net: add rbnode to struct sk_buff
[deliverable/linux.git] / include / linux / skbuff.h
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/bug.h>
22 #include <linux/cache.h>
23 #include <linux/rbtree.h>
24
25 #include <linux/atomic.h>
26 #include <asm/types.h>
27 #include <linux/spinlock.h>
28 #include <linux/net.h>
29 #include <linux/textsearch.h>
30 #include <net/checksum.h>
31 #include <linux/rcupdate.h>
32 #include <linux/hrtimer.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/netdev_features.h>
35 #include <linux/sched.h>
36 #include <net/flow_keys.h>
37
38 /* A. Checksumming of received packets by device.
39 *
40 * CHECKSUM_NONE:
41 *
42 * Device failed to checksum this packet e.g. due to lack of capabilities.
43 * The packet contains full (though not verified) checksum in packet but
44 * not in skb->csum. Thus, skb->csum is undefined in this case.
45 *
46 * CHECKSUM_UNNECESSARY:
47 *
48 * The hardware you're dealing with doesn't calculate the full checksum
49 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
50 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
51 * if their checksums are okay. skb->csum is still undefined in this case
52 * though. It is a bad option, but, unfortunately, nowadays most vendors do
53 * this. Apparently with the secret goal to sell you new devices, when you
54 * will add new protocol to your host, f.e. IPv6 8)
55 *
56 * CHECKSUM_UNNECESSARY is applicable to following protocols:
57 * TCP: IPv6 and IPv4.
58 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
59 * zero UDP checksum for either IPv4 or IPv6, the networking stack
60 * may perform further validation in this case.
61 * GRE: only if the checksum is present in the header.
62 * SCTP: indicates the CRC in SCTP header has been validated.
63 *
64 * skb->csum_level indicates the number of consecutive checksums found in
65 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
66 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
67 * and a device is able to verify the checksums for UDP (possibly zero),
68 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
69 * two. If the device were only able to verify the UDP checksum and not
70 * GRE, either because it doesn't support GRE checksum of because GRE
71 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
72 * not considered in this case).
73 *
74 * CHECKSUM_COMPLETE:
75 *
76 * This is the most generic way. The device supplied checksum of the _whole_
77 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
78 * hardware doesn't need to parse L3/L4 headers to implement this.
79 *
80 * Note: Even if device supports only some protocols, but is able to produce
81 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
82 *
83 * CHECKSUM_PARTIAL:
84 *
85 * This is identical to the case for output below. This may occur on a packet
86 * received directly from another Linux OS, e.g., a virtualized Linux kernel
87 * on the same host. The packet can be treated in the same way as
88 * CHECKSUM_UNNECESSARY, except that on output (i.e., forwarding) the
89 * checksum must be filled in by the OS or the hardware.
90 *
91 * B. Checksumming on output.
92 *
93 * CHECKSUM_NONE:
94 *
95 * The skb was already checksummed by the protocol, or a checksum is not
96 * required.
97 *
98 * CHECKSUM_PARTIAL:
99 *
100 * The device is required to checksum the packet as seen by hard_start_xmit()
101 * from skb->csum_start up to the end, and to record/write the checksum at
102 * offset skb->csum_start + skb->csum_offset.
103 *
104 * The device must show its capabilities in dev->features, set up at device
105 * setup time, e.g. netdev_features.h:
106 *
107 * NETIF_F_HW_CSUM - It's a clever device, it's able to checksum everything.
108 * NETIF_F_IP_CSUM - Device is dumb, it's able to checksum only TCP/UDP over
109 * IPv4. Sigh. Vendors like this way for an unknown reason.
110 * Though, see comment above about CHECKSUM_UNNECESSARY. 8)
111 * NETIF_F_IPV6_CSUM - About as dumb as the last one but does IPv6 instead.
112 * NETIF_F_... - Well, you get the picture.
113 *
114 * CHECKSUM_UNNECESSARY:
115 *
116 * Normally, the device will do per protocol specific checksumming. Protocol
117 * implementations that do not want the NIC to perform the checksum
118 * calculation should use this flag in their outgoing skbs.
119 *
120 * NETIF_F_FCOE_CRC - This indicates that the device can do FCoE FC CRC
121 * offload. Correspondingly, the FCoE protocol driver
122 * stack should use CHECKSUM_UNNECESSARY.
123 *
124 * Any questions? No questions, good. --ANK
125 */
126
127 /* Don't change this without changing skb_csum_unnecessary! */
128 #define CHECKSUM_NONE 0
129 #define CHECKSUM_UNNECESSARY 1
130 #define CHECKSUM_COMPLETE 2
131 #define CHECKSUM_PARTIAL 3
132
133 /* Maximum value in skb->csum_level */
134 #define SKB_MAX_CSUM_LEVEL 3
135
136 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
137 #define SKB_WITH_OVERHEAD(X) \
138 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
139 #define SKB_MAX_ORDER(X, ORDER) \
140 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
141 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
142 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
143
144 /* return minimum truesize of one skb containing X bytes of data */
145 #define SKB_TRUESIZE(X) ((X) + \
146 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
147 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
148
149 struct net_device;
150 struct scatterlist;
151 struct pipe_inode_info;
152
153 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
154 struct nf_conntrack {
155 atomic_t use;
156 };
157 #endif
158
159 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
160 struct nf_bridge_info {
161 atomic_t use;
162 unsigned int mask;
163 struct net_device *physindev;
164 struct net_device *physoutdev;
165 unsigned long data[32 / sizeof(unsigned long)];
166 };
167 #endif
168
169 struct sk_buff_head {
170 /* These two members must be first. */
171 struct sk_buff *next;
172 struct sk_buff *prev;
173
174 __u32 qlen;
175 spinlock_t lock;
176 };
177
178 struct sk_buff;
179
180 /* To allow 64K frame to be packed as single skb without frag_list we
181 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
182 * buffers which do not start on a page boundary.
183 *
184 * Since GRO uses frags we allocate at least 16 regardless of page
185 * size.
186 */
187 #if (65536/PAGE_SIZE + 1) < 16
188 #define MAX_SKB_FRAGS 16UL
189 #else
190 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
191 #endif
192
193 typedef struct skb_frag_struct skb_frag_t;
194
195 struct skb_frag_struct {
196 struct {
197 struct page *p;
198 } page;
199 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
200 __u32 page_offset;
201 __u32 size;
202 #else
203 __u16 page_offset;
204 __u16 size;
205 #endif
206 };
207
208 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
209 {
210 return frag->size;
211 }
212
213 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
214 {
215 frag->size = size;
216 }
217
218 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
219 {
220 frag->size += delta;
221 }
222
223 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
224 {
225 frag->size -= delta;
226 }
227
228 #define HAVE_HW_TIME_STAMP
229
230 /**
231 * struct skb_shared_hwtstamps - hardware time stamps
232 * @hwtstamp: hardware time stamp transformed into duration
233 * since arbitrary point in time
234 *
235 * Software time stamps generated by ktime_get_real() are stored in
236 * skb->tstamp.
237 *
238 * hwtstamps can only be compared against other hwtstamps from
239 * the same device.
240 *
241 * This structure is attached to packets as part of the
242 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
243 */
244 struct skb_shared_hwtstamps {
245 ktime_t hwtstamp;
246 };
247
248 /* Definitions for tx_flags in struct skb_shared_info */
249 enum {
250 /* generate hardware time stamp */
251 SKBTX_HW_TSTAMP = 1 << 0,
252
253 /* generate software time stamp when queueing packet to NIC */
254 SKBTX_SW_TSTAMP = 1 << 1,
255
256 /* device driver is going to provide hardware time stamp */
257 SKBTX_IN_PROGRESS = 1 << 2,
258
259 /* device driver supports TX zero-copy buffers */
260 SKBTX_DEV_ZEROCOPY = 1 << 3,
261
262 /* generate wifi status information (where possible) */
263 SKBTX_WIFI_STATUS = 1 << 4,
264
265 /* This indicates at least one fragment might be overwritten
266 * (as in vmsplice(), sendfile() ...)
267 * If we need to compute a TX checksum, we'll need to copy
268 * all frags to avoid possible bad checksum
269 */
270 SKBTX_SHARED_FRAG = 1 << 5,
271
272 /* generate software time stamp when entering packet scheduling */
273 SKBTX_SCHED_TSTAMP = 1 << 6,
274
275 /* generate software timestamp on peer data acknowledgment */
276 SKBTX_ACK_TSTAMP = 1 << 7,
277 };
278
279 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
280 SKBTX_SCHED_TSTAMP | \
281 SKBTX_ACK_TSTAMP)
282 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
283
284 /*
285 * The callback notifies userspace to release buffers when skb DMA is done in
286 * lower device, the skb last reference should be 0 when calling this.
287 * The zerocopy_success argument is true if zero copy transmit occurred,
288 * false on data copy or out of memory error caused by data copy attempt.
289 * The ctx field is used to track device context.
290 * The desc field is used to track userspace buffer index.
291 */
292 struct ubuf_info {
293 void (*callback)(struct ubuf_info *, bool zerocopy_success);
294 void *ctx;
295 unsigned long desc;
296 };
297
298 /* This data is invariant across clones and lives at
299 * the end of the header data, ie. at skb->end.
300 */
301 struct skb_shared_info {
302 unsigned char nr_frags;
303 __u8 tx_flags;
304 unsigned short gso_size;
305 /* Warning: this field is not always filled in (UFO)! */
306 unsigned short gso_segs;
307 unsigned short gso_type;
308 struct sk_buff *frag_list;
309 struct skb_shared_hwtstamps hwtstamps;
310 u32 tskey;
311 __be32 ip6_frag_id;
312
313 /*
314 * Warning : all fields before dataref are cleared in __alloc_skb()
315 */
316 atomic_t dataref;
317
318 /* Intermediate layers must ensure that destructor_arg
319 * remains valid until skb destructor */
320 void * destructor_arg;
321
322 /* must be last field, see pskb_expand_head() */
323 skb_frag_t frags[MAX_SKB_FRAGS];
324 };
325
326 /* We divide dataref into two halves. The higher 16 bits hold references
327 * to the payload part of skb->data. The lower 16 bits hold references to
328 * the entire skb->data. A clone of a headerless skb holds the length of
329 * the header in skb->hdr_len.
330 *
331 * All users must obey the rule that the skb->data reference count must be
332 * greater than or equal to the payload reference count.
333 *
334 * Holding a reference to the payload part means that the user does not
335 * care about modifications to the header part of skb->data.
336 */
337 #define SKB_DATAREF_SHIFT 16
338 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
339
340
341 enum {
342 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
343 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
344 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
345 SKB_FCLONE_FREE, /* this companion fclone skb is available */
346 };
347
348 enum {
349 SKB_GSO_TCPV4 = 1 << 0,
350 SKB_GSO_UDP = 1 << 1,
351
352 /* This indicates the skb is from an untrusted source. */
353 SKB_GSO_DODGY = 1 << 2,
354
355 /* This indicates the tcp segment has CWR set. */
356 SKB_GSO_TCP_ECN = 1 << 3,
357
358 SKB_GSO_TCPV6 = 1 << 4,
359
360 SKB_GSO_FCOE = 1 << 5,
361
362 SKB_GSO_GRE = 1 << 6,
363
364 SKB_GSO_GRE_CSUM = 1 << 7,
365
366 SKB_GSO_IPIP = 1 << 8,
367
368 SKB_GSO_SIT = 1 << 9,
369
370 SKB_GSO_UDP_TUNNEL = 1 << 10,
371
372 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
373
374 SKB_GSO_MPLS = 1 << 12,
375
376 };
377
378 #if BITS_PER_LONG > 32
379 #define NET_SKBUFF_DATA_USES_OFFSET 1
380 #endif
381
382 #ifdef NET_SKBUFF_DATA_USES_OFFSET
383 typedef unsigned int sk_buff_data_t;
384 #else
385 typedef unsigned char *sk_buff_data_t;
386 #endif
387
388 /**
389 * struct skb_mstamp - multi resolution time stamps
390 * @stamp_us: timestamp in us resolution
391 * @stamp_jiffies: timestamp in jiffies
392 */
393 struct skb_mstamp {
394 union {
395 u64 v64;
396 struct {
397 u32 stamp_us;
398 u32 stamp_jiffies;
399 };
400 };
401 };
402
403 /**
404 * skb_mstamp_get - get current timestamp
405 * @cl: place to store timestamps
406 */
407 static inline void skb_mstamp_get(struct skb_mstamp *cl)
408 {
409 u64 val = local_clock();
410
411 do_div(val, NSEC_PER_USEC);
412 cl->stamp_us = (u32)val;
413 cl->stamp_jiffies = (u32)jiffies;
414 }
415
416 /**
417 * skb_mstamp_delta - compute the difference in usec between two skb_mstamp
418 * @t1: pointer to newest sample
419 * @t0: pointer to oldest sample
420 */
421 static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1,
422 const struct skb_mstamp *t0)
423 {
424 s32 delta_us = t1->stamp_us - t0->stamp_us;
425 u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies;
426
427 /* If delta_us is negative, this might be because interval is too big,
428 * or local_clock() drift is too big : fallback using jiffies.
