Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
[deliverable/linux.git] / include / linux / skbuff.h
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/cache.h>
21
22 #include <asm/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/mm.h>
26 #include <linux/highmem.h>
27 #include <linux/poll.h>
28 #include <linux/net.h>
29 #include <linux/textsearch.h>
30 #include <net/checksum.h>
31 #include <linux/dmaengine.h>
32
33 #define HAVE_ALLOC_SKB /* For the drivers to know */
34 #define HAVE_ALIGNABLE_SKB /* Ditto 8) */
35
36 #define CHECKSUM_NONE 0
37 #define CHECKSUM_PARTIAL 1
38 #define CHECKSUM_UNNECESSARY 2
39 #define CHECKSUM_COMPLETE 3
40
41 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
42 ~(SMP_CACHE_BYTES - 1))
43 #define SKB_MAX_ORDER(X, ORDER) (((PAGE_SIZE << (ORDER)) - (X) - \
44 sizeof(struct skb_shared_info)) & \
45 ~(SMP_CACHE_BYTES - 1))
46 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
47 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
48
49 /* A. Checksumming of received packets by device.
50 *
51 * NONE: device failed to checksum this packet.
52 * skb->csum is undefined.
53 *
54 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
55 * skb->csum is undefined.
56 * It is bad option, but, unfortunately, many of vendors do this.
57 * Apparently with secret goal to sell you new device, when you
58 * will add new protocol to your host. F.e. IPv6. 8)
59 *
60 * COMPLETE: the most generic way. Device supplied checksum of _all_
61 * the packet as seen by netif_rx in skb->csum.
62 * NOTE: Even if device supports only some protocols, but
63 * is able to produce some skb->csum, it MUST use COMPLETE,
64 * not UNNECESSARY.
65 *
66 * B. Checksumming on output.
67 *
68 * NONE: skb is checksummed by protocol or csum is not required.
69 *
70 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
71 * from skb->h.raw to the end and to record the checksum
72 * at skb->h.raw+skb->csum.
73 *
74 * Device must show its capabilities in dev->features, set
75 * at device setup time.
76 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
77 * everything.
78 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
79 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
80 * TCP/UDP over IPv4. Sigh. Vendors like this
81 * way by an unknown reason. Though, see comment above
82 * about CHECKSUM_UNNECESSARY. 8)
83 *
84 * Any questions? No questions, good. --ANK
85 */
86
87 struct net_device;
88
89 #ifdef CONFIG_NETFILTER
90 struct nf_conntrack {
91 atomic_t use;
92 void (*destroy)(struct nf_conntrack *);
93 };
94
95 #ifdef CONFIG_BRIDGE_NETFILTER
96 struct nf_bridge_info {
97 atomic_t use;
98 struct net_device *physindev;
99 struct net_device *physoutdev;
100 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
101 struct net_device *netoutdev;
102 #endif
103 unsigned int mask;
104 unsigned long data[32 / sizeof(unsigned long)];
105 };
106 #endif
107
108 #endif
109
110 struct sk_buff_head {
111 /* These two members must be first. */
112 struct sk_buff *next;
113 struct sk_buff *prev;
114
115 __u32 qlen;
116 spinlock_t lock;
117 };
118
119 struct sk_buff;
120
121 /* To allow 64K frame to be packed as single skb without frag_list */
122 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
123
124 typedef struct skb_frag_struct skb_frag_t;
125
126 struct skb_frag_struct {
127 struct page *page;
128 __u16 page_offset;
129 __u16 size;
130 };
131
132 /* This data is invariant across clones and lives at
133 * the end of the header data, ie. at skb->end.
134 */
135 struct skb_shared_info {
136 atomic_t dataref;
137 unsigned short nr_frags;
138 unsigned short gso_size;
139 /* Warning: this field is not always filled in (UFO)! */
140 unsigned short gso_segs;
141 unsigned short gso_type;
142 __be32 ip6_frag_id;
143 struct sk_buff *frag_list;
144 skb_frag_t frags[MAX_SKB_FRAGS];
145 };
146
147 /* We divide dataref into two halves. The higher 16 bits hold references
148 * to the payload part of skb->data. The lower 16 bits hold references to
149 * the entire skb->data. It is up to the users of the skb to agree on
150 * where the payload starts.
151 *
152 * All users must obey the rule that the skb->data reference count must be
153 * greater than or equal to the payload reference count.
154 *
155 * Holding a reference to the payload part means that the user does not
156 * care about modifications to the header part of skb->data.
