Merge git://git.kernel.org/pub/scm/linux/kernel/git/sfrench/cifs-2.6
[deliverable/linux.git] / include / linux / skbuff.h
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/cache.h>
21
22 #include <asm/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/net.h>
26 #include <linux/textsearch.h>
27 #include <net/checksum.h>
28 #include <linux/rcupdate.h>
29 #include <linux/dmaengine.h>
30 #include <linux/hrtimer.h>
31
32 #define HAVE_ALLOC_SKB /* For the drivers to know */
33 #define HAVE_ALIGNABLE_SKB /* Ditto 8) */
34
35 /* Don't change this without changing skb_csum_unnecessary! */
36 #define CHECKSUM_NONE 0
37 #define CHECKSUM_UNNECESSARY 1
38 #define CHECKSUM_COMPLETE 2
39 #define CHECKSUM_PARTIAL 3
40
41 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
42 ~(SMP_CACHE_BYTES - 1))
43 #define SKB_WITH_OVERHEAD(X) \
44 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
45 #define SKB_MAX_ORDER(X, ORDER) \
46 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
47 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
48 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
49
50 /* A. Checksumming of received packets by device.
51 *
52 * NONE: device failed to checksum this packet.
53 * skb->csum is undefined.
54 *
55 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
56 * skb->csum is undefined.
57 * It is bad option, but, unfortunately, many of vendors do this.
58 * Apparently with secret goal to sell you new device, when you
59 * will add new protocol to your host. F.e. IPv6. 8)
60 *
61 * COMPLETE: the most generic way. Device supplied checksum of _all_
62 * the packet as seen by netif_rx in skb->csum.
63 * NOTE: Even if device supports only some protocols, but
64 * is able to produce some skb->csum, it MUST use COMPLETE,
65 * not UNNECESSARY.
66 *
67 * PARTIAL: identical to the case for output below. This may occur
68 * on a packet received directly from another Linux OS, e.g.,
69 * a virtualised Linux kernel on the same host. The packet can
70 * be treated in the same way as UNNECESSARY except that on
71 * output (i.e., forwarding) the checksum must be filled in
72 * by the OS or the hardware.
73 *
74 * B. Checksumming on output.
75 *
76 * NONE: skb is checksummed by protocol or csum is not required.
77 *
78 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
79 * from skb->csum_start to the end and to record the checksum
80 * at skb->csum_start + skb->csum_offset.
81 *
82 * Device must show its capabilities in dev->features, set
83 * at device setup time.
84 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
85 * everything.
86 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
87 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
88 * TCP/UDP over IPv4. Sigh. Vendors like this
89 * way by an unknown reason. Though, see comment above
90 * about CHECKSUM_UNNECESSARY. 8)
91 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
92 *
93 * Any questions? No questions, good. --ANK
94 */
95
96 struct net_device;
97 struct scatterlist;
98
99 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
100 struct nf_conntrack {
101 atomic_t use;
102 };
103 #endif
104
105 #ifdef CONFIG_BRIDGE_NETFILTER
106 struct nf_bridge_info {
107 atomic_t use;
108 struct net_device *physindev;
109 struct net_device *physoutdev;
110 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
111 struct net_device *netoutdev;
112 #endif
113 unsigned int mask;
114 unsigned long data[32 / sizeof(unsigned long)];
115 };
116 #endif
117
118 struct sk_buff_head {
119 /* These two members must be first. */
120 struct sk_buff *next;
121 struct sk_buff *prev;
122
123 __u32 qlen;
124 spinlock_t lock;
125 };
126
127 struct sk_buff;
128
129 /* To allow 64K frame to be packed as single skb without frag_list */
130 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
131
132 typedef struct skb_frag_struct skb_frag_t;
133
134 struct skb_frag_struct {
135 struct page *page;
136 __u32 page_offset;
137 __u32 size;
138 };
139
140 /* This data is invariant across clones and lives at
141 * the end of the header data, ie. at skb->end.
142 */
143 struct skb_shared_info {
144 atomic_t dataref;
145 unsigned short nr_frags;
146 unsigned short gso_size;
147 /* Warning: this field is not always filled in (UFO)! */
148 unsigned short gso_segs;
149 unsigned short gso_type;
150 __be32 ip6_frag_id;
151 struct sk_buff *frag_list;
152 skb_frag_t frags[MAX_SKB_FRAGS];
153 };
154
155 /* We divide dataref into two halves. The higher 16 bits hold references
156 * to the payload part of skb->data. The lower 16 bits hold references to
157 * the entire skb->data. A clone of a headerless skb holds the length of
158 * the header in skb->hdr_len.
159 *
160 * All users must obey the rule that the skb->data reference count must be
161 * greater than or equal to the payload reference count.
162 *
163 * Holding a reference to the payload part means that the user does not
164 * care about modifications to the header part of skb->data.
