net.h/skbuff.h: Remove extern from function prototypes
[deliverable/linux.git] / include / linux / skbuff.h
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/bug.h>
22 #include <linux/cache.h>
23
24 #include <linux/atomic.h>
25 #include <asm/types.h>
26 #include <linux/spinlock.h>
27 #include <linux/net.h>
28 #include <linux/textsearch.h>
29 #include <net/checksum.h>
30 #include <linux/rcupdate.h>
31 #include <linux/dmaengine.h>
32 #include <linux/hrtimer.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/netdev_features.h>
35 #include <net/flow_keys.h>
36
37 /* Don't change this without changing skb_csum_unnecessary! */
38 #define CHECKSUM_NONE 0
39 #define CHECKSUM_UNNECESSARY 1
40 #define CHECKSUM_COMPLETE 2
41 #define CHECKSUM_PARTIAL 3
42
43 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
44 ~(SMP_CACHE_BYTES - 1))
45 #define SKB_WITH_OVERHEAD(X) \
46 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
47 #define SKB_MAX_ORDER(X, ORDER) \
48 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
49 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
50 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
51
52 /* return minimum truesize of one skb containing X bytes of data */
53 #define SKB_TRUESIZE(X) ((X) + \
54 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
55 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
56
57 /* A. Checksumming of received packets by device.
58 *
59 * NONE: device failed to checksum this packet.
60 * skb->csum is undefined.
61 *
62 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
63 * skb->csum is undefined.
64 * It is bad option, but, unfortunately, many of vendors do this.
65 * Apparently with secret goal to sell you new device, when you
66 * will add new protocol to your host. F.e. IPv6. 8)
67 *
68 * COMPLETE: the most generic way. Device supplied checksum of _all_
69 * the packet as seen by netif_rx in skb->csum.
70 * NOTE: Even if device supports only some protocols, but
71 * is able to produce some skb->csum, it MUST use COMPLETE,
72 * not UNNECESSARY.
73 *
74 * PARTIAL: identical to the case for output below. This may occur
75 * on a packet received directly from another Linux OS, e.g.,
76 * a virtualised Linux kernel on the same host. The packet can
77 * be treated in the same way as UNNECESSARY except that on
78 * output (i.e., forwarding) the checksum must be filled in
79 * by the OS or the hardware.
80 *
81 * B. Checksumming on output.
82 *
83 * NONE: skb is checksummed by protocol or csum is not required.
84 *
85 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
86 * from skb->csum_start to the end and to record the checksum
87 * at skb->csum_start + skb->csum_offset.
88 *
89 * Device must show its capabilities in dev->features, set
90 * at device setup time.
91 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
92 * everything.
93 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
94 * TCP/UDP over IPv4. Sigh. Vendors like this
95 * way by an unknown reason. Though, see comment above
96 * about CHECKSUM_UNNECESSARY. 8)
97 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
98 *
99 * UNNECESSARY: device will do per protocol specific csum. Protocol drivers
100 * that do not want net to perform the checksum calculation should use
101 * this flag in their outgoing skbs.
102 * NETIF_F_FCOE_CRC this indicates the device can do FCoE FC CRC
103 * offload. Correspondingly, the FCoE protocol driver
104 * stack should use CHECKSUM_UNNECESSARY.
105 *
106 * Any questions? No questions, good. --ANK
107 */
108
109 struct net_device;
110 struct scatterlist;
111 struct pipe_inode_info;
112
113 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
114 struct nf_conntrack {
115 atomic_t use;
116 };
117 #endif
118
119 #ifdef CONFIG_BRIDGE_NETFILTER
120 struct nf_bridge_info {
121 atomic_t use;
122 unsigned int mask;
123 struct net_device *physindev;
124 struct net_device *physoutdev;
125 unsigned long data[32 / sizeof(unsigned long)];
126 };
127 #endif
128
129 struct sk_buff_head {
130 /* These two members must be first. */
131 struct sk_buff *next;
132 struct sk_buff *prev;
133
134 __u32 qlen;
135 spinlock_t lock;
136 };
137
138 struct sk_buff;
139
140 /* To allow 64K frame to be packed as single skb without frag_list we
141 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
142 * buffers which do not start on a page boundary.
143 *
144 * Since GRO uses frags we allocate at least 16 regardless of page
145 * size.
146 */
147 #if (65536/PAGE_SIZE + 1) < 16
148 #define MAX_SKB_FRAGS 16UL
149 #else
150 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
151 #endif
152
153 typedef struct skb_frag_struct skb_frag_t;
154
155 struct skb_frag_struct {
156 struct {
157 struct page *p;
158 } page;
159 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
160 __u32 page_offset;
161 __u32 size;
162 #else
163 __u16 page_offset;
164 __u16 size;
165 #endif
166 };
167
168 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
169 {
170 return frag->size;
171 }
172
173 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
174 {
175 frag->size = size;
176 }
177
178 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
179 {
180 frag->size += delta;
181 }
182
183 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
184 {
185 frag->size -= delta;
186 }
187
188 #define HAVE_HW_TIME_STAMP
189
190 /**
191 * struct skb_shared_hwtstamps - hardware time stamps
192 * @hwtstamp: hardware time stamp transformed into duration
193 * since arbitrary point in time
194 * @syststamp: hwtstamp transformed to system time base
195 *
196 * Software time stamps generated by ktime_get_real() are stored in
197 * skb->tstamp. The relation between the different kinds of time
198 * stamps is as follows:
199 *
200 * syststamp and tstamp can be compared against each other in
201 * arbitrary combinations. The accuracy of a
202 * syststamp/tstamp/"syststamp from other device" comparison is
203 * limited by the accuracy of the transformation into system time
204 * base. This depends on the device driver and its underlying
205 * hardware.
206 *
207 * hwtstamps can only be compared against other hwtstamps from
208 * the same device.
