Merge branch 'upstream-linus' of master.kernel.org:/pub/scm/linux/kernel/git/jgarzik...
[deliverable/linux.git] / include / linux / skbuff.h
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/cache.h>
21
22 #include <asm/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/net.h>
26 #include <linux/textsearch.h>
27 #include <net/checksum.h>
28 #include <linux/rcupdate.h>
29 #include <linux/dmaengine.h>
30
31 #define HAVE_ALLOC_SKB /* For the drivers to know */
32 #define HAVE_ALIGNABLE_SKB /* Ditto 8) */
33
34 #define CHECKSUM_NONE 0
35 #define CHECKSUM_PARTIAL 1
36 #define CHECKSUM_UNNECESSARY 2
37 #define CHECKSUM_COMPLETE 3
38
39 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
40 ~(SMP_CACHE_BYTES - 1))
41 #define SKB_MAX_ORDER(X, ORDER) (((PAGE_SIZE << (ORDER)) - (X) - \
42 sizeof(struct skb_shared_info)) & \
43 ~(SMP_CACHE_BYTES - 1))
44 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
45 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
46
47 /* A. Checksumming of received packets by device.
48 *
49 * NONE: device failed to checksum this packet.
50 * skb->csum is undefined.
51 *
52 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
53 * skb->csum is undefined.
54 * It is bad option, but, unfortunately, many of vendors do this.
55 * Apparently with secret goal to sell you new device, when you
56 * will add new protocol to your host. F.e. IPv6. 8)
57 *
58 * COMPLETE: the most generic way. Device supplied checksum of _all_
59 * the packet as seen by netif_rx in skb->csum.
60 * NOTE: Even if device supports only some protocols, but
61 * is able to produce some skb->csum, it MUST use COMPLETE,
62 * not UNNECESSARY.
63 *
64 * B. Checksumming on output.
65 *
66 * NONE: skb is checksummed by protocol or csum is not required.
67 *
68 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
69 * from skb->h.raw to the end and to record the checksum
70 * at skb->h.raw+skb->csum.
71 *
72 * Device must show its capabilities in dev->features, set
73 * at device setup time.
74 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
75 * everything.
76 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
77 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
78 * TCP/UDP over IPv4. Sigh. Vendors like this
79 * way by an unknown reason. Though, see comment above
80 * about CHECKSUM_UNNECESSARY. 8)
81 *
82 * Any questions? No questions, good. --ANK
83 */
84
85 struct net_device;
86
87 #ifdef CONFIG_NETFILTER
88 struct nf_conntrack {
89 atomic_t use;
90 void (*destroy)(struct nf_conntrack *);
91 };
92
93 #ifdef CONFIG_BRIDGE_NETFILTER
94 struct nf_bridge_info {
95 atomic_t use;
96 struct net_device *physindev;
97 struct net_device *physoutdev;
98 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
99 struct net_device *netoutdev;
100 #endif
101 unsigned int mask;
102 unsigned long data[32 / sizeof(unsigned long)];
103 };
104 #endif
105
106 #endif
107
108 struct sk_buff_head {
109 /* These two members must be first. */
110 struct sk_buff *next;
111 struct sk_buff *prev;
112
113 __u32 qlen;
114 spinlock_t lock;
115 };
116
117 struct sk_buff;
118
119 /* To allow 64K frame to be packed as single skb without frag_list */
120 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
121
122 typedef struct skb_frag_struct skb_frag_t;
123
124 struct skb_frag_struct {
125 struct page *page;
126 __u16 page_offset;
127 __u16 size;
128 };
129
130 /* This data is invariant across clones and lives at
131 * the end of the header data, ie. at skb->end.
132 */
133 struct skb_shared_info {
134 atomic_t dataref;
135 unsigned short nr_frags;
136 unsigned short gso_size;
137 /* Warning: this field is not always filled in (UFO)! */
138 unsigned short gso_segs;
139 unsigned short gso_type;
140 __be32 ip6_frag_id;
141 struct sk_buff *frag_list;
142 skb_frag_t frags[MAX_SKB_FRAGS];
143 };
144
145 /* We divide dataref into two halves. The higher 16 bits hold references
146 * to the payload part of skb->data. The lower 16 bits hold references to
147 * the entire skb->data. It is up to the users of the skb to agree on
148 * where the payload starts.
149 *
150 * All users must obey the rule that the skb->data reference count must be
151 * greater than or equal to the payload reference count.
152 *
153 * Holding a reference to the payload part means that the user does not
154 * care about modifications to the header part of skb->data.
