Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/torvalds/linux-2.6
[deliverable/linux.git] / include / linux / skbuff.h
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/cache.h>
21
22 #include <asm/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/net.h>
26 #include <linux/textsearch.h>
27 #include <net/checksum.h>
28 #include <linux/rcupdate.h>
29 #include <linux/dmaengine.h>
30 #include <linux/hrtimer.h>
31
32 #define HAVE_ALLOC_SKB /* For the drivers to know */
33 #define HAVE_ALIGNABLE_SKB /* Ditto 8) */
34
35 /* Don't change this without changing skb_csum_unnecessary! */
36 #define CHECKSUM_NONE 0
37 #define CHECKSUM_UNNECESSARY 1
38 #define CHECKSUM_COMPLETE 2
39 #define CHECKSUM_PARTIAL 3
40
41 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
42 ~(SMP_CACHE_BYTES - 1))
43 #define SKB_WITH_OVERHEAD(X) \
44 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
45 #define SKB_MAX_ORDER(X, ORDER) \
46 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
47 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
48 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
49
50 /* A. Checksumming of received packets by device.
51 *
52 * NONE: device failed to checksum this packet.
53 * skb->csum is undefined.
54 *
55 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
56 * skb->csum is undefined.
57 * It is bad option, but, unfortunately, many of vendors do this.
58 * Apparently with secret goal to sell you new device, when you
59 * will add new protocol to your host. F.e. IPv6. 8)
60 *
61 * COMPLETE: the most generic way. Device supplied checksum of _all_
62 * the packet as seen by netif_rx in skb->csum.
63 * NOTE: Even if device supports only some protocols, but
64 * is able to produce some skb->csum, it MUST use COMPLETE,
65 * not UNNECESSARY.
66 *
67 * PARTIAL: identical to the case for output below. This may occur
68 * on a packet received directly from another Linux OS, e.g.,
69 * a virtualised Linux kernel on the same host. The packet can
70 * be treated in the same way as UNNECESSARY except that on
71 * output (i.e., forwarding) the checksum must be filled in
72 * by the OS or the hardware.
73 *
74 * B. Checksumming on output.
75 *
76 * NONE: skb is checksummed by protocol or csum is not required.
77 *
78 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
79 * from skb->csum_start to the end and to record the checksum
80 * at skb->csum_start + skb->csum_offset.
81 *
82 * Device must show its capabilities in dev->features, set
83 * at device setup time.
84 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
85 * everything.
86 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
87 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
88 * TCP/UDP over IPv4. Sigh. Vendors like this
89 * way by an unknown reason. Though, see comment above
90 * about CHECKSUM_UNNECESSARY. 8)
91 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
92 *
93 * Any questions? No questions, good. --ANK
94 */
95
96 struct net_device;
97 struct scatterlist;
98 struct pipe_inode_info;
99
100 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
101 struct nf_conntrack {
102 atomic_t use;
103 };
104 #endif
105
106 #ifdef CONFIG_BRIDGE_NETFILTER
107 struct nf_bridge_info {
108 atomic_t use;
109 struct net_device *physindev;
110 struct net_device *physoutdev;
111 unsigned int mask;
112 unsigned long data[32 / sizeof(unsigned long)];
113 };
114 #endif
115
116 struct sk_buff_head {
117 /* These two members must be first. */
118 struct sk_buff *next;
119 struct sk_buff *prev;
120
121 __u32 qlen;
122 spinlock_t lock;
123 };
124
125 struct sk_buff;
126
127 /* To allow 64K frame to be packed as single skb without frag_list */
128 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
129
130 typedef struct skb_frag_struct skb_frag_t;
131
132 struct skb_frag_struct {
133 struct page *page;
134 __u32 page_offset;
135 __u32 size;
136 };
137
138 /* This data is invariant across clones and lives at
139 * the end of the header data, ie. at skb->end.
140 */
141 struct skb_shared_info {
142 atomic_t dataref;
143 unsigned short nr_frags;
144 unsigned short gso_size;
145 /* Warning: this field is not always filled in (UFO)! */
146 unsigned short gso_segs;
147 unsigned short gso_type;
148 __be32 ip6_frag_id;
149 struct sk_buff *frag_list;
150 skb_frag_t frags[MAX_SKB_FRAGS];
151 };
152
153 /* We divide dataref into two halves. The higher 16 bits hold references
154 * to the payload part of skb->data. The lower 16 bits hold references to
155 * the entire skb->data. A clone of a headerless skb holds the length of
156 * the header in skb->hdr_len.
157 *
158 * All users must obey the rule that the skb->data reference count must be
159 * greater than or equal to the payload reference count.
160 *
161 * Holding a reference to the payload part means that the user does not
162 * care about modifications to the header part of skb->data.