157 */
158 #define SKB_DATAREF_SHIFT 16
159 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
160
161 struct skb_timeval {
162 u32 off_sec;
163 u32 off_usec;
164 };
165
166
167 enum {
168 SKB_FCLONE_UNAVAILABLE,
169 SKB_FCLONE_ORIG,
170 SKB_FCLONE_CLONE,
171 };
172
173 enum {
174 SKB_GSO_TCPV4 = 1 << 0,
175 SKB_GSO_UDP = 1 << 1,
176
177 /* This indicates the skb is from an untrusted source. */
178 SKB_GSO_DODGY = 1 << 2,
179
180 /* This indicates the tcp segment has CWR set. */
181 SKB_GSO_TCP_ECN = 1 << 3,
182
183 SKB_GSO_TCPV6 = 1 << 4,
184 };
185
186 /**
187 * struct sk_buff - socket buffer
188 * @next: Next buffer in list
189 * @prev: Previous buffer in list
190 * @sk: Socket we are owned by
191 * @tstamp: Time we arrived
192 * @dev: Device we arrived on/are leaving by
193 * @input_dev: Device we arrived on
194 * @h: Transport layer header
195 * @nh: Network layer header
196 * @mac: Link layer header
197 * @dst: destination entry
198 * @sp: the security path, used for xfrm
199 * @cb: Control buffer. Free for use by every layer. Put private vars here
200 * @len: Length of actual data
201 * @data_len: Data length
202 * @mac_len: Length of link layer header
203 * @csum: Checksum
204 * @local_df: allow local fragmentation
205 * @cloned: Head may be cloned (check refcnt to be sure)
206 * @nohdr: Payload reference only, must not modify header
207 * @pkt_type: Packet class
208 * @fclone: skbuff clone status
209 * @ip_summed: Driver fed us an IP checksum
210 * @priority: Packet queueing priority
211 * @users: User count - see {datagram,tcp}.c
212 * @protocol: Packet protocol from driver
213 * @truesize: Buffer size
214 * @head: Head of buffer
215 * @data: Data head pointer
216 * @tail: Tail pointer
217 * @end: End pointer
218 * @destructor: Destruct function
219 * @mark: Generic packet mark
220 * @nfct: Associated connection, if any
221 * @ipvs_property: skbuff is owned by ipvs
222 * @nfctinfo: Relationship of this skb to the connection
223 * @nfct_reasm: netfilter conntrack re-assembly pointer
224 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
225 * @tc_index: Traffic control index
226 * @tc_verd: traffic control verdict
227 * @dma_cookie: a cookie to one of several possible DMA operations
228 * done by skb DMA functions
229 * @secmark: security marking
230 */
231
232 struct sk_buff {
233 /* These two members must be first. */
234 struct sk_buff *next;
235 struct sk_buff *prev;
236
237 struct sock *sk;
238 struct skb_timeval tstamp;
239 struct net_device *dev;
240 struct net_device *input_dev;
241
242 union {
243 struct tcphdr *th;
244 struct udphdr *uh;
245 struct icmphdr *icmph;
246 struct igmphdr *igmph;
247 struct iphdr *ipiph;
248 struct ipv6hdr *ipv6h;
249 unsigned char *raw;
250 } h;
251
252 union {
253 struct iphdr *iph;
254 struct ipv6hdr *ipv6h;
255 struct arphdr *arph;
256 unsigned char *raw;
257 } nh;
258
259 union {
260 unsigned char *raw;
261 } mac;
262
263 struct dst_entry *dst;
264 struct sec_path *sp;
265
266 /*
267 * This is the control buffer. It is free to use for every
268 * layer. Please put your private variables there. If you
269 * want to keep them across layers you have to do a skb_clone()
270 * first. This is owned by whoever has the skb queued ATM.
271 */
272 char cb[48];
273
274 unsigned int len,
275 data_len,
276 mac_len;
277 union {
278 __wsum csum;
279 __u32 csum_offset;
280 };
281 __u32 priority;
282 __u8 local_df:1,
283 cloned:1,
284 ip_summed:2,
285 nohdr:1,
286 nfctinfo:3;
287 __u8 pkt_type:3,
288 fclone:2,
289 ipvs_property:1;
290 __be16 protocol;
291
292 void (*destructor)(struct sk_buff *skb);
293 #ifdef CONFIG_NETFILTER
294 struct nf_conntrack *nfct;
295 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
296 struct sk_buff *nfct_reasm;
297 #endif
298 #ifdef CONFIG_BRIDGE_NETFILTER
299 struct nf_bridge_info *nf_bridge;
300 #endif
301 #endif /* CONFIG_NETFILTER */
302 #ifdef CONFIG_NET_SCHED
303 __u16 tc_index; /* traffic control index */
304 #ifdef CONFIG_NET_CLS_ACT
305 __u16 tc_verd; /* traffic control verdict */
306 #endif
307 #endif
308 #ifdef CONFIG_NET_DMA
309 dma_cookie_t dma_cookie;
310 #endif
311 #ifdef CONFIG_NETWORK_SECMARK
312 __u32 secmark;
313 #endif
314
315 __u32 mark;
316
317 /* These elements must be at the end, see alloc_skb() for details. */
318 unsigned int truesize;
319 atomic_t users;
320 unsigned char *head,
321 *data,
322 *tail,
323 *end;
324 };
325
326 #ifdef __KERNEL__
327 /*
328 * Handling routines are only of interest to the kernel
329 */
330 #include <linux/slab.h>
331
332 #include <asm/system.h>
333
334 extern void kfree_skb(struct sk_buff *skb);
335 extern void __kfree_skb(struct sk_buff *skb);
336 extern struct sk_buff *__alloc_skb(unsigned int size,
337 gfp_t priority, int fclone);
338 static inline struct sk_buff *alloc_skb(unsigned int size,
339 gfp_t priority)
340 {
341 return __alloc_skb(size, priority, 0);
342 }
343
344 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
345 gfp_t priority)
346 {
347 return __alloc_skb(size, priority, 1);
348 }
349
350 extern struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp,
351 unsigned int size,
352 gfp_t priority);
353 extern void kfree_skbmem(struct sk_buff *skb);
354 extern struct sk_buff *skb_clone(struct sk_buff *skb,
355 gfp_t priority);
356 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
357 gfp_t priority);
358 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
359 gfp_t gfp_mask);
360 extern int pskb_expand_head(struct sk_buff *skb,
361 int nhead, int ntail,
362 gfp_t gfp_mask);
363 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
