[NET]: uninline skb_pull, de-bloats a lot
[deliverable/linux.git] / include / linux / skbuff.h
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/cache.h>
21
22 #include <asm/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/net.h>
26 #include <linux/textsearch.h>
27 #include <net/checksum.h>
28 #include <linux/rcupdate.h>
29 #include <linux/dmaengine.h>
30 #include <linux/hrtimer.h>
31
32 #define HAVE_ALLOC_SKB /* For the drivers to know */
33 #define HAVE_ALIGNABLE_SKB /* Ditto 8) */
34
35 /* Don't change this without changing skb_csum_unnecessary! */
36 #define CHECKSUM_NONE 0
37 #define CHECKSUM_UNNECESSARY 1
38 #define CHECKSUM_COMPLETE 2
39 #define CHECKSUM_PARTIAL 3
40
41 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
42 ~(SMP_CACHE_BYTES - 1))
43 #define SKB_WITH_OVERHEAD(X) \
44 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
45 #define SKB_MAX_ORDER(X, ORDER) \
46 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
47 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
48 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
49
50 /* A. Checksumming of received packets by device.
51 *
52 * NONE: device failed to checksum this packet.
53 * skb->csum is undefined.
54 *
55 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
56 * skb->csum is undefined.
57 * It is bad option, but, unfortunately, many of vendors do this.
58 * Apparently with secret goal to sell you new device, when you
59 * will add new protocol to your host. F.e. IPv6. 8)
60 *
61 * COMPLETE: the most generic way. Device supplied checksum of _all_
62 * the packet as seen by netif_rx in skb->csum.
63 * NOTE: Even if device supports only some protocols, but
64 * is able to produce some skb->csum, it MUST use COMPLETE,
65 * not UNNECESSARY.
66 *
67 * PARTIAL: identical to the case for output below. This may occur
68 * on a packet received directly from another Linux OS, e.g.,
69 * a virtualised Linux kernel on the same host. The packet can
70 * be treated in the same way as UNNECESSARY except that on
71 * output (i.e., forwarding) the checksum must be filled in
72 * by the OS or the hardware.
73 *
74 * B. Checksumming on output.
75 *
76 * NONE: skb is checksummed by protocol or csum is not required.
77 *
78 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
79 * from skb->csum_start to the end and to record the checksum
80 * at skb->csum_start + skb->csum_offset.
81 *
82 * Device must show its capabilities in dev->features, set
83 * at device setup time.
84 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
85 * everything.
86 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
87 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
88 * TCP/UDP over IPv4. Sigh. Vendors like this
89 * way by an unknown reason. Though, see comment above
90 * about CHECKSUM_UNNECESSARY. 8)
91 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
92 *
93 * Any questions? No questions, good. --ANK
94 */
95
96 struct net_device;
97 struct scatterlist;
98 struct pipe_inode_info;
99
100 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
101 struct nf_conntrack {
102 atomic_t use;
103 };
104 #endif
105
106 #ifdef CONFIG_BRIDGE_NETFILTER
107 struct nf_bridge_info {
108 atomic_t use;
109 struct net_device *physindev;
110 struct net_device *physoutdev;
111 unsigned int mask;
112 unsigned long data[32 / sizeof(unsigned long)];
113 };
114 #endif
115
116 struct sk_buff_head {
117 /* These two members must be first. */
118 struct sk_buff *next;
119 struct sk_buff *prev;
120
121 __u32 qlen;
122 spinlock_t lock;
123 };
124
125 struct sk_buff;
126
127 /* To allow 64K frame to be packed as single skb without frag_list */
128 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
129
130 typedef struct skb_frag_struct skb_frag_t;
131
132 struct skb_frag_struct {
133 struct page *page;
134 __u32 page_offset;
135 __u32 size;
136 };
137
138 /* This data is invariant across clones and lives at
139 * the end of the header data, ie. at skb->end.
140 */
141 struct skb_shared_info {
142 atomic_t dataref;
143 unsigned short nr_frags;
144 unsigned short gso_size;
145 /* Warning: this field is not always filled in (UFO)! */
146 unsigned short gso_segs;
147 unsigned short gso_type;
148 __be32 ip6_frag_id;
149 struct sk_buff *frag_list;
150 skb_frag_t frags[MAX_SKB_FRAGS];
151 };
152
153 /* We divide dataref into two halves. The higher 16 bits hold references
154 * to the payload part of skb->data. The lower 16 bits hold references to
155 * the entire skb->data. A clone of a headerless skb holds the length of
156 * the header in skb->hdr_len.
157 *
158 * All users must obey the rule that the skb->data reference count must be
159 * greater than or equal to the payload reference count.
160 *
161 * Holding a reference to the payload part means that the user does not
162 * care about modifications to the header part of skb->data.
