Merge branch 'upstream-linus' of master.kernel.org:/pub/scm/linux/kernel/git/jgarzik...
[deliverable/linux.git] / include / linux / skbuff.h
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/cache.h>
21
22 #include <asm/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/net.h>
26 #include <linux/textsearch.h>
27 #include <net/checksum.h>
28 #include <linux/rcupdate.h>
29 #include <linux/dmaengine.h>
30
31 #define HAVE_ALLOC_SKB /* For the drivers to know */
32 #define HAVE_ALIGNABLE_SKB /* Ditto 8) */
33
34 #define CHECKSUM_NONE 0
35 #define CHECKSUM_PARTIAL 1
36 #define CHECKSUM_UNNECESSARY 2
37 #define CHECKSUM_COMPLETE 3
38
39 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
40 ~(SMP_CACHE_BYTES - 1))
41 #define SKB_MAX_ORDER(X, ORDER) (((PAGE_SIZE << (ORDER)) - (X) - \
42 sizeof(struct skb_shared_info)) & \
43 ~(SMP_CACHE_BYTES - 1))
44 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
45 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
46
47 /* A. Checksumming of received packets by device.
48 *
49 * NONE: device failed to checksum this packet.
50 * skb->csum is undefined.
51 *
52 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
53 * skb->csum is undefined.
54 * It is bad option, but, unfortunately, many of vendors do this.
55 * Apparently with secret goal to sell you new device, when you
56 * will add new protocol to your host. F.e. IPv6. 8)
57 *
58 * COMPLETE: the most generic way. Device supplied checksum of _all_
59 * the packet as seen by netif_rx in skb->csum.
60 * NOTE: Even if device supports only some protocols, but
61 * is able to produce some skb->csum, it MUST use COMPLETE,
62 * not UNNECESSARY.
63 *
64 * B. Checksumming on output.
65 *
66 * NONE: skb is checksummed by protocol or csum is not required.
67 *
68 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
69 * from skb->h.raw to the end and to record the checksum
70 * at skb->h.raw+skb->csum.
71 *
72 * Device must show its capabilities in dev->features, set
73 * at device setup time.
74 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
75 * everything.
76 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
77 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
78 * TCP/UDP over IPv4. Sigh. Vendors like this
79 * way by an unknown reason. Though, see comment above
80 * about CHECKSUM_UNNECESSARY. 8)
81 *
82 * Any questions? No questions, good. --ANK
83 */
84
85 struct net_device;
86
87 #ifdef CONFIG_NETFILTER
88 struct nf_conntrack {
89 atomic_t use;
90 void (*destroy)(struct nf_conntrack *);
91 };
92
93 #ifdef CONFIG_BRIDGE_NETFILTER
94 struct nf_bridge_info {
95 atomic_t use;
96 struct net_device *physindev;
97 struct net_device *physoutdev;
98 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
99 struct net_device *netoutdev;
100 #endif
101 unsigned int mask;
102 unsigned long data[32 / sizeof(unsigned long)];
103 };
104 #endif
105
106 #endif
107
108 struct sk_buff_head {
109 /* These two members must be first. */
110 struct sk_buff *next;
111 struct sk_buff *prev;
112
113 __u32 qlen;
114 spinlock_t lock;
115 };
116
117 struct sk_buff;
118
119 /* To allow 64K frame to be packed as single skb without frag_list */
120 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
121
122 typedef struct skb_frag_struct skb_frag_t;
123
124 struct skb_frag_struct {
125 struct page *page;
126 __u16 page_offset;
127 __u16 size;
128 };
129
130 /* This data is invariant across clones and lives at
131 * the end of the header data, ie. at skb->end.
132 */
133 struct skb_shared_info {
134 atomic_t dataref;
135 unsigned short nr_frags;
136 unsigned short gso_size;
137 /* Warning: this field is not always filled in (UFO)! */
138 unsigned short gso_segs;
139 unsigned short gso_type;
140 __be32 ip6_frag_id;
141 struct sk_buff *frag_list;
142 skb_frag_t frags[MAX_SKB_FRAGS];
143 };
144
145 /* We divide dataref into two halves. The higher 16 bits hold references
146 * to the payload part of skb->data. The lower 16 bits hold references to
147 * the entire skb->data. It is up to the users of the skb to agree on
148 * where the payload starts.
149 *
150 * All users must obey the rule that the skb->data reference count must be
151 * greater than or equal to the payload reference count.
152 *
153 * Holding a reference to the payload part means that the user does not
154 * care about modifications to the header part of skb->data.