364 unsigned int headroom);
365 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
366 int newheadroom, int newtailroom,
367 gfp_t priority);
368 extern int skb_pad(struct sk_buff *skb, int pad);
369 #define dev_kfree_skb(a) kfree_skb(a)
370 extern void skb_over_panic(struct sk_buff *skb, int len,
371 void *here);
372 extern void skb_under_panic(struct sk_buff *skb, int len,
373 void *here);
374 extern void skb_truesize_bug(struct sk_buff *skb);
375
376 static inline void skb_truesize_check(struct sk_buff *skb)
377 {
378 if (unlikely((int)skb->truesize < sizeof(struct sk_buff) + skb->len))
379 skb_truesize_bug(skb);
380 }
381
382 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
383 int getfrag(void *from, char *to, int offset,
384 int len,int odd, struct sk_buff *skb),
385 void *from, int length);
386
387 struct skb_seq_state
388 {
389 __u32 lower_offset;
390 __u32 upper_offset;
391 __u32 frag_idx;
392 __u32 stepped_offset;
393 struct sk_buff *root_skb;
394 struct sk_buff *cur_skb;
395 __u8 *frag_data;
396 };
397
398 extern void skb_prepare_seq_read(struct sk_buff *skb,
399 unsigned int from, unsigned int to,
400 struct skb_seq_state *st);
401 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
402 struct skb_seq_state *st);
403 extern void skb_abort_seq_read(struct skb_seq_state *st);
404
405 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
406 unsigned int to, struct ts_config *config,
407 struct ts_state *state);
408
409 /* Internal */
410 #define skb_shinfo(SKB) ((struct skb_shared_info *)((SKB)->end))
411
412 /**
413 * skb_queue_empty - check if a queue is empty
414 * @list: queue head
415 *
416 * Returns true if the queue is empty, false otherwise.
417 */
418 static inline int skb_queue_empty(const struct sk_buff_head *list)
419 {
420 return list->next == (struct sk_buff *)list;
421 }
422
423 /**
424 * skb_get - reference buffer
425 * @skb: buffer to reference
426 *
427 * Makes another reference to a socket buffer and returns a pointer
428 * to the buffer.
429 */
430 static inline struct sk_buff *skb_get(struct sk_buff *skb)
431 {
432 atomic_inc(&skb->users);
433 return skb;
434 }
435
436 /*
437 * If users == 1, we are the only owner and are can avoid redundant
438 * atomic change.
439 */
440
441 /**
442 * skb_cloned - is the buffer a clone
443 * @skb: buffer to check
444 *
445 * Returns true if the buffer was generated with skb_clone() and is
446 * one of multiple shared copies of the buffer. Cloned buffers are
447 * shared data so must not be written to under normal circumstances.
448 */
449 static inline int skb_cloned(const struct sk_buff *skb)
450 {
451 return skb->cloned &&
452 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
453 }
454
455 /**
456 * skb_header_cloned - is the header a clone
457 * @skb: buffer to check
458 *
459 * Returns true if modifying the header part of the buffer requires
460 * the data to be copied.
461 */
462 static inline int skb_header_cloned(const struct sk_buff *skb)
463 {
464 int dataref;
465
466 if (!skb->cloned)
467 return 0;
468
469 dataref = atomic_read(&skb_shinfo(skb)->dataref);
470 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
471 return dataref != 1;
472 }
473
474 /**
475 * skb_header_release - release reference to header
476 * @skb: buffer to operate on
477 *
478 * Drop a reference to the header part of the buffer. This is done
479 * by acquiring a payload reference. You must not read from the header
480 * part of skb->data after this.
481 */
482 static inline void skb_header_release(struct sk_buff *skb)
483 {
484 BUG_ON(skb->nohdr);
485 skb->nohdr = 1;
486 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
487 }
488
489 /**
490 * skb_shared - is the buffer shared
491 * @skb: buffer to check
492 *
493 * Returns true if more than one person has a reference to this
494 * buffer.
495 */
496 static inline int skb_shared(const struct sk_buff *skb)
497 {
498 return atomic_read(&skb->users) != 1;
499 }
500
501 /**
502 * skb_share_check - check if buffer is shared and if so clone it
503 * @skb: buffer to check
504 * @pri: priority for memory allocation
505 *
506 * If the buffer is shared the buffer is cloned and the old copy
507 * drops a reference. A new clone with a single reference is returned.
508 * If the buffer is not shared the original buffer is returned. When
509 * being called from interrupt status or with spinlocks held pri must
510 * be GFP_ATOMIC.
511 *
512 * NULL is returned on a memory allocation failure.
513 */
514 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
515 gfp_t pri)
516 {
517 might_sleep_if(pri & __GFP_WAIT);
518 if (skb_shared(skb)) {
519 struct sk_buff *nskb = skb_clone(skb, pri);
520 kfree_skb(skb);
521 skb = nskb;
522 }
523 return skb;
524 }
525
526 /*
527 * Copy shared buffers into a new sk_buff. We effectively do COW on
528 * packets to handle cases where we have a local reader and forward
529 * and a couple of other messy ones. The normal one is tcpdumping
530 * a packet thats being forwarded.
531 */
532
533 /**
534 * skb_unshare - make a copy of a shared buffer
535 * @skb: buffer to check
536 * @pri: priority for memory allocation
537 *
538 * If the socket buffer is a clone then this function creates a new
539 * copy of the data, drops a reference count on the old copy and returns
540 * the new copy with the reference count at 1. If the buffer is not a clone
541 * the original buffer is returned. When called with a spinlock held or
542 * from interrupt state @pri must be %GFP_ATOMIC
543 *
544 * %NULL is returned on a memory allocation failure.