155 */
156 #define SKB_DATAREF_SHIFT 16
157 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
158
159 struct skb_timeval {
160 u32 off_sec;
161 u32 off_usec;
162 };
163
164
165 enum {
166 SKB_FCLONE_UNAVAILABLE,
167 SKB_FCLONE_ORIG,
168 SKB_FCLONE_CLONE,
169 };
170
171 enum {
172 SKB_GSO_TCPV4 = 1 << 0,
173 SKB_GSO_UDP = 1 << 1,
174
175 /* This indicates the skb is from an untrusted source. */
176 SKB_GSO_DODGY = 1 << 2,
177
178 /* This indicates the tcp segment has CWR set. */
179 SKB_GSO_TCP_ECN = 1 << 3,
180
181 SKB_GSO_TCPV6 = 1 << 4,
182 };
183
184 /**
185 * struct sk_buff - socket buffer
186 * @next: Next buffer in list
187 * @prev: Previous buffer in list
188 * @sk: Socket we are owned by
189 * @tstamp: Time we arrived
190 * @dev: Device we arrived on/are leaving by
191 * @input_dev: Device we arrived on
192 * @h: Transport layer header
193 * @nh: Network layer header
194 * @mac: Link layer header
195 * @dst: destination entry
196 * @sp: the security path, used for xfrm
197 * @cb: Control buffer. Free for use by every layer. Put private vars here
198 * @len: Length of actual data
199 * @data_len: Data length
200 * @mac_len: Length of link layer header
201 * @csum: Checksum
202 * @local_df: allow local fragmentation
203 * @cloned: Head may be cloned (check refcnt to be sure)
204 * @nohdr: Payload reference only, must not modify header
205 * @pkt_type: Packet class
206 * @fclone: skbuff clone status
207 * @ip_summed: Driver fed us an IP checksum
208 * @priority: Packet queueing priority
209 * @users: User count - see {datagram,tcp}.c
210 * @protocol: Packet protocol from driver
211 * @truesize: Buffer size
212 * @head: Head of buffer
213 * @data: Data head pointer
214 * @tail: Tail pointer
215 * @end: End pointer
216 * @destructor: Destruct function
217 * @mark: Generic packet mark
218 * @nfct: Associated connection, if any
219 * @ipvs_property: skbuff is owned by ipvs
220 * @nfctinfo: Relationship of this skb to the connection
221 * @nfct_reasm: netfilter conntrack re-assembly pointer
222 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
223 * @tc_index: Traffic control index
224 * @tc_verd: traffic control verdict
225 * @dma_cookie: a cookie to one of several possible DMA operations
226 * done by skb DMA functions
227 * @secmark: security marking
228 */
229
230 struct sk_buff {
231 /* These two members must be first. */
232 struct sk_buff *next;
233 struct sk_buff *prev;
234
235 struct sock *sk;
236 struct skb_timeval tstamp;
237 struct net_device *dev;
238 struct net_device *input_dev;
239
240 union {
241 struct tcphdr *th;
242 struct udphdr *uh;
243 struct icmphdr *icmph;
244 struct igmphdr *igmph;
245 struct iphdr *ipiph;
246 struct ipv6hdr *ipv6h;
247 unsigned char *raw;
248 } h;
249
250 union {
251 struct iphdr *iph;
252 struct ipv6hdr *ipv6h;
253 struct arphdr *arph;
254 unsigned char *raw;
255 } nh;
256
257 union {
258 unsigned char *raw;
259 } mac;
260
261 struct dst_entry *dst;
262 struct sec_path *sp;
263
264 /*
265 * This is the control buffer. It is free to use for every
266 * layer. Please put your private variables there. If you
267 * want to keep them across layers you have to do a skb_clone()
268 * first. This is owned by whoever has the skb queued ATM.
269 */
270 char cb[48];
271
272 unsigned int len,
273 data_len,
274 mac_len;
275 union {
276 __wsum csum;
277 __u32 csum_offset;
278 };
279 __u32 priority;
280 __u8 local_df:1,
281 cloned:1,
282 ip_summed:2,
283 nohdr:1,
284 nfctinfo:3;
285 __u8 pkt_type:3,
286 fclone:2,
287 ipvs_property:1;
288 __be16 protocol;
289
290 void (*destructor)(struct sk_buff *skb);
291 #ifdef CONFIG_NETFILTER
292 struct nf_conntrack *nfct;
293 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
294 struct sk_buff *nfct_reasm;
295 #endif
296 #ifdef CONFIG_BRIDGE_NETFILTER
297 struct nf_bridge_info *nf_bridge;
298 #endif
299 #endif /* CONFIG_NETFILTER */
300 #ifdef CONFIG_NET_SCHED
301 __u16 tc_index; /* traffic control index */
302 #ifdef CONFIG_NET_CLS_ACT
303 __u16 tc_verd; /* traffic control verdict */
304 #endif
305 #endif
306 #ifdef CONFIG_NET_DMA
307 dma_cookie_t dma_cookie;
308 #endif
309 #ifdef CONFIG_NETWORK_SECMARK
310 __u32 secmark;
311 #endif
312
313 __u32 mark;
314
315 /* These elements must be at the end, see alloc_skb() for details. */
316 unsigned int truesize;
317 atomic_t users;
318 unsigned char *head,
319 *data,
320 *tail,
321 *end;
322 };
323
324 #ifdef __KERNEL__
325 /*
326 * Handling routines are only of interest to the kernel
327 */
328 #include <linux/slab.h>
329
330 #include <asm/system.h>
331
332 extern void kfree_skb(struct sk_buff *skb);
333 extern void __kfree_skb(struct sk_buff *skb);
334 extern struct sk_buff *__alloc_skb(unsigned int size,
335 gfp_t priority, int fclone, int node);
336 static inline struct sk_buff *alloc_skb(unsigned int size,
337 gfp_t priority)
338 {
339 return __alloc_skb(size, priority, 0, -1);
340 }
341
342 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
343 gfp_t priority)
344 {
345 return __alloc_skb(size, priority, 1, -1);
346 }
347
348 extern struct sk_buff *alloc_skb_from_cache(struct kmem_cache *cp,
349 unsigned int size,
350 gfp_t priority);
351 extern void kfree_skbmem(struct sk_buff *skb);
352 extern struct sk_buff *skb_clone(struct sk_buff *skb,
353 gfp_t priority);