155 */
156 #define SKB_DATAREF_SHIFT 16
157 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
158
159 struct skb_timeval {
160 u32 off_sec;
161 u32 off_usec;
162 };
163
164
165 enum {
166 SKB_FCLONE_UNAVAILABLE,
167 SKB_FCLONE_ORIG,
168 SKB_FCLONE_CLONE,
169 };
170
171 enum {
172 SKB_GSO_TCPV4 = 1 << 0,
173 SKB_GSO_UDP = 1 << 1,
174
175 /* This indicates the skb is from an untrusted source. */
176 SKB_GSO_DODGY = 1 << 2,
177
178 /* This indicates the tcp segment has CWR set. */
179 SKB_GSO_TCP_ECN = 1 << 3,
180
181 SKB_GSO_TCPV6 = 1 << 4,
182 };
183
184 /**
185 * struct sk_buff - socket buffer
186 * @next: Next buffer in list
187 * @prev: Previous buffer in list
188 * @sk: Socket we are owned by
189 * @tstamp: Time we arrived
190 * @dev: Device we arrived on/are leaving by
191 * @iif: ifindex of device we arrived on
192 * @h: Transport layer header
193 * @nh: Network layer header
194 * @mac: Link layer header
195 * @dst: destination entry
196 * @sp: the security path, used for xfrm
197 * @cb: Control buffer. Free for use by every layer. Put private vars here
198 * @len: Length of actual data
199 * @data_len: Data length
200 * @mac_len: Length of link layer header
201 * @csum: Checksum
202 * @local_df: allow local fragmentation
203 * @cloned: Head may be cloned (check refcnt to be sure)
204 * @nohdr: Payload reference only, must not modify header
205 * @pkt_type: Packet class
206 * @fclone: skbuff clone status
207 * @ip_summed: Driver fed us an IP checksum
208 * @priority: Packet queueing priority
209 * @users: User count - see {datagram,tcp}.c
210 * @protocol: Packet protocol from driver
211 * @truesize: Buffer size
212 * @head: Head of buffer
213 * @data: Data head pointer
214 * @tail: Tail pointer
215 * @end: End pointer
216 * @destructor: Destruct function
217 * @mark: Generic packet mark
218 * @nfct: Associated connection, if any
219 * @ipvs_property: skbuff is owned by ipvs
220 * @nfctinfo: Relationship of this skb to the connection
221 * @nfct_reasm: netfilter conntrack re-assembly pointer
222 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
223 * @tc_index: Traffic control index
224 * @tc_verd: traffic control verdict
225 * @dma_cookie: a cookie to one of several possible DMA operations
226 * done by skb DMA functions
227 * @secmark: security marking
228 */
229
230 struct sk_buff {
231 /* These two members must be first. */
232 struct sk_buff *next;
233 struct sk_buff *prev;
234
235 struct sock *sk;
236 struct skb_timeval tstamp;
237 struct net_device *dev;
238 int iif;
239 /* 4 byte hole on 64 bit*/
240
241 union {
242 struct tcphdr *th;
243 struct udphdr *uh;
244 struct icmphdr *icmph;
245 struct igmphdr *igmph;
246 struct iphdr *ipiph;
247 struct ipv6hdr *ipv6h;
248 unsigned char *raw;
249 } h;
250
251 union {
252 struct iphdr *iph;
253 struct ipv6hdr *ipv6h;
254 struct arphdr *arph;
255 unsigned char *raw;
256 } nh;
257
258 union {
259 unsigned char *raw;
260 } mac;
261
262 struct dst_entry *dst;
263 struct sec_path *sp;
264
265 /*
266 * This is the control buffer. It is free to use for every
267 * layer. Please put your private variables there. If you
268 * want to keep them across layers you have to do a skb_clone()
269 * first. This is owned by whoever has the skb queued ATM.
270 */
271 char cb[48];
272
273 unsigned int len,
274 data_len,
275 mac_len;
276 union {
277 __wsum csum;
278 __u32 csum_offset;
279 };
280 __u32 priority;
281 __u8 local_df:1,
282 cloned:1,
283 ip_summed:2,
284 nohdr:1,
285 nfctinfo:3;
286 __u8 pkt_type:3,
287 fclone:2,
288 ipvs_property:1;
289 __be16 protocol;
290
291 void (*destructor)(struct sk_buff *skb);
292 #ifdef CONFIG_NETFILTER
293 struct nf_conntrack *nfct;
294 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
295 struct sk_buff *nfct_reasm;
296 #endif
297 #ifdef CONFIG_BRIDGE_NETFILTER
298 struct nf_bridge_info *nf_bridge;
299 #endif
300 #endif /* CONFIG_NETFILTER */
301 #ifdef CONFIG_NET_SCHED
302 __u16 tc_index; /* traffic control index */
303 #ifdef CONFIG_NET_CLS_ACT
304 __u16 tc_verd; /* traffic control verdict */
305 #endif
306 #endif
307 #ifdef CONFIG_NET_DMA
308 dma_cookie_t dma_cookie;
309 #endif
310 #ifdef CONFIG_NETWORK_SECMARK
311 __u32 secmark;
312 #endif
313
314 __u32 mark;
315
316 /* These elements must be at the end, see alloc_skb() for details. */
317 unsigned int truesize;
318 atomic_t users;
319 unsigned char *head,
320 *data,
321 *tail,
322 *end;
323 };
324
325 #ifdef __KERNEL__
326 /*
327 * Handling routines are only of interest to the kernel
328 */
329 #include <linux/slab.h>
330
331 #include <asm/system.h>
332
333 extern void kfree_skb(struct sk_buff *skb);
334 extern void __kfree_skb(struct sk_buff *skb);
335 extern struct sk_buff *__alloc_skb(unsigned int size,
336 gfp_t priority, int fclone, int node);
337 static inline struct sk_buff *alloc_skb(unsigned int size,
338 gfp_t priority)
339 {
340 return __alloc_skb(size, priority, 0, -1);
341 }
342
343 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
344 gfp_t priority)
345 {
346 return __alloc_skb(size, priority, 1, -1);
347 }
348
349 extern void kfree_skbmem(struct sk_buff *skb);
350 extern struct sk_buff *skb_clone(struct sk_buff *skb,
351 gfp_t priority);
352 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
353 gfp_t priority);
354 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
355 gfp_t gfp_mask);
356 extern int pskb_expand_head(struct sk_buff *skb,
357 int nhead, int ntail,
358 gfp_t gfp_mask);
359 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
360 unsigned int headroom);