545 */
546 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
547 gfp_t pri)
548 {
549 might_sleep_if(pri & __GFP_WAIT);
550 if (skb_cloned(skb)) {
551 struct sk_buff *nskb = skb_copy(skb, pri);
552 kfree_skb(skb); /* Free our shared copy */
553 skb = nskb;
554 }
555 return skb;
556 }
557
558 /**
559 * skb_peek
560 * @list_: list to peek at
561 *
562 * Peek an &sk_buff. Unlike most other operations you _MUST_
563 * be careful with this one. A peek leaves the buffer on the
564 * list and someone else may run off with it. You must hold
565 * the appropriate locks or have a private queue to do this.
566 *
567 * Returns %NULL for an empty list or a pointer to the head element.
568 * The reference count is not incremented and the reference is therefore
569 * volatile. Use with caution.
570 */
571 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
572 {
573 struct sk_buff *list = ((struct sk_buff *)list_)->next;
574 if (list == (struct sk_buff *)list_)
575 list = NULL;
576 return list;
577 }
578
579 /**
580 * skb_peek_tail
581 * @list_: list to peek at
582 *
583 * Peek an &sk_buff. Unlike most other operations you _MUST_
584 * be careful with this one. A peek leaves the buffer on the
585 * list and someone else may run off with it. You must hold
586 * the appropriate locks or have a private queue to do this.
587 *
588 * Returns %NULL for an empty list or a pointer to the tail element.
589 * The reference count is not incremented and the reference is therefore
590 * volatile. Use with caution.
591 */
592 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
593 {
594 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
595 if (list == (struct sk_buff *)list_)
596 list = NULL;
597 return list;
598 }
599
600 /**
601 * skb_queue_len - get queue length
602 * @list_: list to measure
603 *
604 * Return the length of an &sk_buff queue.
605 */
606 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
607 {
608 return list_->qlen;
609 }
610
611 /*
612 * This function creates a split out lock class for each invocation;
613 * this is needed for now since a whole lot of users of the skb-queue
614 * infrastructure in drivers have different locking usage (in hardirq)
615 * than the networking core (in softirq only). In the long run either the
616 * network layer or drivers should need annotation to consolidate the
617 * main types of usage into 3 classes.
618 */
619 static inline void skb_queue_head_init(struct sk_buff_head *list)
620 {
621 spin_lock_init(&list->lock);
622 list->prev = list->next = (struct sk_buff *)list;
623 list->qlen = 0;
624 }
625
626 /*
627 * Insert an sk_buff at the start of a list.
628 *
629 * The "__skb_xxxx()" functions are the non-atomic ones that
630 * can only be called with interrupts disabled.
631 */
632
633 /**
634 * __skb_queue_after - queue a buffer at the list head
635 * @list: list to use
636 * @prev: place after this buffer
637 * @newsk: buffer to queue
638 *
639 * Queue a buffer int the middle of a list. This function takes no locks
640 * and you must therefore hold required locks before calling it.
641 *
642 * A buffer cannot be placed on two lists at the same time.
643 */
644 static inline void __skb_queue_after(struct sk_buff_head *list,
645 struct sk_buff *prev,
646 struct sk_buff *newsk)
647 {
648 struct sk_buff *next;
649 list->qlen++;
650
651 next = prev->next;
652 newsk->next = next;
653 newsk->prev = prev;
654 next->prev = prev->next = newsk;
655 }
656
657 /**
658 * __skb_queue_head - queue a buffer at the list head
659 * @list: list to use
660 * @newsk: buffer to queue
661 *
662 * Queue a buffer at the start of a list. This function takes no locks
663 * and you must therefore hold required locks before calling it.
664 *
665 * A buffer cannot be placed on two lists at the same time.
666 */
667 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
668 static inline void __skb_queue_head(struct sk_buff_head *list,
669 struct sk_buff *newsk)
670 {
671 __skb_queue_after(list, (struct sk_buff *)list, newsk);
672 }
673
674 /**
675 * __skb_queue_tail - queue a buffer at the list tail
676 * @list: list to use
677 * @newsk: buffer to queue
678 *
679 * Queue a buffer at the end of a list. This function takes no locks
680 * and you must therefore hold required locks before calling it.
681 *
682 * A buffer cannot be placed on two lists at the same time.
683 */
684 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
685 static inline void __skb_queue_tail(struct sk_buff_head *list,
686 struct sk_buff *newsk)
687 {
688 struct sk_buff *prev, *next;
689
690 list->qlen++;
691 next = (struct sk_buff *)list;
692 prev = next->prev;
693 newsk->next = next;
694 newsk->prev = prev;
695 next->prev = prev->next = newsk;
696 }
697
698
699 /**
700 * __skb_dequeue - remove from the head of the queue
701 * @list: list to dequeue from
702 *
703 * Remove the head of the list. This function does not take any locks
704 * so must be used with appropriate locks held only. The head item is
705 * returned or %NULL if the list is empty.
706 */
707 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
708 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
709 {
710 struct sk_buff *next, *prev, *result;
711
712 prev = (struct sk_buff *) list;
713 next = prev->next;
714 result = NULL;
715 if (next != prev) {
716 result = next;
717 next = next->next;
718 list->qlen--;
719 next->prev = prev;
720 prev->next = next;
721 result->next = result->prev = NULL;
722 }
723 return result;
724 }
725
726
727 /*
728 * Insert a packet on a list.