209 *
210 * This structure is attached to packets as part of the
211 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
212 */
213 struct skb_shared_hwtstamps {
214 ktime_t hwtstamp;
215 ktime_t syststamp;
216 };
217
218 /* Definitions for tx_flags in struct skb_shared_info */
219 enum {
220 /* generate hardware time stamp */
221 SKBTX_HW_TSTAMP = 1 << 0,
222
223 /* generate software time stamp */
224 SKBTX_SW_TSTAMP = 1 << 1,
225
226 /* device driver is going to provide hardware time stamp */
227 SKBTX_IN_PROGRESS = 1 << 2,
228
229 /* device driver supports TX zero-copy buffers */
230 SKBTX_DEV_ZEROCOPY = 1 << 3,
231
232 /* generate wifi status information (where possible) */
233 SKBTX_WIFI_STATUS = 1 << 4,
234
235 /* This indicates at least one fragment might be overwritten
236 * (as in vmsplice(), sendfile() ...)
237 * If we need to compute a TX checksum, we'll need to copy
238 * all frags to avoid possible bad checksum
239 */
240 SKBTX_SHARED_FRAG = 1 << 5,
241 };
242
243 /*
244 * The callback notifies userspace to release buffers when skb DMA is done in
245 * lower device, the skb last reference should be 0 when calling this.
246 * The zerocopy_success argument is true if zero copy transmit occurred,
247 * false on data copy or out of memory error caused by data copy attempt.
248 * The ctx field is used to track device context.
249 * The desc field is used to track userspace buffer index.
250 */
251 struct ubuf_info {
252 void (*callback)(struct ubuf_info *, bool zerocopy_success);
253 void *ctx;
254 unsigned long desc;
255 };
256
257 /* This data is invariant across clones and lives at
258 * the end of the header data, ie. at skb->end.
259 */
260 struct skb_shared_info {
261 unsigned char nr_frags;
262 __u8 tx_flags;
263 unsigned short gso_size;
264 /* Warning: this field is not always filled in (UFO)! */
265 unsigned short gso_segs;
266 unsigned short gso_type;
267 struct sk_buff *frag_list;
268 struct skb_shared_hwtstamps hwtstamps;
269 __be32 ip6_frag_id;
270
271 /*
272 * Warning : all fields before dataref are cleared in __alloc_skb()
273 */
274 atomic_t dataref;
275
276 /* Intermediate layers must ensure that destructor_arg
277 * remains valid until skb destructor */
278 void * destructor_arg;
279
280 /* must be last field, see pskb_expand_head() */
281 skb_frag_t frags[MAX_SKB_FRAGS];
282 };
283
284 /* We divide dataref into two halves. The higher 16 bits hold references
285 * to the payload part of skb->data. The lower 16 bits hold references to
286 * the entire skb->data. A clone of a headerless skb holds the length of
287 * the header in skb->hdr_len.
288 *
289 * All users must obey the rule that the skb->data reference count must be
290 * greater than or equal to the payload reference count.
291 *
292 * Holding a reference to the payload part means that the user does not
293 * care about modifications to the header part of skb->data.
294 */
295 #define SKB_DATAREF_SHIFT 16
296 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
297
298
299 enum {
300 SKB_FCLONE_UNAVAILABLE,
301 SKB_FCLONE_ORIG,
302 SKB_FCLONE_CLONE,
303 };
304
305 enum {
306 SKB_GSO_TCPV4 = 1 << 0,
307 SKB_GSO_UDP = 1 << 1,
308
309 /* This indicates the skb is from an untrusted source. */
310 SKB_GSO_DODGY = 1 << 2,
311
312 /* This indicates the tcp segment has CWR set. */
313 SKB_GSO_TCP_ECN = 1 << 3,
314
315 SKB_GSO_TCPV6 = 1 << 4,
316
317 SKB_GSO_FCOE = 1 << 5,
318
319 SKB_GSO_GRE = 1 << 6,
320
321 SKB_GSO_UDP_TUNNEL = 1 << 7,
322
323 SKB_GSO_MPLS = 1 << 8,
324 };
325
326 #if BITS_PER_LONG > 32
327 #define NET_SKBUFF_DATA_USES_OFFSET 1
328 #endif
329
330 #ifdef NET_SKBUFF_DATA_USES_OFFSET
331 typedef unsigned int sk_buff_data_t;
332 #else
333 typedef unsigned char *sk_buff_data_t;
334 #endif
335
336 #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
337 defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
338 #define NET_SKBUFF_NF_DEFRAG_NEEDED 1
339 #endif
340
341 /**
342 * struct sk_buff - socket buffer
343 * @next: Next buffer in list
344 * @prev: Previous buffer in list
345 * @tstamp: Time we arrived
346 * @sk: Socket we are owned by
347 * @dev: Device we arrived on/are leaving by
348 * @cb: Control buffer. Free for use by every layer. Put private vars here
349 * @_skb_refdst: destination entry (with norefcount bit)
350 * @sp: the security path, used for xfrm
351 * @len: Length of actual data
352 * @data_len: Data length
353 * @mac_len: Length of link layer header
354 * @hdr_len: writable header length of cloned skb
355 * @csum: Checksum (must include start/offset pair)
356 * @csum_start: Offset from skb->head where checksumming should start
357 * @csum_offset: Offset from csum_start where checksum should be stored
358 * @priority: Packet queueing priority
359 * @local_df: allow local fragmentation
360 * @cloned: Head may be cloned (check refcnt to be sure)
361 * @ip_summed: Driver fed us an IP checksum
362 * @nohdr: Payload reference only, must not modify header
363 * @nfctinfo: Relationship of this skb to the connection
364 * @pkt_type: Packet class
365 * @fclone: skbuff clone status
366 * @ipvs_property: skbuff is owned by ipvs
367 * @peeked: this packet has been seen already, so stats have been
368 * done for it, don't do them again
369 * @nf_trace: netfilter packet trace flag
370 * @protocol: Packet protocol from driver
371 * @destructor: Destruct function
372 * @nfct: Associated connection, if any
373 * @nfct_reasm: netfilter conntrack re-assembly pointer
374 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
375 * @skb_iif: ifindex of device we arrived on
376 * @tc_index: Traffic control index
377 * @tc_verd: traffic control verdict
378 * @rxhash: the packet hash computed on receive
379 * @queue_mapping: Queue mapping for multiqueue devices
380 * @ndisc_nodetype: router type (from link layer)
381 * @ooo_okay: allow the mapping of a socket to a queue to be changed
382 * @l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport
383 * ports.