163 */
164 #define SKB_DATAREF_SHIFT 16
165 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
166
167
168 enum {
169 SKB_FCLONE_UNAVAILABLE,
170 SKB_FCLONE_ORIG,
171 SKB_FCLONE_CLONE,
172 };
173
174 enum {
175 SKB_GSO_TCPV4 = 1 << 0,
176 SKB_GSO_UDP = 1 << 1,
177
178 /* This indicates the skb is from an untrusted source. */
179 SKB_GSO_DODGY = 1 << 2,
180
181 /* This indicates the tcp segment has CWR set. */
182 SKB_GSO_TCP_ECN = 1 << 3,
183
184 SKB_GSO_TCPV6 = 1 << 4,
185 };
186
187 #if BITS_PER_LONG > 32
188 #define NET_SKBUFF_DATA_USES_OFFSET 1
189 #endif
190
191 #ifdef NET_SKBUFF_DATA_USES_OFFSET
192 typedef unsigned int sk_buff_data_t;
193 #else
194 typedef unsigned char *sk_buff_data_t;
195 #endif
196
197 /**
198 * struct sk_buff - socket buffer
199 * @next: Next buffer in list
200 * @prev: Previous buffer in list
201 * @sk: Socket we are owned by
202 * @tstamp: Time we arrived
203 * @dev: Device we arrived on/are leaving by
204 * @transport_header: Transport layer header
205 * @network_header: Network layer header
206 * @mac_header: Link layer header
207 * @dst: destination entry
208 * @sp: the security path, used for xfrm
209 * @cb: Control buffer. Free for use by every layer. Put private vars here
210 * @len: Length of actual data
211 * @data_len: Data length
212 * @mac_len: Length of link layer header
213 * @hdr_len: writable header length of cloned skb
214 * @csum: Checksum (must include start/offset pair)
215 * @csum_start: Offset from skb->head where checksumming should start
216 * @csum_offset: Offset from csum_start where checksum should be stored
217 * @local_df: allow local fragmentation
218 * @cloned: Head may be cloned (check refcnt to be sure)
219 * @nohdr: Payload reference only, must not modify header
220 * @pkt_type: Packet class
221 * @fclone: skbuff clone status
222 * @ip_summed: Driver fed us an IP checksum
223 * @priority: Packet queueing priority
224 * @users: User count - see {datagram,tcp}.c
225 * @protocol: Packet protocol from driver
226 * @truesize: Buffer size
227 * @head: Head of buffer
228 * @data: Data head pointer
229 * @tail: Tail pointer
230 * @end: End pointer
231 * @destructor: Destruct function
232 * @mark: Generic packet mark
233 * @nfct: Associated connection, if any
234 * @ipvs_property: skbuff is owned by ipvs
235 * @peeked: this packet has been seen already, so stats have been
236 * done for it, don't do them again
237 * @nf_trace: netfilter packet trace flag
238 * @nfctinfo: Relationship of this skb to the connection
239 * @nfct_reasm: netfilter conntrack re-assembly pointer
240 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
241 * @iif: ifindex of device we arrived on
242 * @queue_mapping: Queue mapping for multiqueue devices
243 * @tc_index: Traffic control index
244 * @tc_verd: traffic control verdict
245 * @dma_cookie: a cookie to one of several possible DMA operations
246 * done by skb DMA functions
247 * @secmark: security marking
248 */
249
250 struct sk_buff {
251 /* These two members must be first. */
252 struct sk_buff *next;
253 struct sk_buff *prev;
254
255 struct sock *sk;
256 ktime_t tstamp;
257 struct net_device *dev;
258
259 union {
260 struct dst_entry *dst;
261 struct rtable *rtable;
262 };
263 struct sec_path *sp;
264
265 /*
266 * This is the control buffer. It is free to use for every
267 * layer. Please put your private variables there. If you
268 * want to keep them across layers you have to do a skb_clone()
269 * first. This is owned by whoever has the skb queued ATM.
270 */
271 char cb[48];
272
273 unsigned int len,
274 data_len;
275 __u16 mac_len,
276 hdr_len;
277 union {
278 __wsum csum;
279 struct {
280 __u16 csum_start;
281 __u16 csum_offset;
282 };
283 };
284 __u32 priority;
285 __u8 local_df:1,
286 cloned:1,
287 ip_summed:2,
288 nohdr:1,
289 nfctinfo:3;
290 __u8 pkt_type:3,
291 fclone:2,
292 ipvs_property:1,
293 peeked:1,
294 nf_trace:1;
295 __be16 protocol;
296
297 void (*destructor)(struct sk_buff *skb);
298 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
299 struct nf_conntrack *nfct;
300 struct sk_buff *nfct_reasm;
301 #endif
302 #ifdef CONFIG_BRIDGE_NETFILTER
303 struct nf_bridge_info *nf_bridge;
304 #endif
305
306 int iif;
307 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
308 __u16 queue_mapping;
309 #endif
310 #ifdef CONFIG_NET_SCHED
311 __u16 tc_index; /* traffic control index */
312 #ifdef CONFIG_NET_CLS_ACT
313 __u16 tc_verd; /* traffic control verdict */
314 #endif
315 #endif
316 /* 2 byte hole */
317
318 #ifdef CONFIG_NET_DMA
319 dma_cookie_t dma_cookie;
320 #endif
321 #ifdef CONFIG_NETWORK_SECMARK
322 __u32 secmark;
323 #endif
324
325 __u32 mark;
326
327 sk_buff_data_t transport_header;
328 sk_buff_data_t network_header;
329 sk_buff_data_t mac_header;
330 /* These elements must be at the end, see alloc_skb() for details. */
331 sk_buff_data_t tail;
332 sk_buff_data_t end;
333 unsigned char *head,
334 *data;
335 unsigned int truesize;
336 atomic_t users;
337 };
338
339 #ifdef __KERNEL__
340 /*
341 * Handling routines are only of interest to the kernel
342 */
343 #include <linux/slab.h>
344
345 #include <asm/system.h>
346
347 extern void kfree_skb(struct sk_buff *skb);
348 extern void __kfree_skb(struct sk_buff *skb);
349 extern struct sk_buff *__alloc_skb(unsigned int size,
350 gfp_t priority, int fclone, int node);
351 static inline struct sk_buff *alloc_skb(unsigned int size,
352 gfp_t priority)
353 {
354 return __alloc_skb(size, priority, 0, -1);
355 }
356
357 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
358 gfp_t priority)
359 {
360 return __alloc_skb(size, priority, 1, -1);
361 }
362
363 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
364 extern struct sk_buff *skb_clone(struct sk_buff *skb,
365 gfp_t priority);
366 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
367 gfp_t priority);
368 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
369 gfp_t gfp_mask);
370 extern int pskb_expand_head(struct sk_buff *skb,
371 int nhead, int ntail,
372 gfp_t gfp_mask);
373 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
374 unsigned int headroom);
375 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
376 int newheadroom, int newtailroom,
377 gfp_t priority);
378 extern int skb_to_sgvec(struct sk_buff *skb,
379 struct scatterlist *sg, int offset,
380 int len);
381 extern int skb_cow_data(struct sk_buff *skb, int tailbits,
382 struct sk_buff **trailer);
383 extern int skb_pad(struct sk_buff *skb, int pad);
384 #define dev_kfree_skb(a) kfree_skb(a)
385 extern void skb_over_panic(struct sk_buff *skb, int len,
386 void *here);
387 extern void skb_under_panic(struct sk_buff *skb, int len,
388 void *here);
389 extern void skb_truesize_bug(struct sk_buff *skb);
390
391 static inline void skb_truesize_check(struct sk_buff *skb)
392 {
393 int len = sizeof(struct sk_buff) + skb->len;
394
395 if (unlikely((int)skb->truesize < len))
396 skb_truesize_bug(skb);
397 }
398
399 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
400 int getfrag(void *from, char *to, int offset,
401 int len,int odd, struct sk_buff *skb),
402 void *from, int length);
403
404 struct skb_seq_state
405 {
406 __u32 lower_offset;
407 __u32 upper_offset;
408 __u32 frag_idx;
409 __u32 stepped_offset;
410 struct sk_buff *root_skb;
411 struct sk_buff *cur_skb;
412 __u8 *frag_data;
413 };
414
415 extern void skb_prepare_seq_read(struct sk_buff *skb,
416 unsigned int from, unsigned int to,
417 struct skb_seq_state *st);
418 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
419 struct skb_seq_state *st);
420 extern void skb_abort_seq_read(struct skb_seq_state *st);
421
422 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
423 unsigned int to, struct ts_config *config,
424 struct ts_state *state);
425
426 #ifdef NET_SKBUFF_DATA_USES_OFFSET
427 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
428 {
429 return skb->head + skb->end;
430 }
431 #else
432 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
433 {
434 return skb->end;
435 }
436 #endif
437
438 /* Internal */
439 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
440
441 /**
442 * skb_queue_empty - check if a queue is empty
443 * @list: queue head
444 *
445 * Returns true if the queue is empty, false otherwise.