729 */
730 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
731 static inline void __skb_insert(struct sk_buff *newsk,
732 struct sk_buff *prev, struct sk_buff *next,
733 struct sk_buff_head *list)
734 {
735 newsk->next = next;
736 newsk->prev = prev;
737 next->prev = prev->next = newsk;
738 list->qlen++;
739 }
740
741 /*
742 * Place a packet after a given packet in a list.
743 */
744 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
745 static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
746 {
747 __skb_insert(newsk, old, old->next, list);
748 }
749
750 /*
751 * remove sk_buff from list. _Must_ be called atomically, and with
752 * the list known..
753 */
754 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
755 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
756 {
757 struct sk_buff *next, *prev;
758
759 list->qlen--;
760 next = skb->next;
761 prev = skb->prev;
762 skb->next = skb->prev = NULL;
763 next->prev = prev;
764 prev->next = next;
765 }
766
767
768 /* XXX: more streamlined implementation */
769
770 /**
771 * __skb_dequeue_tail - remove from the tail of the queue
772 * @list: list to dequeue from
773 *
774 * Remove the tail of the list. This function does not take any locks
775 * so must be used with appropriate locks held only. The tail item is
776 * returned or %NULL if the list is empty.
777 */
778 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
779 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
780 {
781 struct sk_buff *skb = skb_peek_tail(list);
782 if (skb)
783 __skb_unlink(skb, list);
784 return skb;
785 }
786
787
788 static inline int skb_is_nonlinear(const struct sk_buff *skb)
789 {
790 return skb->data_len;
791 }
792
793 static inline unsigned int skb_headlen(const struct sk_buff *skb)
794 {
795 return skb->len - skb->data_len;
796 }
797
798 static inline int skb_pagelen(const struct sk_buff *skb)
799 {
800 int i, len = 0;
801
802 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
803 len += skb_shinfo(skb)->frags[i].size;
804 return len + skb_headlen(skb);
805 }
806
807 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
808 struct page *page, int off, int size)
809 {
810 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
811
812 frag->page = page;
813 frag->page_offset = off;
814 frag->size = size;
815 skb_shinfo(skb)->nr_frags = i + 1;
816 }
817
818 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
819 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
820 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
821
822 /*
823 * Add data to an sk_buff
824 */
825 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
826 {
827 unsigned char *tmp = skb->tail;
828 SKB_LINEAR_ASSERT(skb);
829 skb->tail += len;
830 skb->len += len;
831 return tmp;
832 }
833
834 /**
835 * skb_put - add data to a buffer
836 * @skb: buffer to use
837 * @len: amount of data to add
838 *
839 * This function extends the used data area of the buffer. If this would
840 * exceed the total buffer size the kernel will panic. A pointer to the
841 * first byte of the extra data is returned.
842 */
843 static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
844 {
845 unsigned char *tmp = skb->tail;
846 SKB_LINEAR_ASSERT(skb);
847 skb->tail += len;
848 skb->len += len;
849 if (unlikely(skb->tail>skb->end))
850 skb_over_panic(skb, len, current_text_addr());
851 return tmp;
852 }
853
854 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
855 {
856 skb->data -= len;
857 skb->len += len;
858 return skb->data;
859 }
860
861 /**
862 * skb_push - add data to the start of a buffer
863 * @skb: buffer to use
864 * @len: amount of data to add
865 *
866 * This function extends the used data area of the buffer at the buffer
867 * start. If this would exceed the total buffer headroom the kernel will
868 * panic. A pointer to the first byte of the extra data is returned.
869 */
870 static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
871 {
872 skb->data -= len;
873 skb->len += len;
874 if (unlikely(skb->data<skb->head))
875 skb_under_panic(skb, len, current_text_addr());
876 return skb->data;
877 }
878
879 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
880 {
881 skb->len -= len;
882 BUG_ON(skb->len < skb->data_len);
883 return skb->data += len;
884 }
885
886 /**
887 * skb_pull - remove data from the start of a buffer
888 * @skb: buffer to use
889 * @len: amount of data to remove
890 *
891 * This function removes data from the start of a buffer, returning
892 * the memory to the headroom. A pointer to the next data in the buffer
893 * is returned. Once the data has been pulled future pushes will overwrite
894 * the old data.
895 */
896 static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
897 {
898 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
899 }
900
901 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
902
903 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
904 {
905 if (len > skb_headlen(skb) &&
906 !__pskb_pull_tail(skb, len-skb_headlen(skb)))
907 return NULL;
908 skb->len -= len;
909 return skb->data += len;
910 }
911
912 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
913 {
914 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
915 }
916
917 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
918 {
919 if (likely(len <= skb_headlen(skb)))
920 return 1;
921 if (unlikely(len > skb->len))
922 return 0;
923 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
924 }
925
926 /**
927 * skb_headroom - bytes at buffer head
928 * @skb: buffer to check
929 *
930 * Return the number of bytes of free space at the head of an &sk_buff.
931 */
932 static inline int skb_headroom(const struct sk_buff *skb)
933 {
934 return skb->data - skb->head;
935 }
936
937 /**
938 * skb_tailroom - bytes at buffer end
939 * @skb: buffer to check
940 *
941 * Return the number of bytes of free space at the tail of an sk_buff
942 */
943 static inline int skb_tailroom(const struct sk_buff *skb)
944 {
945 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
946 }
947
948 /**
949 * skb_reserve - adjust headroom
950 * @skb: buffer to alter
951 * @len: bytes to move
952 *
953 * Increase the headroom of an empty &sk_buff by reducing the tail
954 * room. This is only allowed for an empty buffer.