163 */
164 #define SKB_DATAREF_SHIFT 16
165 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
166
167
168 enum {
169 SKB_FCLONE_UNAVAILABLE,
170 SKB_FCLONE_ORIG,
171 SKB_FCLONE_CLONE,
172 };
173
174 enum {
175 SKB_GSO_TCPV4 = 1 << 0,
176 SKB_GSO_UDP = 1 << 1,
177
178 /* This indicates the skb is from an untrusted source. */
179 SKB_GSO_DODGY = 1 << 2,
180
181 /* This indicates the tcp segment has CWR set. */
182 SKB_GSO_TCP_ECN = 1 << 3,
183
184 SKB_GSO_TCPV6 = 1 << 4,
185 };
186
187 #if BITS_PER_LONG > 32
188 #define NET_SKBUFF_DATA_USES_OFFSET 1
189 #endif
190
191 #ifdef NET_SKBUFF_DATA_USES_OFFSET
192 typedef unsigned int sk_buff_data_t;
193 #else
194 typedef unsigned char *sk_buff_data_t;
195 #endif
196
197 /**
198 * struct sk_buff - socket buffer
199 * @next: Next buffer in list
200 * @prev: Previous buffer in list
201 * @sk: Socket we are owned by
202 * @tstamp: Time we arrived
203 * @dev: Device we arrived on/are leaving by
204 * @transport_header: Transport layer header
205 * @network_header: Network layer header
206 * @mac_header: Link layer header
207 * @dst: destination entry
208 * @sp: the security path, used for xfrm
209 * @cb: Control buffer. Free for use by every layer. Put private vars here
210 * @len: Length of actual data
211 * @data_len: Data length
212 * @mac_len: Length of link layer header
213 * @hdr_len: writable header length of cloned skb
214 * @csum: Checksum (must include start/offset pair)
215 * @csum_start: Offset from skb->head where checksumming should start
216 * @csum_offset: Offset from csum_start where checksum should be stored
217 * @local_df: allow local fragmentation
218 * @cloned: Head may be cloned (check refcnt to be sure)
219 * @nohdr: Payload reference only, must not modify header
220 * @pkt_type: Packet class
221 * @fclone: skbuff clone status
222 * @ip_summed: Driver fed us an IP checksum
223 * @priority: Packet queueing priority
224 * @users: User count - see {datagram,tcp}.c
225 * @protocol: Packet protocol from driver
226 * @truesize: Buffer size
227 * @head: Head of buffer
228 * @data: Data head pointer
229 * @tail: Tail pointer
230 * @end: End pointer
231 * @destructor: Destruct function
232 * @mark: Generic packet mark
233 * @nfct: Associated connection, if any
234 * @ipvs_property: skbuff is owned by ipvs
235 * @peeked: this packet has been seen already, so stats have been
236 * done for it, don't do them again
237 * @nf_trace: netfilter packet trace flag
238 * @nfctinfo: Relationship of this skb to the connection
239 * @nfct_reasm: netfilter conntrack re-assembly pointer
240 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
241 * @iif: ifindex of device we arrived on
242 * @queue_mapping: Queue mapping for multiqueue devices
243 * @tc_index: Traffic control index
244 * @tc_verd: traffic control verdict
245 * @dma_cookie: a cookie to one of several possible DMA operations
246 * done by skb DMA functions
247 * @secmark: security marking
248 */
249
250 struct sk_buff {
251 /* These two members must be first. */
252 struct sk_buff *next;
253 struct sk_buff *prev;
254
255 struct sock *sk;
256 ktime_t tstamp;
257 struct net_device *dev;
258
259 union {
260 struct dst_entry *dst;
261 struct rtable *rtable;
262 };
263 struct sec_path *sp;
264
265 /*
266 * This is the control buffer. It is free to use for every
267 * layer. Please put your private variables there. If you
268 * want to keep them across layers you have to do a skb_clone()
269 * first. This is owned by whoever has the skb queued ATM.
270 */
271 char cb[48];
272
273 unsigned int len,
274 data_len;
275 __u16 mac_len,
276 hdr_len;
277 union {
278 __wsum csum;
279 struct {
280 __u16 csum_start;
281 __u16 csum_offset;
282 };
283 };
284 __u32 priority;
285 __u8 local_df:1,
286 cloned:1,
287 ip_summed:2,
288 nohdr:1,
289 nfctinfo:3;
290 __u8 pkt_type:3,
291 fclone:2,
292 ipvs_property:1,
293 peeked:1,
294 nf_trace:1;
295 __be16 protocol;
296
297 void (*destructor)(struct sk_buff *skb);
298 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
299 struct nf_conntrack *nfct;
300 struct sk_buff *nfct_reasm;
301 #endif
302 #ifdef CONFIG_BRIDGE_NETFILTER
303 struct nf_bridge_info *nf_bridge;
304 #endif
305
306 int iif;
307 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
308 __u16 queue_mapping;
309 #endif
310 #ifdef CONFIG_NET_SCHED
311 __u16 tc_index; /* traffic control index */
312 #ifdef CONFIG_NET_CLS_ACT
313 __u16 tc_verd; /* traffic control verdict */
314 #endif
315 #endif
316 #ifdef CONFIG_IPV6_NDISC_NODETYPE
317 __u8 ndisc_nodetype:2;
318 #endif
319 /* 14 bit hole */
320
321 #ifdef CONFIG_NET_DMA
322 dma_cookie_t dma_cookie;
323 #endif
324 #ifdef CONFIG_NETWORK_SECMARK
325 __u32 secmark;
326 #endif
327
328 __u32 mark;
329
330 sk_buff_data_t transport_header;
331 sk_buff_data_t network_header;
332 sk_buff_data_t mac_header;
333 /* These elements must be at the end, see alloc_skb() for details. */
334 sk_buff_data_t tail;
335 sk_buff_data_t end;
336 unsigned char *head,
337 *data;
338 unsigned int truesize;
339 atomic_t users;
340 };
341
342 #ifdef __KERNEL__
343 /*
344 * Handling routines are only of interest to the kernel
345 */
346 #include <linux/slab.h>
347
348 #include <asm/system.h>
349
350 extern void kfree_skb(struct sk_buff *skb);
351 extern void __kfree_skb(struct sk_buff *skb);
352 extern struct sk_buff *__alloc_skb(unsigned int size,
353 gfp_t priority, int fclone, int node);
354 static inline struct sk_buff *alloc_skb(unsigned int size,
355 gfp_t priority)
356 {
357 return __alloc_skb(size, priority, 0, -1);
358 }
359
360 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
361 gfp_t priority)
362 {
363 return __alloc_skb(size, priority, 1, -1);
364 }
365
366 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
367 extern struct sk_buff *skb_clone(struct sk_buff *skb,
368 gfp_t priority);
369 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
370 gfp_t priority);
371 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
372 gfp_t gfp_mask);
373 extern int pskb_expand_head(struct sk_buff *skb,
374 int nhead, int ntail,
375 gfp_t gfp_mask);
376 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
377 unsigned int headroom);
378 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
379 int newheadroom, int newtailroom,
380 gfp_t priority);
381 extern int skb_to_sgvec(struct sk_buff *skb,
382 struct scatterlist *sg, int offset,
383 int len);
384 extern int skb_cow_data(struct sk_buff *skb, int tailbits,
385 struct sk_buff **trailer);
386 extern int skb_pad(struct sk_buff *skb, int pad);
387 #define dev_kfree_skb(a) kfree_skb(a)
388 extern void skb_over_panic(struct sk_buff *skb, int len,
389 void *here);
390 extern void skb_under_panic(struct sk_buff *skb, int len,
391 void *here);
392 extern void skb_truesize_bug(struct sk_buff *skb);
393
394 static inline void skb_truesize_check(struct sk_buff *skb)
395 {
396 int len = sizeof(struct sk_buff) + skb->len;
397
398 if (unlikely((int)skb->truesize < len))
399 skb_truesize_bug(skb);
400 }
401
402 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
403 int getfrag(void *from, char *to, int offset,
404 int len,int odd, struct sk_buff *skb),
405 void *from, int length);
406
407 struct skb_seq_state
408 {
409 __u32 lower_offset;
410 __u32 upper_offset;
411 __u32 frag_idx;
412 __u32 stepped_offset;
413 struct sk_buff *root_skb;
414 struct sk_buff *cur_skb;
415 __u8 *frag_data;
416 };
417
418 extern void skb_prepare_seq_read(struct sk_buff *skb,
419 unsigned int from, unsigned int to,
420 struct skb_seq_state *st);
421 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
422 struct skb_seq_state *st);
423 extern void skb_abort_seq_read(struct skb_seq_state *st);
424
425 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
426 unsigned int to, struct ts_config *config,
427 struct ts_state *state);
428
429 #ifdef NET_SKBUFF_DATA_USES_OFFSET
430 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
431 {
432 return skb->head + skb->end;
433 }
434 #else
435 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
436 {
437 return skb->end;
438 }
439 #endif
440
441 /* Internal */
442 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
443
444 /**
445 * skb_queue_empty - check if a queue is empty
446 * @list: queue head
447 *
448 * Returns true if the queue is empty, false otherwise.