354 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
355 gfp_t priority);
356 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
357 gfp_t gfp_mask);
358 extern int pskb_expand_head(struct sk_buff *skb,
359 int nhead, int ntail,
360 gfp_t gfp_mask);
361 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
362 unsigned int headroom);
363 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
364 int newheadroom, int newtailroom,
365 gfp_t priority);
366 extern int skb_pad(struct sk_buff *skb, int pad);
367 #define dev_kfree_skb(a) kfree_skb(a)
368 extern void skb_over_panic(struct sk_buff *skb, int len,
369 void *here);
370 extern void skb_under_panic(struct sk_buff *skb, int len,
371 void *here);
372 extern void skb_truesize_bug(struct sk_buff *skb);
373
374 static inline void skb_truesize_check(struct sk_buff *skb)
375 {
376 if (unlikely((int)skb->truesize < sizeof(struct sk_buff) + skb->len))
377 skb_truesize_bug(skb);
378 }
379
380 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
381 int getfrag(void *from, char *to, int offset,
382 int len,int odd, struct sk_buff *skb),
383 void *from, int length);
384
385 struct skb_seq_state
386 {
387 __u32 lower_offset;
388 __u32 upper_offset;
389 __u32 frag_idx;
390 __u32 stepped_offset;
391 struct sk_buff *root_skb;
392 struct sk_buff *cur_skb;
393 __u8 *frag_data;
394 };
395
396 extern void skb_prepare_seq_read(struct sk_buff *skb,
397 unsigned int from, unsigned int to,
398 struct skb_seq_state *st);
399 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
400 struct skb_seq_state *st);
401 extern void skb_abort_seq_read(struct skb_seq_state *st);
402
403 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
404 unsigned int to, struct ts_config *config,
405 struct ts_state *state);
406
407 /* Internal */
408 #define skb_shinfo(SKB) ((struct skb_shared_info *)((SKB)->end))
409
410 /**
411 * skb_queue_empty - check if a queue is empty
412 * @list: queue head
413 *
414 * Returns true if the queue is empty, false otherwise.
415 */
416 static inline int skb_queue_empty(const struct sk_buff_head *list)
417 {
418 return list->next == (struct sk_buff *)list;
419 }
420
421 /**
422 * skb_get - reference buffer
423 * @skb: buffer to reference
424 *
425 * Makes another reference to a socket buffer and returns a pointer
426 * to the buffer.
427 */
428 static inline struct sk_buff *skb_get(struct sk_buff *skb)
429 {
430 atomic_inc(&skb->users);
431 return skb;
432 }
433
434 /*
435 * If users == 1, we are the only owner and are can avoid redundant
436 * atomic change.
437 */
438
439 /**
440 * skb_cloned - is the buffer a clone
441 * @skb: buffer to check
442 *
443 * Returns true if the buffer was generated with skb_clone() and is
444 * one of multiple shared copies of the buffer. Cloned buffers are
445 * shared data so must not be written to under normal circumstances.
446 */
447 static inline int skb_cloned(const struct sk_buff *skb)
448 {
449 return skb->cloned &&
450 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
451 }
452
453 /**
454 * skb_header_cloned - is the header a clone
455 * @skb: buffer to check
456 *
457 * Returns true if modifying the header part of the buffer requires
458 * the data to be copied.
459 */
460 static inline int skb_header_cloned(const struct sk_buff *skb)
461 {
462 int dataref;
463
464 if (!skb->cloned)
465 return 0;
466
467 dataref = atomic_read(&skb_shinfo(skb)->dataref);
468 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
469 return dataref != 1;
470 }
471
472 /**
473 * skb_header_release - release reference to header
474 * @skb: buffer to operate on
475 *
476 * Drop a reference to the header part of the buffer. This is done
477 * by acquiring a payload reference. You must not read from the header
478 * part of skb->data after this.
479 */
480 static inline void skb_header_release(struct sk_buff *skb)
481 {
482 BUG_ON(skb->nohdr);
483 skb->nohdr = 1;
484 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
485 }
486
487 /**
488 * skb_shared - is the buffer shared
489 * @skb: buffer to check
490 *
491 * Returns true if more than one person has a reference to this
492 * buffer.
493 */
494 static inline int skb_shared(const struct sk_buff *skb)
495 {
496 return atomic_read(&skb->users) != 1;
497 }
498
499 /**
500 * skb_share_check - check if buffer is shared and if so clone it
501 * @skb: buffer to check
502 * @pri: priority for memory allocation
503 *
504 * If the buffer is shared the buffer is cloned and the old copy
505 * drops a reference. A new clone with a single reference is returned.
506 * If the buffer is not shared the original buffer is returned. When
507 * being called from interrupt status or with spinlocks held pri must
508 * be GFP_ATOMIC.
509 *
510 * NULL is returned on a memory allocation failure.
511 */
512 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
513 gfp_t pri)
514 {
515 might_sleep_if(pri & __GFP_WAIT);
516 if (skb_shared(skb)) {
517 struct sk_buff *nskb = skb_clone(skb, pri);
518 kfree_skb(skb);
519 skb = nskb;
520 }
521 return skb;
522 }
523
524 /*
525 * Copy shared buffers into a new sk_buff. We effectively do COW on
526 * packets to handle cases where we have a local reader and forward
527 * and a couple of other messy ones. The normal one is tcpdumping
528 * a packet thats being forwarded.