446 */
447 static inline int skb_queue_empty(const struct sk_buff_head *list)
448 {
449 return list->next == (struct sk_buff *)list;
450 }
451
452 /**
453 * skb_get - reference buffer
454 * @skb: buffer to reference
455 *
456 * Makes another reference to a socket buffer and returns a pointer
457 * to the buffer.
458 */
459 static inline struct sk_buff *skb_get(struct sk_buff *skb)
460 {
461 atomic_inc(&skb->users);
462 return skb;
463 }
464
465 /*
466 * If users == 1, we are the only owner and are can avoid redundant
467 * atomic change.
468 */
469
470 /**
471 * skb_cloned - is the buffer a clone
472 * @skb: buffer to check
473 *
474 * Returns true if the buffer was generated with skb_clone() and is
475 * one of multiple shared copies of the buffer. Cloned buffers are
476 * shared data so must not be written to under normal circumstances.
477 */
478 static inline int skb_cloned(const struct sk_buff *skb)
479 {
480 return skb->cloned &&
481 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
482 }
483
484 /**
485 * skb_header_cloned - is the header a clone
486 * @skb: buffer to check
487 *
488 * Returns true if modifying the header part of the buffer requires
489 * the data to be copied.
490 */
491 static inline int skb_header_cloned(const struct sk_buff *skb)
492 {
493 int dataref;
494
495 if (!skb->cloned)
496 return 0;
497
498 dataref = atomic_read(&skb_shinfo(skb)->dataref);
499 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
500 return dataref != 1;
501 }
502
503 /**
504 * skb_header_release - release reference to header
505 * @skb: buffer to operate on
506 *
507 * Drop a reference to the header part of the buffer. This is done
508 * by acquiring a payload reference. You must not read from the header
509 * part of skb->data after this.
510 */
511 static inline void skb_header_release(struct sk_buff *skb)
512 {
513 BUG_ON(skb->nohdr);
514 skb->nohdr = 1;
515 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
516 }
517
518 /**
519 * skb_shared - is the buffer shared
520 * @skb: buffer to check
521 *
522 * Returns true if more than one person has a reference to this
523 * buffer.
524 */
525 static inline int skb_shared(const struct sk_buff *skb)
526 {
527 return atomic_read(&skb->users) != 1;
528 }
529
530 /**
531 * skb_share_check - check if buffer is shared and if so clone it
532 * @skb: buffer to check
533 * @pri: priority for memory allocation
534 *
535 * If the buffer is shared the buffer is cloned and the old copy
536 * drops a reference. A new clone with a single reference is returned.
537 * If the buffer is not shared the original buffer is returned. When
538 * being called from interrupt status or with spinlocks held pri must
539 * be GFP_ATOMIC.
540 *
541 * NULL is returned on a memory allocation failure.
542 */
543 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
544 gfp_t pri)
545 {
546 might_sleep_if(pri & __GFP_WAIT);
547 if (skb_shared(skb)) {
548 struct sk_buff *nskb = skb_clone(skb, pri);
549 kfree_skb(skb);
550 skb = nskb;
551 }
552 return skb;
553 }
554
555 /*
556 * Copy shared buffers into a new sk_buff. We effectively do COW on
557 * packets to handle cases where we have a local reader and forward
558 * and a couple of other messy ones. The normal one is tcpdumping
559 * a packet thats being forwarded.
560 */
561
562 /**
563 * skb_unshare - make a copy of a shared buffer
564 * @skb: buffer to check
565 * @pri: priority for memory allocation
566 *
567 * If the socket buffer is a clone then this function creates a new
568 * copy of the data, drops a reference count on the old copy and returns
569 * the new copy with the reference count at 1. If the buffer is not a clone
570 * the original buffer is returned. When called with a spinlock held or
571 * from interrupt state @pri must be %GFP_ATOMIC
572 *
573 * %NULL is returned on a memory allocation failure.
574 */
575 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
576 gfp_t pri)
577 {
578 might_sleep_if(pri & __GFP_WAIT);
579 if (skb_cloned(skb)) {
580 struct sk_buff *nskb = skb_copy(skb, pri);
581 kfree_skb(skb); /* Free our shared copy */
582 skb = nskb;
583 }
584 return skb;
585 }
586
587 /**
588 * skb_peek
589 * @list_: list to peek at
590 *
591 * Peek an &sk_buff. Unlike most other operations you _MUST_
592 * be careful with this one. A peek leaves the buffer on the
593 * list and someone else may run off with it. You must hold
594 * the appropriate locks or have a private queue to do this.
595 *
596 * Returns %NULL for an empty list or a pointer to the head element.
597 * The reference count is not incremented and the reference is therefore
598 * volatile. Use with caution.
599 */
600 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
601 {
602 struct sk_buff *list = ((struct sk_buff *)list_)->next;
603 if (list == (struct sk_buff *)list_)
604 list = NULL;
605 return list;
606 }
607
608 /**
609 * skb_peek_tail
610 * @list_: list to peek at
611 *
612 * Peek an &sk_buff. Unlike most other operations you _MUST_
613 * be careful with this one. A peek leaves the buffer on the
614 * list and someone else may run off with it. You must hold
615 * the appropriate locks or have a private queue to do this.
616 *
617 * Returns %NULL for an empty list or a pointer to the tail element.