449 */
450 static inline int skb_queue_empty(const struct sk_buff_head *list)
451 {
452 return list->next == (struct sk_buff *)list;
453 }
454
455 /**
456 * skb_get - reference buffer
457 * @skb: buffer to reference
458 *
459 * Makes another reference to a socket buffer and returns a pointer
460 * to the buffer.
461 */
462 static inline struct sk_buff *skb_get(struct sk_buff *skb)
463 {
464 atomic_inc(&skb->users);
465 return skb;
466 }
467
468 /*
469 * If users == 1, we are the only owner and are can avoid redundant
470 * atomic change.
471 */
472
473 /**
474 * skb_cloned - is the buffer a clone
475 * @skb: buffer to check
476 *
477 * Returns true if the buffer was generated with skb_clone() and is
478 * one of multiple shared copies of the buffer. Cloned buffers are
479 * shared data so must not be written to under normal circumstances.
480 */
481 static inline int skb_cloned(const struct sk_buff *skb)
482 {
483 return skb->cloned &&
484 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
485 }
486
487 /**
488 * skb_header_cloned - is the header a clone
489 * @skb: buffer to check
490 *
491 * Returns true if modifying the header part of the buffer requires
492 * the data to be copied.
493 */
494 static inline int skb_header_cloned(const struct sk_buff *skb)
495 {
496 int dataref;
497
498 if (!skb->cloned)
499 return 0;
500
501 dataref = atomic_read(&skb_shinfo(skb)->dataref);
502 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
503 return dataref != 1;
504 }
505
506 /**
507 * skb_header_release - release reference to header
508 * @skb: buffer to operate on
509 *
510 * Drop a reference to the header part of the buffer. This is done
511 * by acquiring a payload reference. You must not read from the header
512 * part of skb->data after this.
513 */
514 static inline void skb_header_release(struct sk_buff *skb)
515 {
516 BUG_ON(skb->nohdr);
517 skb->nohdr = 1;
518 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
519 }
520
521 /**
522 * skb_shared - is the buffer shared
523 * @skb: buffer to check
524 *
525 * Returns true if more than one person has a reference to this
526 * buffer.
527 */
528 static inline int skb_shared(const struct sk_buff *skb)
529 {
530 return atomic_read(&skb->users) != 1;
531 }
532
533 /**
534 * skb_share_check - check if buffer is shared and if so clone it
535 * @skb: buffer to check
536 * @pri: priority for memory allocation
537 *
538 * If the buffer is shared the buffer is cloned and the old copy
539 * drops a reference. A new clone with a single reference is returned.
540 * If the buffer is not shared the original buffer is returned. When
541 * being called from interrupt status or with spinlocks held pri must
542 * be GFP_ATOMIC.
543 *
544 * NULL is returned on a memory allocation failure.
545 */
546 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
547 gfp_t pri)
548 {
549 might_sleep_if(pri & __GFP_WAIT);
550 if (skb_shared(skb)) {
551 struct sk_buff *nskb = skb_clone(skb, pri);
552 kfree_skb(skb);
553 skb = nskb;
554 }
555 return skb;
556 }
557
558 /*
559 * Copy shared buffers into a new sk_buff. We effectively do COW on
560 * packets to handle cases where we have a local reader and forward
561 * and a couple of other messy ones. The normal one is tcpdumping
562 * a packet thats being forwarded.
563 */
564
565 /**
566 * skb_unshare - make a copy of a shared buffer
567 * @skb: buffer to check
568 * @pri: priority for memory allocation
569 *
570 * If the socket buffer is a clone then this function creates a new
571 * copy of the data, drops a reference count on the old copy and returns
572 * the new copy with the reference count at 1. If the buffer is not a clone
573 * the original buffer is returned. When called with a spinlock held or
574 * from interrupt state @pri must be %GFP_ATOMIC
575 *
576 * %NULL is returned on a memory allocation failure.
577 */
578 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
579 gfp_t pri)
580 {
581 might_sleep_if(pri & __GFP_WAIT);
582 if (skb_cloned(skb)) {
583 struct sk_buff *nskb = skb_copy(skb, pri);
584 kfree_skb(skb); /* Free our shared copy */
585 skb = nskb;
586 }
587 return skb;
588 }
589
590 /**
591 * skb_peek
592 * @list_: list to peek at
593 *
594 * Peek an &sk_buff. Unlike most other operations you _MUST_
595 * be careful with this one. A peek leaves the buffer on the
596 * list and someone else may run off with it. You must hold
597 * the appropriate locks or have a private queue to do this.