529 */
530
531 /**
532 * skb_unshare - make a copy of a shared buffer
533 * @skb: buffer to check
534 * @pri: priority for memory allocation
535 *
536 * If the socket buffer is a clone then this function creates a new
537 * copy of the data, drops a reference count on the old copy and returns
538 * the new copy with the reference count at 1. If the buffer is not a clone
539 * the original buffer is returned. When called with a spinlock held or
540 * from interrupt state @pri must be %GFP_ATOMIC
541 *
542 * %NULL is returned on a memory allocation failure.
543 */
544 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
545 gfp_t pri)
546 {
547 might_sleep_if(pri & __GFP_WAIT);
548 if (skb_cloned(skb)) {
549 struct sk_buff *nskb = skb_copy(skb, pri);
550 kfree_skb(skb); /* Free our shared copy */
551 skb = nskb;
552 }
553 return skb;
554 }
555
556 /**
557 * skb_peek
558 * @list_: list to peek at
559 *
560 * Peek an &sk_buff. Unlike most other operations you _MUST_
561 * be careful with this one. A peek leaves the buffer on the
562 * list and someone else may run off with it. You must hold
563 * the appropriate locks or have a private queue to do this.
564 *
565 * Returns %NULL for an empty list or a pointer to the head element.
566 * The reference count is not incremented and the reference is therefore
567 * volatile. Use with caution.
568 */
569 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
570 {
571 struct sk_buff *list = ((struct sk_buff *)list_)->next;
572 if (list == (struct sk_buff *)list_)
573 list = NULL;
574 return list;
575 }
576
577 /**
578 * skb_peek_tail
579 * @list_: list to peek at
580 *
581 * Peek an &sk_buff. Unlike most other operations you _MUST_
582 * be careful with this one. A peek leaves the buffer on the
583 * list and someone else may run off with it. You must hold
584 * the appropriate locks or have a private queue to do this.
585 *
586 * Returns %NULL for an empty list or a pointer to the tail element.
587 * The reference count is not incremented and the reference is therefore
588 * volatile. Use with caution.
589 */
590 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
591 {
592 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
593 if (list == (struct sk_buff *)list_)
594 list = NULL;
595 return list;
596 }
597
598 /**
599 * skb_queue_len - get queue length
600 * @list_: list to measure
601 *
602 * Return the length of an &sk_buff queue.
603 */
604 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
605 {
606 return list_->qlen;
607 }
608
609 /*
610 * This function creates a split out lock class for each invocation;
611 * this is needed for now since a whole lot of users of the skb-queue
612 * infrastructure in drivers have different locking usage (in hardirq)
613 * than the networking core (in softirq only). In the long run either the
614 * network layer or drivers should need annotation to consolidate the
615 * main types of usage into 3 classes.
616 */
617 static inline void skb_queue_head_init(struct sk_buff_head *list)
618 {
619 spin_lock_init(&list->lock);
620 list->prev = list->next = (struct sk_buff *)list;
621 list->qlen = 0;
622 }
623
624 /*
625 * Insert an sk_buff at the start of a list.
626 *
627 * The "__skb_xxxx()" functions are the non-atomic ones that
628 * can only be called with interrupts disabled.
629 */
630
631 /**
632 * __skb_queue_after - queue a buffer at the list head
633 * @list: list to use
634 * @prev: place after this buffer
635 * @newsk: buffer to queue
636 *
637 * Queue a buffer int the middle of a list. This function takes no locks
638 * and you must therefore hold required locks before calling it.
639 *
640 * A buffer cannot be placed on two lists at the same time.
641 */
642 static inline void __skb_queue_after(struct sk_buff_head *list,
643 struct sk_buff *prev,
644 struct sk_buff *newsk)
645 {
646 struct sk_buff *next;
647 list->qlen++;
648
649 next = prev->next;
650 newsk->next = next;
651 newsk->prev = prev;
652 next->prev = prev->next = newsk;
653 }
654
655 /**
656 * __skb_queue_head - queue a buffer at the list head
657 * @list: list to use
658 * @newsk: buffer to queue
659 *
660 * Queue a buffer at the start of a list. This function takes no locks
661 * and you must therefore hold required locks before calling it.
662 *
663 * A buffer cannot be placed on two lists at the same time.
664 */
665 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
666 static inline void __skb_queue_head(struct sk_buff_head *list,
667 struct sk_buff *newsk)
668 {
669 __skb_queue_after(list, (struct sk_buff *)list, newsk);
670 }
671
672 /**
673 * __skb_queue_tail - queue a buffer at the list tail
674 * @list: list to use
675 * @newsk: buffer to queue
676 *
677 * Queue a buffer at the end of a list. This function takes no locks
678 * and you must therefore hold required locks before calling it.
679 *
680 * A buffer cannot be placed on two lists at the same time.
681 */
682 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
683 static inline void __skb_queue_tail(struct sk_buff_head *list,
684 struct sk_buff *newsk)
685 {
686 struct sk_buff *prev, *next;
687
688 list->qlen++;
689 next = (struct sk_buff *)list;
690 prev = next->prev;
691 newsk->next = next;
692 newsk->prev = prev;
693 next->prev = prev->next = newsk;
694 }
695
696
697 /**
698 * __skb_dequeue - remove from the head of the queue
699 * @list: list to dequeue from
700 *
701 * Remove the head of the list. This function does not take any locks
702 * so must be used with appropriate locks held only. The head item is
703 * returned or %NULL if the list is empty.
704 */
705 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
706 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
707 {
708 struct sk_buff *next, *prev, *result;
709
710 prev = (struct sk_buff *) list;
711 next = prev->next;
712 result = NULL;
713 if (next != prev) {
714 result = next;
715 next = next->next;
716 list->qlen--;
717 next->prev = prev;
718 prev->next = next;
719 result->next = result->prev = NULL;
720 }
721 return result;
722 }
723
724
725 /*
726 * Insert a packet on a list.