618 * The reference count is not incremented and the reference is therefore
619 * volatile. Use with caution.
620 */
621 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
622 {
623 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
624 if (list == (struct sk_buff *)list_)
625 list = NULL;
626 return list;
627 }
628
629 /**
630 * skb_queue_len - get queue length
631 * @list_: list to measure
632 *
633 * Return the length of an &sk_buff queue.
634 */
635 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
636 {
637 return list_->qlen;
638 }
639
640 /*
641 * This function creates a split out lock class for each invocation;
642 * this is needed for now since a whole lot of users of the skb-queue
643 * infrastructure in drivers have different locking usage (in hardirq)
644 * than the networking core (in softirq only). In the long run either the
645 * network layer or drivers should need annotation to consolidate the
646 * main types of usage into 3 classes.
647 */
648 static inline void skb_queue_head_init(struct sk_buff_head *list)
649 {
650 spin_lock_init(&list->lock);
651 list->prev = list->next = (struct sk_buff *)list;
652 list->qlen = 0;
653 }
654
655 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
656 struct lock_class_key *class)
657 {
658 skb_queue_head_init(list);
659 lockdep_set_class(&list->lock, class);
660 }
661
662 /*
663 * Insert an sk_buff at the start of a list.
664 *
665 * The "__skb_xxxx()" functions are the non-atomic ones that
666 * can only be called with interrupts disabled.
667 */
668
669 /**
670 * __skb_queue_after - queue a buffer at the list head
671 * @list: list to use
672 * @prev: place after this buffer
673 * @newsk: buffer to queue
674 *
675 * Queue a buffer int the middle of a list. This function takes no locks
676 * and you must therefore hold required locks before calling it.
677 *
678 * A buffer cannot be placed on two lists at the same time.
679 */
680 static inline void __skb_queue_after(struct sk_buff_head *list,
681 struct sk_buff *prev,
682 struct sk_buff *newsk)
683 {
684 struct sk_buff *next;
685 list->qlen++;
686
687 next = prev->next;
688 newsk->next = next;
689 newsk->prev = prev;
690 next->prev = prev->next = newsk;
691 }
692
693 /**
694 * __skb_queue_head - queue a buffer at the list head
695 * @list: list to use
696 * @newsk: buffer to queue
697 *
698 * Queue a buffer at the start of a list. This function takes no locks
699 * and you must therefore hold required locks before calling it.
700 *
701 * A buffer cannot be placed on two lists at the same time.
702 */
703 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
704 static inline void __skb_queue_head(struct sk_buff_head *list,
705 struct sk_buff *newsk)
706 {
707 __skb_queue_after(list, (struct sk_buff *)list, newsk);
708 }
709
710 /**
711 * __skb_queue_tail - queue a buffer at the list tail
712 * @list: list to use
713 * @newsk: buffer to queue
714 *
715 * Queue a buffer at the end of a list. This function takes no locks
716 * and you must therefore hold required locks before calling it.
717 *
718 * A buffer cannot be placed on two lists at the same time.
719 */
720 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
721 static inline void __skb_queue_tail(struct sk_buff_head *list,
722 struct sk_buff *newsk)
723 {
724 struct sk_buff *prev, *next;
725
726 list->qlen++;
727 next = (struct sk_buff *)list;
728 prev = next->prev;
729 newsk->next = next;
730 newsk->prev = prev;
731 next->prev = prev->next = newsk;
732 }
733
734
735 /**
736 * __skb_dequeue - remove from the head of the queue
737 * @list: list to dequeue from
738 *
739 * Remove the head of the list. This function does not take any locks
740 * so must be used with appropriate locks held only. The head item is
741 * returned or %NULL if the list is empty.
742 */
743 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
744 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
745 {
746 struct sk_buff *next, *prev, *result;
747
748 prev = (struct sk_buff *) list;
749 next = prev->next;
750 result = NULL;
751 if (next != prev) {
752 result = next;
753 next = next->next;
754 list->qlen--;
755 next->prev = prev;
756 prev->next = next;
757 result->next = result->prev = NULL;
758 }
759 return result;
760 }
761
762
763 /*
764 * Insert a packet on a list.
765 */
766 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
767 static inline void __skb_insert(struct sk_buff *newsk,
768 struct sk_buff *prev, struct sk_buff *next,
769 struct sk_buff_head *list)
770 {
771 newsk->next = next;
772 newsk->prev = prev;
773 next->prev = prev->next = newsk;
774 list->qlen++;
775 }
776
777 /*
778 * Place a packet after a given packet in a list.
779 */
780 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
781 static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
782 {
783 __skb_insert(newsk, old, old->next, list);
784 }
785
786 /*
787 * remove sk_buff from list. _Must_ be called atomically, and with
788 * the list known..
789 */
790 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
791 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
792 {
793 struct sk_buff *next, *prev;
794
795 list->qlen--;
796 next = skb->next;
797 prev = skb->prev;
798 skb->next = skb->prev = NULL;
799 next->prev = prev;
800 prev->next = next;
801 }
802
803
804 /* XXX: more streamlined implementation */
805
806 /**
807 * __skb_dequeue_tail - remove from the tail of the queue
808 * @list: list to dequeue from
809 *
810 * Remove the tail of the list. This function does not take any locks
811 * so must be used with appropriate locks held only. The tail item is
812 * returned or %NULL if the list is empty.