384 * @wifi_acked_valid: wifi_acked was set
385 * @wifi_acked: whether frame was acked on wifi or not
386 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
387 * @dma_cookie: a cookie to one of several possible DMA operations
388 * done by skb DMA functions
389 * @napi_id: id of the NAPI struct this skb came from
390 * @secmark: security marking
391 * @mark: Generic packet mark
392 * @dropcount: total number of sk_receive_queue overflows
393 * @vlan_proto: vlan encapsulation protocol
394 * @vlan_tci: vlan tag control information
395 * @inner_protocol: Protocol (encapsulation)
396 * @inner_transport_header: Inner transport layer header (encapsulation)
397 * @inner_network_header: Network layer header (encapsulation)
398 * @inner_mac_header: Link layer header (encapsulation)
399 * @transport_header: Transport layer header
400 * @network_header: Network layer header
401 * @mac_header: Link layer header
402 * @tail: Tail pointer
403 * @end: End pointer
404 * @head: Head of buffer
405 * @data: Data head pointer
406 * @truesize: Buffer size
407 * @users: User count - see {datagram,tcp}.c
408 */
409
410 struct sk_buff {
411 /* These two members must be first. */
412 struct sk_buff *next;
413 struct sk_buff *prev;
414
415 ktime_t tstamp;
416
417 struct sock *sk;
418 struct net_device *dev;
419
420 /*
421 * This is the control buffer. It is free to use for every
422 * layer. Please put your private variables there. If you
423 * want to keep them across layers you have to do a skb_clone()
424 * first. This is owned by whoever has the skb queued ATM.
425 */
426 char cb[48] __aligned(8);
427
428 unsigned long _skb_refdst;
429 #ifdef CONFIG_XFRM
430 struct sec_path *sp;
431 #endif
432 unsigned int len,
433 data_len;
434 __u16 mac_len,
435 hdr_len;
436 union {
437 __wsum csum;
438 struct {
439 __u16 csum_start;
440 __u16 csum_offset;
441 };
442 };
443 __u32 priority;
444 kmemcheck_bitfield_begin(flags1);
445 __u8 local_df:1,
446 cloned:1,
447 ip_summed:2,
448 nohdr:1,
449 nfctinfo:3;
450 __u8 pkt_type:3,
451 fclone:2,
452 ipvs_property:1,
453 peeked:1,
454 nf_trace:1;
455 kmemcheck_bitfield_end(flags1);
456 __be16 protocol;
457
458 void (*destructor)(struct sk_buff *skb);
459 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
460 struct nf_conntrack *nfct;
461 #endif
462 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
463 struct sk_buff *nfct_reasm;
464 #endif
465 #ifdef CONFIG_BRIDGE_NETFILTER
466 struct nf_bridge_info *nf_bridge;
467 #endif
468
469 int skb_iif;
470
471 __u32 rxhash;
472
473 __be16 vlan_proto;
474 __u16 vlan_tci;
475
476 #ifdef CONFIG_NET_SCHED
477 __u16 tc_index; /* traffic control index */
478 #ifdef CONFIG_NET_CLS_ACT
479 __u16 tc_verd; /* traffic control verdict */
480 #endif
481 #endif
482
483 __u16 queue_mapping;
484 kmemcheck_bitfield_begin(flags2);
485 #ifdef CONFIG_IPV6_NDISC_NODETYPE
486 __u8 ndisc_nodetype:2;
487 #endif
488 __u8 pfmemalloc:1;
489 __u8 ooo_okay:1;
490 __u8 l4_rxhash:1;
491 __u8 wifi_acked_valid:1;
492 __u8 wifi_acked:1;
493 __u8 no_fcs:1;
494 __u8 head_frag:1;
495 /* Encapsulation protocol and NIC drivers should use
496 * this flag to indicate to each other if the skb contains
497 * encapsulated packet or not and maybe use the inner packet
498 * headers if needed
499 */
500 __u8 encapsulation:1;
501 /* 7/9 bit hole (depending on ndisc_nodetype presence) */
502 kmemcheck_bitfield_end(flags2);
503
504 #if defined CONFIG_NET_DMA || defined CONFIG_NET_RX_BUSY_POLL
505 union {
506 unsigned int napi_id;
507 dma_cookie_t dma_cookie;
508 };
509 #endif
510 #ifdef CONFIG_NETWORK_SECMARK
511 __u32 secmark;
512 #endif
513 union {
514 __u32 mark;
515 __u32 dropcount;
516 __u32 reserved_tailroom;
517 };
518
519 __be16 inner_protocol;
520 __u16 inner_transport_header;
521 __u16 inner_network_header;
522 __u16 inner_mac_header;
523 __u16 transport_header;
524 __u16 network_header;
525 __u16 mac_header;
526 /* These elements must be at the end, see alloc_skb() for details. */
527 sk_buff_data_t tail;
528 sk_buff_data_t end;
529 unsigned char *head,
530 *data;
531 unsigned int truesize;
532 atomic_t users;
533 };
534
535 #ifdef __KERNEL__
536 /*
537 * Handling routines are only of interest to the kernel
538 */
539 #include <linux/slab.h>
540
541
542 #define SKB_ALLOC_FCLONE 0x01
543 #define SKB_ALLOC_RX 0x02
544
545 /* Returns true if the skb was allocated from PFMEMALLOC reserves */
546 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
547 {
548 return unlikely(skb->pfmemalloc);
549 }
550
551 /*
552 * skb might have a dst pointer attached, refcounted or not.
553 * _skb_refdst low order bit is set if refcount was _not_ taken
554 */
555 #define SKB_DST_NOREF 1UL
556 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
557
558 /**
559 * skb_dst - returns skb dst_entry
560 * @skb: buffer
561 *
562 * Returns skb dst_entry, regardless of reference taken or not.
563 */
564 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
565 {
566 /* If refdst was not refcounted, check we still are in a
567 * rcu_read_lock section
568 */
569 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
570 !rcu_read_lock_held() &&
571 !rcu_read_lock_bh_held());
572 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
573 }
574
575 /**
576 * skb_dst_set - sets skb dst
577 * @skb: buffer
578 * @dst: dst entry
579 *
580 * Sets skb dst, assuming a reference was taken on dst and should
581 * be released by skb_dst_drop()
582 */
583 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
584 {
585 skb->_skb_refdst = (unsigned long)dst;
586 }
587
588 void __skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst,
589 bool force);
590
591 /**
592 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
593 * @skb: buffer
594 * @dst: dst entry
595 *
596 * Sets skb dst, assuming a reference was not taken on dst.