429 */
430 if (delta_us <= 0 ||
431 delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ)))
432
433 delta_us = jiffies_to_usecs(delta_jiffies);
434
435 return delta_us;
436 }
437
438
439 /**
440 * struct sk_buff - socket buffer
441 * @next: Next buffer in list
442 * @prev: Previous buffer in list
443 * @tstamp: Time we arrived/left
444 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
445 * @sk: Socket we are owned by
446 * @dev: Device we arrived on/are leaving by
447 * @cb: Control buffer. Free for use by every layer. Put private vars here
448 * @_skb_refdst: destination entry (with norefcount bit)
449 * @sp: the security path, used for xfrm
450 * @len: Length of actual data
451 * @data_len: Data length
452 * @mac_len: Length of link layer header
453 * @hdr_len: writable header length of cloned skb
454 * @csum: Checksum (must include start/offset pair)
455 * @csum_start: Offset from skb->head where checksumming should start
456 * @csum_offset: Offset from csum_start where checksum should be stored
457 * @priority: Packet queueing priority
458 * @ignore_df: allow local fragmentation
459 * @cloned: Head may be cloned (check refcnt to be sure)
460 * @ip_summed: Driver fed us an IP checksum
461 * @nohdr: Payload reference only, must not modify header
462 * @nfctinfo: Relationship of this skb to the connection
463 * @pkt_type: Packet class
464 * @fclone: skbuff clone status
465 * @ipvs_property: skbuff is owned by ipvs
466 * @peeked: this packet has been seen already, so stats have been
467 * done for it, don't do them again
468 * @nf_trace: netfilter packet trace flag
469 * @protocol: Packet protocol from driver
470 * @destructor: Destruct function
471 * @nfct: Associated connection, if any
472 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
473 * @skb_iif: ifindex of device we arrived on
474 * @tc_index: Traffic control index
475 * @tc_verd: traffic control verdict
476 * @hash: the packet hash
477 * @queue_mapping: Queue mapping for multiqueue devices
478 * @xmit_more: More SKBs are pending for this queue
479 * @ndisc_nodetype: router type (from link layer)
480 * @ooo_okay: allow the mapping of a socket to a queue to be changed
481 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
482 * ports.
483 * @sw_hash: indicates hash was computed in software stack
484 * @wifi_acked_valid: wifi_acked was set
485 * @wifi_acked: whether frame was acked on wifi or not
486 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
487 * @napi_id: id of the NAPI struct this skb came from
488 * @secmark: security marking
489 * @mark: Generic packet mark
490 * @dropcount: total number of sk_receive_queue overflows
491 * @vlan_proto: vlan encapsulation protocol
492 * @vlan_tci: vlan tag control information
493 * @inner_protocol: Protocol (encapsulation)
494 * @inner_transport_header: Inner transport layer header (encapsulation)
495 * @inner_network_header: Network layer header (encapsulation)
496 * @inner_mac_header: Link layer header (encapsulation)
497 * @transport_header: Transport layer header
498 * @network_header: Network layer header
499 * @mac_header: Link layer header
500 * @tail: Tail pointer
501 * @end: End pointer
502 * @head: Head of buffer
503 * @data: Data head pointer
504 * @truesize: Buffer size
505 * @users: User count - see {datagram,tcp}.c
506 */
507
508 struct sk_buff {
509 union {
510 struct {
511 /* These two members must be first. */
512 struct sk_buff *next;
513 struct sk_buff *prev;
514
515 union {
516 ktime_t tstamp;
517 struct skb_mstamp skb_mstamp;
518 };
519 };
520 struct rb_node rbnode; /* used in netem & tcp stack */
521 };
522 struct sock *sk;
523 struct net_device *dev;
524
525 /*
526 * This is the control buffer. It is free to use for every
527 * layer. Please put your private variables there. If you
528 * want to keep them across layers you have to do a skb_clone()
529 * first. This is owned by whoever has the skb queued ATM.
530 */
531 char cb[48] __aligned(8);
532
533 unsigned long _skb_refdst;
534 void (*destructor)(struct sk_buff *skb);
535 #ifdef CONFIG_XFRM
536 struct sec_path *sp;
537 #endif
538 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
539 struct nf_conntrack *nfct;
540 #endif
541 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
542 struct nf_bridge_info *nf_bridge;
543 #endif
544 unsigned int len,
545 data_len;
546 __u16 mac_len,
547 hdr_len;
548
549 /* Following fields are _not_ copied in __copy_skb_header()
550 * Note that queue_mapping is here mostly to fill a hole.
551 */
552 kmemcheck_bitfield_begin(flags1);
553 __u16 queue_mapping;
554 __u8 cloned:1,
555 nohdr:1,
556 fclone:2,
557 peeked:1,
558 head_frag:1,
559 xmit_more:1;
560 /* one bit hole */
561 kmemcheck_bitfield_end(flags1);
562
563 /* fields enclosed in headers_start/headers_end are copied
564 * using a single memcpy() in __copy_skb_header()
565 */
566 /* private: */
567 __u32 headers_start[0];
568 /* public: */
569
570 /* if you move pkt_type around you also must adapt those constants */
571 #ifdef __BIG_ENDIAN_BITFIELD
572 #define PKT_TYPE_MAX (7 << 5)
573 #else
574 #define PKT_TYPE_MAX 7
575 #endif
576 #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset)
577
578 __u8 __pkt_type_offset[0];
579 __u8 pkt_type:3;
580 __u8 pfmemalloc:1;
581 __u8 ignore_df:1;
582 __u8 nfctinfo:3;
583
584 __u8 nf_trace:1;
585 __u8 ip_summed:2;
586 __u8 ooo_okay:1;
587 __u8 l4_hash:1;
588 __u8 sw_hash:1;
589 __u8 wifi_acked_valid:1;
590 __u8 wifi_acked:1;
591
592 __u8 no_fcs:1;
593 /* Indicates the inner headers are valid in the skbuff. */
594 __u8 encapsulation:1;
595 __u8 encap_hdr_csum:1;
596 __u8 csum_valid:1;
597 __u8 csum_complete_sw:1;
598 __u8 csum_level:2;
599 __u8 csum_bad:1;
600
601 #ifdef CONFIG_IPV6_NDISC_NODETYPE
602 __u8 ndisc_nodetype:2;
603 #endif
604 __u8 ipvs_property:1;
605 __u8 inner_protocol_type:1;
606 /* 4 or 6 bit hole */
607
608 #ifdef CONFIG_NET_SCHED
609 __u16 tc_index; /* traffic control index */
610 #ifdef CONFIG_NET_CLS_ACT
611 __u16 tc_verd; /* traffic control verdict */
612 #endif
613 #endif
614
615 union {
616 __wsum csum;
617 struct {
618 __u16 csum_start;
619 __u16 csum_offset;
620 };
621 };
622 __u32 priority;
623 int skb_iif;
624 __u32 hash;
625 __be16 vlan_proto;
626 __u16 vlan_tci;
627 #ifdef CONFIG_NET_RX_BUSY_POLL
628 unsigned int napi_id;
629 #endif
630 #ifdef CONFIG_NETWORK_SECMARK
631 __u32 secmark;
632 #endif
633 union {
634 __u32 mark;
635 __u32 dropcount;
636 __u32 reserved_tailroom;
637 };
638
639 union {
640 __be16 inner_protocol;
641 __u8 inner_ipproto;
642 };
643
644 __u16 inner_transport_header;
645 __u16 inner_network_header;
646 __u16 inner_mac_header;
647
648 __be16 protocol;
649 __u16 transport_header;
650 __u16 network_header;
651 __u16 mac_header;
652
653 /* private: */
654 __u32 headers_end[0];
655 /* public: */
656
657 /* These elements must be at the end, see alloc_skb() for details. */
658 sk_buff_data_t tail;
659 sk_buff_data_t end;
660 unsigned char *head,
661 *data;
662 unsigned int truesize;
663 atomic_t users;
664 };
665
666 #ifdef __KERNEL__
667 /*
668 * Handling routines are only of interest to the kernel
669 */
670 #include <linux/slab.h>
671
672
673 #define SKB_ALLOC_FCLONE 0x01
674 #define SKB_ALLOC_RX 0x02
675
676 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
677 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
678 {
679 return unlikely(skb->pfmemalloc);
680 }
681
682 /*
683 * skb might have a dst pointer attached, refcounted or not.
684 * _skb_refdst low order bit is set if refcount was _not_ taken
685 */
686 #define SKB_DST_NOREF 1UL
687 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
688
689 /**
690 * skb_dst - returns skb dst_entry
691 * @skb: buffer
692 *
693 * Returns skb dst_entry, regardless of reference taken or not.
694 */
695 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
696 {
697 /* If refdst was not refcounted, check we still are in a
698 * rcu_read_lock section
699 */
700 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
701 !rcu_read_lock_held() &&
702 !rcu_read_lock_bh_held());
703 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
704 }
705
706 /**
707 * skb_dst_set - sets skb dst
708 * @skb: buffer
709 * @dst: dst entry
710 *
711 * Sets skb dst, assuming a reference was taken on dst and should
712 * be released by skb_dst_drop()
713 */
714 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
715 {
716 skb->_skb_refdst = (unsigned long)dst;
717 }
718
719 void __skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst,
720 bool force);
721
722 /**
723 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
724 * @skb: buffer
725 * @dst: dst entry
726 *
727 * Sets skb dst, assuming a reference was not taken on dst.
728 * If dst entry is cached, we do not take reference and dst_release
729 * will be avoided by refdst_drop. If dst entry is not cached, we take
730 * reference, so that last dst_release can destroy the dst immediately.
731 */
732 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
733 {
734 __skb_dst_set_noref(skb, dst, false);
735 }
736
737 /**
738 * skb_dst_set_noref_force - sets skb dst, without taking reference
739 * @skb: buffer
740 * @dst: dst entry
741 *
742 * Sets skb dst, assuming a reference was not taken on dst.
743 * No reference is taken and no dst_release will be called. While for
744 * cached dsts deferred reclaim is a basic feature, for entries that are
745 * not cached it is caller's job to guarantee that last dst_release for
746 * provided dst happens when nobody uses it, eg. after a RCU grace period.
747 */
748 static inline void skb_dst_set_noref_force(struct sk_buff *skb,
749 struct dst_entry *dst)
750 {
751 __skb_dst_set_noref(skb, dst, true);
752 }
753
754 /**
755 * skb_dst_is_noref - Test if skb dst isn't refcounted
756 * @skb: buffer
757 */
758 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
759 {
760 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
761 }
762
763 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
764 {
765 return (struct rtable *)skb_dst(skb);
766 }
767
768 void kfree_skb(struct sk_buff *skb);
769 void kfree_skb_list(struct sk_buff *segs);
770 void skb_tx_error(struct sk_buff *skb);
771 void consume_skb(struct sk_buff *skb);
772 void __kfree_skb(struct sk_buff *skb);
773 extern struct kmem_cache *skbuff_head_cache;
774
775 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
776 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
777 bool *fragstolen, int *delta_truesize);
778
779 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
780 int node);
781 struct sk_buff *build_skb(void *data, unsigned int frag_size);
782 static inline struct sk_buff *alloc_skb(unsigned int size,
783 gfp_t priority)
784 {
785 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
786 }
787
788 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
789 unsigned long data_len,
790 int max_page_order,
791 int *errcode,
792 gfp_t gfp_mask);
793
794 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
795 struct sk_buff_fclones {
796 struct sk_buff skb1;
797
798 struct sk_buff skb2;
799
800 atomic_t fclone_ref;
801 };
802
803 /**
804 * skb_fclone_busy - check if fclone is busy
805 * @skb: buffer
806 *
807 * Returns true is skb is a fast clone, and its clone is not freed.