813 */
814 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
815 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
816 {
817 struct sk_buff *skb = skb_peek_tail(list);
818 if (skb)
819 __skb_unlink(skb, list);
820 return skb;
821 }
822
823
824 static inline int skb_is_nonlinear(const struct sk_buff *skb)
825 {
826 return skb->data_len;
827 }
828
829 static inline unsigned int skb_headlen(const struct sk_buff *skb)
830 {
831 return skb->len - skb->data_len;
832 }
833
834 static inline int skb_pagelen(const struct sk_buff *skb)
835 {
836 int i, len = 0;
837
838 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
839 len += skb_shinfo(skb)->frags[i].size;
840 return len + skb_headlen(skb);
841 }
842
843 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
844 struct page *page, int off, int size)
845 {
846 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
847
848 frag->page = page;
849 frag->page_offset = off;
850 frag->size = size;
851 skb_shinfo(skb)->nr_frags = i + 1;
852 }
853
854 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
855 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
856 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
857
858 #ifdef NET_SKBUFF_DATA_USES_OFFSET
859 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
860 {
861 return skb->head + skb->tail;
862 }
863
864 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
865 {
866 skb->tail = skb->data - skb->head;
867 }
868
869 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
870 {
871 skb_reset_tail_pointer(skb);
872 skb->tail += offset;
873 }
874 #else /* NET_SKBUFF_DATA_USES_OFFSET */
875 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
876 {
877 return skb->tail;
878 }
879
880 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
881 {
882 skb->tail = skb->data;
883 }
884
885 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
886 {
887 skb->tail = skb->data + offset;
888 }
889
890 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
891
892 /*
893 * Add data to an sk_buff
894 */
895 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
896 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
897 {
898 unsigned char *tmp = skb_tail_pointer(skb);
899 SKB_LINEAR_ASSERT(skb);
900 skb->tail += len;
901 skb->len += len;
902 return tmp;
903 }
904
905 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
906 {
907 skb->data -= len;
908 skb->len += len;
909 return skb->data;
910 }
911
912 /**
913 * skb_push - add data to the start of a buffer
914 * @skb: buffer to use
915 * @len: amount of data to add
916 *
917 * This function extends the used data area of the buffer at the buffer
918 * start. If this would exceed the total buffer headroom the kernel will
919 * panic. A pointer to the first byte of the extra data is returned.
920 */
921 static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
922 {
923 skb->data -= len;
924 skb->len += len;
925 if (unlikely(skb->data<skb->head))
926 skb_under_panic(skb, len, current_text_addr());
927 return skb->data;
928 }
929
930 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
931 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
932 {
933 skb->len -= len;
934 BUG_ON(skb->len < skb->data_len);
935 return skb->data += len;
936 }
937
938 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
939
940 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
941 {
942 if (len > skb_headlen(skb) &&
943 !__pskb_pull_tail(skb, len-skb_headlen(skb)))
944 return NULL;
945 skb->len -= len;
946 return skb->data += len;
947 }
948
949 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
950 {
951 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
952 }
953
954 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
955 {
956 if (likely(len <= skb_headlen(skb)))
957 return 1;
958 if (unlikely(len > skb->len))
959 return 0;
960 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
961 }
962
963 /**
964 * skb_headroom - bytes at buffer head
965 * @skb: buffer to check
966 *
967 * Return the number of bytes of free space at the head of an &sk_buff.
968 */
969 static inline unsigned int skb_headroom(const struct sk_buff *skb)
970 {
971 return skb->data - skb->head;
972 }
973
974 /**
975 * skb_tailroom - bytes at buffer end
976 * @skb: buffer to check
977 *
978 * Return the number of bytes of free space at the tail of an sk_buff
979 */
980 static inline int skb_tailroom(const struct sk_buff *skb)
981 {
982 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
983 }
984
985 /**
986 * skb_reserve - adjust headroom
987 * @skb: buffer to alter
988 * @len: bytes to move
989 *
990 * Increase the headroom of an empty &sk_buff by reducing the tail
991 * room. This is only allowed for an empty buffer.
992 */
993 static inline void skb_reserve(struct sk_buff *skb, int len)
994 {
995 skb->data += len;
996 skb->tail += len;
997 }
998
999 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1000 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1001 {
1002 return skb->head + skb->transport_header;
1003 }
1004
1005 static inline void skb_reset_transport_header(struct sk_buff *skb)
1006 {
1007 skb->transport_header = skb->data - skb->head;
1008 }
1009
1010 static inline void skb_set_transport_header(struct sk_buff *skb,
1011 const int offset)
1012 {
1013 skb_reset_transport_header(skb);
1014 skb->transport_header += offset;
1015 }
1016
1017 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1018 {
1019 return skb->head + skb->network_header;
1020 }
1021
1022 static inline void skb_reset_network_header(struct sk_buff *skb)
1023 {
1024 skb->network_header = skb->data - skb->head;
1025 }
1026
1027 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1028 {
1029 skb_reset_network_header(skb);
1030 skb->network_header += offset;
1031 }
1032
1033 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1034 {
1035 return skb->head + skb->mac_header;
1036 }
1037
1038 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1039 {
1040 return skb->mac_header != ~0U;
1041 }
1042
1043 static inline void skb_reset_mac_header(struct sk_buff *skb)
1044 {
1045 skb->mac_header = skb->data - skb->head;
1046 }
1047
1048 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1049 {
1050 skb_reset_mac_header(skb);
1051 skb->mac_header += offset;
1052 }
1053
1054 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1055
1056 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1057 {
1058 return skb->transport_header;
1059 }
1060
1061 static inline void skb_reset_transport_header(struct sk_buff *skb)
1062 {
1063 skb->transport_header = skb->data;
1064 }
1065
1066 static inline void skb_set_transport_header(struct sk_buff *skb,
1067 const int offset)
1068 {
1069 skb->transport_header = skb->data + offset;
1070 }
1071
1072 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1073 {
1074 return skb->network_header;
1075 }
1076
1077 static inline void skb_reset_network_header(struct sk_buff *skb)
1078 {
1079 skb->network_header = skb->data;
1080 }
1081
1082 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1083 {
1084 skb->network_header = skb->data + offset;
1085 }
1086
1087 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1088 {
1089 return skb->mac_header;
1090 }
1091
1092 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1093 {
1094 return skb->mac_header != NULL;
1095 }
1096
1097 static inline void skb_reset_mac_header(struct sk_buff *skb)
1098 {
1099 skb->mac_header = skb->data;
1100 }
1101
1102 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1103 {
1104 skb->mac_header = skb->data + offset;
1105 }
1106 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1107
1108 static inline int skb_transport_offset(const struct sk_buff *skb)
1109 {
1110 return skb_transport_header(skb) - skb->data;
1111 }
1112
1113 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1114 {
1115 return skb->transport_header - skb->network_header;
1116 }
1117
1118 static inline int skb_network_offset(const struct sk_buff *skb)
1119 {
1120 return skb_network_header(skb) - skb->data;
1121 }
1122
1123 /*
1124 * CPUs often take a performance hit when accessing unaligned memory
1125 * locations. The actual performance hit varies, it can be small if the
1126 * hardware handles it or large if we have to take an exception and fix it
1127 * in software.
