #define skb_checksum_simple_validate(skb) \
3367 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3368
3369 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3370 {
3371 return (skb->ip_summed == CHECKSUM_NONE &&
3372 skb->csum_valid && !skb->csum_bad);
3373 }
3374
3375 static inline void __skb_checksum_convert(struct sk_buff *skb,
3376 __sum16 check, __wsum pseudo)
3377 {
3378 skb->csum = ~pseudo;
3379 skb->ip_summed = CHECKSUM_COMPLETE;
3380 }
3381
3382 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \
3383 do { \
3384 if (__skb_checksum_convert_check(skb)) \
3385 __skb_checksum_convert(skb, check, \
3386 compute_pseudo(skb, proto)); \
3387 } while (0)
3388
3389 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3390 u16 start, u16 offset)
3391 {
3392 skb->ip_summed = CHECKSUM_PARTIAL;
3393 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3394 skb->csum_offset = offset - start;
3395 }
3396
3397 /* Update skbuf and packet to reflect the remote checksum offload operation.
3398 * When called, ptr indicates the starting point for skb->csum when
3399 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3400 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3401 */
3402 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3403 int start, int offset, bool nopartial)
3404 {
3405 __wsum delta;
3406
3407 if (!nopartial) {
3408 skb_remcsum_adjust_partial(skb, ptr, start, offset);
3409 return;
3410 }
3411
3412 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3413 __skb_checksum_complete(skb);
3414 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3415 }
3416
3417 delta = remcsum_adjust(ptr, skb->csum, start, offset);
3418
3419 /* Adjust skb->csum since we changed the packet */
3420 skb->csum = csum_add(skb->csum, delta);
3421 }
3422
3423 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3424 void nf_conntrack_destroy(struct nf_conntrack *nfct);
3425 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3426 {
3427 if (nfct && atomic_dec_and_test(&nfct->use))
3428 nf_conntrack_destroy(nfct);
3429 }
3430 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3431 {
3432 if (nfct)
3433 atomic_inc(&nfct->use);
3434 }
3435 #endif
3436 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3437 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3438 {
3439 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
3440 kfree(nf_bridge);
3441 }
3442 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3443 {
3444 if (nf_bridge)
3445 atomic_inc(&nf_bridge->use);
3446 }
3447 #endif /* CONFIG_BRIDGE_NETFILTER */
3448 static inline void nf_reset(struct sk_buff *skb)
3449 {
3450 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3451 nf_conntrack_put(skb->nfct);
3452 skb->nfct = NULL;
3453 #endif
3454 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3455 nf_bridge_put(skb->nf_bridge);
3456 skb->nf_bridge = NULL;
3457 #endif
3458 }
3459
3460 static inline void nf_reset_trace(struct sk_buff *skb)
3461 {
3462 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3463 skb->nf_trace = 0;
3464 #endif
3465 }
3466
3467 /* Note: This doesn't put any conntrack and bridge info in dst. */
3468 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3469 bool copy)
3470 {
3471 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3472 dst->nfct = src->nfct;
3473 nf_conntrack_get(src->nfct);
3474 if (copy)
3475 dst->nfctinfo = src->nfctinfo;
3476 #endif
3477 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3478 dst->nf_bridge = src->nf_bridge;
3479 nf_bridge_get(src->nf_bridge);
3480 #endif
3481 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3482 if (copy)
3483 dst->nf_trace = src->nf_trace;
3484 #endif
3485 }
3486
3487 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3488 {
3489 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3490 nf_conntrack_put(dst->nfct);
3491 #endif
3492 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3493 nf_bridge_put(dst->nf_bridge);
3494 #endif
3495 __nf_copy(dst, src, true);
3496 }
3497
3498 #ifdef CONFIG_NETWORK_SECMARK
3499 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3500 {
3501 to->secmark = from->secmark;
3502 }
3503
3504 static inline void skb_init_secmark(struct sk_buff *skb)
3505 {
3506 skb->secmark = 0;
3507 }
3508 #else
3509 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3510 { }
3511
3512 static inline void skb_init_secmark(struct sk_buff *skb)
3513 { }
3514 #endif
3515
3516 static inline bool skb_irq_freeable(const struct sk_buff *skb)
3517 {
3518 return !skb->destructor &&
3519 #if IS_ENABLED(CONFIG_XFRM)
3520 !skb->sp &&
3521 #endif
3522 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3523 !skb->nfct &&
3524 #endif
3525 !skb->_skb_refdst &&
3526 !skb_has_frag_list(skb);
3527 }
3528
3529 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3530 {
3531 skb->queue_mapping = queue_mapping;
3532 }
3533
3534 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3535 {
3536 return skb->queue_mapping;
3537 }
3538
3539 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3540 {
3541 to->queue_mapping = from->queue_mapping;
3542 }
3543
3544 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3545 {
3546 skb->queue_mapping = rx_queue + 1;
3547 }
3548
3549 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3550 {
3551 return skb->queue_mapping - 1;
3552 }
3553
3554 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3555 {
3556 return skb->queue_mapping != 0;
3557 }
3558
3559 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3560 {
3561 #ifdef CONFIG_XFRM
3562 return skb->sp;
3563 #else
3564 return NULL;
3565 #endif
3566 }
3567
3568 /* Keeps track of mac header offset relative to skb->head.