361 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
362 int newheadroom, int newtailroom,
363 gfp_t priority);
364 extern int skb_pad(struct sk_buff *skb, int pad);
365 #define dev_kfree_skb(a) kfree_skb(a)
366 extern void skb_over_panic(struct sk_buff *skb, int len,
367 void *here);
368 extern void skb_under_panic(struct sk_buff *skb, int len,
369 void *here);
370 extern void skb_truesize_bug(struct sk_buff *skb);
371
372 static inline void skb_truesize_check(struct sk_buff *skb)
373 {
374 if (unlikely((int)skb->truesize < sizeof(struct sk_buff) + skb->len))
375 skb_truesize_bug(skb);
376 }
377
378 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
379 int getfrag(void *from, char *to, int offset,
380 int len,int odd, struct sk_buff *skb),
381 void *from, int length);
382
383 struct skb_seq_state
384 {
385 __u32 lower_offset;
386 __u32 upper_offset;
387 __u32 frag_idx;
388 __u32 stepped_offset;
389 struct sk_buff *root_skb;
390 struct sk_buff *cur_skb;
391 __u8 *frag_data;
392 };
393
394 extern void skb_prepare_seq_read(struct sk_buff *skb,
395 unsigned int from, unsigned int to,
396 struct skb_seq_state *st);
397 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
398 struct skb_seq_state *st);
399 extern void skb_abort_seq_read(struct skb_seq_state *st);
400
401 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
402 unsigned int to, struct ts_config *config,
403 struct ts_state *state);
404
405 /* Internal */
406 #define skb_shinfo(SKB) ((struct skb_shared_info *)((SKB)->end))
407
408 /**
409 * skb_queue_empty - check if a queue is empty
410 * @list: queue head
411 *
412 * Returns true if the queue is empty, false otherwise.
413 */
414 static inline int skb_queue_empty(const struct sk_buff_head *list)
415 {
416 return list->next == (struct sk_buff *)list;
417 }
418
419 /**
420 * skb_get - reference buffer
421 * @skb: buffer to reference
422 *
423 * Makes another reference to a socket buffer and returns a pointer
424 * to the buffer.
425 */
426 static inline struct sk_buff *skb_get(struct sk_buff *skb)
427 {
428 atomic_inc(&skb->users);
429 return skb;
430 }
431
432 /*
433 * If users == 1, we are the only owner and are can avoid redundant
434 * atomic change.
435 */
436
437 /**
438 * skb_cloned - is the buffer a clone
439 * @skb: buffer to check
440 *
441 * Returns true if the buffer was generated with skb_clone() and is
442 * one of multiple shared copies of the buffer. Cloned buffers are
443 * shared data so must not be written to under normal circumstances.
444 */
445 static inline int skb_cloned(const struct sk_buff *skb)
446 {
447 return skb->cloned &&
448 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
449 }
450
451 /**
452 * skb_header_cloned - is the header a clone
453 * @skb: buffer to check
454 *
455 * Returns true if modifying the header part of the buffer requires
456 * the data to be copied.
457 */
458 static inline int skb_header_cloned(const struct sk_buff *skb)
459 {
460 int dataref;
461
462 if (!skb->cloned)
463 return 0;
464
465 dataref = atomic_read(&skb_shinfo(skb)->dataref);
466 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
467 return dataref != 1;
468 }
469
470 /**
471 * skb_header_release - release reference to header
472 * @skb: buffer to operate on
473 *
474 * Drop a reference to the header part of the buffer. This is done
475 * by acquiring a payload reference. You must not read from the header
476 * part of skb->data after this.
477 */
478 static inline void skb_header_release(struct sk_buff *skb)
479 {
480 BUG_ON(skb->nohdr);
481 skb->nohdr = 1;
482 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
483 }
484
485 /**
486 * skb_shared - is the buffer shared
487 * @skb: buffer to check
488 *
489 * Returns true if more than one person has a reference to this
490 * buffer.
491 */
492 static inline int skb_shared(const struct sk_buff *skb)
493 {
494 return atomic_read(&skb->users) != 1;
495 }
496
497 /**
498 * skb_share_check - check if buffer is shared and if so clone it
499 * @skb: buffer to check
500 * @pri: priority for memory allocation
501 *
502 * If the buffer is shared the buffer is cloned and the old copy
503 * drops a reference. A new clone with a single reference is returned.
504 * If the buffer is not shared the original buffer is returned. When
505 * being called from interrupt status or with spinlocks held pri must
506 * be GFP_ATOMIC.
507 *
508 * NULL is returned on a memory allocation failure.
509 */
510 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
511 gfp_t pri)
512 {
513 might_sleep_if(pri & __GFP_WAIT);
514 if (skb_shared(skb)) {
515 struct sk_buff *nskb = skb_clone(skb, pri);
516 kfree_skb(skb);
517 skb = nskb;
518 }
519 return skb;
520 }
521
522 /*
523 * Copy shared buffers into a new sk_buff. We effectively do COW on
524 * packets to handle cases where we have a local reader and forward
525 * and a couple of other messy ones. The normal one is tcpdumping
526 * a packet thats being forwarded.
527 */
528
529 /**
530 * skb_unshare - make a copy of a shared buffer
531 * @skb: buffer to check
532 * @pri: priority for memory allocation
533 *
534 * If the socket buffer is a clone then this function creates a new
535 * copy of the data, drops a reference count on the old copy and returns
536 * the new copy with the reference count at 1. If the buffer is not a clone
537 * the original buffer is returned. When called with a spinlock held or
538 * from interrupt state @pri must be %GFP_ATOMIC
539 *
540 * %NULL is returned on a memory allocation failure.