1128 *
1129 * Since an ethernet header is 14 bytes network drivers often end up with
1130 * the IP header at an unaligned offset. The IP header can be aligned by
1131 * shifting the start of the packet by 2 bytes. Drivers should do this
1132 * with:
1133 *
1134 * skb_reserve(NET_IP_ALIGN);
1135 *
1136 * The downside to this alignment of the IP header is that the DMA is now
1137 * unaligned. On some architectures the cost of an unaligned DMA is high
1138 * and this cost outweighs the gains made by aligning the IP header.
1139 *
1140 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1141 * to be overridden.
1142 */
1143 #ifndef NET_IP_ALIGN
1144 #define NET_IP_ALIGN 2
1145 #endif
1146
1147 /*
1148 * The networking layer reserves some headroom in skb data (via
1149 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1150 * the header has to grow. In the default case, if the header has to grow
1151 * 16 bytes or less we avoid the reallocation.
1152 *
1153 * Unfortunately this headroom changes the DMA alignment of the resulting
1154 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1155 * on some architectures. An architecture can override this value,
1156 * perhaps setting it to a cacheline in size (since that will maintain
1157 * cacheline alignment of the DMA). It must be a power of 2.
1158 *
1159 * Various parts of the networking layer expect at least 16 bytes of
1160 * headroom, you should not reduce this.
1161 */
1162 #ifndef NET_SKB_PAD
1163 #define NET_SKB_PAD 16
1164 #endif
1165
1166 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1167
1168 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1169 {
1170 if (unlikely(skb->data_len)) {
1171 WARN_ON(1);
1172 return;
1173 }
1174 skb->len = len;
1175 skb_set_tail_pointer(skb, len);
1176 }
1177
1178 /**
1179 * skb_trim - remove end from a buffer
1180 * @skb: buffer to alter
1181 * @len: new length
1182 *
1183 * Cut the length of a buffer down by removing data from the tail. If
1184 * the buffer is already under the length specified it is not modified.
1185 * The skb must be linear.
1186 */
1187 static inline void skb_trim(struct sk_buff *skb, unsigned int len)
1188 {
1189 if (skb->len > len)
1190 __skb_trim(skb, len);
1191 }
1192
1193
1194 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1195 {
1196 if (skb->data_len)
1197 return ___pskb_trim(skb, len);
1198 __skb_trim(skb, len);
1199 return 0;
1200 }
1201
1202 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1203 {
1204 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1205 }
1206
1207 /**
1208 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1209 * @skb: buffer to alter
1210 * @len: new length
1211 *
1212 * This is identical to pskb_trim except that the caller knows that
1213 * the skb is not cloned so we should never get an error due to out-
1214 * of-memory.
1215 */
1216 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1217 {
1218 int err = pskb_trim(skb, len);
1219 BUG_ON(err);
1220 }
1221
1222 /**
1223 * skb_orphan - orphan a buffer
1224 * @skb: buffer to orphan
1225 *
1226 * If a buffer currently has an owner then we call the owner's
1227 * destructor function and make the @skb unowned. The buffer continues
1228 * to exist but is no longer charged to its former owner.
1229 */
1230 static inline void skb_orphan(struct sk_buff *skb)
1231 {
1232 if (skb->destructor)
1233 skb->destructor(skb);
1234 skb->destructor = NULL;
1235 skb->sk = NULL;
1236 }
1237
1238 /**
1239 * __skb_queue_purge - empty a list
1240 * @list: list to empty
1241 *
1242 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1243 * the list and one reference dropped. This function does not take the
1244 * list lock and the caller must hold the relevant locks to use it.
1245 */
1246 extern void skb_queue_purge(struct sk_buff_head *list);
1247 static inline void __skb_queue_purge(struct sk_buff_head *list)
1248 {
1249 struct sk_buff *skb;
1250 while ((skb = __skb_dequeue(list)) != NULL)
1251 kfree_skb(skb);
1252 }
1253
1254 /**
1255 * __dev_alloc_skb - allocate an skbuff for receiving
1256 * @length: length to allocate
1257 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1258 *
1259 * Allocate a new &sk_buff and assign it a usage count of one. The
1260 * buffer has unspecified headroom built in. Users should allocate
1261 * the headroom they think they need without accounting for the
1262 * built in space. The built in space is used for optimisations.
1263 *
1264 * %NULL is returned if there is no free memory.
1265 */
1266 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1267 gfp_t gfp_mask)
1268 {
1269 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1270 if (likely(skb))
1271 skb_reserve(skb, NET_SKB_PAD);
1272 return skb;
1273 }
1274
1275 /**
1276 * dev_alloc_skb - allocate an skbuff for receiving
1277 * @length: length to allocate
1278 *
1279 * Allocate a new &sk_buff and assign it a usage count of one. The
1280 * buffer has unspecified headroom built in. Users should allocate
1281 * the headroom they think they need without accounting for the
1282 * built in space. The built in space is used for optimisations.
1283 *
1284 * %NULL is returned if there is no free memory. Although this function
1285 * allocates memory it can be called from an interrupt.
1286 */
1287 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1288 {
1289 return __dev_alloc_skb(length, GFP_ATOMIC);
1290 }
1291
1292 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1293 unsigned int length, gfp_t gfp_mask);
1294
1295 /**
1296 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1297 * @dev: network device to receive on
1298 * @length: length to allocate
1299 *
1300 * Allocate a new &sk_buff and assign it a usage count of one. The
1301 * buffer has unspecified headroom built in. Users should allocate
1302 * the headroom they think they need without accounting for the
1303 * built in space. The built in space is used for optimisations.
1304 *
1305 * %NULL is returned if there is no free memory. Although this function
1306 * allocates memory it can be called from an interrupt.
1307 */
1308 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1309 unsigned int length)
1310 {
1311 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1312 }
1313
1314 /**
1315 * skb_clone_writable - is the header of a clone writable
1316 * @skb: buffer to check
1317 * @len: length up to which to write
1318 *
1319 * Returns true if modifying the header part of the cloned buffer
1320 * does not requires the data to be copied.
1321 */
1322 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1323 {
1324 return !skb_header_cloned(skb) &&
1325 skb_headroom(skb) + len <= skb->hdr_len;
1326 }
1327
1328 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1329 int cloned)
1330 {
1331 int delta = 0;
1332
1333 if (headroom < NET_SKB_PAD)
1334 headroom = NET_SKB_PAD;
1335 if (headroom > skb_headroom(skb))
1336 delta = headroom - skb_headroom(skb);
1337
1338 if (delta || cloned)
1339 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1340 GFP_ATOMIC);
1341 return 0;
1342 }
1343
1344 /**
1345 * skb_cow - copy header of skb when it is required
1346 * @skb: buffer to cow
1347 * @headroom: needed headroom
1348 *
1349 * If the skb passed lacks sufficient headroom or its data part
1350 * is shared, data is reallocated. If reallocation fails, an error
1351 * is returned and original skb is not changed.