597 * If dst entry is cached, we do not take reference and dst_release
598 * will be avoided by refdst_drop. If dst entry is not cached, we take
599 * reference, so that last dst_release can destroy the dst immediately.
600 */
601 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
602 {
603 __skb_dst_set_noref(skb, dst, false);
604 }
605
606 /**
607 * skb_dst_set_noref_force - sets skb dst, without taking reference
608 * @skb: buffer
609 * @dst: dst entry
610 *
611 * Sets skb dst, assuming a reference was not taken on dst.
612 * No reference is taken and no dst_release will be called. While for
613 * cached dsts deferred reclaim is a basic feature, for entries that are
614 * not cached it is caller's job to guarantee that last dst_release for
615 * provided dst happens when nobody uses it, eg. after a RCU grace period.
616 */
617 static inline void skb_dst_set_noref_force(struct sk_buff *skb,
618 struct dst_entry *dst)
619 {
620 __skb_dst_set_noref(skb, dst, true);
621 }
622
623 /**
624 * skb_dst_is_noref - Test if skb dst isn't refcounted
625 * @skb: buffer
626 */
627 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
628 {
629 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
630 }
631
632 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
633 {
634 return (struct rtable *)skb_dst(skb);
635 }
636
637 void kfree_skb(struct sk_buff *skb);
638 void kfree_skb_list(struct sk_buff *segs);
639 void skb_tx_error(struct sk_buff *skb);
640 void consume_skb(struct sk_buff *skb);
641 void __kfree_skb(struct sk_buff *skb);
642 extern struct kmem_cache *skbuff_head_cache;
643
644 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
645 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
646 bool *fragstolen, int *delta_truesize);
647
648 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
649 int node);
650 struct sk_buff *build_skb(void *data, unsigned int frag_size);
651 static inline struct sk_buff *alloc_skb(unsigned int size,
652 gfp_t priority)
653 {
654 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
655 }
656
657 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
658 gfp_t priority)
659 {
660 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
661 }
662
663 struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
664 static inline struct sk_buff *alloc_skb_head(gfp_t priority)
665 {
666 return __alloc_skb_head(priority, -1);
667 }
668
669 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
670 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
671 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
672 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
673 struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask);
674
675 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
676 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
677 unsigned int headroom);
678 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
679 int newtailroom, gfp_t priority);
680 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
681 int len);
682 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
683 int skb_pad(struct sk_buff *skb, int pad);
684 #define dev_kfree_skb(a) consume_skb(a)
685
686 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
687 int getfrag(void *from, char *to, int offset,
688 int len, int odd, struct sk_buff *skb),
689 void *from, int length);
690
691 struct skb_seq_state {
692 __u32 lower_offset;
693 __u32 upper_offset;
694 __u32 frag_idx;
695 __u32 stepped_offset;
696 struct sk_buff *root_skb;
697 struct sk_buff *cur_skb;
698 __u8 *frag_data;
699 };
700
701 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
702 unsigned int to, struct skb_seq_state *st);
703 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
704 struct skb_seq_state *st);
705 void skb_abort_seq_read(struct skb_seq_state *st);
706
707 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
708 unsigned int to, struct ts_config *config,
709 struct ts_state *state);
710
711 void __skb_get_rxhash(struct sk_buff *skb);
712 static inline __u32 skb_get_rxhash(struct sk_buff *skb)
713 {
714 if (!skb->l4_rxhash)
715 __skb_get_rxhash(skb);
716
717 return skb->rxhash;
718 }
719
720 #ifdef NET_SKBUFF_DATA_USES_OFFSET
721 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
722 {
723 return skb->head + skb->end;
724 }
725
726 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
727 {
728 return skb->end;
729 }
730 #else
731 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
732 {
733 return skb->end;
734 }
735
736 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
737 {
738 return skb->end - skb->head;
739 }
740 #endif
741
742 /* Internal */
743 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
744
745 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
746 {
747 return &skb_shinfo(skb)->hwtstamps;
748 }
749
750 /**
751 * skb_queue_empty - check if a queue is empty
752 * @list: queue head
753 *
754 * Returns true if the queue is empty, false otherwise.
755 */
756 static inline int skb_queue_empty(const struct sk_buff_head *list)
757 {
758 return list->next == (struct sk_buff *)list;
759 }
760
761 /**
762 * skb_queue_is_last - check if skb is the last entry in the queue
763 * @list: queue head
764 * @skb: buffer
765 *
766 * Returns true if @skb is the last buffer on the list.
767 */
768 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
769 const struct sk_buff *skb)
770 {
771 return skb->next == (struct sk_buff *)list;
772 }
773
774 /**
775 * skb_queue_is_first - check if skb is the first entry in the queue
776 * @list: queue head
777 * @skb: buffer
778 *
779 * Returns true if @skb is the first buffer on the list.
780 */
781 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
782 const struct sk_buff *skb)
783 {
784 return skb->prev == (struct sk_buff *)list;
785 }
786
787 /**
788 * skb_queue_next - return the next packet in the queue
789 * @list: queue head
790 * @skb: current buffer
791 *
792 * Return the next packet in @list after @skb. It is only valid to
793 * call this if skb_queue_is_last() evaluates to false.
794 */
795 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
796 const struct sk_buff *skb)
797 {
798 /* This BUG_ON may seem severe, but if we just return then we
799 * are going to dereference garbage.
800 */
801 BUG_ON(skb_queue_is_last(list, skb));
802 return skb->next;
803 }
804
805 /**
806 * skb_queue_prev - return the prev packet in the queue
807 * @list: queue head
808 * @skb: current buffer
809 *
810 * Return the prev packet in @list before @skb. It is only valid to
811 * call this if skb_queue_is_first() evaluates to false.
812 */
813 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
814 const struct sk_buff *skb)
815 {
816 /* This BUG_ON may seem severe, but if we just return then we
817 * are going to dereference garbage.
818 */
819 BUG_ON(skb_queue_is_first(list, skb));
820 return skb->prev;
821 }
822
823 /**
824 * skb_get - reference buffer
825 * @skb: buffer to reference
826 *
827 * Makes another reference to a socket buffer and returns a pointer
828 * to the buffer.