598 *
599 * Returns %NULL for an empty list or a pointer to the head element.
600 * The reference count is not incremented and the reference is therefore
601 * volatile. Use with caution.
602 */
603 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
604 {
605 struct sk_buff *list = ((struct sk_buff *)list_)->next;
606 if (list == (struct sk_buff *)list_)
607 list = NULL;
608 return list;
609 }
610
611 /**
612 * skb_peek_tail
613 * @list_: list to peek at
614 *
615 * Peek an &sk_buff. Unlike most other operations you _MUST_
616 * be careful with this one. A peek leaves the buffer on the
617 * list and someone else may run off with it. You must hold
618 * the appropriate locks or have a private queue to do this.
619 *
620 * Returns %NULL for an empty list or a pointer to the tail element.
621 * The reference count is not incremented and the reference is therefore
622 * volatile. Use with caution.
623 */
624 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
625 {
626 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
627 if (list == (struct sk_buff *)list_)
628 list = NULL;
629 return list;
630 }
631
632 /**
633 * skb_queue_len - get queue length
634 * @list_: list to measure
635 *
636 * Return the length of an &sk_buff queue.
637 */
638 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
639 {
640 return list_->qlen;
641 }
642
643 /*
644 * This function creates a split out lock class for each invocation;
645 * this is needed for now since a whole lot of users of the skb-queue
646 * infrastructure in drivers have different locking usage (in hardirq)
647 * than the networking core (in softirq only). In the long run either the
648 * network layer or drivers should need annotation to consolidate the
649 * main types of usage into 3 classes.
650 */
651 static inline void skb_queue_head_init(struct sk_buff_head *list)
652 {
653 spin_lock_init(&list->lock);
654 list->prev = list->next = (struct sk_buff *)list;
655 list->qlen = 0;
656 }
657
658 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
659 struct lock_class_key *class)
660 {
661 skb_queue_head_init(list);
662 lockdep_set_class(&list->lock, class);
663 }
664
665 /*
666 * Insert an sk_buff on a list.
667 *
668 * The "__skb_xxxx()" functions are the non-atomic ones that
669 * can only be called with interrupts disabled.
670 */
671 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
672 static inline void __skb_insert(struct sk_buff *newsk,
673 struct sk_buff *prev, struct sk_buff *next,
674 struct sk_buff_head *list)
675 {
676 newsk->next = next;
677 newsk->prev = prev;
678 next->prev = prev->next = newsk;
679 list->qlen++;
680 }
681
682 /**
683 * __skb_queue_after - queue a buffer at the list head
684 * @list: list to use
685 * @prev: place after this buffer
686 * @newsk: buffer to queue
687 *
688 * Queue a buffer int the middle of a list. This function takes no locks
689 * and you must therefore hold required locks before calling it.
690 *
691 * A buffer cannot be placed on two lists at the same time.
692 */
693 static inline void __skb_queue_after(struct sk_buff_head *list,
694 struct sk_buff *prev,
695 struct sk_buff *newsk)
696 {
697 __skb_insert(newsk, prev, prev->next, list);
698 }
699
700 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
701 struct sk_buff_head *list);
702
703 static inline void __skb_queue_before(struct sk_buff_head *list,
704 struct sk_buff *next,
705 struct sk_buff *newsk)
706 {
707 __skb_insert(newsk, next->prev, next, list);
708 }
709
710 /**
711 * __skb_queue_head - queue a buffer at the list head
712 * @list: list to use
713 * @newsk: buffer to queue
714 *
715 * Queue a buffer at the start of a list. This function takes no locks
716 * and you must therefore hold required locks before calling it.
717 *
718 * A buffer cannot be placed on two lists at the same time.
719 */
720 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
721 static inline void __skb_queue_head(struct sk_buff_head *list,
722 struct sk_buff *newsk)
723 {
724 __skb_queue_after(list, (struct sk_buff *)list, newsk);
725 }
726
727 /**
728 * __skb_queue_tail - queue a buffer at the list tail
729 * @list: list to use
730 * @newsk: buffer to queue
731 *
732 * Queue a buffer at the end of a list. This function takes no locks
733 * and you must therefore hold required locks before calling it.
734 *
735 * A buffer cannot be placed on two lists at the same time.
736 */
737 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
738 static inline void __skb_queue_tail(struct sk_buff_head *list,
739 struct sk_buff *newsk)
740 {
741 __skb_queue_before(list, (struct sk_buff *)list, newsk);
742 }
743
744 /*
745 * remove sk_buff from list. _Must_ be called atomically, and with
746 * the list known..
747 */
748 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
749 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
750 {
751 struct sk_buff *next, *prev;
752
753 list->qlen--;
754 next = skb->next;
755 prev = skb->prev;
756 skb->next = skb->prev = NULL;
757 next->prev = prev;
758 prev->next = next;
759 }
760
761 /**
762 * __skb_dequeue - remove from the head of the queue
763 * @list: list to dequeue from
764 *
765 * Remove the head of the list. This function does not take any locks
766 * so must be used with appropriate locks held only. The head item is
767 * returned or %NULL if the list is empty.
768 */
769 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
770 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
771 {
772 struct sk_buff *skb = skb_peek(list);
773 if (skb)
774 __skb_unlink(skb, list);
775 return skb;
776 }
777
778 /**
779 * __skb_dequeue_tail - remove from the tail of the queue
780 * @list: list to dequeue from
781 *
782 * Remove the tail of the list. This function does not take any locks
783 * so must be used with appropriate locks held only. The tail item is
784 * returned or %NULL if the list is empty.