1352 *
1353 * The result is skb with writable area skb->head...skb->tail
1354 * and at least @headroom of space at head.
1355 */
1356 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1357 {
1358 return __skb_cow(skb, headroom, skb_cloned(skb));
1359 }
1360
1361 /**
1362 * skb_cow_head - skb_cow but only making the head writable
1363 * @skb: buffer to cow
1364 * @headroom: needed headroom
1365 *
1366 * This function is identical to skb_cow except that we replace the
1367 * skb_cloned check by skb_header_cloned. It should be used when
1368 * you only need to push on some header and do not need to modify
1369 * the data.
1370 */
1371 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1372 {
1373 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1374 }
1375
1376 /**
1377 * skb_padto - pad an skbuff up to a minimal size
1378 * @skb: buffer to pad
1379 * @len: minimal length
1380 *
1381 * Pads up a buffer to ensure the trailing bytes exist and are
1382 * blanked. If the buffer already contains sufficient data it
1383 * is untouched. Otherwise it is extended. Returns zero on
1384 * success. The skb is freed on error.
1385 */
1386
1387 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1388 {
1389 unsigned int size = skb->len;
1390 if (likely(size >= len))
1391 return 0;
1392 return skb_pad(skb, len-size);
1393 }
1394
1395 static inline int skb_add_data(struct sk_buff *skb,
1396 char __user *from, int copy)
1397 {
1398 const int off = skb->len;
1399
1400 if (skb->ip_summed == CHECKSUM_NONE) {
1401 int err = 0;
1402 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1403 copy, 0, &err);
1404 if (!err) {
1405 skb->csum = csum_block_add(skb->csum, csum, off);
1406 return 0;
1407 }
1408 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1409 return 0;
1410
1411 __skb_trim(skb, off);
1412 return -EFAULT;
1413 }
1414
1415 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1416 struct page *page, int off)
1417 {
1418 if (i) {
1419 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1420
1421 return page == frag->page &&
1422 off == frag->page_offset + frag->size;
1423 }
1424 return 0;
1425 }
1426
1427 static inline int __skb_linearize(struct sk_buff *skb)
1428 {
1429 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1430 }
1431
1432 /**
1433 * skb_linearize - convert paged skb to linear one
1434 * @skb: buffer to linarize
1435 *
1436 * If there is no free memory -ENOMEM is returned, otherwise zero
1437 * is returned and the old skb data released.
1438 */
1439 static inline int skb_linearize(struct sk_buff *skb)
1440 {
1441 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1442 }
1443
1444 /**
1445 * skb_linearize_cow - make sure skb is linear and writable
1446 * @skb: buffer to process
1447 *
1448 * If there is no free memory -ENOMEM is returned, otherwise zero
1449 * is returned and the old skb data released.
1450 */
1451 static inline int skb_linearize_cow(struct sk_buff *skb)
1452 {
1453 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1454 __skb_linearize(skb) : 0;
1455 }
1456
1457 /**
1458 * skb_postpull_rcsum - update checksum for received skb after pull
1459 * @skb: buffer to update
1460 * @start: start of data before pull
1461 * @len: length of data pulled
1462 *
1463 * After doing a pull on a received packet, you need to call this to
1464 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1465 * CHECKSUM_NONE so that it can be recomputed from scratch.
1466 */
1467
1468 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1469 const void *start, unsigned int len)
1470 {
1471 if (skb->ip_summed == CHECKSUM_COMPLETE)
1472 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1473 }
1474
1475 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1476
1477 /**
1478 * pskb_trim_rcsum - trim received skb and update checksum
1479 * @skb: buffer to trim
1480 * @len: new length
1481 *
1482 * This is exactly the same as pskb_trim except that it ensures the
1483 * checksum of received packets are still valid after the operation.
1484 */
1485
1486 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1487 {
1488 if (likely(len >= skb->len))
1489 return 0;
1490 if (skb->ip_summed == CHECKSUM_COMPLETE)
1491 skb->ip_summed = CHECKSUM_NONE;
1492 return __pskb_trim(skb, len);
1493 }
1494
1495 #define skb_queue_walk(queue, skb) \
1496 for (skb = (queue)->next; \
1497 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1498 skb = skb->next)
1499
1500 #define skb_queue_walk_safe(queue, skb, tmp) \
1501 for (skb = (queue)->next, tmp = skb->next; \
1502 skb != (struct sk_buff *)(queue); \
1503 skb = tmp, tmp = skb->next)
1504
1505 #define skb_queue_reverse_walk(queue, skb) \
1506 for (skb = (queue)->prev; \
1507 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1508 skb = skb->prev)
1509
1510
1511 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
1512 int *peeked, int *err);
1513 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1514 int noblock, int *err);
1515 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1516 struct poll_table_struct *wait);
1517 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1518 int offset, struct iovec *to,
1519 int size);
1520 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1521 int hlen,
1522 struct iovec *iov);
1523 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1524 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1525 unsigned int flags);
1526 extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
1527 int len, __wsum csum);
1528 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1529 void *to, int len);
1530 extern int skb_store_bits(struct sk_buff *skb, int offset,
1531 const void *from, int len);
1532 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
1533 int offset, u8 *to, int len,
1534 __wsum csum);
1535 extern int skb_splice_bits(struct sk_buff *skb,
1536 unsigned int offset,
1537 struct pipe_inode_info *pipe,
1538 unsigned int len,
1539 unsigned int flags);
1540 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1541 extern void skb_split(struct sk_buff *skb,
1542 struct sk_buff *skb1, const u32 len);
1543
1544 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1545
1546 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1547 int len, void *buffer)
1548 {
1549 int hlen = skb_headlen(skb);
1550
1551 if (hlen - offset >= len)
1552 return skb->data + offset;
1553
1554 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1555 return NULL;
1556
1557 return buffer;
1558 }
1559
1560 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1561 void *to,
1562 const unsigned int len)
1563 {
1564 memcpy(to, skb->data, len);
1565 }
1566
1567 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1568 const int offset, void *to,
1569 const unsigned int len)
1570 {
1571 memcpy(to, skb->data + offset, len);
1572 }
1573
1574 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1575 const void *from,
1576 const unsigned int len)
1577 {
1578 memcpy(skb->data, from, len);
1579 }
1580
1581 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1582 const int offset,
1583 const void *from,
1584 const unsigned int len)
1585 {
1586 memcpy(skb->data + offset, from, len);
1587 }
1588
1589 extern void skb_init(void);
1590
1591 /**
1592 * skb_get_timestamp - get timestamp from a skb
1593 * @skb: skb to get stamp from
1594 * @stamp: pointer to struct timeval to store stamp in
1595 *
1596 * Timestamps are stored in the skb as offsets to a base timestamp.