808 * Some drivers call skb_orphan() in their ndo_start_xmit(),
809 * so we also check that this didnt happen.
810 */
811 static inline bool skb_fclone_busy(const struct sock *sk,
812 const struct sk_buff *skb)
813 {
814 const struct sk_buff_fclones *fclones;
815
816 fclones = container_of(skb, struct sk_buff_fclones, skb1);
817
818 return skb->fclone == SKB_FCLONE_ORIG &&
819 fclones->skb2.fclone == SKB_FCLONE_CLONE &&
820 fclones->skb2.sk == sk;
821 }
822
823 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
824 gfp_t priority)
825 {
826 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
827 }
828
829 struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
830 static inline struct sk_buff *alloc_skb_head(gfp_t priority)
831 {
832 return __alloc_skb_head(priority, -1);
833 }
834
835 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
836 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
837 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
838 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
839 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
840 gfp_t gfp_mask, bool fclone);
841 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
842 gfp_t gfp_mask)
843 {
844 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
845 }
846
847 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
848 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
849 unsigned int headroom);
850 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
851 int newtailroom, gfp_t priority);
852 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
853 int offset, int len);
854 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
855 int len);
856 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
857 int skb_pad(struct sk_buff *skb, int pad);
858 #define dev_kfree_skb(a) consume_skb(a)
859
860 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
861 int getfrag(void *from, char *to, int offset,
862 int len, int odd, struct sk_buff *skb),
863 void *from, int length);
864
865 struct skb_seq_state {
866 __u32 lower_offset;
867 __u32 upper_offset;
868 __u32 frag_idx;
869 __u32 stepped_offset;
870 struct sk_buff *root_skb;
871 struct sk_buff *cur_skb;
872 __u8 *frag_data;
873 };
874
875 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
876 unsigned int to, struct skb_seq_state *st);
877 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
878 struct skb_seq_state *st);
879 void skb_abort_seq_read(struct skb_seq_state *st);
880
881 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
882 unsigned int to, struct ts_config *config,
883 struct ts_state *state);
884
885 /*
886 * Packet hash types specify the type of hash in skb_set_hash.
887 *
888 * Hash types refer to the protocol layer addresses which are used to
889 * construct a packet's hash. The hashes are used to differentiate or identify
890 * flows of the protocol layer for the hash type. Hash types are either
891 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
892 *
893 * Properties of hashes:
894 *
895 * 1) Two packets in different flows have different hash values
896 * 2) Two packets in the same flow should have the same hash value
897 *
898 * A hash at a higher layer is considered to be more specific. A driver should
899 * set the most specific hash possible.
900 *
901 * A driver cannot indicate a more specific hash than the layer at which a hash
902 * was computed. For instance an L3 hash cannot be set as an L4 hash.
903 *
904 * A driver may indicate a hash level which is less specific than the
905 * actual layer the hash was computed on. For instance, a hash computed
906 * at L4 may be considered an L3 hash. This should only be done if the
907 * driver can't unambiguously determine that the HW computed the hash at
908 * the higher layer. Note that the "should" in the second property above
909 * permits this.
910 */
911 enum pkt_hash_types {
912 PKT_HASH_TYPE_NONE, /* Undefined type */
913 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
914 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
915 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
916 };
917
918 static inline void
919 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
920 {
921 skb->l4_hash = (type == PKT_HASH_TYPE_L4);
922 skb->sw_hash = 0;
923 skb->hash = hash;
924 }
925
926 void __skb_get_hash(struct sk_buff *skb);
927 static inline __u32 skb_get_hash(struct sk_buff *skb)
928 {
929 if (!skb->l4_hash && !skb->sw_hash)
930 __skb_get_hash(skb);
931
932 return skb->hash;
933 }
934
935 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
936 {
937 return skb->hash;
938 }
939
940 static inline void skb_clear_hash(struct sk_buff *skb)
941 {
942 skb->hash = 0;
943 skb->sw_hash = 0;
944 skb->l4_hash = 0;
945 }
946
947 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
948 {
949 if (!skb->l4_hash)
950 skb_clear_hash(skb);
951 }
952
953 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
954 {
955 to->hash = from->hash;
956 to->sw_hash = from->sw_hash;
957 to->l4_hash = from->l4_hash;
958 };
959
960 #ifdef NET_SKBUFF_DATA_USES_OFFSET
961 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
962 {
963 return skb->head + skb->end;
964 }
965
966 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
967 {
968 return skb->end;
969 }
970 #else
971 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
972 {
973 return skb->end;
974 }
975
976 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
977 {
978 return skb->end - skb->head;
979 }
980 #endif
981
982 /* Internal */
983 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
984
985 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
986 {
987 return &skb_shinfo(skb)->hwtstamps;
988 }
989
990 /**
991 * skb_queue_empty - check if a queue is empty
992 * @list: queue head
993 *
994 * Returns true if the queue is empty, false otherwise.
995 */
996 static inline int skb_queue_empty(const struct sk_buff_head *list)
997 {
998 return list->next == (const struct sk_buff *) list;
999 }
1000
1001 /**
1002 * skb_queue_is_last - check if skb is the last entry in the queue
1003 * @list: queue head
1004 * @skb: buffer
1005 *
1006 * Returns true if @skb is the last buffer on the list.
1007 */
1008 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1009 const struct sk_buff *skb)
1010 {
1011 return skb->next == (const struct sk_buff *) list;
1012 }
1013
1014 /**
1015 * skb_queue_is_first - check if skb is the first entry in the queue
1016 * @list: queue head
1017 * @skb: buffer
1018 *
1019 * Returns true if @skb is the first buffer on the list.
1020 */
1021 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1022 const struct sk_buff *skb)
1023 {
1024 return skb->prev == (const struct sk_buff *) list;
1025 }
1026
1027 /**
1028 * skb_queue_next - return the next packet in the queue
1029 * @list: queue head
1030 * @skb: current buffer
1031 *
1032 * Return the next packet in @list after @skb. It is only valid to
1033 * call this if skb_queue_is_last() evaluates to false.
1034 */
1035 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1036 const struct sk_buff *skb)
1037 {
1038 /* This BUG_ON may seem severe, but if we just return then we
1039 * are going to dereference garbage.
1040 */
1041 BUG_ON(skb_queue_is_last(list, skb));
1042 return skb->next;
1043 }
1044
1045 /**
1046 * skb_queue_prev - return the prev packet in the queue
1047 * @list: queue head
1048 * @skb: current buffer
1049 *
1050 * Return the prev packet in @list before @skb. It is only valid to
1051 * call this if skb_queue_is_first() evaluates to false.
1052 */
1053 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1054 const struct sk_buff *skb)
1055 {
1056 /* This BUG_ON may seem severe, but if we just return then we
1057 * are going to dereference garbage.
1058 */
1059 BUG_ON(skb_queue_is_first(list, skb));
1060 return skb->prev;
1061 }
1062
1063 /**
1064 * skb_get - reference buffer
1065 * @skb: buffer to reference
1066 *
1067 * Makes another reference to a socket buffer and returns a pointer
1068 * to the buffer.
1069 */
1070 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1071 {
1072 atomic_inc(&skb->users);
1073 return skb;
1074 }
1075
1076 /*
1077 * If users == 1, we are the only owner and are can avoid redundant
1078 * atomic change.
1079 */
1080
1081 /**
1082 * skb_cloned - is the buffer a clone
1083 * @skb: buffer to check
1084 *
1085 * Returns true if the buffer was generated with skb_clone() and is
1086 * one of multiple shared copies of the buffer. Cloned buffers are
1087 * shared data so must not be written to under normal circumstances.
1088 */
1089 static inline int skb_cloned(const struct sk_buff *skb)
1090 {
1091 return skb->cloned &&
1092 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1093 }
1094
1095 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1096 {
1097 might_sleep_if(pri & __GFP_WAIT);
1098
1099 if (skb_cloned(skb))
1100 return pskb_expand_head(skb, 0, 0, pri);
1101
1102 return 0;
1103 }
1104
1105 /**
1106 * skb_header_cloned - is the header a clone
1107 * @skb: buffer to check
1108 *
1109 * Returns true if modifying the header part of the buffer requires
1110 * the data to be copied.
1111 */
1112 static inline int skb_header_cloned(const struct sk_buff *skb)
1113 {
1114 int dataref;
1115
1116 if (!skb->cloned)
1117 return 0;
1118
1119 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1120 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1121 return dataref != 1;
1122 }
1123
1124 /**
1125 * skb_header_release - release reference to header
1126 * @skb: buffer to operate on
1127 *
1128 * Drop a reference to the header part of the buffer. This is done
1129 * by acquiring a payload reference. You must not read from the header
1130 * part of skb->data after this.
1131 * Note : Check if you can use __skb_header_release() instead.
1132 */
1133 static inline void skb_header_release(struct sk_buff *skb)
1134 {
1135 BUG_ON(skb->nohdr);
1136 skb->nohdr = 1;
1137 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
1138 }
1139
1140 /**
1141 * __skb_header_release - release reference to header
1142 * @skb: buffer to operate on
1143 *
1144 * Variant of skb_header_release() assuming skb is private to caller.
1145 * We can avoid one atomic operation.
1146 */
1147 static inline void __skb_header_release(struct sk_buff *skb)
1148 {
1149 skb->nohdr = 1;
1150 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1151 }
1152
1153
1154 /**
1155 * skb_shared - is the buffer shared
1156 * @skb: buffer to check
1157 *
1158 * Returns true if more than one person has a reference to this
1159 * buffer.
1160 */
1161 static inline int skb_shared(const struct sk_buff *skb)
1162 {
1163 return atomic_read(&skb->users) != 1;
1164 }
1165
1166 /**
1167 * skb_share_check - check if buffer is shared and if so clone it
1168 * @skb: buffer to check
1169 * @pri: priority for memory allocation
1170 *
1171 * If the buffer is shared the buffer is cloned and the old copy
1172 * drops a reference. A new clone with a single reference is returned.
1173 * If the buffer is not shared the original buffer is returned. When
1174 * being called from interrupt status or with spinlocks held pri must
1175 * be GFP_ATOMIC.
1176 *
1177 * NULL is returned on a memory allocation failure.
1178 */
1179 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1180 {
1181 might_sleep_if(pri & __GFP_WAIT);
1182 if (skb_shared(skb)) {
1183 struct sk_buff *nskb = skb_clone(skb, pri);
1184
1185 if (likely(nskb))
1186 consume_skb(skb);
1187 else
1188 kfree_skb(skb);
1189 skb = nskb;
1190 }
1191 return skb;
1192 }
1193
1194 /*
1195 * Copy shared buffers into a new sk_buff. We effectively do COW on
1196 * packets to handle cases where we have a local reader and forward
1197 * and a couple of other messy ones. The normal one is tcpdumping
1198 * a packet thats being forwarded.
1199 */
1200
1201 /**
1202 * skb_unshare - make a copy of a shared buffer
1203 * @skb: buffer to check
1204 * @pri: priority for memory allocation
1205 *
1206 * If the socket buffer is a clone then this function creates a new
1207 * copy of the data, drops a reference count on the old copy and returns
1208 * the new copy with the reference count at 1. If the buffer is not a clone
1209 * the original buffer is returned. When called with a spinlock held or
1210 * from interrupt state @pri must be %GFP_ATOMIC
1211 *
1212 * %NULL is returned on a memory allocation failure.