165 */
166 #define SKB_DATAREF_SHIFT 16
167 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
168
169
170 enum {
171 SKB_FCLONE_UNAVAILABLE,
172 SKB_FCLONE_ORIG,
173 SKB_FCLONE_CLONE,
174 };
175
176 enum {
177 SKB_GSO_TCPV4 = 1 << 0,
178 SKB_GSO_UDP = 1 << 1,
179
180 /* This indicates the skb is from an untrusted source. */
181 SKB_GSO_DODGY = 1 << 2,
182
183 /* This indicates the tcp segment has CWR set. */
184 SKB_GSO_TCP_ECN = 1 << 3,
185
186 SKB_GSO_TCPV6 = 1 << 4,
187 };
188
189 #if BITS_PER_LONG > 32
190 #define NET_SKBUFF_DATA_USES_OFFSET 1
191 #endif
192
193 #ifdef NET_SKBUFF_DATA_USES_OFFSET
194 typedef unsigned int sk_buff_data_t;
195 #else
196 typedef unsigned char *sk_buff_data_t;
197 #endif
198
199 /**
200 * struct sk_buff - socket buffer
201 * @next: Next buffer in list
202 * @prev: Previous buffer in list
203 * @sk: Socket we are owned by
204 * @tstamp: Time we arrived
205 * @dev: Device we arrived on/are leaving by
206 * @transport_header: Transport layer header
207 * @network_header: Network layer header
208 * @mac_header: Link layer header
209 * @dst: destination entry
210 * @sp: the security path, used for xfrm
211 * @cb: Control buffer. Free for use by every layer. Put private vars here
212 * @len: Length of actual data
213 * @data_len: Data length
214 * @mac_len: Length of link layer header
215 * @hdr_len: writable header length of cloned skb
216 * @csum: Checksum (must include start/offset pair)
217 * @csum_start: Offset from skb->head where checksumming should start
218 * @csum_offset: Offset from csum_start where checksum should be stored
219 * @local_df: allow local fragmentation
220 * @cloned: Head may be cloned (check refcnt to be sure)
221 * @nohdr: Payload reference only, must not modify header
222 * @pkt_type: Packet class
223 * @fclone: skbuff clone status
224 * @ip_summed: Driver fed us an IP checksum
225 * @priority: Packet queueing priority
226 * @users: User count - see {datagram,tcp}.c
227 * @protocol: Packet protocol from driver
228 * @truesize: Buffer size
229 * @head: Head of buffer
230 * @data: Data head pointer
231 * @tail: Tail pointer
232 * @end: End pointer
233 * @destructor: Destruct function
234 * @mark: Generic packet mark
235 * @nfct: Associated connection, if any
236 * @ipvs_property: skbuff is owned by ipvs
237 * @nf_trace: netfilter packet trace flag
238 * @nfctinfo: Relationship of this skb to the connection
239 * @nfct_reasm: netfilter conntrack re-assembly pointer
240 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
241 * @iif: ifindex of device we arrived on
242 * @queue_mapping: Queue mapping for multiqueue devices
243 * @tc_index: Traffic control index
244 * @tc_verd: traffic control verdict
245 * @dma_cookie: a cookie to one of several possible DMA operations
246 * done by skb DMA functions
247 * @secmark: security marking
248 */
249
250 struct sk_buff {
251 /* These two members must be first. */
252 struct sk_buff *next;
253 struct sk_buff *prev;
254
255 struct sock *sk;
256 ktime_t tstamp;
257 struct net_device *dev;
258
259 struct dst_entry *dst;
260 struct sec_path *sp;
261
262 /*
263 * This is the control buffer. It is free to use for every
264 * layer. Please put your private variables there. If you
265 * want to keep them across layers you have to do a skb_clone()
266 * first. This is owned by whoever has the skb queued ATM.
267 */
268 char cb[48];
269
270 unsigned int len,
271 data_len;
272 __u16 mac_len,
273 hdr_len;
274 union {
275 __wsum csum;
276 struct {
277 __u16 csum_start;
278 __u16 csum_offset;
279 };
280 };
281 __u32 priority;
282 __u8 local_df:1,
283 cloned:1,
284 ip_summed:2,
285 nohdr:1,
286 nfctinfo:3;
287 __u8 pkt_type:3,
288 fclone:2,
289 ipvs_property:1,
290 nf_trace:1;
291 __be16 protocol;
292
293 void (*destructor)(struct sk_buff *skb);
294 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
295 struct nf_conntrack *nfct;
296 struct sk_buff *nfct_reasm;
297 #endif
298 #ifdef CONFIG_BRIDGE_NETFILTER
299 struct nf_bridge_info *nf_bridge;
300 #endif
301
302 int iif;
303 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
304 __u16 queue_mapping;
305 #endif
306 #ifdef CONFIG_NET_SCHED
307 __u16 tc_index; /* traffic control index */
308 #ifdef CONFIG_NET_CLS_ACT
309 __u16 tc_verd; /* traffic control verdict */
310 #endif
311 #endif
312 /* 2 byte hole */
313
314 #ifdef CONFIG_NET_DMA
315 dma_cookie_t dma_cookie;
316 #endif
317 #ifdef CONFIG_NETWORK_SECMARK
318 __u32 secmark;
319 #endif
320
321 __u32 mark;
322
323 sk_buff_data_t transport_header;
324 sk_buff_data_t network_header;
325 sk_buff_data_t mac_header;
326 /* These elements must be at the end, see alloc_skb() for details. */
327 sk_buff_data_t tail;
328 sk_buff_data_t end;
329 unsigned char *head,
330 *data;
331 unsigned int truesize;
332 atomic_t users;
333 };
334
335 #ifdef __KERNEL__
336 /*
337 * Handling routines are only of interest to the kernel
338 */
339 #include <linux/slab.h>
340
341 #include <asm/system.h>
342
343 extern void kfree_skb(struct sk_buff *skb);
344 extern void __kfree_skb(struct sk_buff *skb);
345 extern struct sk_buff *__alloc_skb(unsigned int size,
346 gfp_t priority, int fclone, int node);
347 static inline struct sk_buff *alloc_skb(unsigned int size,
348 gfp_t priority)
349 {
350 return __alloc_skb(size, priority, 0, -1);
351 }
352
353 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
354 gfp_t priority)
355 {
356 return __alloc_skb(size, priority, 1, -1);
357 }
358
359 extern void kfree_skbmem(struct sk_buff *skb);
360 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
361 extern struct sk_buff *skb_clone(struct sk_buff *skb,
362 gfp_t priority);
363 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
364 gfp_t priority);
365 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
366 gfp_t gfp_mask);
367 extern int pskb_expand_head(struct sk_buff *skb,
368 int nhead, int ntail,
369 gfp_t gfp_mask);
370 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
371 unsigned int headroom);
372 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
373 int newheadroom, int newtailroom,
374 gfp_t priority);
375 extern int skb_to_sgvec(struct sk_buff *skb,
376 struct scatterlist *sg, int offset,
377 int len);
378 extern int skb_cow_data(struct sk_buff *skb, int tailbits,
379 struct sk_buff **trailer);
380 extern int skb_pad(struct sk_buff *skb, int pad);
381 #define dev_kfree_skb(a) kfree_skb(a)
382 extern void skb_over_panic(struct sk_buff *skb, int len,
383 void *here);
384 extern void skb_under_panic(struct sk_buff *skb, int len,
385 void *here);
386 extern void skb_truesize_bug(struct sk_buff *skb);
387
388 static inline void skb_truesize_check(struct sk_buff *skb)
389 {
390 if (unlikely((int)skb->truesize < sizeof(struct sk_buff) + skb->len))
391 skb_truesize_bug(skb);
392 }
393
394 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
395 int getfrag(void *from, char *to, int offset,
396 int len,int odd, struct sk_buff *skb),
397 void *from, int length);
398
399 struct skb_seq_state
400 {
401 __u32 lower_offset;
402 __u32 upper_offset;
403 __u32 frag_idx;
404 __u32 stepped_offset;
405 struct sk_buff *root_skb;
406 struct sk_buff *cur_skb;
407 __u8 *frag_data;
408 };
409
410 extern void skb_prepare_seq_read(struct sk_buff *skb,
411 unsigned int from, unsigned int to,
412 struct skb_seq_state *st);
413 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
414 struct skb_seq_state *st);
415 extern void skb_abort_seq_read(struct skb_seq_state *st);
416
417 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
418 unsigned int to, struct ts_config *config,
419 struct ts_state *state);
420
421 #ifdef NET_SKBUFF_DATA_USES_OFFSET
422 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
423 {
424 return skb->head + skb->end;
425 }
426 #else
427 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
428 {
429 return skb->end;
430 }
431 #endif
432
433 /* Internal */
434 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
435
436 /**
437 * skb_queue_empty - check if a queue is empty
438 * @list: queue head
439 *
440 * Returns true if the queue is empty, false otherwise.