541 */
542 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
543 gfp_t pri)
544 {
545 might_sleep_if(pri & __GFP_WAIT);
546 if (skb_cloned(skb)) {
547 struct sk_buff *nskb = skb_copy(skb, pri);
548 kfree_skb(skb); /* Free our shared copy */
549 skb = nskb;
550 }
551 return skb;
552 }
553
554 /**
555 * skb_peek
556 * @list_: list to peek at
557 *
558 * Peek an &sk_buff. Unlike most other operations you _MUST_
559 * be careful with this one. A peek leaves the buffer on the
560 * list and someone else may run off with it. You must hold
561 * the appropriate locks or have a private queue to do this.
562 *
563 * Returns %NULL for an empty list or a pointer to the head element.
564 * The reference count is not incremented and the reference is therefore
565 * volatile. Use with caution.
566 */
567 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
568 {
569 struct sk_buff *list = ((struct sk_buff *)list_)->next;
570 if (list == (struct sk_buff *)list_)
571 list = NULL;
572 return list;
573 }
574
575 /**
576 * skb_peek_tail
577 * @list_: list to peek at
578 *
579 * Peek an &sk_buff. Unlike most other operations you _MUST_
580 * be careful with this one. A peek leaves the buffer on the
581 * list and someone else may run off with it. You must hold
582 * the appropriate locks or have a private queue to do this.
583 *
584 * Returns %NULL for an empty list or a pointer to the tail element.
585 * The reference count is not incremented and the reference is therefore
586 * volatile. Use with caution.
587 */
588 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
589 {
590 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
591 if (list == (struct sk_buff *)list_)
592 list = NULL;
593 return list;
594 }
595
596 /**
597 * skb_queue_len - get queue length
598 * @list_: list to measure
599 *
600 * Return the length of an &sk_buff queue.
601 */
602 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
603 {
604 return list_->qlen;
605 }
606
607 /*
608 * This function creates a split out lock class for each invocation;
609 * this is needed for now since a whole lot of users of the skb-queue
610 * infrastructure in drivers have different locking usage (in hardirq)
611 * than the networking core (in softirq only). In the long run either the
612 * network layer or drivers should need annotation to consolidate the
613 * main types of usage into 3 classes.
614 */
615 static inline void skb_queue_head_init(struct sk_buff_head *list)
616 {
617 spin_lock_init(&list->lock);
618 list->prev = list->next = (struct sk_buff *)list;
619 list->qlen = 0;
620 }
621
622 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
623 struct lock_class_key *class)
624 {
625 skb_queue_head_init(list);
626 lockdep_set_class(&list->lock, class);
627 }
628
629 /*
630 * Insert an sk_buff at the start of a list.
631 *
632 * The "__skb_xxxx()" functions are the non-atomic ones that
633 * can only be called with interrupts disabled.
634 */
635
636 /**
637 * __skb_queue_after - queue a buffer at the list head
638 * @list: list to use
639 * @prev: place after this buffer
640 * @newsk: buffer to queue
641 *
642 * Queue a buffer int the middle of a list. This function takes no locks
643 * and you must therefore hold required locks before calling it.
644 *
645 * A buffer cannot be placed on two lists at the same time.
646 */
647 static inline void __skb_queue_after(struct sk_buff_head *list,
648 struct sk_buff *prev,
649 struct sk_buff *newsk)
650 {
651 struct sk_buff *next;
652 list->qlen++;
653
654 next = prev->next;
655 newsk->next = next;
656 newsk->prev = prev;
657 next->prev = prev->next = newsk;
658 }
659
660 /**
661 * __skb_queue_head - queue a buffer at the list head
662 * @list: list to use
663 * @newsk: buffer to queue
664 *
665 * Queue a buffer at the start of a list. This function takes no locks
666 * and you must therefore hold required locks before calling it.
667 *
668 * A buffer cannot be placed on two lists at the same time.
669 */
670 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
671 static inline void __skb_queue_head(struct sk_buff_head *list,
672 struct sk_buff *newsk)
673 {
674 __skb_queue_after(list, (struct sk_buff *)list, newsk);
675 }
676
677 /**
678 * __skb_queue_tail - queue a buffer at the list tail
679 * @list: list to use
680 * @newsk: buffer to queue
681 *
682 * Queue a buffer at the end of a list. This function takes no locks
683 * and you must therefore hold required locks before calling it.
684 *
685 * A buffer cannot be placed on two lists at the same time.
686 */
687 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
688 static inline void __skb_queue_tail(struct sk_buff_head *list,
689 struct sk_buff *newsk)
690 {
691 struct sk_buff *prev, *next;
692
693 list->qlen++;
694 next = (struct sk_buff *)list;
695 prev = next->prev;
696 newsk->next = next;
697 newsk->prev = prev;
698 next->prev = prev->next = newsk;
699 }
700
701
702 /**
703 * __skb_dequeue - remove from the head of the queue
704 * @list: list to dequeue from
705 *
706 * Remove the head of the list. This function does not take any locks
707 * so must be used with appropriate locks held only. The head item is
708 * returned or %NULL if the list is empty.
709 */
710 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
711 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
712 {
713 struct sk_buff *next, *prev, *result;
714
715 prev = (struct sk_buff *) list;
716 next = prev->next;
717 result = NULL;
718 if (next != prev) {
719 result = next;
720 next = next->next;
721 list->qlen--;
722 next->prev = prev;
723 prev->next = next;
724 result->next = result->prev = NULL;
725 }
726 return result;
727 }
728
729
730 /*
731 * Insert a packet on a list.