829 */
830 static inline struct sk_buff *skb_get(struct sk_buff *skb)
831 {
832 atomic_inc(&skb->users);
833 return skb;
834 }
835
836 /*
837 * If users == 1, we are the only owner and are can avoid redundant
838 * atomic change.
839 */
840
841 /**
842 * skb_cloned - is the buffer a clone
843 * @skb: buffer to check
844 *
845 * Returns true if the buffer was generated with skb_clone() and is
846 * one of multiple shared copies of the buffer. Cloned buffers are
847 * shared data so must not be written to under normal circumstances.
848 */
849 static inline int skb_cloned(const struct sk_buff *skb)
850 {
851 return skb->cloned &&
852 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
853 }
854
855 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
856 {
857 might_sleep_if(pri & __GFP_WAIT);
858
859 if (skb_cloned(skb))
860 return pskb_expand_head(skb, 0, 0, pri);
861
862 return 0;
863 }
864
865 /**
866 * skb_header_cloned - is the header a clone
867 * @skb: buffer to check
868 *
869 * Returns true if modifying the header part of the buffer requires
870 * the data to be copied.
871 */
872 static inline int skb_header_cloned(const struct sk_buff *skb)
873 {
874 int dataref;
875
876 if (!skb->cloned)
877 return 0;
878
879 dataref = atomic_read(&skb_shinfo(skb)->dataref);
880 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
881 return dataref != 1;
882 }
883
884 /**
885 * skb_header_release - release reference to header
886 * @skb: buffer to operate on
887 *
888 * Drop a reference to the header part of the buffer. This is done
889 * by acquiring a payload reference. You must not read from the header
890 * part of skb->data after this.
891 */
892 static inline void skb_header_release(struct sk_buff *skb)
893 {
894 BUG_ON(skb->nohdr);
895 skb->nohdr = 1;
896 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
897 }
898
899 /**
900 * skb_shared - is the buffer shared
901 * @skb: buffer to check
902 *
903 * Returns true if more than one person has a reference to this
904 * buffer.
905 */
906 static inline int skb_shared(const struct sk_buff *skb)
907 {
908 return atomic_read(&skb->users) != 1;
909 }
910
911 /**
912 * skb_share_check - check if buffer is shared and if so clone it
913 * @skb: buffer to check
914 * @pri: priority for memory allocation
915 *
916 * If the buffer is shared the buffer is cloned and the old copy
917 * drops a reference. A new clone with a single reference is returned.
918 * If the buffer is not shared the original buffer is returned. When
919 * being called from interrupt status or with spinlocks held pri must
920 * be GFP_ATOMIC.
921 *
922 * NULL is returned on a memory allocation failure.
923 */
924 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
925 {
926 might_sleep_if(pri & __GFP_WAIT);
927 if (skb_shared(skb)) {
928 struct sk_buff *nskb = skb_clone(skb, pri);
929
930 if (likely(nskb))
931 consume_skb(skb);
932 else
933 kfree_skb(skb);
934 skb = nskb;
935 }
936 return skb;
937 }
938
939 /*
940 * Copy shared buffers into a new sk_buff. We effectively do COW on
941 * packets to handle cases where we have a local reader and forward
942 * and a couple of other messy ones. The normal one is tcpdumping
943 * a packet thats being forwarded.
944 */
945
946 /**
947 * skb_unshare - make a copy of a shared buffer
948 * @skb: buffer to check
949 * @pri: priority for memory allocation
950 *
951 * If the socket buffer is a clone then this function creates a new
952 * copy of the data, drops a reference count on the old copy and returns
953 * the new copy with the reference count at 1. If the buffer is not a clone
954 * the original buffer is returned. When called with a spinlock held or
955 * from interrupt state @pri must be %GFP_ATOMIC
956 *
957 * %NULL is returned on a memory allocation failure.
958 */
959 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
960 gfp_t pri)
961 {
962 might_sleep_if(pri & __GFP_WAIT);
963 if (skb_cloned(skb)) {
964 struct sk_buff *nskb = skb_copy(skb, pri);
965 kfree_skb(skb); /* Free our shared copy */
966 skb = nskb;
967 }
968 return skb;
969 }
970
971 /**
972 * skb_peek - peek at the head of an &sk_buff_head
973 * @list_: list to peek at
974 *
975 * Peek an &sk_buff. Unlike most other operations you _MUST_
976 * be careful with this one. A peek leaves the buffer on the
977 * list and someone else may run off with it. You must hold
978 * the appropriate locks or have a private queue to do this.
979 *
980 * Returns %NULL for an empty list or a pointer to the head element.
981 * The reference count is not incremented and the reference is therefore
982 * volatile. Use with caution.
983 */
984 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
985 {
986 struct sk_buff *skb = list_->next;
987
988 if (skb == (struct sk_buff *)list_)
989 skb = NULL;
990 return skb;
991 }
992
993 /**
994 * skb_peek_next - peek skb following the given one from a queue
995 * @skb: skb to start from
996 * @list_: list to peek at
997 *
998 * Returns %NULL when the end of the list is met or a pointer to the
999 * next element. The reference count is not incremented and the
1000 * reference is therefore volatile. Use with caution.
1001 */
1002 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1003 const struct sk_buff_head *list_)
1004 {
1005 struct sk_buff *next = skb->next;
1006
1007 if (next == (struct sk_buff *)list_)
1008 next = NULL;
1009 return next;
1010 }
1011
1012 /**
1013 * skb_peek_tail - peek at the tail of an &sk_buff_head
1014 * @list_: list to peek at
1015 *
1016 * Peek an &sk_buff. Unlike most other operations you _MUST_
1017 * be careful with this one. A peek leaves the buffer on the
1018 * list and someone else may run off with it. You must hold
1019 * the appropriate locks or have a private queue to do this.
1020 *
1021 * Returns %NULL for an empty list or a pointer to the tail element.
1022 * The reference count is not incremented and the reference is therefore
1023 * volatile. Use with caution.
1024 */
1025 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1026 {
1027 struct sk_buff *skb = list_->prev;
1028
1029 if (skb == (struct sk_buff *)list_)
1030 skb = NULL;
1031 return skb;
1032
1033 }
1034
1035 /**
1036 * skb_queue_len - get queue length
1037 * @list_: list to measure
1038 *
1039 * Return the length of an &sk_buff queue.