955 */
956 static inline void skb_reserve(struct sk_buff *skb, int len)
957 {
958 skb->data += len;
959 skb->tail += len;
960 }
961
962 /*
963 * CPUs often take a performance hit when accessing unaligned memory
964 * locations. The actual performance hit varies, it can be small if the
965 * hardware handles it or large if we have to take an exception and fix it
966 * in software.
967 *
968 * Since an ethernet header is 14 bytes network drivers often end up with
969 * the IP header at an unaligned offset. The IP header can be aligned by
970 * shifting the start of the packet by 2 bytes. Drivers should do this
971 * with:
972 *
973 * skb_reserve(NET_IP_ALIGN);
974 *
975 * The downside to this alignment of the IP header is that the DMA is now
976 * unaligned. On some architectures the cost of an unaligned DMA is high
977 * and this cost outweighs the gains made by aligning the IP header.
978 *
979 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
980 * to be overridden.
981 */
982 #ifndef NET_IP_ALIGN
983 #define NET_IP_ALIGN 2
984 #endif
985
986 /*
987 * The networking layer reserves some headroom in skb data (via
988 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
989 * the header has to grow. In the default case, if the header has to grow
990 * 16 bytes or less we avoid the reallocation.
991 *
992 * Unfortunately this headroom changes the DMA alignment of the resulting
993 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
994 * on some architectures. An architecture can override this value,
995 * perhaps setting it to a cacheline in size (since that will maintain
996 * cacheline alignment of the DMA). It must be a power of 2.
997 *
998 * Various parts of the networking layer expect at least 16 bytes of
999 * headroom, you should not reduce this.
1000 */
1001 #ifndef NET_SKB_PAD
1002 #define NET_SKB_PAD 16
1003 #endif
1004
1005 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1006
1007 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1008 {
1009 if (unlikely(skb->data_len)) {
1010 WARN_ON(1);
1011 return;
1012 }
1013 skb->len = len;
1014 skb->tail = skb->data + len;
1015 }
1016
1017 /**
1018 * skb_trim - remove end from a buffer
1019 * @skb: buffer to alter
1020 * @len: new length
1021 *
1022 * Cut the length of a buffer down by removing data from the tail. If
1023 * the buffer is already under the length specified it is not modified.
1024 * The skb must be linear.
1025 */
1026 static inline void skb_trim(struct sk_buff *skb, unsigned int len)
1027 {
1028 if (skb->len > len)
1029 __skb_trim(skb, len);
1030 }
1031
1032
1033 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1034 {
1035 if (skb->data_len)
1036 return ___pskb_trim(skb, len);
1037 __skb_trim(skb, len);
1038 return 0;
1039 }
1040
1041 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1042 {
1043 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1044 }
1045
1046 /**
1047 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1048 * @skb: buffer to alter
1049 * @len: new length
1050 *
1051 * This is identical to pskb_trim except that the caller knows that
1052 * the skb is not cloned so we should never get an error due to out-
1053 * of-memory.
1054 */
1055 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1056 {
1057 int err = pskb_trim(skb, len);
1058 BUG_ON(err);
1059 }
1060
1061 /**
1062 * skb_orphan - orphan a buffer
1063 * @skb: buffer to orphan
1064 *
1065 * If a buffer currently has an owner then we call the owner's
1066 * destructor function and make the @skb unowned. The buffer continues
1067 * to exist but is no longer charged to its former owner.
1068 */
1069 static inline void skb_orphan(struct sk_buff *skb)
1070 {
1071 if (skb->destructor)
1072 skb->destructor(skb);
1073 skb->destructor = NULL;
1074 skb->sk = NULL;
1075 }
1076
1077 /**
1078 * __skb_queue_purge - empty a list
1079 * @list: list to empty
1080 *
1081 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1082 * the list and one reference dropped. This function does not take the
1083 * list lock and the caller must hold the relevant locks to use it.
1084 */
1085 extern void skb_queue_purge(struct sk_buff_head *list);
1086 static inline void __skb_queue_purge(struct sk_buff_head *list)
1087 {
1088 struct sk_buff *skb;
1089 while ((skb = __skb_dequeue(list)) != NULL)
1090 kfree_skb(skb);
1091 }
1092
1093 /**
1094 * __dev_alloc_skb - allocate an skbuff for receiving
1095 * @length: length to allocate
1096 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1097 *
1098 * Allocate a new &sk_buff and assign it a usage count of one. The
1099 * buffer has unspecified headroom built in. Users should allocate
1100 * the headroom they think they need without accounting for the
1101 * built in space. The built in space is used for optimisations.
1102 *
1103 * %NULL is returned if there is no free memory.
1104 */
1105 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1106 gfp_t gfp_mask)
1107 {
1108 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1109 if (likely(skb))
1110 skb_reserve(skb, NET_SKB_PAD);
1111 return skb;
1112 }
1113
1114 /**
1115 * dev_alloc_skb - allocate an skbuff for receiving
1116 * @length: length to allocate
1117 *
1118 * Allocate a new &sk_buff and assign it a usage count of one. The
1119 * buffer has unspecified headroom built in. Users should allocate
1120 * the headroom they think they need without accounting for the
1121 * built in space. The built in space is used for optimisations.
1122 *
1123 * %NULL is returned if there is no free memory. Although this function
1124 * allocates memory it can be called from an interrupt.
1125 */
1126 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1127 {
1128 return __dev_alloc_skb(length, GFP_ATOMIC);
1129 }
1130
1131 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1132 unsigned int length, gfp_t gfp_mask);
1133
1134 /**
1135 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1136 * @dev: network device to receive on
1137 * @length: length to allocate
1138 *
1139 * Allocate a new &sk_buff and assign it a usage count of one. The
1140 * buffer has unspecified headroom built in. Users should allocate
1141 * the headroom they think they need without accounting for the
1142 * built in space. The built in space is used for optimisations.