441 */
442 static inline int skb_queue_empty(const struct sk_buff_head *list)
443 {
444 return list->next == (struct sk_buff *)list;
445 }
446
447 /**
448 * skb_get - reference buffer
449 * @skb: buffer to reference
450 *
451 * Makes another reference to a socket buffer and returns a pointer
452 * to the buffer.
453 */
454 static inline struct sk_buff *skb_get(struct sk_buff *skb)
455 {
456 atomic_inc(&skb->users);
457 return skb;
458 }
459
460 /*
461 * If users == 1, we are the only owner and are can avoid redundant
462 * atomic change.
463 */
464
465 /**
466 * skb_cloned - is the buffer a clone
467 * @skb: buffer to check
468 *
469 * Returns true if the buffer was generated with skb_clone() and is
470 * one of multiple shared copies of the buffer. Cloned buffers are
471 * shared data so must not be written to under normal circumstances.
472 */
473 static inline int skb_cloned(const struct sk_buff *skb)
474 {
475 return skb->cloned &&
476 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
477 }
478
479 /**
480 * skb_header_cloned - is the header a clone
481 * @skb: buffer to check
482 *
483 * Returns true if modifying the header part of the buffer requires
484 * the data to be copied.
485 */
486 static inline int skb_header_cloned(const struct sk_buff *skb)
487 {
488 int dataref;
489
490 if (!skb->cloned)
491 return 0;
492
493 dataref = atomic_read(&skb_shinfo(skb)->dataref);
494 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
495 return dataref != 1;
496 }
497
498 /**
499 * skb_header_release - release reference to header
500 * @skb: buffer to operate on
501 *
502 * Drop a reference to the header part of the buffer. This is done
503 * by acquiring a payload reference. You must not read from the header
504 * part of skb->data after this.
505 */
506 static inline void skb_header_release(struct sk_buff *skb)
507 {
508 BUG_ON(skb->nohdr);
509 skb->nohdr = 1;
510 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
511 }
512
513 /**
514 * skb_shared - is the buffer shared
515 * @skb: buffer to check
516 *
517 * Returns true if more than one person has a reference to this
518 * buffer.
519 */
520 static inline int skb_shared(const struct sk_buff *skb)
521 {
522 return atomic_read(&skb->users) != 1;
523 }
524
525 /**
526 * skb_share_check - check if buffer is shared and if so clone it
527 * @skb: buffer to check
528 * @pri: priority for memory allocation
529 *
530 * If the buffer is shared the buffer is cloned and the old copy
531 * drops a reference. A new clone with a single reference is returned.
532 * If the buffer is not shared the original buffer is returned. When
533 * being called from interrupt status or with spinlocks held pri must
534 * be GFP_ATOMIC.
535 *
536 * NULL is returned on a memory allocation failure.
537 */
538 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
539 gfp_t pri)
540 {
541 might_sleep_if(pri & __GFP_WAIT);
542 if (skb_shared(skb)) {
543 struct sk_buff *nskb = skb_clone(skb, pri);
544 kfree_skb(skb);
545 skb = nskb;
546 }
547 return skb;
548 }
549
550 /*
551 * Copy shared buffers into a new sk_buff. We effectively do COW on
552 * packets to handle cases where we have a local reader and forward
553 * and a couple of other messy ones. The normal one is tcpdumping
554 * a packet thats being forwarded.
555 */
556
557 /**
558 * skb_unshare - make a copy of a shared buffer
559 * @skb: buffer to check
560 * @pri: priority for memory allocation
561 *
562 * If the socket buffer is a clone then this function creates a new
563 * copy of the data, drops a reference count on the old copy and returns
564 * the new copy with the reference count at 1. If the buffer is not a clone
565 * the original buffer is returned. When called with a spinlock held or
566 * from interrupt state @pri must be %GFP_ATOMIC
567 *
568 * %NULL is returned on a memory allocation failure.
569 */
570 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
571 gfp_t pri)
572 {
573 might_sleep_if(pri & __GFP_WAIT);
574 if (skb_cloned(skb)) {
575 struct sk_buff *nskb = skb_copy(skb, pri);
576 kfree_skb(skb); /* Free our shared copy */
577 skb = nskb;
578 }
579 return skb;
580 }
581
582 /**
583 * skb_peek
584 * @list_: list to peek at
585 *
586 * Peek an &sk_buff. Unlike most other operations you _MUST_
587 * be careful with this one. A peek leaves the buffer on the
588 * list and someone else may run off with it. You must hold
589 * the appropriate locks or have a private queue to do this.
590 *
591 * Returns %NULL for an empty list or a pointer to the head element.
592 * The reference count is not incremented and the reference is therefore
593 * volatile. Use with caution.
594 */
595 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
596 {
597 struct sk_buff *list = ((struct sk_buff *)list_)->next;
598 if (list == (struct sk_buff *)list_)
599 list = NULL;
600 return list;
601 }
602
603 /**
604 * skb_peek_tail
605 * @list_: list to peek at
606 *
607 * Peek an &sk_buff. Unlike most other operations you _MUST_
608 * be careful with this one. A peek leaves the buffer on the
609 * list and someone else may run off with it. You must hold
610 * the appropriate locks or have a private queue to do this.
611 *
612 * Returns %NULL for an empty list or a pointer to the tail element.
613 * The reference count is not incremented and the reference is therefore
614 * volatile. Use with caution.
615 */
616 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
617 {
618 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
619 if (list == (struct sk_buff *)list_)
620 list = NULL;
621 return list;
622 }
623
624 /**
625 * skb_queue_len - get queue length
626 * @list_: list to measure
627 *
628 * Return the length of an &sk_buff queue.