1040 */
1041 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1042 {
1043 return list_->qlen;
1044 }
1045
1046 /**
1047 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1048 * @list: queue to initialize
1049 *
1050 * This initializes only the list and queue length aspects of
1051 * an sk_buff_head object. This allows to initialize the list
1052 * aspects of an sk_buff_head without reinitializing things like
1053 * the spinlock. It can also be used for on-stack sk_buff_head
1054 * objects where the spinlock is known to not be used.
1055 */
1056 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1057 {
1058 list->prev = list->next = (struct sk_buff *)list;
1059 list->qlen = 0;
1060 }
1061
1062 /*
1063 * This function creates a split out lock class for each invocation;
1064 * this is needed for now since a whole lot of users of the skb-queue
1065 * infrastructure in drivers have different locking usage (in hardirq)
1066 * than the networking core (in softirq only). In the long run either the
1067 * network layer or drivers should need annotation to consolidate the
1068 * main types of usage into 3 classes.
1069 */
1070 static inline void skb_queue_head_init(struct sk_buff_head *list)
1071 {
1072 spin_lock_init(&list->lock);
1073 __skb_queue_head_init(list);
1074 }
1075
1076 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1077 struct lock_class_key *class)
1078 {
1079 skb_queue_head_init(list);
1080 lockdep_set_class(&list->lock, class);
1081 }
1082
1083 /*
1084 * Insert an sk_buff on a list.
1085 *
1086 * The "__skb_xxxx()" functions are the non-atomic ones that
1087 * can only be called with interrupts disabled.
1088 */
1089 void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1090 struct sk_buff_head *list);
1091 static inline void __skb_insert(struct sk_buff *newsk,
1092 struct sk_buff *prev, struct sk_buff *next,
1093 struct sk_buff_head *list)
1094 {
1095 newsk->next = next;
1096 newsk->prev = prev;
1097 next->prev = prev->next = newsk;
1098 list->qlen++;
1099 }
1100
1101 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1102 struct sk_buff *prev,
1103 struct sk_buff *next)
1104 {
1105 struct sk_buff *first = list->next;
1106 struct sk_buff *last = list->prev;
1107
1108 first->prev = prev;
1109 prev->next = first;
1110
1111 last->next = next;
1112 next->prev = last;
1113 }
1114
1115 /**
1116 * skb_queue_splice - join two skb lists, this is designed for stacks
1117 * @list: the new list to add
1118 * @head: the place to add it in the first list
1119 */
1120 static inline void skb_queue_splice(const struct sk_buff_head *list,
1121 struct sk_buff_head *head)
1122 {
1123 if (!skb_queue_empty(list)) {
1124 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1125 head->qlen += list->qlen;
1126 }
1127 }
1128
1129 /**
1130 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1131 * @list: the new list to add
1132 * @head: the place to add it in the first list
1133 *
1134 * The list at @list is reinitialised
1135 */
1136 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1137 struct sk_buff_head *head)
1138 {
1139 if (!skb_queue_empty(list)) {
1140 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1141 head->qlen += list->qlen;
1142 __skb_queue_head_init(list);
1143 }
1144 }
1145
1146 /**
1147 * skb_queue_splice_tail - join two skb lists, each list being a queue
1148 * @list: the new list to add
1149 * @head: the place to add it in the first list
1150 */
1151 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1152 struct sk_buff_head *head)
1153 {
1154 if (!skb_queue_empty(list)) {
1155 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1156 head->qlen += list->qlen;
1157 }
1158 }
1159
1160 /**
1161 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1162 * @list: the new list to add
1163 * @head: the place to add it in the first list
1164 *
1165 * Each of the lists is a queue.
1166 * The list at @list is reinitialised
1167 */
1168 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1169 struct sk_buff_head *head)
1170 {
1171 if (!skb_queue_empty(list)) {
1172 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1173 head->qlen += list->qlen;
1174 __skb_queue_head_init(list);
1175 }
1176 }
1177
1178 /**
1179 * __skb_queue_after - queue a buffer at the list head
1180 * @list: list to use
1181 * @prev: place after this buffer
1182 * @newsk: buffer to queue
1183 *
1184 * Queue a buffer int the middle of a list. This function takes no locks
1185 * and you must therefore hold required locks before calling it.
1186 *
1187 * A buffer cannot be placed on two lists at the same time.
1188 */
1189 static inline void __skb_queue_after(struct sk_buff_head *list,
1190 struct sk_buff *prev,
1191 struct sk_buff *newsk)
1192 {
1193 __skb_insert(newsk, prev, prev->next, list);
1194 }
1195
1196 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1197 struct sk_buff_head *list);
1198
1199 static inline void __skb_queue_before(struct sk_buff_head *list,
1200 struct sk_buff *next,
1201 struct sk_buff *newsk)
1202 {
1203 __skb_insert(newsk, next->prev, next, list);
1204 }
1205
1206 /**
1207 * __skb_queue_head - queue a buffer at the list head
1208 * @list: list to use
1209 * @newsk: buffer to queue
1210 *
1211 * Queue a buffer at the start of a list. This function takes no locks
1212 * and you must therefore hold required locks before calling it.
1213 *
1214 * A buffer cannot be placed on two lists at the same time.
1215 */
1216 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1217 static inline void __skb_queue_head(struct sk_buff_head *list,
1218 struct sk_buff *newsk)
1219 {
1220 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1221 }
1222
1223 /**
1224 * __skb_queue_tail - queue a buffer at the list tail
1225 * @list: list to use
1226 * @newsk: buffer to queue
1227 *
1228 * Queue a buffer at the end of a list. This function takes no locks
1229 * and you must therefore hold required locks before calling it.
1230 *
1231 * A buffer cannot be placed on two lists at the same time.
1232 */
1233 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1234 static inline void __skb_queue_tail(struct sk_buff_head *list,
1235 struct sk_buff *newsk)
1236 {
1237 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1238 }
1239
1240 /*
1241 * remove sk_buff from list. _Must_ be called atomically, and with
1242 * the list known..
1243 */
1244 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1245 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1246 {
1247 struct sk_buff *next, *prev;
1248
1249 list->qlen--;
1250 next = skb->next;
1251 prev = skb->prev;
1252 skb->next = skb->prev = NULL;
1253 next->prev = prev;
1254 prev->next = next;
1255 }
1256
1257 /**
1258 * __skb_dequeue - remove from the head of the queue
1259 * @list: list to dequeue from
1260 *
1261 * Remove the head of the list. This function does not take any locks
1262 * so must be used with appropriate locks held only. The head item is
1263 * returned or %NULL if the list is empty.