785 */
786 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
787 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
788 {
789 struct sk_buff *skb = skb_peek_tail(list);
790 if (skb)
791 __skb_unlink(skb, list);
792 return skb;
793 }
794
795
796 static inline int skb_is_nonlinear(const struct sk_buff *skb)
797 {
798 return skb->data_len;
799 }
800
801 static inline unsigned int skb_headlen(const struct sk_buff *skb)
802 {
803 return skb->len - skb->data_len;
804 }
805
806 static inline int skb_pagelen(const struct sk_buff *skb)
807 {
808 int i, len = 0;
809
810 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
811 len += skb_shinfo(skb)->frags[i].size;
812 return len + skb_headlen(skb);
813 }
814
815 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
816 struct page *page, int off, int size)
817 {
818 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
819
820 frag->page = page;
821 frag->page_offset = off;
822 frag->size = size;
823 skb_shinfo(skb)->nr_frags = i + 1;
824 }
825
826 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
827 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
828 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
829
830 #ifdef NET_SKBUFF_DATA_USES_OFFSET
831 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
832 {
833 return skb->head + skb->tail;
834 }
835
836 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
837 {
838 skb->tail = skb->data - skb->head;
839 }
840
841 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
842 {
843 skb_reset_tail_pointer(skb);
844 skb->tail += offset;
845 }
846 #else /* NET_SKBUFF_DATA_USES_OFFSET */
847 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
848 {
849 return skb->tail;
850 }
851
852 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
853 {
854 skb->tail = skb->data;
855 }
856
857 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
858 {
859 skb->tail = skb->data + offset;
860 }
861
862 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
863
864 /*
865 * Add data to an sk_buff
866 */
867 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
868 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
869 {
870 unsigned char *tmp = skb_tail_pointer(skb);
871 SKB_LINEAR_ASSERT(skb);
872 skb->tail += len;
873 skb->len += len;
874 return tmp;
875 }
876
877 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
878 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
879 {
880 skb->data -= len;
881 skb->len += len;
882 return skb->data;
883 }
884
885 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
886 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
887 {
888 skb->len -= len;
889 BUG_ON(skb->len < skb->data_len);
890 return skb->data += len;
891 }
892
893 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
894
895 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
896 {
897 if (len > skb_headlen(skb) &&
898 !__pskb_pull_tail(skb, len-skb_headlen(skb)))
899 return NULL;
900 skb->len -= len;
901 return skb->data += len;
902 }
903
904 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
905 {
906 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
907 }
908
909 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
910 {
911 if (likely(len <= skb_headlen(skb)))
912 return 1;
913 if (unlikely(len > skb->len))
914 return 0;
915 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
916 }
917
918 /**
919 * skb_headroom - bytes at buffer head
920 * @skb: buffer to check
921 *
922 * Return the number of bytes of free space at the head of an &sk_buff.
923 */
924 static inline unsigned int skb_headroom(const struct sk_buff *skb)
925 {
926 return skb->data - skb->head;
927 }
928
929 /**
930 * skb_tailroom - bytes at buffer end
931 * @skb: buffer to check
932 *
933 * Return the number of bytes of free space at the tail of an sk_buff
934 */
935 static inline int skb_tailroom(const struct sk_buff *skb)
936 {
937 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
938 }
939
940 /**
941 * skb_reserve - adjust headroom
942 * @skb: buffer to alter
943 * @len: bytes to move
944 *
945 * Increase the headroom of an empty &sk_buff by reducing the tail
946 * room. This is only allowed for an empty buffer.
947 */
948 static inline void skb_reserve(struct sk_buff *skb, int len)
949 {
950 skb->data += len;
951 skb->tail += len;
952 }
953
954 #ifdef NET_SKBUFF_DATA_USES_OFFSET
955 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
956 {
957 return skb->head + skb->transport_header;
958 }
959
960 static inline void skb_reset_transport_header(struct sk_buff *skb)
961 {
962 skb->transport_header = skb->data - skb->head;
963 }
964
965 static inline void skb_set_transport_header(struct sk_buff *skb,
966 const int offset)
967 {
968 skb_reset_transport_header(skb);
969 skb->transport_header += offset;
970 }
971
972 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
973 {
974 return skb->head + skb->network_header;
975 }
976
977 static inline void skb_reset_network_header(struct sk_buff *skb)
978 {
979 skb->network_header = skb->data - skb->head;
980 }
981
982 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
983 {
984 skb_reset_network_header(skb);
985 skb->network_header += offset;
986 }
987
988 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
989 {
990 return skb->head + skb->mac_header;
991 }
992
993 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
994 {
995 return skb->mac_header != ~0U;
996 }
997
998 static inline void skb_reset_mac_header(struct sk_buff *skb)
999 {
1000 skb->mac_header = skb->data - skb->head;
1001 }
1002
1003 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1004 {
1005 skb_reset_mac_header(skb);
1006 skb->mac_header += offset;
1007 }
1008
1009 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1010
1011 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1012 {
1013 return skb->transport_header;
1014 }
1015
1016 static inline void skb_reset_transport_header(struct sk_buff *skb)
1017 {
1018 skb->transport_header = skb->data;
1019 }
1020
1021 static inline void skb_set_transport_header(struct sk_buff *skb,
1022 const int offset)
1023 {
1024 skb->transport_header = skb->data + offset;
1025 }
1026
1027 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1028 {
1029 return skb->network_header;
1030 }
1031
1032 static inline void skb_reset_network_header(struct sk_buff *skb)
1033 {
1034 skb->network_header = skb->data;
1035 }
1036
1037 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1038 {
1039 skb->network_header = skb->data + offset;
1040 }
1041
1042 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1043 {
1044 return skb->mac_header;
1045 }
1046
1047 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1048 {
1049 return skb->mac_header != NULL;
1050 }
1051
1052 static inline void skb_reset_mac_header(struct sk_buff *skb)
1053 {
1054 skb->mac_header = skb->data;
1055 }
1056
1057 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1058 {
1059 skb->mac_header = skb->data + offset;
1060 }
1061 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1062
1063 static inline int skb_transport_offset(const struct sk_buff *skb)
1064 {
1065 return skb_transport_header(skb) - skb->data;
1066 }
1067
1068 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1069 {
1070 return skb->transport_header - skb->network_header;
1071 }
1072
1073 static inline int skb_network_offset(const struct sk_buff *skb)
1074 {
1075 return skb_network_header(skb) - skb->data;
1076 }
1077
1078 /*
1079 * CPUs often take a performance hit when accessing unaligned memory
1080 * locations. The actual performance hit varies, it can be small if the
1081 * hardware handles it or large if we have to take an exception and fix it
1082 * in software.