629 */
630 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
631 {
632 return list_->qlen;
633 }
634
635 /*
636 * This function creates a split out lock class for each invocation;
637 * this is needed for now since a whole lot of users of the skb-queue
638 * infrastructure in drivers have different locking usage (in hardirq)
639 * than the networking core (in softirq only). In the long run either the
640 * network layer or drivers should need annotation to consolidate the
641 * main types of usage into 3 classes.
642 */
643 static inline void skb_queue_head_init(struct sk_buff_head *list)
644 {
645 spin_lock_init(&list->lock);
646 list->prev = list->next = (struct sk_buff *)list;
647 list->qlen = 0;
648 }
649
650 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
651 struct lock_class_key *class)
652 {
653 skb_queue_head_init(list);
654 lockdep_set_class(&list->lock, class);
655 }
656
657 /*
658 * Insert an sk_buff at the start of a list.
659 *
660 * The "__skb_xxxx()" functions are the non-atomic ones that
661 * can only be called with interrupts disabled.
662 */
663
664 /**
665 * __skb_queue_after - queue a buffer at the list head
666 * @list: list to use
667 * @prev: place after this buffer
668 * @newsk: buffer to queue
669 *
670 * Queue a buffer int the middle of a list. This function takes no locks
671 * and you must therefore hold required locks before calling it.
672 *
673 * A buffer cannot be placed on two lists at the same time.
674 */
675 static inline void __skb_queue_after(struct sk_buff_head *list,
676 struct sk_buff *prev,
677 struct sk_buff *newsk)
678 {
679 struct sk_buff *next;
680 list->qlen++;
681
682 next = prev->next;
683 newsk->next = next;
684 newsk->prev = prev;
685 next->prev = prev->next = newsk;
686 }
687
688 /**
689 * __skb_queue_head - queue a buffer at the list head
690 * @list: list to use
691 * @newsk: buffer to queue
692 *
693 * Queue a buffer at the start of a list. This function takes no locks
694 * and you must therefore hold required locks before calling it.
695 *
696 * A buffer cannot be placed on two lists at the same time.
697 */
698 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
699 static inline void __skb_queue_head(struct sk_buff_head *list,
700 struct sk_buff *newsk)
701 {
702 __skb_queue_after(list, (struct sk_buff *)list, newsk);
703 }
704
705 /**
706 * __skb_queue_tail - queue a buffer at the list tail
707 * @list: list to use
708 * @newsk: buffer to queue
709 *
710 * Queue a buffer at the end of a list. This function takes no locks
711 * and you must therefore hold required locks before calling it.
712 *
713 * A buffer cannot be placed on two lists at the same time.
714 */
715 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
716 static inline void __skb_queue_tail(struct sk_buff_head *list,
717 struct sk_buff *newsk)
718 {
719 struct sk_buff *prev, *next;
720
721 list->qlen++;
722 next = (struct sk_buff *)list;
723 prev = next->prev;
724 newsk->next = next;
725 newsk->prev = prev;
726 next->prev = prev->next = newsk;
727 }
728
729
730 /**
731 * __skb_dequeue - remove from the head of the queue
732 * @list: list to dequeue from
733 *
734 * Remove the head of the list. This function does not take any locks
735 * so must be used with appropriate locks held only. The head item is
736 * returned or %NULL if the list is empty.
737 */
738 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
739 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
740 {
741 struct sk_buff *next, *prev, *result;
742
743 prev = (struct sk_buff *) list;
744 next = prev->next;
745 result = NULL;
746 if (next != prev) {
747 result = next;
748 next = next->next;
749 list->qlen--;
750 next->prev = prev;
751 prev->next = next;
752 result->next = result->prev = NULL;
753 }
754 return result;
755 }
756
757
758 /*
759 * Insert a packet on a list.
760 */
761 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
762 static inline void __skb_insert(struct sk_buff *newsk,
763 struct sk_buff *prev, struct sk_buff *next,
764 struct sk_buff_head *list)
765 {
766 newsk->next = next;
767 newsk->prev = prev;
768 next->prev = prev->next = newsk;
769 list->qlen++;
770 }
771
772 /*
773 * Place a packet after a given packet in a list.
774 */
775 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
776 static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
777 {
778 __skb_insert(newsk, old, old->next, list);
779 }
780
781 /*
782 * remove sk_buff from list. _Must_ be called atomically, and with
783 * the list known..
784 */
785 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
786 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
787 {
788 struct sk_buff *next, *prev;
789
790 list->qlen--;
791 next = skb->next;
792 prev = skb->prev;
793 skb->next = skb->prev = NULL;
794 next->prev = prev;
795 prev->next = next;
796 }
797
798
799 /* XXX: more streamlined implementation */
800
801 /**
802 * __skb_dequeue_tail - remove from the tail of the queue
803 * @list: list to dequeue from
804 *
805 * Remove the tail of the list. This function does not take any locks
806 * so must be used with appropriate locks held only. The tail item is
807 * returned or %NULL if the list is empty.
808 */
809 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
810 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
811 {
812 struct sk_buff *skb = skb_peek_tail(list);
813 if (skb)
814 __skb_unlink(skb, list);
815 return skb;
816 }
817
818
819 static inline int skb_is_nonlinear(const struct sk_buff *skb)
820 {
821 return skb->data_len;
822 }
823
824 static inline unsigned int skb_headlen(const struct sk_buff *skb)
825 {
826 return skb->len - skb->data_len;
827 }
828
829 static inline int skb_pagelen(const struct sk_buff *skb)
830 {
831 int i, len = 0;
832
833 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
834 len += skb_shinfo(skb)->frags[i].size;
835 return len + skb_headlen(skb);
836 }
837
838 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
839 struct page *page, int off, int size)
840 {
841 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
842
843 frag->page = page;
844 frag->page_offset = off;
845 frag->size = size;
846 skb_shinfo(skb)->nr_frags = i + 1;
847 }
848
849 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
850 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
851 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
852
853 #ifdef NET_SKBUFF_DATA_USES_OFFSET
854 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
855 {
856 return skb->head + skb->tail;
857 }
858
859 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
860 {
861 skb->tail = skb->data - skb->head;
862 }
863
864 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
865 {
866 skb_reset_tail_pointer(skb);
867 skb->tail += offset;
868 }
869 #else /* NET_SKBUFF_DATA_USES_OFFSET */
870 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
871 {
872 return skb->tail;
873 }
874
875 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
876 {
877 skb->tail = skb->data;
878 }
879
880 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
881 {
882 skb->tail = skb->data + offset;
883 }
884
885 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
886
887 /*
888 * Add data to an sk_buff
889 */
890 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
891 {
892 unsigned char *tmp = skb_tail_pointer(skb);
893 SKB_LINEAR_ASSERT(skb);
894 skb->tail += len;
895 skb->len += len;
896 return tmp;
897 }
898
899 /**
900 * skb_put - add data to a buffer
901 * @skb: buffer to use
902 * @len: amount of data to add
903 *
904 * This function extends the used data area of the buffer. If this would
905 * exceed the total buffer size the kernel will panic. A pointer to the
906 * first byte of the extra data is returned.