727 */
728 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
729 static inline void __skb_insert(struct sk_buff *newsk,
730 struct sk_buff *prev, struct sk_buff *next,
731 struct sk_buff_head *list)
732 {
733 newsk->next = next;
734 newsk->prev = prev;
735 next->prev = prev->next = newsk;
736 list->qlen++;
737 }
738
739 /*
740 * Place a packet after a given packet in a list.
741 */
742 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
743 static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
744 {
745 __skb_insert(newsk, old, old->next, list);
746 }
747
748 /*
749 * remove sk_buff from list. _Must_ be called atomically, and with
750 * the list known..
751 */
752 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
753 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
754 {
755 struct sk_buff *next, *prev;
756
757 list->qlen--;
758 next = skb->next;
759 prev = skb->prev;
760 skb->next = skb->prev = NULL;
761 next->prev = prev;
762 prev->next = next;
763 }
764
765
766 /* XXX: more streamlined implementation */
767
768 /**
769 * __skb_dequeue_tail - remove from the tail of the queue
770 * @list: list to dequeue from
771 *
772 * Remove the tail of the list. This function does not take any locks
773 * so must be used with appropriate locks held only. The tail item is
774 * returned or %NULL if the list is empty.
775 */
776 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
777 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
778 {
779 struct sk_buff *skb = skb_peek_tail(list);
780 if (skb)
781 __skb_unlink(skb, list);
782 return skb;
783 }
784
785
786 static inline int skb_is_nonlinear(const struct sk_buff *skb)
787 {
788 return skb->data_len;
789 }
790
791 static inline unsigned int skb_headlen(const struct sk_buff *skb)
792 {
793 return skb->len - skb->data_len;
794 }
795
796 static inline int skb_pagelen(const struct sk_buff *skb)
797 {
798 int i, len = 0;
799
800 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
801 len += skb_shinfo(skb)->frags[i].size;
802 return len + skb_headlen(skb);
803 }
804
805 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
806 struct page *page, int off, int size)
807 {
808 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
809
810 frag->page = page;
811 frag->page_offset = off;
812 frag->size = size;
813 skb_shinfo(skb)->nr_frags = i + 1;
814 }
815
816 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
817 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
818 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
819
820 /*
821 * Add data to an sk_buff
822 */
823 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
824 {
825 unsigned char *tmp = skb->tail;
826 SKB_LINEAR_ASSERT(skb);
827 skb->tail += len;
828 skb->len += len;
829 return tmp;
830 }
831
832 /**
833 * skb_put - add data to a buffer
834 * @skb: buffer to use
835 * @len: amount of data to add
836 *
837 * This function extends the used data area of the buffer. If this would
838 * exceed the total buffer size the kernel will panic. A pointer to the
839 * first byte of the extra data is returned.
840 */
841 static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
842 {
843 unsigned char *tmp = skb->tail;
844 SKB_LINEAR_ASSERT(skb);
845 skb->tail += len;
846 skb->len += len;
847 if (unlikely(skb->tail>skb->end))
848 skb_over_panic(skb, len, current_text_addr());
849 return tmp;
850 }
851
852 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
853 {
854 skb->data -= len;
855 skb->len += len;
856 return skb->data;
857 }
858
859 /**
860 * skb_push - add data to the start of a buffer
861 * @skb: buffer to use
862 * @len: amount of data to add
863 *
864 * This function extends the used data area of the buffer at the buffer
865 * start. If this would exceed the total buffer headroom the kernel will
866 * panic. A pointer to the first byte of the extra data is returned.
867 */
868 static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
869 {
870 skb->data -= len;
871 skb->len += len;
872 if (unlikely(skb->data<skb->head))
873 skb_under_panic(skb, len, current_text_addr());
874 return skb->data;
875 }
876
877 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
878 {
879 skb->len -= len;
880 BUG_ON(skb->len < skb->data_len);
881 return skb->data += len;
882 }
883
884 /**
885 * skb_pull - remove data from the start of a buffer
886 * @skb: buffer to use
887 * @len: amount of data to remove
888 *
889 * This function removes data from the start of a buffer, returning
890 * the memory to the headroom. A pointer to the next data in the buffer
891 * is returned. Once the data has been pulled future pushes will overwrite
892 * the old data.
893 */
894 static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
895 {
896 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
897 }
898
899 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
900
901 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
902 {
903 if (len > skb_headlen(skb) &&
904 !__pskb_pull_tail(skb, len-skb_headlen(skb)))
905 return NULL;
906 skb->len -= len;
907 return skb->data += len;
908 }
909
910 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
911 {
912 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
913 }
914
915 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
916 {
917 if (likely(len <= skb_headlen(skb)))
918 return 1;
919 if (unlikely(len > skb->len))
920 return 0;
921 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
922 }
923
924 /**
925 * skb_headroom - bytes at buffer head
926 * @skb: buffer to check
927 *
928 * Return the number of bytes of free space at the head of an &sk_buff.
929 */
930 static inline int skb_headroom(const struct sk_buff *skb)
931 {
932 return skb->data - skb->head;
933 }
934
935 /**
936 * skb_tailroom - bytes at buffer end
937 * @skb: buffer to check
938 *
939 * Return the number of bytes of free space at the tail of an sk_buff
940 */
941 static inline int skb_tailroom(const struct sk_buff *skb)
942 {
943 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
944 }
945
946 /**
947 * skb_reserve - adjust headroom
948 * @skb: buffer to alter
949 * @len: bytes to move
950 *
951 * Increase the headroom of an empty &sk_buff by reducing the tail
952 * room. This is only allowed for an empty buffer.