1213 */
1214 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1215 gfp_t pri)
1216 {
1217 might_sleep_if(pri & __GFP_WAIT);
1218 if (skb_cloned(skb)) {
1219 struct sk_buff *nskb = skb_copy(skb, pri);
1220
1221 /* Free our shared copy */
1222 if (likely(nskb))
1223 consume_skb(skb);
1224 else
1225 kfree_skb(skb);
1226 skb = nskb;
1227 }
1228 return skb;
1229 }
1230
1231 /**
1232 * skb_peek - peek at the head of an &sk_buff_head
1233 * @list_: list to peek at
1234 *
1235 * Peek an &sk_buff. Unlike most other operations you _MUST_
1236 * be careful with this one. A peek leaves the buffer on the
1237 * list and someone else may run off with it. You must hold
1238 * the appropriate locks or have a private queue to do this.
1239 *
1240 * Returns %NULL for an empty list or a pointer to the head element.
1241 * The reference count is not incremented and the reference is therefore
1242 * volatile. Use with caution.
1243 */
1244 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1245 {
1246 struct sk_buff *skb = list_->next;
1247
1248 if (skb == (struct sk_buff *)list_)
1249 skb = NULL;
1250 return skb;
1251 }
1252
1253 /**
1254 * skb_peek_next - peek skb following the given one from a queue
1255 * @skb: skb to start from
1256 * @list_: list to peek at
1257 *
1258 * Returns %NULL when the end of the list is met or a pointer to the
1259 * next element. The reference count is not incremented and the
1260 * reference is therefore volatile. Use with caution.
1261 */
1262 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1263 const struct sk_buff_head *list_)
1264 {
1265 struct sk_buff *next = skb->next;
1266
1267 if (next == (struct sk_buff *)list_)
1268 next = NULL;
1269 return next;
1270 }
1271
1272 /**
1273 * skb_peek_tail - peek at the tail of an &sk_buff_head
1274 * @list_: list to peek at
1275 *
1276 * Peek an &sk_buff. Unlike most other operations you _MUST_
1277 * be careful with this one. A peek leaves the buffer on the
1278 * list and someone else may run off with it. You must hold
1279 * the appropriate locks or have a private queue to do this.
1280 *
1281 * Returns %NULL for an empty list or a pointer to the tail element.
1282 * The reference count is not incremented and the reference is therefore
1283 * volatile. Use with caution.
1284 */
1285 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1286 {
1287 struct sk_buff *skb = list_->prev;
1288
1289 if (skb == (struct sk_buff *)list_)
1290 skb = NULL;
1291 return skb;
1292
1293 }
1294
1295 /**
1296 * skb_queue_len - get queue length
1297 * @list_: list to measure
1298 *
1299 * Return the length of an &sk_buff queue.
1300 */
1301 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1302 {
1303 return list_->qlen;
1304 }
1305
1306 /**
1307 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1308 * @list: queue to initialize
1309 *
1310 * This initializes only the list and queue length aspects of
1311 * an sk_buff_head object. This allows to initialize the list
1312 * aspects of an sk_buff_head without reinitializing things like
1313 * the spinlock. It can also be used for on-stack sk_buff_head
1314 * objects where the spinlock is known to not be used.
1315 */
1316 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1317 {
1318 list->prev = list->next = (struct sk_buff *)list;
1319 list->qlen = 0;
1320 }
1321
1322 /*
1323 * This function creates a split out lock class for each invocation;
1324 * this is needed for now since a whole lot of users of the skb-queue
1325 * infrastructure in drivers have different locking usage (in hardirq)
1326 * than the networking core (in softirq only). In the long run either the
1327 * network layer or drivers should need annotation to consolidate the
1328 * main types of usage into 3 classes.
1329 */
1330 static inline void skb_queue_head_init(struct sk_buff_head *list)
1331 {
1332 spin_lock_init(&list->lock);
1333 __skb_queue_head_init(list);
1334 }
1335
1336 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1337 struct lock_class_key *class)
1338 {
1339 skb_queue_head_init(list);
1340 lockdep_set_class(&list->lock, class);
1341 }
1342
1343 /*
1344 * Insert an sk_buff on a list.
1345 *
1346 * The "__skb_xxxx()" functions are the non-atomic ones that
1347 * can only be called with interrupts disabled.
1348 */
1349 void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1350 struct sk_buff_head *list);
1351 static inline void __skb_insert(struct sk_buff *newsk,
1352 struct sk_buff *prev, struct sk_buff *next,
1353 struct sk_buff_head *list)
1354 {
1355 newsk->next = next;
1356 newsk->prev = prev;
1357 next->prev = prev->next = newsk;
1358 list->qlen++;
1359 }
1360
1361 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1362 struct sk_buff *prev,
1363 struct sk_buff *next)
1364 {
1365 struct sk_buff *first = list->next;
1366 struct sk_buff *last = list->prev;
1367
1368 first->prev = prev;
1369 prev->next = first;
1370
1371 last->next = next;
1372 next->prev = last;
1373 }
1374
1375 /**
1376 * skb_queue_splice - join two skb lists, this is designed for stacks
1377 * @list: the new list to add
1378 * @head: the place to add it in the first list
1379 */
1380 static inline void skb_queue_splice(const struct sk_buff_head *list,
1381 struct sk_buff_head *head)
1382 {
1383 if (!skb_queue_empty(list)) {
1384 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1385 head->qlen += list->qlen;
1386 }
1387 }
1388
1389 /**
1390 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1391 * @list: the new list to add
1392 * @head: the place to add it in the first list
1393 *
1394 * The list at @list is reinitialised
1395 */
1396 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1397 struct sk_buff_head *head)
1398 {
1399 if (!skb_queue_empty(list)) {
1400 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1401 head->qlen += list->qlen;
1402 __skb_queue_head_init(list);
1403 }
1404 }
1405
1406 /**
1407 * skb_queue_splice_tail - join two skb lists, each list being a queue
1408 * @list: the new list to add
1409 * @head: the place to add it in the first list
1410 */
1411 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1412 struct sk_buff_head *head)
1413 {
1414 if (!skb_queue_empty(list)) {
1415 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1416 head->qlen += list->qlen;
1417 }
1418 }
1419
1420 /**
1421 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1422 * @list: the new list to add
1423 * @head: the place to add it in the first list
1424 *
1425 * Each of the lists is a queue.
1426 * The list at @list is reinitialised
1427 */
1428 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1429 struct sk_buff_head *head)
1430 {
1431 if (!skb_queue_empty(list)) {
1432 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1433 head->qlen += list->qlen;
1434 __skb_queue_head_init(list);
1435 }
1436 }
1437
1438 /**
1439 * __skb_queue_after - queue a buffer at the list head
1440 * @list: list to use
1441 * @prev: place after this buffer
1442 * @newsk: buffer to queue
1443 *
1444 * Queue a buffer int the middle of a list. This function takes no locks
1445 * and you must therefore hold required locks before calling it.
1446 *
1447 * A buffer cannot be placed on two lists at the same time.
1448 */
1449 static inline void __skb_queue_after(struct sk_buff_head *list,
1450 struct sk_buff *prev,
1451 struct sk_buff *newsk)
1452 {
1453 __skb_insert(newsk, prev, prev->next, list);
1454 }
1455
1456 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1457 struct sk_buff_head *list);
1458
1459 static inline void __skb_queue_before(struct sk_buff_head *list,
1460 struct sk_buff *next,
1461 struct sk_buff *newsk)
1462 {
1463 __skb_insert(newsk, next->prev, next, list);
1464 }
1465
1466 /**
1467 * __skb_queue_head - queue a buffer at the list head
1468 * @list: list to use
1469 * @newsk: buffer to queue
1470 *
1471 * Queue a buffer at the start of a list. This function takes no locks
1472 * and you must therefore hold required locks before calling it.
1473 *
1474 * A buffer cannot be placed on two lists at the same time.
1475 */
1476 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1477 static inline void __skb_queue_head(struct sk_buff_head *list,
1478 struct sk_buff *newsk)
1479 {
1480 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1481 }
1482
1483 /**
1484 * __skb_queue_tail - queue a buffer at the list tail
1485 * @list: list to use
1486 * @newsk: buffer to queue
1487 *
1488 * Queue a buffer at the end of a list. This function takes no locks
1489 * and you must therefore hold required locks before calling it.
1490 *
1491 * A buffer cannot be placed on two lists at the same time.
1492 */
1493 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1494 static inline void __skb_queue_tail(struct sk_buff_head *list,
1495 struct sk_buff *newsk)
1496 {
1497 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1498 }
1499
1500 /*
1501 * remove sk_buff from list. _Must_ be called atomically, and with
1502 * the list known..
1503 */
1504 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1505 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1506 {
1507 struct sk_buff *next, *prev;
1508
1509 list->qlen--;
1510 next = skb->next;
1511 prev = skb->prev;
1512 skb->next = skb->prev = NULL;
1513 next->prev = prev;
1514 prev->next = next;
1515 }
1516
1517 /**
1518 * __skb_dequeue - remove from the head of the queue
1519 * @list: list to dequeue from
1520 *
1521 * Remove the head of the list. This function does not take any locks
1522 * so must be used with appropriate locks held only. The head item is
1523 * returned or %NULL if the list is empty.
1524 */
1525 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1526 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1527 {
1528 struct sk_buff *skb = skb_peek(list);
1529 if (skb)
1530 __skb_unlink(skb, list);
1531 return skb;
1532 }
1533
1534 /**
1535 * __skb_dequeue_tail - remove from the tail of the queue
1536 * @list: list to dequeue from
1537 *
1538 * Remove the tail of the list. This function does not take any locks
1539 * so must be used with appropriate locks held only. The tail item is
1540 * returned or %NULL if the list is empty.
1541 */
1542 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1543 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1544 {
1545 struct sk_buff *skb = skb_peek_tail(list);
1546 if (skb)
1547 __skb_unlink(skb, list);
1548 return skb;
1549 }
1550
1551
1552 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1553 {
1554 return skb->data_len;
1555 }
1556
1557 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1558 {
1559 return skb->len - skb->data_len;
1560 }
1561
1562 static inline int skb_pagelen(const struct sk_buff *skb)
1563 {
1564 int i, len = 0;
1565
1566 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1567 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1568 return len + skb_headlen(skb);
1569 }
1570
1571 /**
1572 * __skb_fill_page_desc - initialise a paged fragment in an skb
1573 * @skb: buffer containing fragment to be initialised
1574 * @i: paged fragment index to initialise
1575 * @page: the page to use for this fragment
1576 * @off: the offset to the data with @page
1577 * @size: the length of the data
1578 *
1579 * Initialises the @i'th fragment of @skb to point to &size bytes at
1580 * offset @off within @page.
1581 *
1582 * Does not take any additional reference on the fragment.
1583 */
1584 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1585 struct page *page, int off, int size)
1586 {
1587 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1588
1589 /*
1590 * Propagate page->pfmemalloc to the skb if we can. The problem is
1591 * that not all callers have unique ownership of the page. If
1592 * pfmemalloc is set, we check the mapping as a mapping implies
1593 * page->index is set (index and pfmemalloc share space).
1594 * If it's a valid mapping, we cannot use page->pfmemalloc but we
1595 * do not lose pfmemalloc information as the pages would not be
1596 * allocated using __GFP_MEMALLOC.
1597 */
1598 frag->page.p = page;
1599 frag->page_offset = off;
1600 skb_frag_size_set(frag, size);
1601
1602 page = compound_head(page);
1603 if (page->pfmemalloc && !page->mapping)
1604 skb->pfmemalloc = true;
1605 }
1606
1607 /**
1608 * skb_fill_page_desc - initialise a paged fragment in an skb
1609 * @skb: buffer containing fragment to be initialised
1610 * @i: paged fragment index to initialise
1611 * @page: the page to use for this fragment
1612 * @off: the offset to the data with @page
1613 * @size: the length of the data
1614 *
1615 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1616 * @skb to point to @size bytes at offset @off within @page. In
1617 * addition updates @skb such that @i is the last fragment.
1618 *
1619 * Does not take any additional reference on the fragment.