907 */
908 static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
909 {
910 unsigned char *tmp = skb_tail_pointer(skb);
911 SKB_LINEAR_ASSERT(skb);
912 skb->tail += len;
913 skb->len += len;
914 if (unlikely(skb->tail > skb->end))
915 skb_over_panic(skb, len, current_text_addr());
916 return tmp;
917 }
918
919 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
920 {
921 skb->data -= len;
922 skb->len += len;
923 return skb->data;
924 }
925
926 /**
927 * skb_push - add data to the start of a buffer
928 * @skb: buffer to use
929 * @len: amount of data to add
930 *
931 * This function extends the used data area of the buffer at the buffer
932 * start. If this would exceed the total buffer headroom the kernel will
933 * panic. A pointer to the first byte of the extra data is returned.
934 */
935 static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
936 {
937 skb->data -= len;
938 skb->len += len;
939 if (unlikely(skb->data<skb->head))
940 skb_under_panic(skb, len, current_text_addr());
941 return skb->data;
942 }
943
944 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
945 {
946 skb->len -= len;
947 BUG_ON(skb->len < skb->data_len);
948 return skb->data += len;
949 }
950
951 /**
952 * skb_pull - remove data from the start of a buffer
953 * @skb: buffer to use
954 * @len: amount of data to remove
955 *
956 * This function removes data from the start of a buffer, returning
957 * the memory to the headroom. A pointer to the next data in the buffer
958 * is returned. Once the data has been pulled future pushes will overwrite
959 * the old data.
960 */
961 static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
962 {
963 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
964 }
965
966 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
967
968 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
969 {
970 if (len > skb_headlen(skb) &&
971 !__pskb_pull_tail(skb, len-skb_headlen(skb)))
972 return NULL;
973 skb->len -= len;
974 return skb->data += len;
975 }
976
977 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
978 {
979 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
980 }
981
982 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
983 {
984 if (likely(len <= skb_headlen(skb)))
985 return 1;
986 if (unlikely(len > skb->len))
987 return 0;
988 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
989 }
990
991 /**
992 * skb_headroom - bytes at buffer head
993 * @skb: buffer to check
994 *
995 * Return the number of bytes of free space at the head of an &sk_buff.
996 */
997 static inline unsigned int skb_headroom(const struct sk_buff *skb)
998 {
999 return skb->data - skb->head;
1000 }
1001
1002 /**
1003 * skb_tailroom - bytes at buffer end
1004 * @skb: buffer to check
1005 *
1006 * Return the number of bytes of free space at the tail of an sk_buff
1007 */
1008 static inline int skb_tailroom(const struct sk_buff *skb)
1009 {
1010 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1011 }
1012
1013 /**
1014 * skb_reserve - adjust headroom
1015 * @skb: buffer to alter
1016 * @len: bytes to move
1017 *
1018 * Increase the headroom of an empty &sk_buff by reducing the tail
1019 * room. This is only allowed for an empty buffer.
1020 */
1021 static inline void skb_reserve(struct sk_buff *skb, int len)
1022 {
1023 skb->data += len;
1024 skb->tail += len;
1025 }
1026
1027 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1028 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1029 {
1030 return skb->head + skb->transport_header;
1031 }
1032
1033 static inline void skb_reset_transport_header(struct sk_buff *skb)
1034 {
1035 skb->transport_header = skb->data - skb->head;
1036 }
1037
1038 static inline void skb_set_transport_header(struct sk_buff *skb,
1039 const int offset)
1040 {
1041 skb_reset_transport_header(skb);
1042 skb->transport_header += offset;
1043 }
1044
1045 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1046 {
1047 return skb->head + skb->network_header;
1048 }
1049
1050 static inline void skb_reset_network_header(struct sk_buff *skb)
1051 {
1052 skb->network_header = skb->data - skb->head;
1053 }
1054
1055 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1056 {
1057 skb_reset_network_header(skb);
1058 skb->network_header += offset;
1059 }
1060
1061 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1062 {
1063 return skb->head + skb->mac_header;
1064 }
1065
1066 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1067 {
1068 return skb->mac_header != ~0U;
1069 }
1070
1071 static inline void skb_reset_mac_header(struct sk_buff *skb)
1072 {
1073 skb->mac_header = skb->data - skb->head;
1074 }
1075
1076 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1077 {
1078 skb_reset_mac_header(skb);
1079 skb->mac_header += offset;
1080 }
1081
1082 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1083
1084 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1085 {
1086 return skb->transport_header;
1087 }
1088
1089 static inline void skb_reset_transport_header(struct sk_buff *skb)
1090 {
1091 skb->transport_header = skb->data;
1092 }
1093
1094 static inline void skb_set_transport_header(struct sk_buff *skb,
1095 const int offset)
1096 {
1097 skb->transport_header = skb->data + offset;
1098 }
1099
1100 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1101 {
1102 return skb->network_header;
1103 }
1104
1105 static inline void skb_reset_network_header(struct sk_buff *skb)
1106 {
1107 skb->network_header = skb->data;
1108 }
1109
1110 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1111 {
1112 skb->network_header = skb->data + offset;
1113 }
1114
1115 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1116 {
1117 return skb->mac_header;
1118 }
1119
1120 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1121 {
1122 return skb->mac_header != NULL;
1123 }
1124
1125 static inline void skb_reset_mac_header(struct sk_buff *skb)
1126 {
1127 skb->mac_header = skb->data;
1128 }
1129
1130 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1131 {
1132 skb->mac_header = skb->data + offset;
1133 }
1134 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1135
1136 static inline int skb_transport_offset(const struct sk_buff *skb)
1137 {
1138 return skb_transport_header(skb) - skb->data;
1139 }
1140
1141 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1142 {
1143 return skb->transport_header - skb->network_header;
1144 }
1145
1146 static inline int skb_network_offset(const struct sk_buff *skb)
1147 {
1148 return skb_network_header(skb) - skb->data;
1149 }
1150
1151 /*
1152 * CPUs often take a performance hit when accessing unaligned memory
1153 * locations. The actual performance hit varies, it can be small if the
1154 * hardware handles it or large if we have to take an exception and fix it
1155 * in software.