953 */
954 static inline void skb_reserve(struct sk_buff *skb, int len)
955 {
956 skb->data += len;
957 skb->tail += len;
958 }
959
960 /*
961 * CPUs often take a performance hit when accessing unaligned memory
962 * locations. The actual performance hit varies, it can be small if the
963 * hardware handles it or large if we have to take an exception and fix it
964 * in software.
965 *
966 * Since an ethernet header is 14 bytes network drivers often end up with
967 * the IP header at an unaligned offset. The IP header can be aligned by
968 * shifting the start of the packet by 2 bytes. Drivers should do this
969 * with:
970 *
971 * skb_reserve(NET_IP_ALIGN);
972 *
973 * The downside to this alignment of the IP header is that the DMA is now
974 * unaligned. On some architectures the cost of an unaligned DMA is high
975 * and this cost outweighs the gains made by aligning the IP header.
976 *
977 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
978 * to be overridden.
979 */
980 #ifndef NET_IP_ALIGN
981 #define NET_IP_ALIGN 2
982 #endif
983
984 /*
985 * The networking layer reserves some headroom in skb data (via
986 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
987 * the header has to grow. In the default case, if the header has to grow
988 * 16 bytes or less we avoid the reallocation.
989 *
990 * Unfortunately this headroom changes the DMA alignment of the resulting
991 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
992 * on some architectures. An architecture can override this value,
993 * perhaps setting it to a cacheline in size (since that will maintain
994 * cacheline alignment of the DMA). It must be a power of 2.
995 *
996 * Various parts of the networking layer expect at least 16 bytes of
997 * headroom, you should not reduce this.
998 */
999 #ifndef NET_SKB_PAD
1000 #define NET_SKB_PAD 16
1001 #endif
1002
1003 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1004
1005 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1006 {
1007 if (unlikely(skb->data_len)) {
1008 WARN_ON(1);
1009 return;
1010 }
1011 skb->len = len;
1012 skb->tail = skb->data + len;
1013 }
1014
1015 /**
1016 * skb_trim - remove end from a buffer
1017 * @skb: buffer to alter
1018 * @len: new length
1019 *
1020 * Cut the length of a buffer down by removing data from the tail. If
1021 * the buffer is already under the length specified it is not modified.
1022 * The skb must be linear.
1023 */
1024 static inline void skb_trim(struct sk_buff *skb, unsigned int len)
1025 {
1026 if (skb->len > len)
1027 __skb_trim(skb, len);
1028 }
1029
1030
1031 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1032 {
1033 if (skb->data_len)
1034 return ___pskb_trim(skb, len);
1035 __skb_trim(skb, len);
1036 return 0;
1037 }
1038
1039 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1040 {
1041 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1042 }
1043
1044 /**
1045 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1046 * @skb: buffer to alter
1047 * @len: new length
1048 *
1049 * This is identical to pskb_trim except that the caller knows that
1050 * the skb is not cloned so we should never get an error due to out-
1051 * of-memory.
1052 */
1053 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1054 {
1055 int err = pskb_trim(skb, len);
1056 BUG_ON(err);
1057 }
1058
1059 /**
1060 * skb_orphan - orphan a buffer
1061 * @skb: buffer to orphan
1062 *
1063 * If a buffer currently has an owner then we call the owner's
1064 * destructor function and make the @skb unowned. The buffer continues
1065 * to exist but is no longer charged to its former owner.
1066 */
1067 static inline void skb_orphan(struct sk_buff *skb)
1068 {
1069 if (skb->destructor)
1070 skb->destructor(skb);
1071 skb->destructor = NULL;
1072 skb->sk = NULL;
1073 }
1074
1075 /**
1076 * __skb_queue_purge - empty a list
1077 * @list: list to empty
1078 *
1079 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1080 * the list and one reference dropped. This function does not take the
1081 * list lock and the caller must hold the relevant locks to use it.
1082 */
1083 extern void skb_queue_purge(struct sk_buff_head *list);
1084 static inline void __skb_queue_purge(struct sk_buff_head *list)
1085 {
1086 struct sk_buff *skb;
1087 while ((skb = __skb_dequeue(list)) != NULL)
1088 kfree_skb(skb);
1089 }
1090
1091 /**
1092 * __dev_alloc_skb - allocate an skbuff for receiving
1093 * @length: length to allocate
1094 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1095 *
1096 * Allocate a new &sk_buff and assign it a usage count of one. The
1097 * buffer has unspecified headroom built in. Users should allocate
1098 * the headroom they think they need without accounting for the
1099 * built in space. The built in space is used for optimisations.
1100 *
1101 * %NULL is returned if there is no free memory.
1102 */
1103 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1104 gfp_t gfp_mask)
1105 {
1106 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1107 if (likely(skb))
1108 skb_reserve(skb, NET_SKB_PAD);
1109 return skb;
1110 }
1111
1112 /**
1113 * dev_alloc_skb - allocate an skbuff for receiving
1114 * @length: length to allocate
1115 *
1116 * Allocate a new &sk_buff and assign it a usage count of one. The
1117 * buffer has unspecified headroom built in. Users should allocate
1118 * the headroom they think they need without accounting for the
1119 * built in space. The built in space is used for optimisations.