732 */
733 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
734 static inline void __skb_insert(struct sk_buff *newsk,
735 struct sk_buff *prev, struct sk_buff *next,
736 struct sk_buff_head *list)
737 {
738 newsk->next = next;
739 newsk->prev = prev;
740 next->prev = prev->next = newsk;
741 list->qlen++;
742 }
743
744 /*
745 * Place a packet after a given packet in a list.
746 */
747 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
748 static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
749 {
750 __skb_insert(newsk, old, old->next, list);
751 }
752
753 /*
754 * remove sk_buff from list. _Must_ be called atomically, and with
755 * the list known..
756 */
757 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
758 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
759 {
760 struct sk_buff *next, *prev;
761
762 list->qlen--;
763 next = skb->next;
764 prev = skb->prev;
765 skb->next = skb->prev = NULL;
766 next->prev = prev;
767 prev->next = next;
768 }
769
770
771 /* XXX: more streamlined implementation */
772
773 /**
774 * __skb_dequeue_tail - remove from the tail of the queue
775 * @list: list to dequeue from
776 *
777 * Remove the tail of the list. This function does not take any locks
778 * so must be used with appropriate locks held only. The tail item is
779 * returned or %NULL if the list is empty.
780 */
781 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
782 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
783 {
784 struct sk_buff *skb = skb_peek_tail(list);
785 if (skb)
786 __skb_unlink(skb, list);
787 return skb;
788 }
789
790
791 static inline int skb_is_nonlinear(const struct sk_buff *skb)
792 {
793 return skb->data_len;
794 }
795
796 static inline unsigned int skb_headlen(const struct sk_buff *skb)
797 {
798 return skb->len - skb->data_len;
799 }
800
801 static inline int skb_pagelen(const struct sk_buff *skb)
802 {
803 int i, len = 0;
804
805 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
806 len += skb_shinfo(skb)->frags[i].size;
807 return len + skb_headlen(skb);
808 }
809
810 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
811 struct page *page, int off, int size)
812 {
813 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
814
815 frag->page = page;
816 frag->page_offset = off;
817 frag->size = size;
818 skb_shinfo(skb)->nr_frags = i + 1;
819 }
820
821 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
822 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
823 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
824
825 /*
826 * Add data to an sk_buff
827 */
828 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
829 {
830 unsigned char *tmp = skb->tail;
831 SKB_LINEAR_ASSERT(skb);
832 skb->tail += len;
833 skb->len += len;
834 return tmp;
835 }
836
837 /**
838 * skb_put - add data to a buffer
839 * @skb: buffer to use
840 * @len: amount of data to add
841 *
842 * This function extends the used data area of the buffer. If this would
843 * exceed the total buffer size the kernel will panic. A pointer to the
844 * first byte of the extra data is returned.
845 */
846 static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
847 {
848 unsigned char *tmp = skb->tail;
849 SKB_LINEAR_ASSERT(skb);
850 skb->tail += len;
851 skb->len += len;
852 if (unlikely(skb->tail>skb->end))
853 skb_over_panic(skb, len, current_text_addr());
854 return tmp;
855 }
856
857 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
858 {
859 skb->data -= len;
860 skb->len += len;
861 return skb->data;
862 }
863
864 /**
865 * skb_push - add data to the start of a buffer
866 * @skb: buffer to use
867 * @len: amount of data to add
868 *
869 * This function extends the used data area of the buffer at the buffer
870 * start. If this would exceed the total buffer headroom the kernel will
871 * panic. A pointer to the first byte of the extra data is returned.
872 */
873 static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
874 {
875 skb->data -= len;
876 skb->len += len;
877 if (unlikely(skb->data<skb->head))
878 skb_under_panic(skb, len, current_text_addr());
879 return skb->data;
880 }
881
882 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
883 {
884 skb->len -= len;
885 BUG_ON(skb->len < skb->data_len);
886 return skb->data += len;
887 }
888
889 /**
890 * skb_pull - remove data from the start of a buffer
891 * @skb: buffer to use
892 * @len: amount of data to remove
893 *
894 * This function removes data from the start of a buffer, returning
895 * the memory to the headroom. A pointer to the next data in the buffer
896 * is returned. Once the data has been pulled future pushes will overwrite
897 * the old data.
898 */
899 static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
900 {
901 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
902 }
903
904 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
905
906 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
907 {
908 if (len > skb_headlen(skb) &&
909 !__pskb_pull_tail(skb, len-skb_headlen(skb)))
910 return NULL;
911 skb->len -= len;
912 return skb->data += len;
913 }
914
915 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
916 {
917 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
918 }
919
920 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
921 {
922 if (likely(len <= skb_headlen(skb)))
923 return 1;
924 if (unlikely(len > skb->len))
925 return 0;
926 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
927 }
928
929 /**
930 * skb_headroom - bytes at buffer head
931 * @skb: buffer to check
932 *
933 * Return the number of bytes of free space at the head of an &sk_buff.
934 */
935 static inline int skb_headroom(const struct sk_buff *skb)
936 {
937 return skb->data - skb->head;
938 }
939
940 /**
941 * skb_tailroom - bytes at buffer end
942 * @skb: buffer to check
943 *
944 * Return the number of bytes of free space at the tail of an sk_buff
945 */
946 static inline int skb_tailroom(const struct sk_buff *skb)
947 {
948 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
949 }
950
951 /**
952 * skb_reserve - adjust headroom
953 * @skb: buffer to alter
954 * @len: bytes to move
955 *
956 * Increase the headroom of an empty &sk_buff by reducing the tail
957 * room. This is only allowed for an empty buffer.