1156 *
1157 * Since an ethernet header is 14 bytes network drivers often end up with
1158 * the IP header at an unaligned offset. The IP header can be aligned by
1159 * shifting the start of the packet by 2 bytes. Drivers should do this
1160 * with:
1161 *
1162 * skb_reserve(NET_IP_ALIGN);
1163 *
1164 * The downside to this alignment of the IP header is that the DMA is now
1165 * unaligned. On some architectures the cost of an unaligned DMA is high
1166 * and this cost outweighs the gains made by aligning the IP header.
1167 *
1168 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1169 * to be overridden.
1170 */
1171 #ifndef NET_IP_ALIGN
1172 #define NET_IP_ALIGN 2
1173 #endif
1174
1175 /*
1176 * The networking layer reserves some headroom in skb data (via
1177 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1178 * the header has to grow. In the default case, if the header has to grow
1179 * 16 bytes or less we avoid the reallocation.
1180 *
1181 * Unfortunately this headroom changes the DMA alignment of the resulting
1182 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1183 * on some architectures. An architecture can override this value,
1184 * perhaps setting it to a cacheline in size (since that will maintain
1185 * cacheline alignment of the DMA). It must be a power of 2.
1186 *
1187 * Various parts of the networking layer expect at least 16 bytes of
1188 * headroom, you should not reduce this.
1189 */
1190 #ifndef NET_SKB_PAD
1191 #define NET_SKB_PAD 16
1192 #endif
1193
1194 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1195
1196 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1197 {
1198 if (unlikely(skb->data_len)) {
1199 WARN_ON(1);
1200 return;
1201 }
1202 skb->len = len;
1203 skb_set_tail_pointer(skb, len);
1204 }
1205
1206 /**
1207 * skb_trim - remove end from a buffer
1208 * @skb: buffer to alter
1209 * @len: new length
1210 *
1211 * Cut the length of a buffer down by removing data from the tail. If
1212 * the buffer is already under the length specified it is not modified.
1213 * The skb must be linear.
1214 */
1215 static inline void skb_trim(struct sk_buff *skb, unsigned int len)
1216 {
1217 if (skb->len > len)
1218 __skb_trim(skb, len);
1219 }
1220
1221
1222 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1223 {
1224 if (skb->data_len)
1225 return ___pskb_trim(skb, len);
1226 __skb_trim(skb, len);
1227 return 0;
1228 }
1229
1230 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1231 {
1232 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1233 }
1234
1235 /**
1236 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1237 * @skb: buffer to alter
1238 * @len: new length
1239 *
1240 * This is identical to pskb_trim except that the caller knows that
1241 * the skb is not cloned so we should never get an error due to out-
1242 * of-memory.
1243 */
1244 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1245 {
1246 int err = pskb_trim(skb, len);
1247 BUG_ON(err);
1248 }
1249
1250 /**
1251 * skb_orphan - orphan a buffer
1252 * @skb: buffer to orphan
1253 *
1254 * If a buffer currently has an owner then we call the owner's
1255 * destructor function and make the @skb unowned. The buffer continues
1256 * to exist but is no longer charged to its former owner.
1257 */
1258 static inline void skb_orphan(struct sk_buff *skb)
1259 {
1260 if (skb->destructor)
1261 skb->destructor(skb);
1262 skb->destructor = NULL;
1263 skb->sk = NULL;
1264 }
1265
1266 /**
1267 * __skb_queue_purge - empty a list
1268 * @list: list to empty
1269 *
1270 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1271 * the list and one reference dropped. This function does not take the
1272 * list lock and the caller must hold the relevant locks to use it.
1273 */
1274 extern void skb_queue_purge(struct sk_buff_head *list);
1275 static inline void __skb_queue_purge(struct sk_buff_head *list)
1276 {
1277 struct sk_buff *skb;
1278 while ((skb = __skb_dequeue(list)) != NULL)
1279 kfree_skb(skb);
1280 }
1281
1282 /**
1283 * __dev_alloc_skb - allocate an skbuff for receiving
1284 * @length: length to allocate
1285 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1286 *
1287 * Allocate a new &sk_buff and assign it a usage count of one. The
1288 * buffer has unspecified headroom built in. Users should allocate
1289 * the headroom they think they need without accounting for the
1290 * built in space. The built in space is used for optimisations.
1291 *
1292 * %NULL is returned if there is no free memory.
1293 */
1294 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1295 gfp_t gfp_mask)
1296 {
1297 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1298 if (likely(skb))
1299 skb_reserve(skb, NET_SKB_PAD);
1300 return skb;
1301 }
1302
1303 /**
1304 * dev_alloc_skb - allocate an skbuff for receiving
1305 * @length: length to allocate
1306 *
1307 * Allocate a new &sk_buff and assign it a usage count of one. The
1308 * buffer has unspecified headroom built in. Users should allocate
1309 * the headroom they think they need without accounting for the
1310 * built in space. The built in space is used for optimisations.
1311 *
1312 * %NULL is returned if there is no free memory. Although this function
1313 * allocates memory it can be called from an interrupt.
1314 */
1315 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1316 {
1317 return __dev_alloc_skb(length, GFP_ATOMIC);
1318 }
1319
1320 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1321 unsigned int length, gfp_t gfp_mask);
1322
1323 /**
1324 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1325 * @dev: network device to receive on
1326 * @length: length to allocate
1327 *
1328 * Allocate a new &sk_buff and assign it a usage count of one. The
1329 * buffer has unspecified headroom built in. Users should allocate
1330 * the headroom they think they need without accounting for the
1331 * built in space. The built in space is used for optimisations.
1332 *
1333 * %NULL is returned if there is no free memory. Although this function
1334 * allocates memory it can be called from an interrupt.
1335 */
1336 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1337 unsigned int length)
1338 {
1339 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1340 }
1341
1342 /**
1343 * skb_clone_writable - is the header of a clone writable
1344 * @skb: buffer to check
1345 * @len: length up to which to write
1346 *
1347 * Returns true if modifying the header part of the cloned buffer
1348 * does not requires the data to be copied.