1620 */
1621 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1622 struct page *page, int off, int size)
1623 {
1624 __skb_fill_page_desc(skb, i, page, off, size);
1625 skb_shinfo(skb)->nr_frags = i + 1;
1626 }
1627
1628 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1629 int size, unsigned int truesize);
1630
1631 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1632 unsigned int truesize);
1633
1634 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1635 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1636 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1637
1638 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1639 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1640 {
1641 return skb->head + skb->tail;
1642 }
1643
1644 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1645 {
1646 skb->tail = skb->data - skb->head;
1647 }
1648
1649 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1650 {
1651 skb_reset_tail_pointer(skb);
1652 skb->tail += offset;
1653 }
1654
1655 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1656 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1657 {
1658 return skb->tail;
1659 }
1660
1661 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1662 {
1663 skb->tail = skb->data;
1664 }
1665
1666 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1667 {
1668 skb->tail = skb->data + offset;
1669 }
1670
1671 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1672
1673 /*
1674 * Add data to an sk_buff
1675 */
1676 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
1677 unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1678 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1679 {
1680 unsigned char *tmp = skb_tail_pointer(skb);
1681 SKB_LINEAR_ASSERT(skb);
1682 skb->tail += len;
1683 skb->len += len;
1684 return tmp;
1685 }
1686
1687 unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1688 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1689 {
1690 skb->data -= len;
1691 skb->len += len;
1692 return skb->data;
1693 }
1694
1695 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1696 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1697 {
1698 skb->len -= len;
1699 BUG_ON(skb->len < skb->data_len);
1700 return skb->data += len;
1701 }
1702
1703 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1704 {
1705 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1706 }
1707
1708 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1709
1710 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1711 {
1712 if (len > skb_headlen(skb) &&
1713 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1714 return NULL;
1715 skb->len -= len;
1716 return skb->data += len;
1717 }
1718
1719 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1720 {
1721 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1722 }
1723
1724 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1725 {
1726 if (likely(len <= skb_headlen(skb)))
1727 return 1;
1728 if (unlikely(len > skb->len))
1729 return 0;
1730 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1731 }
1732
1733 /**
1734 * skb_headroom - bytes at buffer head
1735 * @skb: buffer to check
1736 *
1737 * Return the number of bytes of free space at the head of an &sk_buff.
1738 */
1739 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1740 {
1741 return skb->data - skb->head;
1742 }
1743
1744 /**
1745 * skb_tailroom - bytes at buffer end
1746 * @skb: buffer to check
1747 *
1748 * Return the number of bytes of free space at the tail of an sk_buff
1749 */
1750 static inline int skb_tailroom(const struct sk_buff *skb)
1751 {
1752 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1753 }
1754
1755 /**
1756 * skb_availroom - bytes at buffer end
1757 * @skb: buffer to check
1758 *
1759 * Return the number of bytes of free space at the tail of an sk_buff
1760 * allocated by sk_stream_alloc()
1761 */
1762 static inline int skb_availroom(const struct sk_buff *skb)
1763 {
1764 if (skb_is_nonlinear(skb))
1765 return 0;
1766
1767 return skb->end - skb->tail - skb->reserved_tailroom;
1768 }
1769
1770 /**
1771 * skb_reserve - adjust headroom
1772 * @skb: buffer to alter
1773 * @len: bytes to move
1774 *
1775 * Increase the headroom of an empty &sk_buff by reducing the tail
1776 * room. This is only allowed for an empty buffer.
1777 */
1778 static inline void skb_reserve(struct sk_buff *skb, int len)
1779 {
1780 skb->data += len;
1781 skb->tail += len;
1782 }
1783
1784 #define ENCAP_TYPE_ETHER 0
1785 #define ENCAP_TYPE_IPPROTO 1
1786
1787 static inline void skb_set_inner_protocol(struct sk_buff *skb,
1788 __be16 protocol)
1789 {
1790 skb->inner_protocol = protocol;
1791 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
1792 }
1793
1794 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
1795 __u8 ipproto)
1796 {
1797 skb->inner_ipproto = ipproto;
1798 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
1799 }
1800
1801 static inline void skb_reset_inner_headers(struct sk_buff *skb)
1802 {
1803 skb->inner_mac_header = skb->mac_header;
1804 skb->inner_network_header = skb->network_header;
1805 skb->inner_transport_header = skb->transport_header;
1806 }
1807
1808 static inline void skb_reset_mac_len(struct sk_buff *skb)
1809 {
1810 skb->mac_len = skb->network_header - skb->mac_header;
1811 }
1812
1813 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
1814 *skb)
1815 {
1816 return skb->head + skb->inner_transport_header;
1817 }
1818
1819 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
1820 {
1821 skb->inner_transport_header = skb->data - skb->head;
1822 }
1823
1824 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
1825 const int offset)
1826 {
1827 skb_reset_inner_transport_header(skb);
1828 skb->inner_transport_header += offset;
1829 }
1830
1831 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
1832 {
1833 return skb->head + skb->inner_network_header;
1834 }
1835
1836 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
1837 {
1838 skb->inner_network_header = skb->data - skb->head;
1839 }
1840
1841 static inline void skb_set_inner_network_header(struct sk_buff *skb,
1842 const int offset)
1843 {
1844 skb_reset_inner_network_header(skb);
1845 skb->inner_network_header += offset;
1846 }
1847
1848 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
1849 {
1850 return skb->head + skb->inner_mac_header;
1851 }
1852
1853 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
1854 {
1855 skb->inner_mac_header = skb->data - skb->head;
1856 }
1857
1858 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
1859 const int offset)
1860 {
1861 skb_reset_inner_mac_header(skb);
1862 skb->inner_mac_header += offset;
1863 }
1864 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
1865 {
1866 return skb->transport_header != (typeof(skb->transport_header))~0U;
1867 }
1868
1869 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1870 {
1871 return skb->head + skb->transport_header;
1872 }
1873
1874 static inline void skb_reset_transport_header(struct sk_buff *skb)
1875 {
1876 skb->transport_header = skb->data - skb->head;
1877 }
1878
1879 static inline void skb_set_transport_header(struct sk_buff *skb,
1880 const int offset)
1881 {
1882 skb_reset_transport_header(skb);
1883 skb->transport_header += offset;
1884 }
1885
1886 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1887 {
1888 return skb->head + skb->network_header;
1889 }
1890
1891 static inline void skb_reset_network_header(struct sk_buff *skb)
1892 {
1893 skb->network_header = skb->data - skb->head;
1894 }
1895
1896 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1897 {
1898 skb_reset_network_header(skb);
1899 skb->network_header += offset;
1900 }
1901
1902 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1903 {
1904 return skb->head + skb->mac_header;
1905 }
1906
1907 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1908 {
1909 return skb->mac_header != (typeof(skb->mac_header))~0U;
1910 }
1911
1912 static inline void skb_reset_mac_header(struct sk_buff *skb)
1913 {
1914 skb->mac_header = skb->data - skb->head;
1915 }
1916
1917 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1918 {
1919 skb_reset_mac_header(skb);
1920 skb->mac_header += offset;
1921 }
1922
1923 static inline void skb_pop_mac_header(struct sk_buff *skb)
1924 {
1925 skb->mac_header = skb->network_header;
1926 }
1927
1928 static inline void skb_probe_transport_header(struct sk_buff *skb,
1929 const int offset_hint)
1930 {
1931 struct flow_keys keys;
1932
1933 if (skb_transport_header_was_set(skb))
1934 return;
1935 else if (skb_flow_dissect(skb, &keys))
1936 skb_set_transport_header(skb, keys.thoff);
1937 else
1938 skb_set_transport_header(skb, offset_hint);
1939 }
1940
1941 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
1942 {
1943 if (skb_mac_header_was_set(skb)) {
1944 const unsigned char *old_mac = skb_mac_header(skb);
1945
1946 skb_set_mac_header(skb, -skb->mac_len);
1947 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
1948 }
1949 }
1950
1951 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1952 {
1953 return skb->csum_start - skb_headroom(skb);
1954 }
1955
1956 static inline int skb_transport_offset(const struct sk_buff *skb)
1957 {
1958 return skb_transport_header(skb) - skb->data;
1959 }
1960
1961 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1962 {
1963 return skb->transport_header - skb->network_header;
1964 }
1965
1966 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
1967 {
1968 return skb->inner_transport_header - skb->inner_network_header;
1969 }
1970
1971 static inline int skb_network_offset(const struct sk_buff *skb)
1972 {
1973 return skb_network_header(skb) - skb->data;
1974 }
1975
1976 static inline int skb_inner_network_offset(const struct sk_buff *skb)
1977 {
1978 return skb_inner_network_header(skb) - skb->data;
1979 }
1980
1981 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1982 {
1983 return pskb_may_pull(skb, skb_network_offset(skb) + len);
1984 }
1985
1986 /*
1987 * CPUs often take a performance hit when accessing unaligned memory
1988 * locations. The actual performance hit varies, it can be small if the
1989 * hardware handles it or large if we have to take an exception and fix it
1990 * in software.
1991 *
1992 * Since an ethernet header is 14 bytes network drivers often end up with
1993 * the IP header at an unaligned offset. The IP header can be aligned by
1994 * shifting the start of the packet by 2 bytes. Drivers should do this
1995 * with:
1996 *
1997 * skb_reserve(skb, NET_IP_ALIGN);
1998 *
1999 * The downside to this alignment of the IP header is that the DMA is now
2000 * unaligned. On some architectures the cost of an unaligned DMA is high
2001 * and this cost outweighs the gains made by aligning the IP header.
2002 *
2003 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2004 * to be overridden.
2005 */
2006 #ifndef NET_IP_ALIGN
2007 #define NET_IP_ALIGN 2
2008 #endif
2009
2010 /*
2011 * The networking layer reserves some headroom in skb data (via
2012 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2013 * the header has to grow. In the default case, if the header has to grow
2014 * 32 bytes or less we avoid the reallocation.
2015 *
2016 * Unfortunately this headroom changes the DMA alignment of the resulting
2017 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2018 * on some architectures. An architecture can override this value,
2019 * perhaps setting it to a cacheline in size (since that will maintain
2020 * cacheline alignment of the DMA). It must be a power of 2.
2021 *
2022 * Various parts of the networking layer expect at least 32 bytes of
2023 * headroom, you should not reduce this.
2024 *
2025 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2026 * to reduce average number of cache lines per packet.
2027 * get_rps_cpus() for example only access one 64 bytes aligned block :
2028 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2029 */
2030 #ifndef NET_SKB_PAD
2031 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
2032 #endif
2033
2034 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2035
2036 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2037 {
2038 if (unlikely(skb_is_nonlinear(skb))) {
2039 WARN_ON(1);
2040 return;
2041 }
2042 skb->len = len;
2043 skb_set_tail_pointer(skb, len);
2044 }
2045
2046 void skb_trim(struct sk_buff *skb, unsigned int len);
2047
2048 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2049 {
2050 if (skb->data_len)
2051 return ___pskb_trim(skb, len);
2052 __skb_trim(skb, len);
2053 return 0;
2054 }
2055
2056 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2057 {
2058 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2059 }
2060
2061 /**
2062 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2063 * @skb: buffer to alter
2064 * @len: new length
2065 *
2066 * This is identical to pskb_trim except that the caller knows that
2067 * the skb is not cloned so we should never get an error due to out-
2068 * of-memory.
2069 */
2070 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2071 {
2072 int err = pskb_trim(skb, len);
2073 BUG_ON(err);
2074 }
2075
2076 /**
2077 * skb_orphan - orphan a buffer
2078 * @skb: buffer to orphan
2079 *
2080 * If a buffer currently has an owner then we call the owner's
2081 * destructor function and make the @skb unowned. The buffer continues
2082 * to exist but is no longer charged to its former owner.
2083 */
2084 static inline void skb_orphan(struct sk_buff *skb)
2085 {
2086 if (skb->destructor) {
2087 skb->destructor(skb);
2088 skb->destructor = NULL;
2089 skb->sk = NULL;
2090 } else {
2091 BUG_ON(skb->sk);
2092 }
2093 }
2094
2095 /**
2096 * skb_orphan_frags - orphan the frags contained in a buffer
2097 * @skb: buffer to orphan frags from
2098 * @gfp_mask: allocation mask for replacement pages
2099 *
2100 * For each frag in the SKB which needs a destructor (i.e. has an
2101 * owner) create a copy of that frag and release the original
2102 * page by calling the destructor.