958 */
959 static inline void skb_reserve(struct sk_buff *skb, int len)
960 {
961 skb->data += len;
962 skb->tail += len;
963 }
964
965 /*
966 * CPUs often take a performance hit when accessing unaligned memory
967 * locations. The actual performance hit varies, it can be small if the
968 * hardware handles it or large if we have to take an exception and fix it
969 * in software.
970 *
971 * Since an ethernet header is 14 bytes network drivers often end up with
972 * the IP header at an unaligned offset. The IP header can be aligned by
973 * shifting the start of the packet by 2 bytes. Drivers should do this
974 * with:
975 *
976 * skb_reserve(NET_IP_ALIGN);
977 *
978 * The downside to this alignment of the IP header is that the DMA is now
979 * unaligned. On some architectures the cost of an unaligned DMA is high
980 * and this cost outweighs the gains made by aligning the IP header.
981 *
982 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
983 * to be overridden.
984 */
985 #ifndef NET_IP_ALIGN
986 #define NET_IP_ALIGN 2
987 #endif
988
989 /*
990 * The networking layer reserves some headroom in skb data (via
991 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
992 * the header has to grow. In the default case, if the header has to grow
993 * 16 bytes or less we avoid the reallocation.
994 *
995 * Unfortunately this headroom changes the DMA alignment of the resulting
996 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
997 * on some architectures. An architecture can override this value,
998 * perhaps setting it to a cacheline in size (since that will maintain
999 * cacheline alignment of the DMA). It must be a power of 2.
1000 *
1001 * Various parts of the networking layer expect at least 16 bytes of
1002 * headroom, you should not reduce this.
1003 */
1004 #ifndef NET_SKB_PAD
1005 #define NET_SKB_PAD 16
1006 #endif
1007
1008 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1009
1010 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1011 {
1012 if (unlikely(skb->data_len)) {
1013 WARN_ON(1);
1014 return;
1015 }
1016 skb->len = len;
1017 skb->tail = skb->data + len;
1018 }
1019
1020 /**
1021 * skb_trim - remove end from a buffer
1022 * @skb: buffer to alter
1023 * @len: new length
1024 *
1025 * Cut the length of a buffer down by removing data from the tail. If
1026 * the buffer is already under the length specified it is not modified.
1027 * The skb must be linear.
1028 */
1029 static inline void skb_trim(struct sk_buff *skb, unsigned int len)
1030 {
1031 if (skb->len > len)
1032 __skb_trim(skb, len);
1033 }
1034
1035
1036 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1037 {
1038 if (skb->data_len)
1039 return ___pskb_trim(skb, len);
1040 __skb_trim(skb, len);
1041 return 0;
1042 }
1043
1044 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1045 {
1046 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1047 }
1048
1049 /**
1050 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1051 * @skb: buffer to alter
1052 * @len: new length
1053 *
1054 * This is identical to pskb_trim except that the caller knows that
1055 * the skb is not cloned so we should never get an error due to out-
1056 * of-memory.
1057 */
1058 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1059 {
1060 int err = pskb_trim(skb, len);
1061 BUG_ON(err);
1062 }
1063
1064 /**
1065 * skb_orphan - orphan a buffer
1066 * @skb: buffer to orphan
1067 *
1068 * If a buffer currently has an owner then we call the owner's
1069 * destructor function and make the @skb unowned. The buffer continues
1070 * to exist but is no longer charged to its former owner.
1071 */
1072 static inline void skb_orphan(struct sk_buff *skb)
1073 {
1074 if (skb->destructor)
1075 skb->destructor(skb);
1076 skb->destructor = NULL;
1077 skb->sk = NULL;
1078 }
1079
1080 /**
1081 * __skb_queue_purge - empty a list
1082 * @list: list to empty
1083 *
1084 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1085 * the list and one reference dropped. This function does not take the
1086 * list lock and the caller must hold the relevant locks to use it.
1087 */
1088 extern void skb_queue_purge(struct sk_buff_head *list);
1089 static inline void __skb_queue_purge(struct sk_buff_head *list)
1090 {
1091 struct sk_buff *skb;
1092 while ((skb = __skb_dequeue(list)) != NULL)
1093 kfree_skb(skb);
1094 }
1095
1096 /**
1097 * __dev_alloc_skb - allocate an skbuff for receiving
1098 * @length: length to allocate
1099 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1100 *
1101 * Allocate a new &sk_buff and assign it a usage count of one. The
1102 * buffer has unspecified headroom built in. Users should allocate
1103 * the headroom they think they need without accounting for the
1104 * built in space. The built in space is used for optimisations.
1105 *
1106 * %NULL is returned if there is no free memory.
1107 */
1108 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1109 gfp_t gfp_mask)
1110 {
1111 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1112 if (likely(skb))
1113 skb_reserve(skb, NET_SKB_PAD);
1114 return skb;
1115 }
1116
1117 /**
1118 * dev_alloc_skb - allocate an skbuff for receiving
1119 * @length: length to allocate
1120 *
1121 * Allocate a new &sk_buff and assign it a usage count of one. The
1122 * buffer has unspecified headroom built in. Users should allocate
1123 * the headroom they think they need without accounting for the
1124 * built in space. The built in space is used for optimisations.