1083 *
1084 * Since an ethernet header is 14 bytes network drivers often end up with
1085 * the IP header at an unaligned offset. The IP header can be aligned by
1086 * shifting the start of the packet by 2 bytes. Drivers should do this
1087 * with:
1088 *
1089 * skb_reserve(NET_IP_ALIGN);
1090 *
1091 * The downside to this alignment of the IP header is that the DMA is now
1092 * unaligned. On some architectures the cost of an unaligned DMA is high
1093 * and this cost outweighs the gains made by aligning the IP header.
1094 *
1095 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1096 * to be overridden.
1097 */
1098 #ifndef NET_IP_ALIGN
1099 #define NET_IP_ALIGN 2
1100 #endif
1101
1102 /*
1103 * The networking layer reserves some headroom in skb data (via
1104 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1105 * the header has to grow. In the default case, if the header has to grow
1106 * 16 bytes or less we avoid the reallocation.
1107 *
1108 * Unfortunately this headroom changes the DMA alignment of the resulting
1109 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1110 * on some architectures. An architecture can override this value,
1111 * perhaps setting it to a cacheline in size (since that will maintain
1112 * cacheline alignment of the DMA). It must be a power of 2.
1113 *
1114 * Various parts of the networking layer expect at least 16 bytes of
1115 * headroom, you should not reduce this.
1116 */
1117 #ifndef NET_SKB_PAD
1118 #define NET_SKB_PAD 16
1119 #endif
1120
1121 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1122
1123 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1124 {
1125 if (unlikely(skb->data_len)) {
1126 WARN_ON(1);
1127 return;
1128 }
1129 skb->len = len;
1130 skb_set_tail_pointer(skb, len);
1131 }
1132
1133 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1134
1135 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1136 {
1137 if (skb->data_len)
1138 return ___pskb_trim(skb, len);
1139 __skb_trim(skb, len);
1140 return 0;
1141 }
1142
1143 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1144 {
1145 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1146 }
1147
1148 /**
1149 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1150 * @skb: buffer to alter
1151 * @len: new length
1152 *
1153 * This is identical to pskb_trim except that the caller knows that
1154 * the skb is not cloned so we should never get an error due to out-
1155 * of-memory.
1156 */
1157 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1158 {
1159 int err = pskb_trim(skb, len);
1160 BUG_ON(err);
1161 }
1162
1163 /**
1164 * skb_orphan - orphan a buffer
1165 * @skb: buffer to orphan
1166 *
1167 * If a buffer currently has an owner then we call the owner's
1168 * destructor function and make the @skb unowned. The buffer continues
1169 * to exist but is no longer charged to its former owner.
1170 */
1171 static inline void skb_orphan(struct sk_buff *skb)
1172 {
1173 if (skb->destructor)
1174 skb->destructor(skb);
1175 skb->destructor = NULL;
1176 skb->sk = NULL;
1177 }
1178
1179 /**
1180 * __skb_queue_purge - empty a list
1181 * @list: list to empty
1182 *
1183 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1184 * the list and one reference dropped. This function does not take the
1185 * list lock and the caller must hold the relevant locks to use it.
1186 */
1187 extern void skb_queue_purge(struct sk_buff_head *list);
1188 static inline void __skb_queue_purge(struct sk_buff_head *list)
1189 {
1190 struct sk_buff *skb;
1191 while ((skb = __skb_dequeue(list)) != NULL)
1192 kfree_skb(skb);
1193 }
1194
1195 /**
1196 * __dev_alloc_skb - allocate an skbuff for receiving
1197 * @length: length to allocate
1198 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1199 *
1200 * Allocate a new &sk_buff and assign it a usage count of one. The
1201 * buffer has unspecified headroom built in. Users should allocate
1202 * the headroom they think they need without accounting for the
1203 * built in space. The built in space is used for optimisations.
1204 *
1205 * %NULL is returned if there is no free memory.
1206 */
1207 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1208 gfp_t gfp_mask)
1209 {
1210 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1211 if (likely(skb))
1212 skb_reserve(skb, NET_SKB_PAD);
1213 return skb;
1214 }
1215
1216 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1217
1218 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1219 unsigned int length, gfp_t gfp_mask);
1220
1221 /**
1222 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1223 * @dev: network device to receive on
1224 * @length: length to allocate
1225 *
1226 * Allocate a new &sk_buff and assign it a usage count of one. The
1227 * buffer has unspecified headroom built in. Users should allocate
1228 * the headroom they think they need without accounting for the
1229 * built in space. The built in space is used for optimisations.
1230 *
1231 * %NULL is returned if there is no free memory. Although this function
1232 * allocates memory it can be called from an interrupt.
1233 */
1234 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1235 unsigned int length)
1236 {
1237 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1238 }
1239
1240 /**
1241 * skb_clone_writable - is the header of a clone writable
1242 * @skb: buffer to check
1243 * @len: length up to which to write
1244 *
1245 * Returns true if modifying the header part of the cloned buffer
1246 * does not requires the data to be copied.
1247 */
1248 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1249 {
1250 return !skb_header_cloned(skb) &&
1251 skb_headroom(skb) + len <= skb->hdr_len;
1252 }
1253
1254 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1255 int cloned)
1256 {
1257 int delta = 0;
1258
1259 if (headroom < NET_SKB_PAD)
1260 headroom = NET_SKB_PAD;
1261 if (headroom > skb_headroom(skb))
1262 delta = headroom - skb_headroom(skb);
1263
1264 if (delta || cloned)
1265 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1266 GFP_ATOMIC);
1267 return 0;
1268 }
1269
1270 /**
1271 * skb_cow - copy header of skb when it is required
1272 * @skb: buffer to cow
1273 * @headroom: needed headroom
1274 *
1275 * If the skb passed lacks sufficient headroom or its data part
1276 * is shared, data is reallocated. If reallocation fails, an error
1277 * is returned and original skb is not changed.
1278 *
1279 * The result is skb with writable area skb->head...skb->tail
1280 * and at least @headroom of space at head.