2103 */
2104 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2105 {
2106 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
2107 return 0;
2108 return skb_copy_ubufs(skb, gfp_mask);
2109 }
2110
2111 /**
2112 * __skb_queue_purge - empty a list
2113 * @list: list to empty
2114 *
2115 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2116 * the list and one reference dropped. This function does not take the
2117 * list lock and the caller must hold the relevant locks to use it.
2118 */
2119 void skb_queue_purge(struct sk_buff_head *list);
2120 static inline void __skb_queue_purge(struct sk_buff_head *list)
2121 {
2122 struct sk_buff *skb;
2123 while ((skb = __skb_dequeue(list)) != NULL)
2124 kfree_skb(skb);
2125 }
2126
2127 #define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768)
2128 #define NETDEV_FRAG_PAGE_MAX_SIZE (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER)
2129 #define NETDEV_PAGECNT_MAX_BIAS NETDEV_FRAG_PAGE_MAX_SIZE
2130
2131 void *netdev_alloc_frag(unsigned int fragsz);
2132
2133 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2134 gfp_t gfp_mask);
2135
2136 /**
2137 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
2138 * @dev: network device to receive on
2139 * @length: length to allocate
2140 *
2141 * Allocate a new &sk_buff and assign it a usage count of one. The
2142 * buffer has unspecified headroom built in. Users should allocate
2143 * the headroom they think they need without accounting for the
2144 * built in space. The built in space is used for optimisations.
2145 *
2146 * %NULL is returned if there is no free memory. Although this function
2147 * allocates memory it can be called from an interrupt.
2148 */
2149 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2150 unsigned int length)
2151 {
2152 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2153 }
2154
2155 /* legacy helper around __netdev_alloc_skb() */
2156 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2157 gfp_t gfp_mask)
2158 {
2159 return __netdev_alloc_skb(NULL, length, gfp_mask);
2160 }
2161
2162 /* legacy helper around netdev_alloc_skb() */
2163 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2164 {
2165 return netdev_alloc_skb(NULL, length);
2166 }
2167
2168
2169 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2170 unsigned int length, gfp_t gfp)
2171 {
2172 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2173
2174 if (NET_IP_ALIGN && skb)
2175 skb_reserve(skb, NET_IP_ALIGN);
2176 return skb;
2177 }
2178
2179 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2180 unsigned int length)
2181 {
2182 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2183 }
2184
2185 /**
2186 * __skb_alloc_pages - allocate pages for ps-rx on a skb and preserve pfmemalloc data
2187 * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX
2188 * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used
2189 * @order: size of the allocation
2190 *
2191 * Allocate a new page.
2192 *
2193 * %NULL is returned if there is no free memory.
2194 */
2195 static inline struct page *__skb_alloc_pages(gfp_t gfp_mask,
2196 struct sk_buff *skb,
2197 unsigned int order)
2198 {
2199 struct page *page;
2200
2201 gfp_mask |= __GFP_COLD;
2202
2203 if (!(gfp_mask & __GFP_NOMEMALLOC))
2204 gfp_mask |= __GFP_MEMALLOC;
2205
2206 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2207 if (skb && page && page->pfmemalloc)
2208 skb->pfmemalloc = true;
2209
2210 return page;
2211 }
2212
2213 /**
2214 * __skb_alloc_page - allocate a page for ps-rx for a given skb and preserve pfmemalloc data
2215 * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX
2216 * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used
2217 *
2218 * Allocate a new page.
2219 *
2220 * %NULL is returned if there is no free memory.
2221 */
2222 static inline struct page *__skb_alloc_page(gfp_t gfp_mask,
2223 struct sk_buff *skb)
2224 {
2225 return __skb_alloc_pages(gfp_mask, skb, 0);
2226 }
2227
2228 /**
2229 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2230 * @page: The page that was allocated from skb_alloc_page
2231 * @skb: The skb that may need pfmemalloc set
2232 */
2233 static inline void skb_propagate_pfmemalloc(struct page *page,
2234 struct sk_buff *skb)
2235 {
2236 if (page && page->pfmemalloc)
2237 skb->pfmemalloc = true;
2238 }
2239
2240 /**
2241 * skb_frag_page - retrieve the page referred to by a paged fragment
2242 * @frag: the paged fragment
2243 *
2244 * Returns the &struct page associated with @frag.
2245 */
2246 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2247 {
2248 return frag->page.p;
2249 }
2250
2251 /**
2252 * __skb_frag_ref - take an addition reference on a paged fragment.
2253 * @frag: the paged fragment
2254 *
2255 * Takes an additional reference on the paged fragment @frag.
2256 */
2257 static inline void __skb_frag_ref(skb_frag_t *frag)
2258 {
2259 get_page(skb_frag_page(frag));
2260 }
2261
2262 /**
2263 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2264 * @skb: the buffer
2265 * @f: the fragment offset.
2266 *
2267 * Takes an additional reference on the @f'th paged fragment of @skb.
2268 */
2269 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2270 {
2271 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2272 }
2273
2274 /**
2275 * __skb_frag_unref - release a reference on a paged fragment.
2276 * @frag: the paged fragment
2277 *
2278 * Releases a reference on the paged fragment @frag.
2279 */
2280 static inline void __skb_frag_unref(skb_frag_t *frag)
2281 {
2282 put_page(skb_frag_page(frag));
2283 }
2284
2285 /**
2286 * skb_frag_unref - release a reference on a paged fragment of an skb.
2287 * @skb: the buffer
2288 * @f: the fragment offset
2289 *
2290 * Releases a reference on the @f'th paged fragment of @skb.
2291 */
2292 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2293 {
2294 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2295 }
2296
2297 /**
2298 * skb_frag_address - gets the address of the data contained in a paged fragment
2299 * @frag: the paged fragment buffer
2300 *
2301 * Returns the address of the data within @frag. The page must already
2302 * be mapped.
2303 */
2304 static inline void *skb_frag_address(const skb_frag_t *frag)
2305 {
2306 return page_address(skb_frag_page(frag)) + frag->page_offset;
2307 }
2308
2309 /**
2310 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2311 * @frag: the paged fragment buffer
2312 *
2313 * Returns the address of the data within @frag. Checks that the page
2314 * is mapped and returns %NULL otherwise.
2315 */
2316 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2317 {
2318 void *ptr = page_address(skb_frag_page(frag));
2319 if (unlikely(!ptr))
2320 return NULL;
2321
2322 return ptr + frag->page_offset;
2323 }
2324
2325 /**
2326 * __skb_frag_set_page - sets the page contained in a paged fragment
2327 * @frag: the paged fragment
2328 * @page: the page to set
2329 *
2330 * Sets the fragment @frag to contain @page.
2331 */
2332 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2333 {
2334 frag->page.p = page;
2335 }
2336
2337 /**
2338 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2339 * @skb: the buffer
2340 * @f: the fragment offset
2341 * @page: the page to set
2342 *
2343 * Sets the @f'th fragment of @skb to contain @page.
2344 */
2345 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2346 struct page *page)
2347 {
2348 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2349 }
2350
2351 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2352
2353 /**
2354 * skb_frag_dma_map - maps a paged fragment via the DMA API
2355 * @dev: the device to map the fragment to
2356 * @frag: the paged fragment to map
2357 * @offset: the offset within the fragment (starting at the
2358 * fragment's own offset)
2359 * @size: the number of bytes to map
2360 * @dir: the direction of the mapping (%PCI_DMA_*)
2361 *
2362 * Maps the page associated with @frag to @device.
2363 */
2364 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2365 const skb_frag_t *frag,
2366 size_t offset, size_t size,
2367 enum dma_data_direction dir)
2368 {
2369 return dma_map_page(dev, skb_frag_page(frag),
2370 frag->page_offset + offset, size, dir);
2371 }
2372
2373 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2374 gfp_t gfp_mask)
2375 {
2376 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2377 }
2378
2379
2380 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2381 gfp_t gfp_mask)
2382 {
2383 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2384 }
2385
2386
2387 /**
2388 * skb_clone_writable - is the header of a clone writable
2389 * @skb: buffer to check
2390 * @len: length up to which to write
2391 *
2392 * Returns true if modifying the header part of the cloned buffer
2393 * does not requires the data to be copied.
2394 */
2395 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2396 {
2397 return !skb_header_cloned(skb) &&
2398 skb_headroom(skb) + len <= skb->hdr_len;
2399 }
2400
2401 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2402 int cloned)
2403 {
2404 int delta = 0;
2405
2406 if (headroom > skb_headroom(skb))
2407 delta = headroom - skb_headroom(skb);
2408
2409 if (delta || cloned)
2410 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2411 GFP_ATOMIC);
2412 return 0;
2413 }
2414
2415 /**
2416 * skb_cow - copy header of skb when it is required
2417 * @skb: buffer to cow
2418 * @headroom: needed headroom
2419 *
2420 * If the skb passed lacks sufficient headroom or its data part
2421 * is shared, data is reallocated. If reallocation fails, an error
2422 * is returned and original skb is not changed.
2423 *
2424 * The result is skb with writable area skb->head...skb->tail
2425 * and at least @headroom of space at head.
2426 */
2427 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2428 {
2429 return __skb_cow(skb, headroom, skb_cloned(skb));
2430 }
2431
2432 /**
2433 * skb_cow_head - skb_cow but only making the head writable
2434 * @skb: buffer to cow
2435 * @headroom: needed headroom
2436 *
2437 * This function is identical to skb_cow except that we replace the
2438 * skb_cloned check by skb_header_cloned. It should be used when
2439 * you only need to push on some header and do not need to modify
2440 * the data.
2441 */
2442 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2443 {
2444 return __skb_cow(skb, headroom, skb_header_cloned(skb));
2445 }
2446
2447 /**
2448 * skb_padto - pad an skbuff up to a minimal size
2449 * @skb: buffer to pad
2450 * @len: minimal length
2451 *
2452 * Pads up a buffer to ensure the trailing bytes exist and are
2453 * blanked. If the buffer already contains sufficient data it
2454 * is untouched. Otherwise it is extended. Returns zero on
2455 * success. The skb is freed on error.
2456 */
2457
2458 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2459 {
2460 unsigned int size = skb->len;
2461 if (likely(size >= len))
2462 return 0;
2463 return skb_pad(skb, len - size);
2464 }
2465
2466 static inline int skb_add_data(struct sk_buff *skb,
2467 char __user *from, int copy)
2468 {
2469 const int off = skb->len;
2470
2471 if (skb->ip_summed == CHECKSUM_NONE) {
2472 int err = 0;
2473 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
2474 copy, 0, &err);
2475 if (!err) {
2476 skb->csum = csum_block_add(skb->csum, csum, off);
2477 return 0;
2478 }
2479 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
2480 return 0;
2481
2482 __skb_trim(skb, off);
2483 return -EFAULT;
2484 }
2485
2486 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2487 const struct page *page, int off)
2488 {
2489 if (i) {
2490 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
2491
2492 return page == skb_frag_page(frag) &&
2493 off == frag->page_offset + skb_frag_size(frag);
2494 }
2495 return false;
2496 }
2497
2498 static inline int __skb_linearize(struct sk_buff *skb)
2499 {
2500 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2501 }
2502
2503 /**
2504 * skb_linearize - convert paged skb to linear one
2505 * @skb: buffer to linarize
2506 *
2507 * If there is no free memory -ENOMEM is returned, otherwise zero
2508 * is returned and the old skb data released.
2509 */
2510 static inline int skb_linearize(struct sk_buff *skb)
2511 {
2512 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2513 }
2514
2515 /**
2516 * skb_has_shared_frag - can any frag be overwritten
2517 * @skb: buffer to test
2518 *
2519 * Return true if the skb has at least one frag that might be modified
2520 * by an external entity (as in vmsplice()/sendfile())
2521 */
2522 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
2523 {
2524 return skb_is_nonlinear(skb) &&
2525 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2526 }
2527
2528 /**
2529 * skb_linearize_cow - make sure skb is linear and writable
2530 * @skb: buffer to process
2531 *
2532 * If there is no free memory -ENOMEM is returned, otherwise zero
2533 * is returned and the old skb data released.