1125 *
1126 * %NULL is returned if there is no free memory. Although this function
1127 * allocates memory it can be called from an interrupt.
1128 */
1129 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1130 {
1131 return __dev_alloc_skb(length, GFP_ATOMIC);
1132 }
1133
1134 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1135 unsigned int length, gfp_t gfp_mask);
1136
1137 /**
1138 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1139 * @dev: network device to receive on
1140 * @length: length to allocate
1141 *
1142 * Allocate a new &sk_buff and assign it a usage count of one. The
1143 * buffer has unspecified headroom built in. Users should allocate
1144 * the headroom they think they need without accounting for the
1145 * built in space. The built in space is used for optimisations.
1146 *
1147 * %NULL is returned if there is no free memory. Although this function
1148 * allocates memory it can be called from an interrupt.
1149 */
1150 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1151 unsigned int length)
1152 {
1153 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1154 }
1155
1156 /**
1157 * skb_cow - copy header of skb when it is required
1158 * @skb: buffer to cow
1159 * @headroom: needed headroom
1160 *
1161 * If the skb passed lacks sufficient headroom or its data part
1162 * is shared, data is reallocated. If reallocation fails, an error
1163 * is returned and original skb is not changed.
1164 *
1165 * The result is skb with writable area skb->head...skb->tail
1166 * and at least @headroom of space at head.
1167 */
1168 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1169 {
1170 int delta = (headroom > NET_SKB_PAD ? headroom : NET_SKB_PAD) -
1171 skb_headroom(skb);
1172
1173 if (delta < 0)
1174 delta = 0;
1175
1176 if (delta || skb_cloned(skb))
1177 return pskb_expand_head(skb, (delta + (NET_SKB_PAD-1)) &
1178 ~(NET_SKB_PAD-1), 0, GFP_ATOMIC);
1179 return 0;
1180 }
1181
1182 /**
1183 * skb_padto - pad an skbuff up to a minimal size
1184 * @skb: buffer to pad
1185 * @len: minimal length
1186 *
1187 * Pads up a buffer to ensure the trailing bytes exist and are
1188 * blanked. If the buffer already contains sufficient data it
1189 * is untouched. Otherwise it is extended. Returns zero on
1190 * success. The skb is freed on error.
1191 */
1192
1193 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1194 {
1195 unsigned int size = skb->len;
1196 if (likely(size >= len))
1197 return 0;
1198 return skb_pad(skb, len-size);
1199 }
1200
1201 static inline int skb_add_data(struct sk_buff *skb,
1202 char __user *from, int copy)
1203 {
1204 const int off = skb->len;
1205
1206 if (skb->ip_summed == CHECKSUM_NONE) {
1207 int err = 0;
1208 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1209 copy, 0, &err);
1210 if (!err) {
1211 skb->csum = csum_block_add(skb->csum, csum, off);
1212 return 0;
1213 }
1214 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1215 return 0;
1216
1217 __skb_trim(skb, off);
1218 return -EFAULT;
1219 }
1220
1221 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1222 struct page *page, int off)
1223 {
1224 if (i) {
1225 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1226
1227 return page == frag->page &&
1228 off == frag->page_offset + frag->size;
1229 }
1230 return 0;
1231 }
1232
1233 static inline int __skb_linearize(struct sk_buff *skb)
1234 {
1235 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1236 }
1237
1238 /**
1239 * skb_linearize - convert paged skb to linear one
1240 * @skb: buffer to linarize
1241 *
1242 * If there is no free memory -ENOMEM is returned, otherwise zero
1243 * is returned and the old skb data released.
1244 */
1245 static inline int skb_linearize(struct sk_buff *skb)
1246 {
1247 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1248 }
1249
1250 /**
1251 * skb_linearize_cow - make sure skb is linear and writable
1252 * @skb: buffer to process
1253 *
1254 * If there is no free memory -ENOMEM is returned, otherwise zero
1255 * is returned and the old skb data released.
1256 */
1257 static inline int skb_linearize_cow(struct sk_buff *skb)
1258 {
1259 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1260 __skb_linearize(skb) : 0;
1261 }
1262
1263 /**
1264 * skb_postpull_rcsum - update checksum for received skb after pull
1265 * @skb: buffer to update
1266 * @start: start of data before pull
1267 * @len: length of data pulled
1268 *
1269 * After doing a pull on a received packet, you need to call this to
1270 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1271 * CHECKSUM_NONE so that it can be recomputed from scratch.
1272 */
1273
1274 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1275 const void *start, unsigned int len)
1276 {
1277 if (skb->ip_summed == CHECKSUM_COMPLETE)
1278 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1279 }
1280
1281 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1282
1283 /**
1284 * pskb_trim_rcsum - trim received skb and update checksum
1285 * @skb: buffer to trim
1286 * @len: new length
1287 *
1288 * This is exactly the same as pskb_trim except that it ensures the
1289 * checksum of received packets are still valid after the operation.