1281 */
1282 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1283 {
1284 return __skb_cow(skb, headroom, skb_cloned(skb));
1285 }
1286
1287 /**
1288 * skb_cow_head - skb_cow but only making the head writable
1289 * @skb: buffer to cow
1290 * @headroom: needed headroom
1291 *
1292 * This function is identical to skb_cow except that we replace the
1293 * skb_cloned check by skb_header_cloned. It should be used when
1294 * you only need to push on some header and do not need to modify
1295 * the data.
1296 */
1297 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1298 {
1299 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1300 }
1301
1302 /**
1303 * skb_padto - pad an skbuff up to a minimal size
1304 * @skb: buffer to pad
1305 * @len: minimal length
1306 *
1307 * Pads up a buffer to ensure the trailing bytes exist and are
1308 * blanked. If the buffer already contains sufficient data it
1309 * is untouched. Otherwise it is extended. Returns zero on
1310 * success. The skb is freed on error.
1311 */
1312
1313 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1314 {
1315 unsigned int size = skb->len;
1316 if (likely(size >= len))
1317 return 0;
1318 return skb_pad(skb, len-size);
1319 }
1320
1321 static inline int skb_add_data(struct sk_buff *skb,
1322 char __user *from, int copy)
1323 {
1324 const int off = skb->len;
1325
1326 if (skb->ip_summed == CHECKSUM_NONE) {
1327 int err = 0;
1328 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1329 copy, 0, &err);
1330 if (!err) {
1331 skb->csum = csum_block_add(skb->csum, csum, off);
1332 return 0;
1333 }
1334 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1335 return 0;
1336
1337 __skb_trim(skb, off);
1338 return -EFAULT;
1339 }
1340
1341 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1342 struct page *page, int off)
1343 {
1344 if (i) {
1345 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1346
1347 return page == frag->page &&
1348 off == frag->page_offset + frag->size;
1349 }
1350 return 0;
1351 }
1352
1353 static inline int __skb_linearize(struct sk_buff *skb)
1354 {
1355 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1356 }
1357
1358 /**
1359 * skb_linearize - convert paged skb to linear one
1360 * @skb: buffer to linarize
1361 *
1362 * If there is no free memory -ENOMEM is returned, otherwise zero
1363 * is returned and the old skb data released.
1364 */
1365 static inline int skb_linearize(struct sk_buff *skb)
1366 {
1367 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1368 }
1369
1370 /**
1371 * skb_linearize_cow - make sure skb is linear and writable
1372 * @skb: buffer to process
1373 *
1374 * If there is no free memory -ENOMEM is returned, otherwise zero
1375 * is returned and the old skb data released.
1376 */
1377 static inline int skb_linearize_cow(struct sk_buff *skb)
1378 {
1379 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1380 __skb_linearize(skb) : 0;
1381 }
1382
1383 /**
1384 * skb_postpull_rcsum - update checksum for received skb after pull
1385 * @skb: buffer to update
1386 * @start: start of data before pull
1387 * @len: length of data pulled
1388 *
1389 * After doing a pull on a received packet, you need to call this to
1390 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1391 * CHECKSUM_NONE so that it can be recomputed from scratch.
1392 */
1393
1394 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1395 const void *start, unsigned int len)
1396 {
1397 if (skb->ip_summed == CHECKSUM_COMPLETE)
1398 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1399 }
1400
1401 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1402
1403 /**
1404 * pskb_trim_rcsum - trim received skb and update checksum
1405 * @skb: buffer to trim
1406 * @len: new length
1407 *
1408 * This is exactly the same as pskb_trim except that it ensures the
1409 * checksum of received packets are still valid after the operation.
1410 */
1411
1412 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1413 {
1414 if (likely(len >= skb->len))
1415 return 0;
1416 if (skb->ip_summed == CHECKSUM_COMPLETE)
1417 skb->ip_summed = CHECKSUM_NONE;
1418 return __pskb_trim(skb, len);
1419 }
1420
1421 #define skb_queue_walk(queue, skb) \
1422 for (skb = (queue)->next; \
1423 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1424 skb = skb->next)
1425
1426 #define skb_queue_walk_safe(queue, skb, tmp) \
1427 for (skb = (queue)->next, tmp = skb->next; \
1428 skb != (struct sk_buff *)(queue); \
1429 skb = tmp, tmp = skb->next)
1430
1431 #define skb_queue_reverse_walk(queue, skb) \
1432 for (skb = (queue)->prev; \
1433 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1434 skb = skb->prev)
1435
1436
1437 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
1438 int *peeked, int *err);
1439 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1440 int noblock, int *err);
1441 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1442 struct poll_table_struct *wait);
1443 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1444 int offset, struct iovec *to,
1445 int size);
1446 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1447 int hlen,
1448 struct iovec *iov);
1449 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1450 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1451 unsigned int flags);
1452 extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
1453 int len, __wsum csum);
1454 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1455 void *to, int len);
1456 extern int skb_store_bits(struct sk_buff *skb, int offset,
1457 const void *from, int len);
1458 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
1459 int offset, u8 *to, int len,
1460 __wsum csum);
1461 extern int skb_splice_bits(struct sk_buff *skb,
1462 unsigned int offset,
1463 struct pipe_inode_info *pipe,
1464 unsigned int len,
1465 unsigned int flags);
1466 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1467 extern void skb_split(struct sk_buff *skb,
1468 struct sk_buff *skb1, const u32 len);
1469
1470 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1471
1472 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1473 int len, void *buffer)
1474 {
1475 int hlen = skb_headlen(skb);
1476
1477 if (hlen - offset >= len)
1478 return skb->data + offset;
1479
1480 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1481 return NULL;
1482
1483 return buffer;
1484 }
1485
1486 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1487 void *to,
1488 const unsigned int len)
1489 {
1490 memcpy(to, skb->data, len);
1491 }
1492
1493 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1494 const int offset, void *to,
1495 const unsigned int len)
1496 {
1497 memcpy(to, skb->data + offset, len);
1498 }
1499
1500 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1501 const void *from,
1502 const unsigned int len)
1503 {
1504 memcpy(skb->data, from, len);
1505 }
1506
1507 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1508 const int offset,
1509 const void *from,
1510 const unsigned int len)
1511 {
1512 memcpy(skb->data + offset, from, len);
1513 }
1514
1515 extern void skb_init(void);
1516
1517 /**
1518 * skb_get_timestamp - get timestamp from a skb
1519 * @skb: skb to get stamp from
1520 * @stamp: pointer to struct timeval to store stamp in
1521 *
1522 * Timestamps are stored in the skb as offsets to a base timestamp.