1264 */
1265 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1266 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1267 {
1268 struct sk_buff *skb = skb_peek(list);
1269 if (skb)
1270 __skb_unlink(skb, list);
1271 return skb;
1272 }
1273
1274 /**
1275 * __skb_dequeue_tail - remove from the tail of the queue
1276 * @list: list to dequeue from
1277 *
1278 * Remove the tail of the list. This function does not take any locks
1279 * so must be used with appropriate locks held only. The tail item is
1280 * returned or %NULL if the list is empty.
1281 */
1282 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1283 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1284 {
1285 struct sk_buff *skb = skb_peek_tail(list);
1286 if (skb)
1287 __skb_unlink(skb, list);
1288 return skb;
1289 }
1290
1291
1292 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1293 {
1294 return skb->data_len;
1295 }
1296
1297 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1298 {
1299 return skb->len - skb->data_len;
1300 }
1301
1302 static inline int skb_pagelen(const struct sk_buff *skb)
1303 {
1304 int i, len = 0;
1305
1306 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1307 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1308 return len + skb_headlen(skb);
1309 }
1310
1311 /**
1312 * __skb_fill_page_desc - initialise a paged fragment in an skb
1313 * @skb: buffer containing fragment to be initialised
1314 * @i: paged fragment index to initialise
1315 * @page: the page to use for this fragment
1316 * @off: the offset to the data with @page
1317 * @size: the length of the data
1318 *
1319 * Initialises the @i'th fragment of @skb to point to &size bytes at
1320 * offset @off within @page.
1321 *
1322 * Does not take any additional reference on the fragment.
1323 */
1324 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1325 struct page *page, int off, int size)
1326 {
1327 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1328
1329 /*
1330 * Propagate page->pfmemalloc to the skb if we can. The problem is
1331 * that not all callers have unique ownership of the page. If
1332 * pfmemalloc is set, we check the mapping as a mapping implies
1333 * page->index is set (index and pfmemalloc share space).
1334 * If it's a valid mapping, we cannot use page->pfmemalloc but we
1335 * do not lose pfmemalloc information as the pages would not be
1336 * allocated using __GFP_MEMALLOC.
1337 */
1338 frag->page.p = page;
1339 frag->page_offset = off;
1340 skb_frag_size_set(frag, size);
1341
1342 page = compound_head(page);
1343 if (page->pfmemalloc && !page->mapping)
1344 skb->pfmemalloc = true;
1345 }
1346
1347 /**
1348 * skb_fill_page_desc - initialise a paged fragment in an skb
1349 * @skb: buffer containing fragment to be initialised
1350 * @i: paged fragment index to initialise
1351 * @page: the page to use for this fragment
1352 * @off: the offset to the data with @page
1353 * @size: the length of the data
1354 *
1355 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1356 * @skb to point to &size bytes at offset @off within @page. In
1357 * addition updates @skb such that @i is the last fragment.
1358 *
1359 * Does not take any additional reference on the fragment.
1360 */
1361 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1362 struct page *page, int off, int size)
1363 {
1364 __skb_fill_page_desc(skb, i, page, off, size);
1365 skb_shinfo(skb)->nr_frags = i + 1;
1366 }
1367
1368 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1369 int size, unsigned int truesize);
1370
1371 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1372 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1373 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1374
1375 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1376 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1377 {
1378 return skb->head + skb->tail;
1379 }
1380
1381 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1382 {
1383 skb->tail = skb->data - skb->head;
1384 }
1385
1386 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1387 {
1388 skb_reset_tail_pointer(skb);
1389 skb->tail += offset;
1390 }
1391
1392 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1393 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1394 {
1395 return skb->tail;
1396 }
1397
1398 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1399 {
1400 skb->tail = skb->data;
1401 }
1402
1403 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1404 {
1405 skb->tail = skb->data + offset;
1406 }
1407
1408 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1409
1410 /*
1411 * Add data to an sk_buff
1412 */
1413 unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1414 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1415 {
1416 unsigned char *tmp = skb_tail_pointer(skb);
1417 SKB_LINEAR_ASSERT(skb);
1418 skb->tail += len;
1419 skb->len += len;
1420 return tmp;
1421 }
1422
1423 unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1424 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1425 {
1426 skb->data -= len;
1427 skb->len += len;
1428 return skb->data;
1429 }
1430
1431 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1432 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1433 {
1434 skb->len -= len;
1435 BUG_ON(skb->len < skb->data_len);
1436 return skb->data += len;
1437 }
1438
1439 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1440 {
1441 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1442 }
1443
1444 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1445
1446 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1447 {
1448 if (len > skb_headlen(skb) &&
1449 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1450 return NULL;
1451 skb->len -= len;
1452 return skb->data += len;
1453 }
1454
1455 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1456 {
1457 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1458 }
1459
1460 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1461 {
1462 if (likely(len <= skb_headlen(skb)))
1463 return 1;
1464 if (unlikely(len > skb->len))
1465 return 0;
1466 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1467 }
1468
1469 /**
1470 * skb_headroom - bytes at buffer head
1471 * @skb: buffer to check
1472 *
1473 * Return the number of bytes of free space at the head of an &sk_buff.
1474 */
1475 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1476 {
1477 return skb->data - skb->head;
1478 }
1479
1480 /**
1481 * skb_tailroom - bytes at buffer end
1482 * @skb: buffer to check
1483 *
1484 * Return the number of bytes of free space at the tail of an sk_buff
1485 */
1486 static inline int skb_tailroom(const struct sk_buff *skb)
1487 {
1488 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1489 }
1490
1491 /**
1492 * skb_availroom - bytes at buffer end
1493 * @skb: buffer to check
1494 *
1495 * Return the number of bytes of free space at the tail of an sk_buff
1496 * allocated by sk_stream_alloc()
1497 */
1498 static inline int skb_availroom(const struct sk_buff *skb)
1499 {
1500 if (skb_is_nonlinear(skb))
1501 return 0;
1502
1503 return skb->end - skb->tail - skb->reserved_tailroom;
1504 }
1505
1506 /**
1507 * skb_reserve - adjust headroom
1508 * @skb: buffer to alter
1509 * @len: bytes to move
1510 *
1511 * Increase the headroom of an empty &sk_buff by reducing the tail
1512 * room. This is only allowed for an empty buffer.