1290 */
1291
1292 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1293 {
1294 if (likely(len >= skb->len))
1295 return 0;
1296 if (skb->ip_summed == CHECKSUM_COMPLETE)
1297 skb->ip_summed = CHECKSUM_NONE;
1298 return __pskb_trim(skb, len);
1299 }
1300
1301 #define skb_queue_walk(queue, skb) \
1302 for (skb = (queue)->next; \
1303 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1304 skb = skb->next)
1305
1306 #define skb_queue_reverse_walk(queue, skb) \
1307 for (skb = (queue)->prev; \
1308 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1309 skb = skb->prev)
1310
1311
1312 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1313 int noblock, int *err);
1314 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1315 struct poll_table_struct *wait);
1316 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1317 int offset, struct iovec *to,
1318 int size);
1319 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1320 int hlen,
1321 struct iovec *iov);
1322 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1323 extern void skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1324 unsigned int flags);
1325 extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
1326 int len, __wsum csum);
1327 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1328 void *to, int len);
1329 extern int skb_store_bits(const struct sk_buff *skb, int offset,
1330 void *from, int len);
1331 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
1332 int offset, u8 *to, int len,
1333 __wsum csum);
1334 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1335 extern void skb_split(struct sk_buff *skb,
1336 struct sk_buff *skb1, const u32 len);
1337
1338 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1339
1340 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1341 int len, void *buffer)
1342 {
1343 int hlen = skb_headlen(skb);
1344
1345 if (hlen - offset >= len)
1346 return skb->data + offset;
1347
1348 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1349 return NULL;
1350
1351 return buffer;
1352 }
1353
1354 extern void skb_init(void);
1355 extern void skb_add_mtu(int mtu);
1356
1357 /**
1358 * skb_get_timestamp - get timestamp from a skb
1359 * @skb: skb to get stamp from
1360 * @stamp: pointer to struct timeval to store stamp in
1361 *
1362 * Timestamps are stored in the skb as offsets to a base timestamp.
1363 * This function converts the offset back to a struct timeval and stores
1364 * it in stamp.
1365 */
1366 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1367 {
1368 stamp->tv_sec = skb->tstamp.off_sec;
1369 stamp->tv_usec = skb->tstamp.off_usec;
1370 }
1371
1372 /**
1373 * skb_set_timestamp - set timestamp of a skb
1374 * @skb: skb to set stamp of
1375 * @stamp: pointer to struct timeval to get stamp from
1376 *
1377 * Timestamps are stored in the skb as offsets to a base timestamp.
1378 * This function converts a struct timeval to an offset and stores
1379 * it in the skb.
1380 */
1381 static inline void skb_set_timestamp(struct sk_buff *skb, const struct timeval *stamp)
1382 {
1383 skb->tstamp.off_sec = stamp->tv_sec;
1384 skb->tstamp.off_usec = stamp->tv_usec;
1385 }
1386
1387 extern void __net_timestamp(struct sk_buff *skb);
1388
1389 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1390
1391 /**
1392 * skb_checksum_complete - Calculate checksum of an entire packet
1393 * @skb: packet to process
1394 *
1395 * This function calculates the checksum over the entire packet plus
1396 * the value of skb->csum. The latter can be used to supply the
1397 * checksum of a pseudo header as used by TCP/UDP. It returns the
1398 * checksum.
1399 *
1400 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
1401 * this function can be used to verify that checksum on received
1402 * packets. In that case the function should return zero if the
1403 * checksum is correct. In particular, this function will return zero
1404 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1405 * hardware has already verified the correctness of the checksum.
1406 */
1407 static inline unsigned int skb_checksum_complete(struct sk_buff *skb)
1408 {
1409 return skb->ip_summed != CHECKSUM_UNNECESSARY &&
1410 __skb_checksum_complete(skb);
1411 }
1412
1413 #ifdef CONFIG_NETFILTER
1414 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1415 {
1416 if (nfct && atomic_dec_and_test(&nfct->use))
1417 nfct->destroy(nfct);
1418 }
1419 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1420 {
1421 if (nfct)
1422 atomic_inc(&nfct->use);
1423 }
1424 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1425 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1426 {
1427 if (skb)
1428 atomic_inc(&skb->users);
1429 }
1430 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1431 {
1432 if (skb)
1433 kfree_skb(skb);
1434 }
1435 #endif
1436 #ifdef CONFIG_BRIDGE_NETFILTER
1437 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1438 {
1439 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1440 kfree(nf_bridge);
1441 }
1442 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1443 {
1444 if (nf_bridge)
1445 atomic_inc(&nf_bridge->use);
1446 }
1447 #endif /* CONFIG_BRIDGE_NETFILTER */
1448 static inline void nf_reset(struct sk_buff *skb)
1449 {
1450 nf_conntrack_put(skb->nfct);
1451 skb->nfct = NULL;
1452 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1453 nf_conntrack_put_reasm(skb->nfct_reasm);
1454 skb->nfct_reasm = NULL;
1455 #endif
1456 #ifdef CONFIG_BRIDGE_NETFILTER
1457 nf_bridge_put(skb->nf_bridge);
1458 skb->nf_bridge = NULL;
1459 #endif
1460 }
1461
1462 #else /* CONFIG_NETFILTER */
1463 static inline void nf_reset(struct sk_buff *skb) {}
1464 #endif /* CONFIG_NETFILTER */
1465
1466 #ifdef CONFIG_NETWORK_SECMARK
1467 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1468 {
1469 to->secmark = from->secmark;
1470 }
1471
1472 static inline void skb_init_secmark(struct sk_buff *skb)
1473 {
1474 skb->secmark = 0;
1475 }
1476 #else
1477 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1478 { }
1479
1480 static inline void skb_init_secmark(struct sk_buff *skb)
1481 { }
1482 #endif
1483
1484 static inline int skb_is_gso(const struct sk_buff *skb)
1485 {
1486 return skb_shinfo(skb)->gso_size;
1487 }
1488
1489 #endif /* __KERNEL__ */
1490 #endif /* _LINUX_SKBUFF_H */
This page took 0.062237 seconds and 6 git commands to generate.