1120 *
1121 * %NULL is returned if there is no free memory. Although this function
1122 * allocates memory it can be called from an interrupt.
1123 */
1124 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1125 {
1126 return __dev_alloc_skb(length, GFP_ATOMIC);
1127 }
1128
1129 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1130 unsigned int length, gfp_t gfp_mask);
1131
1132 /**
1133 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1134 * @dev: network device to receive on
1135 * @length: length to allocate
1136 *
1137 * Allocate a new &sk_buff and assign it a usage count of one. The
1138 * buffer has unspecified headroom built in. Users should allocate
1139 * the headroom they think they need without accounting for the
1140 * built in space. The built in space is used for optimisations.
1141 *
1142 * %NULL is returned if there is no free memory. Although this function
1143 * allocates memory it can be called from an interrupt.
1144 */
1145 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1146 unsigned int length)
1147 {
1148 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1149 }
1150
1151 /**
1152 * skb_cow - copy header of skb when it is required
1153 * @skb: buffer to cow
1154 * @headroom: needed headroom
1155 *
1156 * If the skb passed lacks sufficient headroom or its data part
1157 * is shared, data is reallocated. If reallocation fails, an error
1158 * is returned and original skb is not changed.
1159 *
1160 * The result is skb with writable area skb->head...skb->tail
1161 * and at least @headroom of space at head.
1162 */
1163 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1164 {
1165 int delta = (headroom > NET_SKB_PAD ? headroom : NET_SKB_PAD) -
1166 skb_headroom(skb);
1167
1168 if (delta < 0)
1169 delta = 0;
1170
1171 if (delta || skb_cloned(skb))
1172 return pskb_expand_head(skb, (delta + (NET_SKB_PAD-1)) &
1173 ~(NET_SKB_PAD-1), 0, GFP_ATOMIC);
1174 return 0;
1175 }
1176
1177 /**
1178 * skb_padto - pad an skbuff up to a minimal size
1179 * @skb: buffer to pad
1180 * @len: minimal length
1181 *
1182 * Pads up a buffer to ensure the trailing bytes exist and are
1183 * blanked. If the buffer already contains sufficient data it
1184 * is untouched. Otherwise it is extended. Returns zero on
1185 * success. The skb is freed on error.
1186 */
1187
1188 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1189 {
1190 unsigned int size = skb->len;
1191 if (likely(size >= len))
1192 return 0;
1193 return skb_pad(skb, len-size);
1194 }
1195
1196 static inline int skb_add_data(struct sk_buff *skb,
1197 char __user *from, int copy)
1198 {
1199 const int off = skb->len;
1200
1201 if (skb->ip_summed == CHECKSUM_NONE) {
1202 int err = 0;
1203 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1204 copy, 0, &err);
1205 if (!err) {
1206 skb->csum = csum_block_add(skb->csum, csum, off);
1207 return 0;
1208 }
1209 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1210 return 0;
1211
1212 __skb_trim(skb, off);
1213 return -EFAULT;
1214 }
1215
1216 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1217 struct page *page, int off)
1218 {
1219 if (i) {
1220 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1221
1222 return page == frag->page &&
1223 off == frag->page_offset + frag->size;
1224 }
1225 return 0;
1226 }
1227
1228 static inline int __skb_linearize(struct sk_buff *skb)
1229 {
1230 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1231 }
1232
1233 /**
1234 * skb_linearize - convert paged skb to linear one
1235 * @skb: buffer to linarize
1236 *
1237 * If there is no free memory -ENOMEM is returned, otherwise zero
1238 * is returned and the old skb data released.
1239 */
1240 static inline int skb_linearize(struct sk_buff *skb)
1241 {
1242 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1243 }
1244
1245 /**
1246 * skb_linearize_cow - make sure skb is linear and writable
1247 * @skb: buffer to process
1248 *
1249 * If there is no free memory -ENOMEM is returned, otherwise zero
1250 * is returned and the old skb data released.
1251 */
1252 static inline int skb_linearize_cow(struct sk_buff *skb)
1253 {
1254 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1255 __skb_linearize(skb) : 0;
1256 }
1257
1258 /**
1259 * skb_postpull_rcsum - update checksum for received skb after pull
1260 * @skb: buffer to update
1261 * @start: start of data before pull
1262 * @len: length of data pulled
1263 *
1264 * After doing a pull on a received packet, you need to call this to
1265 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1266 * CHECKSUM_NONE so that it can be recomputed from scratch.
1267 */
1268
1269 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1270 const void *start, unsigned int len)
1271 {
1272 if (skb->ip_summed == CHECKSUM_COMPLETE)
1273 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1274 }
1275
1276 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1277
1278 /**
1279 * pskb_trim_rcsum - trim received skb and update checksum
1280 * @skb: buffer to trim
1281 * @len: new length
1282 *
1283 * This is exactly the same as pskb_trim except that it ensures the
1284 * checksum of received packets are still valid after the operation.