3569 * It is useful for TSO of Tunneling protocol. e.g. GRE.
3570 * For non-tunnel skb it points to skb_mac_header() and for
3571 * tunnel skb it points to outer mac header.
3572 * Keeps track of level of encapsulation of network headers.
3573 */
3574 struct skb_gso_cb {
3575 int mac_offset;
3576 int encap_level;
3577 __u16 csum_start;
3578 };
3579 #define SKB_SGO_CB_OFFSET 32
3580 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
3581
3582 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3583 {
3584 return (skb_mac_header(inner_skb) - inner_skb->head) -
3585 SKB_GSO_CB(inner_skb)->mac_offset;
3586 }
3587
3588 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3589 {
3590 int new_headroom, headroom;
3591 int ret;
3592
3593 headroom = skb_headroom(skb);
3594 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3595 if (ret)
3596 return ret;
3597
3598 new_headroom = skb_headroom(skb);
3599 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3600 return 0;
3601 }
3602
3603 /* Compute the checksum for a gso segment. First compute the checksum value
3604 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
3605 * then add in skb->csum (checksum from csum_start to end of packet).
3606 * skb->csum and csum_start are then updated to reflect the checksum of the
3607 * resultant packet starting from the transport header-- the resultant checksum
3608 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
3609 * header.
3610 */
3611 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
3612 {
3613 int plen = SKB_GSO_CB(skb)->csum_start - skb_headroom(skb) -
3614 skb_transport_offset(skb);
3615 __wsum partial;
3616
3617 partial = csum_partial(skb_transport_header(skb), plen, skb->csum);
3618 skb->csum = res;
3619 SKB_GSO_CB(skb)->csum_start -= plen;
3620
3621 return csum_fold(partial);
3622 }
3623
3624 static inline bool skb_is_gso(const struct sk_buff *skb)
3625 {
3626 return skb_shinfo(skb)->gso_size;
3627 }
3628
3629 /* Note: Should be called only if skb_is_gso(skb) is true */
3630 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
3631 {
3632 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
3633 }
3634
3635 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
3636
3637 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
3638 {
3639 /* LRO sets gso_size but not gso_type, whereas if GSO is really
3640 * wanted then gso_type will be set. */
3641 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3642
3643 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
3644 unlikely(shinfo->gso_type == 0)) {
3645 __skb_warn_lro_forwarding(skb);
3646 return true;
3647 }
3648 return false;
3649 }
3650
3651 static inline void skb_forward_csum(struct sk_buff *skb)
3652 {
3653 /* Unfortunately we don't support this one. Any brave souls? */
3654 if (skb->ip_summed == CHECKSUM_COMPLETE)
3655 skb->ip_summed = CHECKSUM_NONE;
3656 }
3657
3658 /**
3659 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
3660 * @skb: skb to check
3661 *
3662 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
3663 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
3664 * use this helper, to document places where we make this assertion.
3665 */
3666 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
3667 {
3668 #ifdef DEBUG
3669 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
3670 #endif
3671 }
3672
3673 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
3674
3675 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
3676 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
3677 unsigned int transport_len,
3678 __sum16(*skb_chkf)(struct sk_buff *skb));
3679
3680 /**
3681 * skb_head_is_locked - Determine if the skb->head is locked down
3682 * @skb: skb to check
3683 *
3684 * The head on skbs build around a head frag can be removed if they are
3685 * not cloned. This function returns true if the skb head is locked down
3686 * due to either being allocated via kmalloc, or by being a clone with
3687 * multiple references to the head.
3688 */
3689 static inline bool skb_head_is_locked(const struct sk_buff *skb)
3690 {
3691 return !skb->head_frag || skb_cloned(skb);
3692 }
3693
3694 /**
3695 * skb_gso_network_seglen - Return length of individual segments of a gso packet
3696 *
3697 * @skb: GSO skb
3698 *
3699 * skb_gso_network_seglen is used to determine the real size of the
3700 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
3701 *
3702 * The MAC/L2 header is not accounted for.
3703 */
3704 static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
3705 {
3706 unsigned int hdr_len = skb_transport_header(skb) -
3707 skb_network_header(skb);
3708 return hdr_len + skb_gso_transport_seglen(skb);
3709 }
3710
3711 #endif /* __KERNEL__ */
3712 #endif /* _LINUX_SKBUFF_H */
This page took 0.103642 seconds and 6 git commands to generate.