1143 *
1144 * %NULL is returned if there is no free memory. Although this function
1145 * allocates memory it can be called from an interrupt.
1146 */
1147 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1148 unsigned int length)
1149 {
1150 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1151 }
1152
1153 /**
1154 * skb_cow - copy header of skb when it is required
1155 * @skb: buffer to cow
1156 * @headroom: needed headroom
1157 *
1158 * If the skb passed lacks sufficient headroom or its data part
1159 * is shared, data is reallocated. If reallocation fails, an error
1160 * is returned and original skb is not changed.
1161 *
1162 * The result is skb with writable area skb->head...skb->tail
1163 * and at least @headroom of space at head.
1164 */
1165 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1166 {
1167 int delta = (headroom > NET_SKB_PAD ? headroom : NET_SKB_PAD) -
1168 skb_headroom(skb);
1169
1170 if (delta < 0)
1171 delta = 0;
1172
1173 if (delta || skb_cloned(skb))
1174 return pskb_expand_head(skb, (delta + (NET_SKB_PAD-1)) &
1175 ~(NET_SKB_PAD-1), 0, GFP_ATOMIC);
1176 return 0;
1177 }
1178
1179 /**
1180 * skb_padto - pad an skbuff up to a minimal size
1181 * @skb: buffer to pad
1182 * @len: minimal length
1183 *
1184 * Pads up a buffer to ensure the trailing bytes exist and are
1185 * blanked. If the buffer already contains sufficient data it
1186 * is untouched. Otherwise it is extended. Returns zero on
1187 * success. The skb is freed on error.
1188 */
1189
1190 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1191 {
1192 unsigned int size = skb->len;
1193 if (likely(size >= len))
1194 return 0;
1195 return skb_pad(skb, len-size);
1196 }
1197
1198 static inline int skb_add_data(struct sk_buff *skb,
1199 char __user *from, int copy)
1200 {
1201 const int off = skb->len;
1202
1203 if (skb->ip_summed == CHECKSUM_NONE) {
1204 int err = 0;
1205 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1206 copy, 0, &err);
1207 if (!err) {
1208 skb->csum = csum_block_add(skb->csum, csum, off);
1209 return 0;
1210 }
1211 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1212 return 0;
1213
1214 __skb_trim(skb, off);
1215 return -EFAULT;
1216 }
1217
1218 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1219 struct page *page, int off)
1220 {
1221 if (i) {
1222 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1223
1224 return page == frag->page &&
1225 off == frag->page_offset + frag->size;
1226 }
1227 return 0;
1228 }
1229
1230 static inline int __skb_linearize(struct sk_buff *skb)
1231 {
1232 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1233 }
1234
1235 /**
1236 * skb_linearize - convert paged skb to linear one
1237 * @skb: buffer to linarize
1238 *
1239 * If there is no free memory -ENOMEM is returned, otherwise zero
1240 * is returned and the old skb data released.
1241 */
1242 static inline int skb_linearize(struct sk_buff *skb)
1243 {
1244 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1245 }
1246
1247 /**
1248 * skb_linearize_cow - make sure skb is linear and writable
1249 * @skb: buffer to process
1250 *
1251 * If there is no free memory -ENOMEM is returned, otherwise zero
1252 * is returned and the old skb data released.
1253 */
1254 static inline int skb_linearize_cow(struct sk_buff *skb)
1255 {
1256 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1257 __skb_linearize(skb) : 0;
1258 }
1259
1260 /**
1261 * skb_postpull_rcsum - update checksum for received skb after pull
1262 * @skb: buffer to update
1263 * @start: start of data before pull
1264 * @len: length of data pulled
1265 *
1266 * After doing a pull on a received packet, you need to call this to
1267 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1268 * CHECKSUM_NONE so that it can be recomputed from scratch.
1269 */
1270
1271 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1272 const void *start, unsigned int len)
1273 {
1274 if (skb->ip_summed == CHECKSUM_COMPLETE)
1275 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1276 }
1277
1278 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1279
1280 /**
1281 * pskb_trim_rcsum - trim received skb and update checksum
1282 * @skb: buffer to trim
1283 * @len: new length
1284 *
1285 * This is exactly the same as pskb_trim except that it ensures the
1286 * checksum of received packets are still valid after the operation.