2534 */
2535 static inline int skb_linearize_cow(struct sk_buff *skb)
2536 {
2537 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2538 __skb_linearize(skb) : 0;
2539 }
2540
2541 /**
2542 * skb_postpull_rcsum - update checksum for received skb after pull
2543 * @skb: buffer to update
2544 * @start: start of data before pull
2545 * @len: length of data pulled
2546 *
2547 * After doing a pull on a received packet, you need to call this to
2548 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2549 * CHECKSUM_NONE so that it can be recomputed from scratch.
2550 */
2551
2552 static inline void skb_postpull_rcsum(struct sk_buff *skb,
2553 const void *start, unsigned int len)
2554 {
2555 if (skb->ip_summed == CHECKSUM_COMPLETE)
2556 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2557 }
2558
2559 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2560
2561 /**
2562 * pskb_trim_rcsum - trim received skb and update checksum
2563 * @skb: buffer to trim
2564 * @len: new length
2565 *
2566 * This is exactly the same as pskb_trim except that it ensures the
2567 * checksum of received packets are still valid after the operation.
2568 */
2569
2570 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2571 {
2572 if (likely(len >= skb->len))
2573 return 0;
2574 if (skb->ip_summed == CHECKSUM_COMPLETE)
2575 skb->ip_summed = CHECKSUM_NONE;
2576 return __pskb_trim(skb, len);
2577 }
2578
2579 #define skb_queue_walk(queue, skb) \
2580 for (skb = (queue)->next; \
2581 skb != (struct sk_buff *)(queue); \
2582 skb = skb->next)
2583
2584 #define skb_queue_walk_safe(queue, skb, tmp) \
2585 for (skb = (queue)->next, tmp = skb->next; \
2586 skb != (struct sk_buff *)(queue); \
2587 skb = tmp, tmp = skb->next)
2588
2589 #define skb_queue_walk_from(queue, skb) \
2590 for (; skb != (struct sk_buff *)(queue); \
2591 skb = skb->next)
2592
2593 #define skb_queue_walk_from_safe(queue, skb, tmp) \
2594 for (tmp = skb->next; \
2595 skb != (struct sk_buff *)(queue); \
2596 skb = tmp, tmp = skb->next)
2597
2598 #define skb_queue_reverse_walk(queue, skb) \
2599 for (skb = (queue)->prev; \
2600 skb != (struct sk_buff *)(queue); \
2601 skb = skb->prev)
2602
2603 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
2604 for (skb = (queue)->prev, tmp = skb->prev; \
2605 skb != (struct sk_buff *)(queue); \
2606 skb = tmp, tmp = skb->prev)
2607
2608 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
2609 for (tmp = skb->prev; \
2610 skb != (struct sk_buff *)(queue); \
2611 skb = tmp, tmp = skb->prev)
2612
2613 static inline bool skb_has_frag_list(const struct sk_buff *skb)
2614 {
2615 return skb_shinfo(skb)->frag_list != NULL;
2616 }
2617
2618 static inline void skb_frag_list_init(struct sk_buff *skb)
2619 {
2620 skb_shinfo(skb)->frag_list = NULL;
2621 }
2622
2623 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
2624 {
2625 frag->next = skb_shinfo(skb)->frag_list;
2626 skb_shinfo(skb)->frag_list = frag;
2627 }
2628
2629 #define skb_walk_frags(skb, iter) \
2630 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2631
2632 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2633 int *peeked, int *off, int *err);
2634 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
2635 int *err);
2636 unsigned int datagram_poll(struct file *file, struct socket *sock,
2637 struct poll_table_struct *wait);
2638 int skb_copy_datagram_iovec(const struct sk_buff *from, int offset,
2639 struct iovec *to, int size);
2640 int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, int hlen,
2641 struct iovec *iov);
2642 int skb_copy_datagram_from_iovec(struct sk_buff *skb, int offset,
2643 const struct iovec *from, int from_offset,
2644 int len);
2645 int zerocopy_sg_from_iovec(struct sk_buff *skb, const struct iovec *frm,
2646 int offset, size_t count);
2647 int skb_copy_datagram_const_iovec(const struct sk_buff *from, int offset,
2648 const struct iovec *to, int to_offset,
2649 int size);
2650 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2651 void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb);
2652 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
2653 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
2654 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
2655 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
2656 int len, __wsum csum);
2657 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
2658 struct pipe_inode_info *pipe, unsigned int len,
2659 unsigned int flags);
2660 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2661 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
2662 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
2663 int len, int hlen);
2664 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
2665 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
2666 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
2667 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
2668 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
2669 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
2670
2671 struct skb_checksum_ops {
2672 __wsum (*update)(const void *mem, int len, __wsum wsum);
2673 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
2674 };
2675
2676 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2677 __wsum csum, const struct skb_checksum_ops *ops);
2678 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
2679 __wsum csum);
2680
2681 static inline void *__skb_header_pointer(const struct sk_buff *skb, int offset,
2682 int len, void *data, int hlen, void *buffer)
2683 {
2684 if (hlen - offset >= len)
2685 return data + offset;
2686
2687 if (!skb ||
2688 skb_copy_bits(skb, offset, buffer, len) < 0)
2689 return NULL;
2690
2691 return buffer;
2692 }
2693
2694 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
2695 int len, void *buffer)
2696 {
2697 return __skb_header_pointer(skb, offset, len, skb->data,
2698 skb_headlen(skb), buffer);
2699 }
2700
2701 /**
2702 * skb_needs_linearize - check if we need to linearize a given skb
2703 * depending on the given device features.
2704 * @skb: socket buffer to check
2705 * @features: net device features
2706 *
2707 * Returns true if either:
2708 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2709 * 2. skb is fragmented and the device does not support SG.
2710 */
2711 static inline bool skb_needs_linearize(struct sk_buff *skb,
2712 netdev_features_t features)
2713 {
2714 return skb_is_nonlinear(skb) &&
2715 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
2716 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
2717 }
2718
2719 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2720 void *to,
2721 const unsigned int len)
2722 {
2723 memcpy(to, skb->data, len);
2724 }
2725
2726 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2727 const int offset, void *to,
2728 const unsigned int len)
2729 {
2730 memcpy(to, skb->data + offset, len);
2731 }
2732
2733 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2734 const void *from,
2735 const unsigned int len)
2736 {
2737 memcpy(skb->data, from, len);
2738 }
2739
2740 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2741 const int offset,
2742 const void *from,
2743 const unsigned int len)
2744 {
2745 memcpy(skb->data + offset, from, len);
2746 }
2747
2748 void skb_init(void);
2749
2750 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2751 {
2752 return skb->tstamp;
2753 }
2754
2755 /**
2756 * skb_get_timestamp - get timestamp from a skb
2757 * @skb: skb to get stamp from
2758 * @stamp: pointer to struct timeval to store stamp in
2759 *
2760 * Timestamps are stored in the skb as offsets to a base timestamp.
2761 * This function converts the offset back to a struct timeval and stores
2762 * it in stamp.
2763 */
2764 static inline void skb_get_timestamp(const struct sk_buff *skb,
2765 struct timeval *stamp)
2766 {
2767 *stamp = ktime_to_timeval(skb->tstamp);
2768 }
2769
2770 static inline void skb_get_timestampns(const struct sk_buff *skb,
2771 struct timespec *stamp)
2772 {
2773 *stamp = ktime_to_timespec(skb->tstamp);
2774 }
2775
2776 static inline void __net_timestamp(struct sk_buff *skb)
2777 {
2778 skb->tstamp = ktime_get_real();
2779 }
2780
2781 static inline ktime_t net_timedelta(ktime_t t)
2782 {
2783 return ktime_sub(ktime_get_real(), t);
2784 }
2785
2786 static inline ktime_t net_invalid_timestamp(void)
2787 {
2788 return ktime_set(0, 0);
2789 }
2790
2791 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
2792
2793 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2794
2795 void skb_clone_tx_timestamp(struct sk_buff *skb);
2796 bool skb_defer_rx_timestamp(struct sk_buff *skb);
2797
2798 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2799
2800 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2801 {
2802 }
2803
2804 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2805 {
2806 return false;
2807 }
2808
2809 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2810
2811 /**
2812 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2813 *
2814 * PHY drivers may accept clones of transmitted packets for
2815 * timestamping via their phy_driver.txtstamp method. These drivers
2816 * must call this function to return the skb back to the stack, with
2817 * or without a timestamp.
2818 *
2819 * @skb: clone of the the original outgoing packet
2820 * @hwtstamps: hardware time stamps, may be NULL if not available
2821 *
2822 */
2823 void skb_complete_tx_timestamp(struct sk_buff *skb,
2824 struct skb_shared_hwtstamps *hwtstamps);
2825
2826 void __skb_tstamp_tx(struct sk_buff *orig_skb,
2827 struct skb_shared_hwtstamps *hwtstamps,
2828 struct sock *sk, int tstype);
2829
2830 /**
2831 * skb_tstamp_tx - queue clone of skb with send time stamps
2832 * @orig_skb: the original outgoing packet
2833 * @hwtstamps: hardware time stamps, may be NULL if not available
2834 *
2835 * If the skb has a socket associated, then this function clones the
2836 * skb (thus sharing the actual data and optional structures), stores
2837 * the optional hardware time stamping information (if non NULL) or
2838 * generates a software time stamp (otherwise), then queues the clone
2839 * to the error queue of the socket. Errors are silently ignored.
2840 */
2841 void skb_tstamp_tx(struct sk_buff *orig_skb,
2842 struct skb_shared_hwtstamps *hwtstamps);
2843
2844 static inline void sw_tx_timestamp(struct sk_buff *skb)
2845 {
2846 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2847 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2848 skb_tstamp_tx(skb, NULL);
2849 }
2850
2851 /**
2852 * skb_tx_timestamp() - Driver hook for transmit timestamping
2853 *
2854 * Ethernet MAC Drivers should call this function in their hard_xmit()
2855 * function immediately before giving the sk_buff to the MAC hardware.
2856 *
2857 * Specifically, one should make absolutely sure that this function is
2858 * called before TX completion of this packet can trigger. Otherwise
2859 * the packet could potentially already be freed.
2860 *
2861 * @skb: A socket buffer.
2862 */
2863 static inline void skb_tx_timestamp(struct sk_buff *skb)
2864 {
2865 skb_clone_tx_timestamp(skb);
2866 sw_tx_timestamp(skb);
2867 }
2868
2869 /**
2870 * skb_complete_wifi_ack - deliver skb with wifi status
2871 *
2872 * @skb: the original outgoing packet
2873 * @acked: ack status
2874 *
2875 */
2876 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
2877
2878 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2879 __sum16 __skb_checksum_complete(struct sk_buff *skb);
2880
2881 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2882 {
2883 return ((skb->ip_summed & CHECKSUM_UNNECESSARY) || skb->csum_valid);
2884 }
2885
2886 /**
2887 * skb_checksum_complete - Calculate checksum of an entire packet
2888 * @skb: packet to process
2889 *
2890 * This function calculates the checksum over the entire packet plus
2891 * the value of skb->csum. The latter can be used to supply the
2892 * checksum of a pseudo header as used by TCP/UDP. It returns the
2893 * checksum.
2894 *
2895 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
2896 * this function can be used to verify that checksum on received
2897 * packets. In that case the function should return zero if the
2898 * checksum is correct. In particular, this function will return zero
2899 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2900 * hardware has already verified the correctness of the checksum.
2901 */
2902 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2903 {
2904 return skb_csum_unnecessary(skb) ?
2905 0 : __skb_checksum_complete(skb);
2906 }
2907
2908 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
2909 {
2910 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
2911 if (skb->csum_level == 0)
2912 skb->ip_summed = CHECKSUM_NONE;
2913 else
2914 skb->csum_level--;
2915 }
2916 }
2917
2918 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
2919 {
2920 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
2921 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
2922 skb->csum_level++;
2923 } else if (skb->ip_summed == CHECKSUM_NONE) {
2924 skb->ip_summed = CHECKSUM_UNNECESSARY;
2925 skb->csum_level = 0;
2926 }
2927 }
2928
2929 static inline void __skb_mark_checksum_bad(struct sk_buff *skb)
2930 {
2931 /* Mark current checksum as bad (typically called from GRO
2932 * path). In the case that ip_summed is CHECKSUM_NONE
2933 * this must be the first checksum encountered in the packet.