1285 */
1286
1287 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1288 {
1289 if (likely(len >= skb->len))
1290 return 0;
1291 if (skb->ip_summed == CHECKSUM_COMPLETE)
1292 skb->ip_summed = CHECKSUM_NONE;
1293 return __pskb_trim(skb, len);
1294 }
1295
1296 #define skb_queue_walk(queue, skb) \
1297 for (skb = (queue)->next; \
1298 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1299 skb = skb->next)
1300
1301 #define skb_queue_reverse_walk(queue, skb) \
1302 for (skb = (queue)->prev; \
1303 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1304 skb = skb->prev)
1305
1306
1307 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1308 int noblock, int *err);
1309 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1310 struct poll_table_struct *wait);
1311 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1312 int offset, struct iovec *to,
1313 int size);
1314 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1315 int hlen,
1316 struct iovec *iov);
1317 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1318 extern void skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1319 unsigned int flags);
1320 extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
1321 int len, __wsum csum);
1322 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1323 void *to, int len);
1324 extern int skb_store_bits(const struct sk_buff *skb, int offset,
1325 void *from, int len);
1326 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
1327 int offset, u8 *to, int len,
1328 __wsum csum);
1329 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1330 extern void skb_split(struct sk_buff *skb,
1331 struct sk_buff *skb1, const u32 len);
1332
1333 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1334
1335 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1336 int len, void *buffer)
1337 {
1338 int hlen = skb_headlen(skb);
1339
1340 if (hlen - offset >= len)
1341 return skb->data + offset;
1342
1343 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1344 return NULL;
1345
1346 return buffer;
1347 }
1348
1349 extern void skb_init(void);
1350 extern void skb_add_mtu(int mtu);
1351
1352 /**
1353 * skb_get_timestamp - get timestamp from a skb
1354 * @skb: skb to get stamp from
1355 * @stamp: pointer to struct timeval to store stamp in
1356 *
1357 * Timestamps are stored in the skb as offsets to a base timestamp.
1358 * This function converts the offset back to a struct timeval and stores
1359 * it in stamp.
1360 */
1361 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1362 {
1363 stamp->tv_sec = skb->tstamp.off_sec;
1364 stamp->tv_usec = skb->tstamp.off_usec;
1365 }
1366
1367 /**
1368 * skb_set_timestamp - set timestamp of a skb
1369 * @skb: skb to set stamp of
1370 * @stamp: pointer to struct timeval to get stamp from
1371 *
1372 * Timestamps are stored in the skb as offsets to a base timestamp.
1373 * This function converts a struct timeval to an offset and stores
1374 * it in the skb.
1375 */
1376 static inline void skb_set_timestamp(struct sk_buff *skb, const struct timeval *stamp)
1377 {
1378 skb->tstamp.off_sec = stamp->tv_sec;
1379 skb->tstamp.off_usec = stamp->tv_usec;
1380 }
1381
1382 extern void __net_timestamp(struct sk_buff *skb);
1383
1384 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1385
1386 /**
1387 * skb_checksum_complete - Calculate checksum of an entire packet
1388 * @skb: packet to process
1389 *
1390 * This function calculates the checksum over the entire packet plus
1391 * the value of skb->csum. The latter can be used to supply the
1392 * checksum of a pseudo header as used by TCP/UDP. It returns the
1393 * checksum.
1394 *
1395 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
1396 * this function can be used to verify that checksum on received
1397 * packets. In that case the function should return zero if the
1398 * checksum is correct. In particular, this function will return zero
1399 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1400 * hardware has already verified the correctness of the checksum.
1401 */
1402 static inline unsigned int skb_checksum_complete(struct sk_buff *skb)
1403 {
1404 return skb->ip_summed != CHECKSUM_UNNECESSARY &&
1405 __skb_checksum_complete(skb);
1406 }
1407
1408 #ifdef CONFIG_NETFILTER
1409 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1410 {
1411 if (nfct && atomic_dec_and_test(&nfct->use))
1412 nfct->destroy(nfct);
1413 }
1414 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1415 {
1416 if (nfct)
1417 atomic_inc(&nfct->use);
1418 }
1419 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1420 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1421 {
1422 if (skb)
1423 atomic_inc(&skb->users);
1424 }
1425 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1426 {
1427 if (skb)
1428 kfree_skb(skb);
1429 }
1430 #endif
1431 #ifdef CONFIG_BRIDGE_NETFILTER
1432 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1433 {
1434 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1435 kfree(nf_bridge);
1436 }
1437 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1438 {
1439 if (nf_bridge)
1440 atomic_inc(&nf_bridge->use);
1441 }
1442 #endif /* CONFIG_BRIDGE_NETFILTER */
1443 static inline void nf_reset(struct sk_buff *skb)
1444 {
1445 nf_conntrack_put(skb->nfct);
1446 skb->nfct = NULL;
1447 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1448 nf_conntrack_put_reasm(skb->nfct_reasm);
1449 skb->nfct_reasm = NULL;
1450 #endif
1451 #ifdef CONFIG_BRIDGE_NETFILTER
1452 nf_bridge_put(skb->nf_bridge);
1453 skb->nf_bridge = NULL;
1454 #endif
1455 }
1456
1457 #else /* CONFIG_NETFILTER */
1458 static inline void nf_reset(struct sk_buff *skb) {}
1459 #endif /* CONFIG_NETFILTER */
1460
1461 #ifdef CONFIG_NETWORK_SECMARK
1462 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1463 {
1464 to->secmark = from->secmark;
1465 }
1466
1467 static inline void skb_init_secmark(struct sk_buff *skb)
1468 {
1469 skb->secmark = 0;
1470 }
1471 #else
1472 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1473 { }
1474
1475 static inline void skb_init_secmark(struct sk_buff *skb)
1476 { }
1477 #endif
1478
1479 static inline int skb_is_gso(const struct sk_buff *skb)
1480 {
1481 return skb_shinfo(skb)->gso_size;
1482 }
1483
1484 #endif /* __KERNEL__ */
1485 #endif /* _LINUX_SKBUFF_H */
This page took 0.060068 seconds and 6 git commands to generate.