1287 */
1288
1289 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1290 {
1291 if (likely(len >= skb->len))
1292 return 0;
1293 if (skb->ip_summed == CHECKSUM_COMPLETE)
1294 skb->ip_summed = CHECKSUM_NONE;
1295 return __pskb_trim(skb, len);
1296 }
1297
1298 static inline void *kmap_skb_frag(const skb_frag_t *frag)
1299 {
1300 #ifdef CONFIG_HIGHMEM
1301 BUG_ON(in_irq());
1302
1303 local_bh_disable();
1304 #endif
1305 return kmap_atomic(frag->page, KM_SKB_DATA_SOFTIRQ);
1306 }
1307
1308 static inline void kunmap_skb_frag(void *vaddr)
1309 {
1310 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
1311 #ifdef CONFIG_HIGHMEM
1312 local_bh_enable();
1313 #endif
1314 }
1315
1316 #define skb_queue_walk(queue, skb) \
1317 for (skb = (queue)->next; \
1318 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1319 skb = skb->next)
1320
1321 #define skb_queue_reverse_walk(queue, skb) \
1322 for (skb = (queue)->prev; \
1323 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1324 skb = skb->prev)
1325
1326
1327 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1328 int noblock, int *err);
1329 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1330 struct poll_table_struct *wait);
1331 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1332 int offset, struct iovec *to,
1333 int size);
1334 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1335 int hlen,
1336 struct iovec *iov);
1337 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1338 extern void skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1339 unsigned int flags);
1340 extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
1341 int len, __wsum csum);
1342 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1343 void *to, int len);
1344 extern int skb_store_bits(const struct sk_buff *skb, int offset,
1345 void *from, int len);
1346 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
1347 int offset, u8 *to, int len,
1348 __wsum csum);
1349 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1350 extern void skb_split(struct sk_buff *skb,
1351 struct sk_buff *skb1, const u32 len);
1352
1353 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1354
1355 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1356 int len, void *buffer)
1357 {
1358 int hlen = skb_headlen(skb);
1359
1360 if (hlen - offset >= len)
1361 return skb->data + offset;
1362
1363 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1364 return NULL;
1365
1366 return buffer;
1367 }
1368
1369 extern void skb_init(void);
1370 extern void skb_add_mtu(int mtu);
1371
1372 /**
1373 * skb_get_timestamp - get timestamp from a skb
1374 * @skb: skb to get stamp from
1375 * @stamp: pointer to struct timeval to store stamp in
1376 *
1377 * Timestamps are stored in the skb as offsets to a base timestamp.
1378 * This function converts the offset back to a struct timeval and stores
1379 * it in stamp.
1380 */
1381 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1382 {
1383 stamp->tv_sec = skb->tstamp.off_sec;
1384 stamp->tv_usec = skb->tstamp.off_usec;
1385 }
1386
1387 /**
1388 * skb_set_timestamp - set timestamp of a skb
1389 * @skb: skb to set stamp of
1390 * @stamp: pointer to struct timeval to get stamp from
1391 *
1392 * Timestamps are stored in the skb as offsets to a base timestamp.
1393 * This function converts a struct timeval to an offset and stores
1394 * it in the skb.
1395 */
1396 static inline void skb_set_timestamp(struct sk_buff *skb, const struct timeval *stamp)
1397 {
1398 skb->tstamp.off_sec = stamp->tv_sec;
1399 skb->tstamp.off_usec = stamp->tv_usec;
1400 }
1401
1402 extern void __net_timestamp(struct sk_buff *skb);
1403
1404 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1405
1406 /**
1407 * skb_checksum_complete - Calculate checksum of an entire packet
1408 * @skb: packet to process
1409 *
1410 * This function calculates the checksum over the entire packet plus
1411 * the value of skb->csum. The latter can be used to supply the
1412 * checksum of a pseudo header as used by TCP/UDP. It returns the
1413 * checksum.
1414 *
1415 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
1416 * this function can be used to verify that checksum on received
1417 * packets. In that case the function should return zero if the
1418 * checksum is correct. In particular, this function will return zero
1419 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1420 * hardware has already verified the correctness of the checksum.
1421 */
1422 static inline unsigned int skb_checksum_complete(struct sk_buff *skb)
1423 {
1424 return skb->ip_summed != CHECKSUM_UNNECESSARY &&
1425 __skb_checksum_complete(skb);
1426 }
1427
1428 #ifdef CONFIG_NETFILTER
1429 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1430 {
1431 if (nfct && atomic_dec_and_test(&nfct->use))
1432 nfct->destroy(nfct);
1433 }
1434 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1435 {
1436 if (nfct)
1437 atomic_inc(&nfct->use);
1438 }
1439 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1440 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1441 {
1442 if (skb)
1443 atomic_inc(&skb->users);
1444 }
1445 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1446 {
1447 if (skb)
1448 kfree_skb(skb);
1449 }
1450 #endif
1451 #ifdef CONFIG_BRIDGE_NETFILTER
1452 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1453 {
1454 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1455 kfree(nf_bridge);
1456 }
1457 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1458 {
1459 if (nf_bridge)
1460 atomic_inc(&nf_bridge->use);
1461 }
1462 #endif /* CONFIG_BRIDGE_NETFILTER */
1463 static inline void nf_reset(struct sk_buff *skb)
1464 {
1465 nf_conntrack_put(skb->nfct);
1466 skb->nfct = NULL;
1467 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1468 nf_conntrack_put_reasm(skb->nfct_reasm);
1469 skb->nfct_reasm = NULL;
1470 #endif
1471 #ifdef CONFIG_BRIDGE_NETFILTER
1472 nf_bridge_put(skb->nf_bridge);
1473 skb->nf_bridge = NULL;
1474 #endif
1475 }
1476
1477 #else /* CONFIG_NETFILTER */
1478 static inline void nf_reset(struct sk_buff *skb) {}
1479 #endif /* CONFIG_NETFILTER */
1480
1481 #ifdef CONFIG_NETWORK_SECMARK
1482 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1483 {
1484 to->secmark = from->secmark;
1485 }
1486
1487 static inline void skb_init_secmark(struct sk_buff *skb)
1488 {
1489 skb->secmark = 0;
1490 }
1491 #else
1492 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1493 { }
1494
1495 static inline void skb_init_secmark(struct sk_buff *skb)
1496 { }
1497 #endif
1498
1499 static inline int skb_is_gso(const struct sk_buff *skb)
1500 {
1501 return skb_shinfo(skb)->gso_size;
1502 }
1503
1504 #endif /* __KERNEL__ */
1505 #endif /* _LINUX_SKBUFF_H */
This page took 0.061647 seconds and 6 git commands to generate.