2934 * When ip_summed is CHECKSUM_UNNECESSARY, this is the first
2935 * checksum after the last one validated. For UDP, a zero
2936 * checksum can not be marked as bad.
2937 */
2938
2939 if (skb->ip_summed == CHECKSUM_NONE ||
2940 skb->ip_summed == CHECKSUM_UNNECESSARY)
2941 skb->csum_bad = 1;
2942 }
2943
2944 /* Check if we need to perform checksum complete validation.
2945 *
2946 * Returns true if checksum complete is needed, false otherwise
2947 * (either checksum is unnecessary or zero checksum is allowed).
2948 */
2949 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
2950 bool zero_okay,
2951 __sum16 check)
2952 {
2953 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
2954 skb->csum_valid = 1;
2955 __skb_decr_checksum_unnecessary(skb);
2956 return false;
2957 }
2958
2959 return true;
2960 }
2961
2962 /* For small packets <= CHECKSUM_BREAK peform checksum complete directly
2963 * in checksum_init.
2964 */
2965 #define CHECKSUM_BREAK 76
2966
2967 /* Validate (init) checksum based on checksum complete.
2968 *
2969 * Return values:
2970 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
2971 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
2972 * checksum is stored in skb->csum for use in __skb_checksum_complete
2973 * non-zero: value of invalid checksum
2974 *
2975 */
2976 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
2977 bool complete,
2978 __wsum psum)
2979 {
2980 if (skb->ip_summed == CHECKSUM_COMPLETE) {
2981 if (!csum_fold(csum_add(psum, skb->csum))) {
2982 skb->csum_valid = 1;
2983 return 0;
2984 }
2985 } else if (skb->csum_bad) {
2986 /* ip_summed == CHECKSUM_NONE in this case */
2987 return 1;
2988 }
2989
2990 skb->csum = psum;
2991
2992 if (complete || skb->len <= CHECKSUM_BREAK) {
2993 __sum16 csum;
2994
2995 csum = __skb_checksum_complete(skb);
2996 skb->csum_valid = !csum;
2997 return csum;
2998 }
2999
3000 return 0;
3001 }
3002
3003 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3004 {
3005 return 0;
3006 }
3007
3008 /* Perform checksum validate (init). Note that this is a macro since we only
3009 * want to calculate the pseudo header which is an input function if necessary.
3010 * First we try to validate without any computation (checksum unnecessary) and
3011 * then calculate based on checksum complete calling the function to compute
3012 * pseudo header.
3013 *
3014 * Return values:
3015 * 0: checksum is validated or try to in skb_checksum_complete
3016 * non-zero: value of invalid checksum
3017 */
3018 #define __skb_checksum_validate(skb, proto, complete, \
3019 zero_okay, check, compute_pseudo) \
3020 ({ \
3021 __sum16 __ret = 0; \
3022 skb->csum_valid = 0; \
3023 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
3024 __ret = __skb_checksum_validate_complete(skb, \
3025 complete, compute_pseudo(skb, proto)); \
3026 __ret; \
3027 })
3028
3029 #define skb_checksum_init(skb, proto, compute_pseudo) \
3030 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3031
3032 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
3033 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3034
3035 #define skb_checksum_validate(skb, proto, compute_pseudo) \
3036 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3037
3038 #define skb_checksum_validate_zero_check(skb, proto, check, \
3039 compute_pseudo) \
3040 __skb_checksum_validate_(skb, proto, true, true, check, compute_pseudo)
3041
3042 #define skb_checksum_simple_validate(skb) \
3043 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3044
3045 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3046 {
3047 return (skb->ip_summed == CHECKSUM_NONE &&
3048 skb->csum_valid && !skb->csum_bad);
3049 }
3050
3051 static inline void __skb_checksum_convert(struct sk_buff *skb,
3052 __sum16 check, __wsum pseudo)
3053 {
3054 skb->csum = ~pseudo;
3055 skb->ip_summed = CHECKSUM_COMPLETE;
3056 }
3057
3058 #define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \
3059 do { \
3060 if (__skb_checksum_convert_check(skb)) \
3061 __skb_checksum_convert(skb, check, \
3062 compute_pseudo(skb, proto)); \
3063 } while (0)
3064
3065 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3066 void nf_conntrack_destroy(struct nf_conntrack *nfct);
3067 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3068 {
3069 if (nfct && atomic_dec_and_test(&nfct->use))
3070 nf_conntrack_destroy(nfct);
3071 }
3072 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3073 {
3074 if (nfct)
3075 atomic_inc(&nfct->use);
3076 }
3077 #endif
3078 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3079 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3080 {
3081 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
3082 kfree(nf_bridge);
3083 }
3084 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3085 {
3086 if (nf_bridge)
3087 atomic_inc(&nf_bridge->use);
3088 }
3089 #endif /* CONFIG_BRIDGE_NETFILTER */
3090 static inline void nf_reset(struct sk_buff *skb)
3091 {
3092 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3093 nf_conntrack_put(skb->nfct);
3094 skb->nfct = NULL;
3095 #endif
3096 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3097 nf_bridge_put(skb->nf_bridge);
3098 skb->nf_bridge = NULL;
3099 #endif
3100 }
3101
3102 static inline void nf_reset_trace(struct sk_buff *skb)
3103 {
3104 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3105 skb->nf_trace = 0;
3106 #endif
3107 }
3108
3109 /* Note: This doesn't put any conntrack and bridge info in dst. */
3110 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3111 bool copy)
3112 {
3113 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3114 dst->nfct = src->nfct;
3115 nf_conntrack_get(src->nfct);
3116 if (copy)
3117 dst->nfctinfo = src->nfctinfo;
3118 #endif
3119 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3120 dst->nf_bridge = src->nf_bridge;
3121 nf_bridge_get(src->nf_bridge);
3122 #endif
3123 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3124 if (copy)
3125 dst->nf_trace = src->nf_trace;
3126 #endif
3127 }
3128
3129 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3130 {
3131 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3132 nf_conntrack_put(dst->nfct);
3133 #endif
3134 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3135 nf_bridge_put(dst->nf_bridge);
3136 #endif
3137 __nf_copy(dst, src, true);
3138 }
3139
3140 #ifdef CONFIG_NETWORK_SECMARK
3141 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3142 {
3143 to->secmark = from->secmark;
3144 }
3145
3146 static inline void skb_init_secmark(struct sk_buff *skb)
3147 {
3148 skb->secmark = 0;
3149 }
3150 #else
3151 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3152 { }
3153
3154 static inline void skb_init_secmark(struct sk_buff *skb)
3155 { }
3156 #endif
3157
3158 static inline bool skb_irq_freeable(const struct sk_buff *skb)
3159 {
3160 return !skb->destructor &&
3161 #if IS_ENABLED(CONFIG_XFRM)
3162 !skb->sp &&
3163 #endif
3164 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
3165 !skb->nfct &&
3166 #endif
3167 !skb->_skb_refdst &&
3168 !skb_has_frag_list(skb);
3169 }
3170
3171 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3172 {
3173 skb->queue_mapping = queue_mapping;
3174 }
3175
3176 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3177 {
3178 return skb->queue_mapping;
3179 }
3180
3181 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3182 {
3183 to->queue_mapping = from->queue_mapping;
3184 }
3185
3186 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3187 {
3188 skb->queue_mapping = rx_queue + 1;
3189 }
3190
3191 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3192 {
3193 return skb->queue_mapping - 1;
3194 }
3195
3196 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3197 {
3198 return skb->queue_mapping != 0;
3199 }
3200
3201 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3202 unsigned int num_tx_queues);
3203
3204 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3205 {
3206 #ifdef CONFIG_XFRM
3207 return skb->sp;
3208 #else
3209 return NULL;
3210 #endif
3211 }
3212
3213 /* Keeps track of mac header offset relative to skb->head.
3214 * It is useful for TSO of Tunneling protocol. e.g. GRE.
3215 * For non-tunnel skb it points to skb_mac_header() and for
3216 * tunnel skb it points to outer mac header.
3217 * Keeps track of level of encapsulation of network headers.
3218 */
3219 struct skb_gso_cb {
3220 int mac_offset;
3221 int encap_level;
3222 __u16 csum_start;
3223 };
3224 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb)
3225
3226 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3227 {
3228 return (skb_mac_header(inner_skb) - inner_skb->head) -
3229 SKB_GSO_CB(inner_skb)->mac_offset;
3230 }
3231
3232 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3233 {
3234 int new_headroom, headroom;
3235 int ret;
3236
3237 headroom = skb_headroom(skb);
3238 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3239 if (ret)
3240 return ret;
3241
3242 new_headroom = skb_headroom(skb);
3243 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3244 return 0;
3245 }
3246
3247 /* Compute the checksum for a gso segment. First compute the checksum value
3248 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
3249 * then add in skb->csum (checksum from csum_start to end of packet).
3250 * skb->csum and csum_start are then updated to reflect the checksum of the
3251 * resultant packet starting from the transport header-- the resultant checksum
3252 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
3253 * header.
3254 */
3255 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
3256 {
3257 int plen = SKB_GSO_CB(skb)->csum_start - skb_headroom(skb) -
3258 skb_transport_offset(skb);
3259 __u16 csum;
3260
3261 csum = csum_fold(csum_partial(skb_transport_header(skb),
3262 plen, skb->csum));
3263 skb->csum = res;
3264 SKB_GSO_CB(skb)->csum_start -= plen;
3265
3266 return csum;
3267 }
3268
3269 static inline bool skb_is_gso(const struct sk_buff *skb)
3270 {
3271 return skb_shinfo(skb)->gso_size;
3272 }
3273
3274 /* Note: Should be called only if skb_is_gso(skb) is true */
3275 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
3276 {
3277 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
3278 }
3279
3280 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
3281
3282 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
3283 {
3284 /* LRO sets gso_size but not gso_type, whereas if GSO is really
3285 * wanted then gso_type will be set. */
3286 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3287
3288 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
3289 unlikely(shinfo->gso_type == 0)) {
3290 __skb_warn_lro_forwarding(skb);
3291 return true;
3292 }
3293 return false;
3294 }
3295
3296 static inline void skb_forward_csum(struct sk_buff *skb)
3297 {
3298 /* Unfortunately we don't support this one. Any brave souls? */
3299 if (skb->ip_summed == CHECKSUM_COMPLETE)
3300 skb->ip_summed = CHECKSUM_NONE;
3301 }
3302
3303 /**
3304 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
3305 * @skb: skb to check
3306 *
3307 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
3308 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
3309 * use this helper, to document places where we make this assertion.
3310 */
3311 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
3312 {
3313 #ifdef DEBUG
3314 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
3315 #endif
3316 }
3317
3318 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
3319
3320 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
3321
3322 u32 skb_get_poff(const struct sk_buff *skb);
3323 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
3324 const struct flow_keys *keys, int hlen);
3325
3326 /**
3327 * skb_head_is_locked - Determine if the skb->head is locked down
3328 * @skb: skb to check
3329 *
3330 * The head on skbs build around a head frag can be removed if they are
3331 * not cloned. This function returns true if the skb head is locked down
3332 * due to either being allocated via kmalloc, or by being a clone with
3333 * multiple references to the head.
3334 */
3335 static inline bool skb_head_is_locked(const struct sk_buff *skb)
3336 {
3337 return !skb->head_frag || skb_cloned(skb);
3338 }
3339
3340 /**
3341 * skb_gso_network_seglen - Return length of individual segments of a gso packet
3342 *
3343 * @skb: GSO skb
3344 *
3345 * skb_gso_network_seglen is used to determine the real size of the
3346 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
3347 *
3348 * The MAC/L2 header is not accounted for.
3349 */
3350 static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
3351 {
3352 unsigned int hdr_len = skb_transport_header(skb) -
3353 skb_network_header(skb);
3354 return hdr_len + skb_gso_transport_seglen(skb);
3355 }
3356 #endif /* __KERNEL__ */
3357 #endif /* _LINUX_SKBUFF_H */
This page took 0.116905 seconds and 6 git commands to generate.