1349 */
1350 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1351 {
1352 return !skb_header_cloned(skb) &&
1353 skb_headroom(skb) + len <= skb->hdr_len;
1354 }
1355
1356 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1357 int cloned)
1358 {
1359 int delta = 0;
1360
1361 if (headroom < NET_SKB_PAD)
1362 headroom = NET_SKB_PAD;
1363 if (headroom > skb_headroom(skb))
1364 delta = headroom - skb_headroom(skb);
1365
1366 if (delta || cloned)
1367 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1368 GFP_ATOMIC);
1369 return 0;
1370 }
1371
1372 /**
1373 * skb_cow - copy header of skb when it is required
1374 * @skb: buffer to cow
1375 * @headroom: needed headroom
1376 *
1377 * If the skb passed lacks sufficient headroom or its data part
1378 * is shared, data is reallocated. If reallocation fails, an error
1379 * is returned and original skb is not changed.
1380 *
1381 * The result is skb with writable area skb->head...skb->tail
1382 * and at least @headroom of space at head.
1383 */
1384 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1385 {
1386 return __skb_cow(skb, headroom, skb_cloned(skb));
1387 }
1388
1389 /**
1390 * skb_cow_head - skb_cow but only making the head writable
1391 * @skb: buffer to cow
1392 * @headroom: needed headroom
1393 *
1394 * This function is identical to skb_cow except that we replace the
1395 * skb_cloned check by skb_header_cloned. It should be used when
1396 * you only need to push on some header and do not need to modify
1397 * the data.
1398 */
1399 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1400 {
1401 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1402 }
1403
1404 /**
1405 * skb_padto - pad an skbuff up to a minimal size
1406 * @skb: buffer to pad
1407 * @len: minimal length
1408 *
1409 * Pads up a buffer to ensure the trailing bytes exist and are
1410 * blanked. If the buffer already contains sufficient data it
1411 * is untouched. Otherwise it is extended. Returns zero on
1412 * success. The skb is freed on error.
1413 */
1414
1415 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1416 {
1417 unsigned int size = skb->len;
1418 if (likely(size >= len))
1419 return 0;
1420 return skb_pad(skb, len-size);
1421 }
1422
1423 static inline int skb_add_data(struct sk_buff *skb,
1424 char __user *from, int copy)
1425 {
1426 const int off = skb->len;
1427
1428 if (skb->ip_summed == CHECKSUM_NONE) {
1429 int err = 0;
1430 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1431 copy, 0, &err);
1432 if (!err) {
1433 skb->csum = csum_block_add(skb->csum, csum, off);
1434 return 0;
1435 }
1436 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1437 return 0;
1438
1439 __skb_trim(skb, off);
1440 return -EFAULT;
1441 }
1442
1443 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1444 struct page *page, int off)
1445 {
1446 if (i) {
1447 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1448
1449 return page == frag->page &&
1450 off == frag->page_offset + frag->size;
1451 }
1452 return 0;
1453 }
1454
1455 static inline int __skb_linearize(struct sk_buff *skb)
1456 {
1457 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1458 }
1459
1460 /**
1461 * skb_linearize - convert paged skb to linear one
1462 * @skb: buffer to linarize
1463 *
1464 * If there is no free memory -ENOMEM is returned, otherwise zero
1465 * is returned and the old skb data released.
1466 */
1467 static inline int skb_linearize(struct sk_buff *skb)
1468 {
1469 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1470 }
1471
1472 /**
1473 * skb_linearize_cow - make sure skb is linear and writable
1474 * @skb: buffer to process
1475 *
1476 * If there is no free memory -ENOMEM is returned, otherwise zero
1477 * is returned and the old skb data released.
1478 */
1479 static inline int skb_linearize_cow(struct sk_buff *skb)
1480 {
1481 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1482 __skb_linearize(skb) : 0;
1483 }
1484
1485 /**
1486 * skb_postpull_rcsum - update checksum for received skb after pull
1487 * @skb: buffer to update
1488 * @start: start of data before pull
1489 * @len: length of data pulled
1490 *
1491 * After doing a pull on a received packet, you need to call this to
1492 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1493 * CHECKSUM_NONE so that it can be recomputed from scratch.
1494 */
1495
1496 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1497 const void *start, unsigned int len)
1498 {
1499 if (skb->ip_summed == CHECKSUM_COMPLETE)
1500 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1501 }
1502
1503 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1504
1505 /**
1506 * pskb_trim_rcsum - trim received skb and update checksum
1507 * @skb: buffer to trim
1508 * @len: new length
1509 *
1510 * This is exactly the same as pskb_trim except that it ensures the
1511 * checksum of received packets are still valid after the operation.
1512 */
1513
1514 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1515 {
1516 if (likely(len >= skb->len))
1517 return 0;
1518 if (skb->ip_summed == CHECKSUM_COMPLETE)
1519 skb->ip_summed = CHECKSUM_NONE;
1520 return __pskb_trim(skb, len);
1521 }
1522
1523 #define skb_queue_walk(queue, skb) \
1524 for (skb = (queue)->next; \
1525 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1526 skb = skb->next)
1527
1528 #define skb_queue_walk_safe(queue, skb, tmp) \
1529 for (skb = (queue)->next, tmp = skb->next; \
1530 skb != (struct sk_buff *)(queue); \
1531 skb = tmp, tmp = skb->next)
1532
1533 #define skb_queue_reverse_walk(queue, skb) \
1534 for (skb = (queue)->prev; \
1535 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1536 skb = skb->prev)
1537
1538
1539 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1540 int noblock, int *err);
1541 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1542 struct poll_table_struct *wait);
1543 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1544 int offset, struct iovec *to,
1545 int size);
1546 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1547 int hlen,
1548 struct iovec *iov);
1549 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1550 extern void skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1551 unsigned int flags);
1552 extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
1553 int len, __wsum csum);
1554 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1555 void *to, int len);
1556 extern int skb_store_bits(struct sk_buff *skb, int offset,
1557 const void *from, int len);
1558 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
1559 int offset, u8 *to, int len,
1560 __wsum csum);
1561 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1562 extern void skb_split(struct sk_buff *skb,
1563 struct sk_buff *skb1, const u32 len);
1564
1565 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1566
1567 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1568 int len, void *buffer)
1569 {
1570 int hlen = skb_headlen(skb);
1571
1572 if (hlen - offset >= len)
1573 return skb->data + offset;
1574
1575 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1576 return NULL;
1577
1578 return buffer;
1579 }
1580
1581 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1582 void *to,
1583 const unsigned int len)
1584 {
1585 memcpy(to, skb->data, len);
1586 }
1587
1588 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1589 const int offset, void *to,
1590 const unsigned int len)
1591 {
1592 memcpy(to, skb->data + offset, len);
1593 }
1594
1595 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1596 const void *from,
1597 const unsigned int len)
1598 {
1599 memcpy(skb->data, from, len);
1600 }
1601
1602 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1603 const int offset,
1604 const void *from,
1605 const unsigned int len)
1606 {
1607 memcpy(skb->data + offset, from, len);
1608 }
1609
1610 extern void skb_init(void);
1611
1612 /**
1613 * skb_get_timestamp - get timestamp from a skb
1614 * @skb: skb to get stamp from
1615 * @stamp: pointer to struct timeval to store stamp in
1616 *
1617 * Timestamps are stored in the skb as offsets to a base timestamp.