1597 * This function converts the offset back to a struct timeval and stores
1598 * it in stamp.
1599 */
1600 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1601 {
1602 *stamp = ktime_to_timeval(skb->tstamp);
1603 }
1604
1605 static inline void __net_timestamp(struct sk_buff *skb)
1606 {
1607 skb->tstamp = ktime_get_real();
1608 }
1609
1610 static inline ktime_t net_timedelta(ktime_t t)
1611 {
1612 return ktime_sub(ktime_get_real(), t);
1613 }
1614
1615 static inline ktime_t net_invalid_timestamp(void)
1616 {
1617 return ktime_set(0, 0);
1618 }
1619
1620 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1621 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1622
1623 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
1624 {
1625 return skb->ip_summed & CHECKSUM_UNNECESSARY;
1626 }
1627
1628 /**
1629 * skb_checksum_complete - Calculate checksum of an entire packet
1630 * @skb: packet to process
1631 *
1632 * This function calculates the checksum over the entire packet plus
1633 * the value of skb->csum. The latter can be used to supply the
1634 * checksum of a pseudo header as used by TCP/UDP. It returns the
1635 * checksum.
1636 *
1637 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
1638 * this function can be used to verify that checksum on received
1639 * packets. In that case the function should return zero if the
1640 * checksum is correct. In particular, this function will return zero
1641 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1642 * hardware has already verified the correctness of the checksum.
1643 */
1644 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
1645 {
1646 return skb_csum_unnecessary(skb) ?
1647 0 : __skb_checksum_complete(skb);
1648 }
1649
1650 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1651 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
1652 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1653 {
1654 if (nfct && atomic_dec_and_test(&nfct->use))
1655 nf_conntrack_destroy(nfct);
1656 }
1657 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1658 {
1659 if (nfct)
1660 atomic_inc(&nfct->use);
1661 }
1662 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1663 {
1664 if (skb)
1665 atomic_inc(&skb->users);
1666 }
1667 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1668 {
1669 if (skb)
1670 kfree_skb(skb);
1671 }
1672 #endif
1673 #ifdef CONFIG_BRIDGE_NETFILTER
1674 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1675 {
1676 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1677 kfree(nf_bridge);
1678 }
1679 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1680 {
1681 if (nf_bridge)
1682 atomic_inc(&nf_bridge->use);
1683 }
1684 #endif /* CONFIG_BRIDGE_NETFILTER */
1685 static inline void nf_reset(struct sk_buff *skb)
1686 {
1687 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1688 nf_conntrack_put(skb->nfct);
1689 skb->nfct = NULL;
1690 nf_conntrack_put_reasm(skb->nfct_reasm);
1691 skb->nfct_reasm = NULL;
1692 #endif
1693 #ifdef CONFIG_BRIDGE_NETFILTER
1694 nf_bridge_put(skb->nf_bridge);
1695 skb->nf_bridge = NULL;
1696 #endif
1697 }
1698
1699 /* Note: This doesn't put any conntrack and bridge info in dst. */
1700 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1701 {
1702 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1703 dst->nfct = src->nfct;
1704 nf_conntrack_get(src->nfct);
1705 dst->nfctinfo = src->nfctinfo;
1706 dst->nfct_reasm = src->nfct_reasm;
1707 nf_conntrack_get_reasm(src->nfct_reasm);
1708 #endif
1709 #ifdef CONFIG_BRIDGE_NETFILTER
1710 dst->nf_bridge = src->nf_bridge;
1711 nf_bridge_get(src->nf_bridge);
1712 #endif
1713 }
1714
1715 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1716 {
1717 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1718 nf_conntrack_put(dst->nfct);
1719 nf_conntrack_put_reasm(dst->nfct_reasm);
1720 #endif
1721 #ifdef CONFIG_BRIDGE_NETFILTER
1722 nf_bridge_put(dst->nf_bridge);
1723 #endif
1724 __nf_copy(dst, src);
1725 }
1726
1727 #ifdef CONFIG_NETWORK_SECMARK
1728 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1729 {
1730 to->secmark = from->secmark;
1731 }
1732
1733 static inline void skb_init_secmark(struct sk_buff *skb)
1734 {
1735 skb->secmark = 0;
1736 }
1737 #else
1738 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1739 { }
1740
1741 static inline void skb_init_secmark(struct sk_buff *skb)
1742 { }
1743 #endif
1744
1745 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
1746 {
1747 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1748 skb->queue_mapping = queue_mapping;
1749 #endif
1750 }
1751
1752 static inline u16 skb_get_queue_mapping(struct sk_buff *skb)
1753 {
1754 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1755 return skb->queue_mapping;
1756 #else
1757 return 0;
1758 #endif
1759 }
1760
1761 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
1762 {
1763 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1764 to->queue_mapping = from->queue_mapping;
1765 #endif
1766 }
1767
1768 static inline int skb_is_gso(const struct sk_buff *skb)
1769 {
1770 return skb_shinfo(skb)->gso_size;
1771 }
1772
1773 static inline int skb_is_gso_v6(const struct sk_buff *skb)
1774 {
1775 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
1776 }
1777
1778 static inline void skb_forward_csum(struct sk_buff *skb)
1779 {
1780 /* Unfortunately we don't support this one. Any brave souls? */
1781 if (skb->ip_summed == CHECKSUM_COMPLETE)
1782 skb->ip_summed = CHECKSUM_NONE;
1783 }
1784
1785 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
1786 #endif /* __KERNEL__ */
1787 #endif /* _LINUX_SKBUFF_H */
This page took 2.427614 seconds and 6 git commands to generate.