1523 * This function converts the offset back to a struct timeval and stores
1524 * it in stamp.
1525 */
1526 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1527 {
1528 *stamp = ktime_to_timeval(skb->tstamp);
1529 }
1530
1531 static inline void __net_timestamp(struct sk_buff *skb)
1532 {
1533 skb->tstamp = ktime_get_real();
1534 }
1535
1536 static inline ktime_t net_timedelta(ktime_t t)
1537 {
1538 return ktime_sub(ktime_get_real(), t);
1539 }
1540
1541 static inline ktime_t net_invalid_timestamp(void)
1542 {
1543 return ktime_set(0, 0);
1544 }
1545
1546 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1547 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1548
1549 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
1550 {
1551 return skb->ip_summed & CHECKSUM_UNNECESSARY;
1552 }
1553
1554 /**
1555 * skb_checksum_complete - Calculate checksum of an entire packet
1556 * @skb: packet to process
1557 *
1558 * This function calculates the checksum over the entire packet plus
1559 * the value of skb->csum. The latter can be used to supply the
1560 * checksum of a pseudo header as used by TCP/UDP. It returns the
1561 * checksum.
1562 *
1563 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
1564 * this function can be used to verify that checksum on received
1565 * packets. In that case the function should return zero if the
1566 * checksum is correct. In particular, this function will return zero
1567 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1568 * hardware has already verified the correctness of the checksum.
1569 */
1570 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
1571 {
1572 return skb_csum_unnecessary(skb) ?
1573 0 : __skb_checksum_complete(skb);
1574 }
1575
1576 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1577 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
1578 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1579 {
1580 if (nfct && atomic_dec_and_test(&nfct->use))
1581 nf_conntrack_destroy(nfct);
1582 }
1583 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1584 {
1585 if (nfct)
1586 atomic_inc(&nfct->use);
1587 }
1588 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1589 {
1590 if (skb)
1591 atomic_inc(&skb->users);
1592 }
1593 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1594 {
1595 if (skb)
1596 kfree_skb(skb);
1597 }
1598 #endif
1599 #ifdef CONFIG_BRIDGE_NETFILTER
1600 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1601 {
1602 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1603 kfree(nf_bridge);
1604 }
1605 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1606 {
1607 if (nf_bridge)
1608 atomic_inc(&nf_bridge->use);
1609 }
1610 #endif /* CONFIG_BRIDGE_NETFILTER */
1611 static inline void nf_reset(struct sk_buff *skb)
1612 {
1613 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1614 nf_conntrack_put(skb->nfct);
1615 skb->nfct = NULL;
1616 nf_conntrack_put_reasm(skb->nfct_reasm);
1617 skb->nfct_reasm = NULL;
1618 #endif
1619 #ifdef CONFIG_BRIDGE_NETFILTER
1620 nf_bridge_put(skb->nf_bridge);
1621 skb->nf_bridge = NULL;
1622 #endif
1623 }
1624
1625 /* Note: This doesn't put any conntrack and bridge info in dst. */
1626 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1627 {
1628 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1629 dst->nfct = src->nfct;
1630 nf_conntrack_get(src->nfct);
1631 dst->nfctinfo = src->nfctinfo;
1632 dst->nfct_reasm = src->nfct_reasm;
1633 nf_conntrack_get_reasm(src->nfct_reasm);
1634 #endif
1635 #ifdef CONFIG_BRIDGE_NETFILTER
1636 dst->nf_bridge = src->nf_bridge;
1637 nf_bridge_get(src->nf_bridge);
1638 #endif
1639 }
1640
1641 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1642 {
1643 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1644 nf_conntrack_put(dst->nfct);
1645 nf_conntrack_put_reasm(dst->nfct_reasm);
1646 #endif
1647 #ifdef CONFIG_BRIDGE_NETFILTER
1648 nf_bridge_put(dst->nf_bridge);
1649 #endif
1650 __nf_copy(dst, src);
1651 }
1652
1653 #ifdef CONFIG_NETWORK_SECMARK
1654 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1655 {
1656 to->secmark = from->secmark;
1657 }
1658
1659 static inline void skb_init_secmark(struct sk_buff *skb)
1660 {
1661 skb->secmark = 0;
1662 }
1663 #else
1664 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1665 { }
1666
1667 static inline void skb_init_secmark(struct sk_buff *skb)
1668 { }
1669 #endif
1670
1671 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
1672 {
1673 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1674 skb->queue_mapping = queue_mapping;
1675 #endif
1676 }
1677
1678 static inline u16 skb_get_queue_mapping(struct sk_buff *skb)
1679 {
1680 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1681 return skb->queue_mapping;
1682 #else
1683 return 0;
1684 #endif
1685 }
1686
1687 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
1688 {
1689 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1690 to->queue_mapping = from->queue_mapping;
1691 #endif
1692 }
1693
1694 static inline int skb_is_gso(const struct sk_buff *skb)
1695 {
1696 return skb_shinfo(skb)->gso_size;
1697 }
1698
1699 static inline int skb_is_gso_v6(const struct sk_buff *skb)
1700 {
1701 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
1702 }
1703
1704 static inline void skb_forward_csum(struct sk_buff *skb)
1705 {
1706 /* Unfortunately we don't support this one. Any brave souls? */
1707 if (skb->ip_summed == CHECKSUM_COMPLETE)
1708 skb->ip_summed = CHECKSUM_NONE;
1709 }
1710
1711 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
1712 #endif /* __KERNEL__ */
1713 #endif /* _LINUX_SKBUFF_H */
This page took 0.098073 seconds and 6 git commands to generate.