1618 * This function converts the offset back to a struct timeval and stores
1619 * it in stamp.
1620 */
1621 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1622 {
1623 *stamp = ktime_to_timeval(skb->tstamp);
1624 }
1625
1626 static inline void __net_timestamp(struct sk_buff *skb)
1627 {
1628 skb->tstamp = ktime_get_real();
1629 }
1630
1631 static inline ktime_t net_timedelta(ktime_t t)
1632 {
1633 return ktime_sub(ktime_get_real(), t);
1634 }
1635
1636 static inline ktime_t net_invalid_timestamp(void)
1637 {
1638 return ktime_set(0, 0);
1639 }
1640
1641 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1642 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1643
1644 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
1645 {
1646 return skb->ip_summed & CHECKSUM_UNNECESSARY;
1647 }
1648
1649 /**
1650 * skb_checksum_complete - Calculate checksum of an entire packet
1651 * @skb: packet to process
1652 *
1653 * This function calculates the checksum over the entire packet plus
1654 * the value of skb->csum. The latter can be used to supply the
1655 * checksum of a pseudo header as used by TCP/UDP. It returns the
1656 * checksum.
1657 *
1658 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
1659 * this function can be used to verify that checksum on received
1660 * packets. In that case the function should return zero if the
1661 * checksum is correct. In particular, this function will return zero
1662 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1663 * hardware has already verified the correctness of the checksum.
1664 */
1665 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
1666 {
1667 return skb_csum_unnecessary(skb) ?
1668 0 : __skb_checksum_complete(skb);
1669 }
1670
1671 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1672 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
1673 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1674 {
1675 if (nfct && atomic_dec_and_test(&nfct->use))
1676 nf_conntrack_destroy(nfct);
1677 }
1678 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1679 {
1680 if (nfct)
1681 atomic_inc(&nfct->use);
1682 }
1683 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1684 {
1685 if (skb)
1686 atomic_inc(&skb->users);
1687 }
1688 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1689 {
1690 if (skb)
1691 kfree_skb(skb);
1692 }
1693 #endif
1694 #ifdef CONFIG_BRIDGE_NETFILTER
1695 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1696 {
1697 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1698 kfree(nf_bridge);
1699 }
1700 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1701 {
1702 if (nf_bridge)
1703 atomic_inc(&nf_bridge->use);
1704 }
1705 #endif /* CONFIG_BRIDGE_NETFILTER */
1706 static inline void nf_reset(struct sk_buff *skb)
1707 {
1708 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1709 nf_conntrack_put(skb->nfct);
1710 skb->nfct = NULL;
1711 nf_conntrack_put_reasm(skb->nfct_reasm);
1712 skb->nfct_reasm = NULL;
1713 #endif
1714 #ifdef CONFIG_BRIDGE_NETFILTER
1715 nf_bridge_put(skb->nf_bridge);
1716 skb->nf_bridge = NULL;
1717 #endif
1718 }
1719
1720 /* Note: This doesn't put any conntrack and bridge info in dst. */
1721 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1722 {
1723 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1724 dst->nfct = src->nfct;
1725 nf_conntrack_get(src->nfct);
1726 dst->nfctinfo = src->nfctinfo;
1727 dst->nfct_reasm = src->nfct_reasm;
1728 nf_conntrack_get_reasm(src->nfct_reasm);
1729 #endif
1730 #ifdef CONFIG_BRIDGE_NETFILTER
1731 dst->nf_bridge = src->nf_bridge;
1732 nf_bridge_get(src->nf_bridge);
1733 #endif
1734 }
1735
1736 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1737 {
1738 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1739 nf_conntrack_put(dst->nfct);
1740 nf_conntrack_put_reasm(dst->nfct_reasm);
1741 #endif
1742 #ifdef CONFIG_BRIDGE_NETFILTER
1743 nf_bridge_put(dst->nf_bridge);
1744 #endif
1745 __nf_copy(dst, src);
1746 }
1747
1748 #ifdef CONFIG_NETWORK_SECMARK
1749 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1750 {
1751 to->secmark = from->secmark;
1752 }
1753
1754 static inline void skb_init_secmark(struct sk_buff *skb)
1755 {
1756 skb->secmark = 0;
1757 }
1758 #else
1759 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1760 { }
1761
1762 static inline void skb_init_secmark(struct sk_buff *skb)
1763 { }
1764 #endif
1765
1766 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
1767 {
1768 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1769 skb->queue_mapping = queue_mapping;
1770 #endif
1771 }
1772
1773 static inline u16 skb_get_queue_mapping(struct sk_buff *skb)
1774 {
1775 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1776 return skb->queue_mapping;
1777 #else
1778 return 0;
1779 #endif
1780 }
1781
1782 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
1783 {
1784 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1785 to->queue_mapping = from->queue_mapping;
1786 #endif
1787 }
1788
1789 static inline int skb_is_gso(const struct sk_buff *skb)
1790 {
1791 return skb_shinfo(skb)->gso_size;
1792 }
1793
1794 static inline int skb_is_gso_v6(const struct sk_buff *skb)
1795 {
1796 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
1797 }
1798
1799 static inline void skb_forward_csum(struct sk_buff *skb)
1800 {
1801 /* Unfortunately we don't support this one. Any brave souls? */
1802 if (skb->ip_summed == CHECKSUM_COMPLETE)
1803 skb->ip_summed = CHECKSUM_NONE;
1804 }
1805
1806 #endif /* __KERNEL__ */
1807 #endif /* _LINUX_SKBUFF_H */
This page took 0.068446 seconds and 6 git commands to generate.