1513 */
1514 static inline void skb_reserve(struct sk_buff *skb, int len)
1515 {
1516 skb->data += len;
1517 skb->tail += len;
1518 }
1519
1520 static inline void skb_reset_inner_headers(struct sk_buff *skb)
1521 {
1522 skb->inner_mac_header = skb->mac_header;
1523 skb->inner_network_header = skb->network_header;
1524 skb->inner_transport_header = skb->transport_header;
1525 }
1526
1527 static inline void skb_reset_mac_len(struct sk_buff *skb)
1528 {
1529 skb->mac_len = skb->network_header - skb->mac_header;
1530 }
1531
1532 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
1533 *skb)
1534 {
1535 return skb->head + skb->inner_transport_header;
1536 }
1537
1538 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
1539 {
1540 skb->inner_transport_header = skb->data - skb->head;
1541 }
1542
1543 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
1544 const int offset)
1545 {
1546 skb_reset_inner_transport_header(skb);
1547 skb->inner_transport_header += offset;
1548 }
1549
1550 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
1551 {
1552 return skb->head + skb->inner_network_header;
1553 }
1554
1555 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
1556 {
1557 skb->inner_network_header = skb->data - skb->head;
1558 }
1559
1560 static inline void skb_set_inner_network_header(struct sk_buff *skb,
1561 const int offset)
1562 {
1563 skb_reset_inner_network_header(skb);
1564 skb->inner_network_header += offset;
1565 }
1566
1567 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
1568 {
1569 return skb->head + skb->inner_mac_header;
1570 }
1571
1572 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
1573 {
1574 skb->inner_mac_header = skb->data - skb->head;
1575 }
1576
1577 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
1578 const int offset)
1579 {
1580 skb_reset_inner_mac_header(skb);
1581 skb->inner_mac_header += offset;
1582 }
1583 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
1584 {
1585 return skb->transport_header != (typeof(skb->transport_header))~0U;
1586 }
1587
1588 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1589 {
1590 return skb->head + skb->transport_header;
1591 }
1592
1593 static inline void skb_reset_transport_header(struct sk_buff *skb)
1594 {
1595 skb->transport_header = skb->data - skb->head;
1596 }
1597
1598 static inline void skb_set_transport_header(struct sk_buff *skb,
1599 const int offset)
1600 {
1601 skb_reset_transport_header(skb);
1602 skb->transport_header += offset;
1603 }
1604
1605 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1606 {
1607 return skb->head + skb->network_header;
1608 }
1609
1610 static inline void skb_reset_network_header(struct sk_buff *skb)
1611 {
1612 skb->network_header = skb->data - skb->head;
1613 }
1614
1615 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1616 {
1617 skb_reset_network_header(skb);
1618 skb->network_header += offset;
1619 }
1620
1621 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1622 {
1623 return skb->head + skb->mac_header;
1624 }
1625
1626 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1627 {
1628 return skb->mac_header != (typeof(skb->mac_header))~0U;
1629 }
1630
1631 static inline void skb_reset_mac_header(struct sk_buff *skb)
1632 {
1633 skb->mac_header = skb->data - skb->head;
1634 }
1635
1636 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1637 {
1638 skb_reset_mac_header(skb);
1639 skb->mac_header += offset;
1640 }
1641
1642 static inline void skb_probe_transport_header(struct sk_buff *skb,
1643 const int offset_hint)
1644 {
1645 struct flow_keys keys;
1646
1647 if (skb_transport_header_was_set(skb))
1648 return;
1649 else if (skb_flow_dissect(skb, &keys))
1650 skb_set_transport_header(skb, keys.thoff);
1651 else
1652 skb_set_transport_header(skb, offset_hint);
1653 }
1654
1655 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
1656 {
1657 if (skb_mac_header_was_set(skb)) {
1658 const unsigned char *old_mac = skb_mac_header(skb);
1659
1660 skb_set_mac_header(skb, -skb->mac_len);
1661 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
1662 }
1663 }
1664
1665 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1666 {
1667 return skb->csum_start - skb_headroom(skb);
1668 }
1669
1670 static inline int skb_transport_offset(const struct sk_buff *skb)
1671 {
1672 return skb_transport_header(skb) - skb->data;
1673 }
1674
1675 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1676 {
1677 return skb->transport_header - skb->network_header;
1678 }
1679
1680 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
1681 {
1682 return skb->inner_transport_header - skb->inner_network_header;
1683 }
1684
1685 static inline int skb_network_offset(const struct sk_buff *skb)
1686 {
1687 return skb_network_header(skb) - skb->data;
1688 }
1689
1690 static inline int skb_inner_network_offset(const struct sk_buff *skb)
1691 {
1692 return skb_inner_network_header(skb) - skb->data;
1693 }
1694
1695 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1696 {
1697 return pskb_may_pull(skb, skb_network_offset(skb) + len);
1698 }
1699
1700 /*
1701 * CPUs often take a performance hit when accessing unaligned memory
1702 * locations. The actual performance hit varies, it can be small if the
1703 * hardware handles it or large if we have to take an exception and fix it
1704 * in software.
1705 *
1706 * Since an ethernet header is 14 bytes network drivers often end up with
1707 * the IP header at an unaligned offset. The IP header can be aligned by
1708 * shifting the start of the packet by 2 bytes. Drivers should do this
1709 * with:
1710 *
1711 * skb_reserve(skb, NET_IP_ALIGN);
1712 *
1713 * The downside to this alignment of the IP header is that the DMA is now
1714 * unaligned. On some architectures the cost of an unaligned DMA is high
1715 * and this cost outweighs the gains made by aligning the IP header.
1716 *
1717 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1718 * to be overridden.
1719 */
1720 #ifndef NET_IP_ALIGN
1721 #define NET_IP_ALIGN 2
1722 #endif
1723
1724 /*
1725 * The networking layer reserves some headroom in skb data (via
1726 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1727 * the header has to grow. In the default case, if the header has to grow
1728 * 32 bytes or less we avoid the reallocation.
1729 *
1730 * Unfortunately this headroom changes the DMA alignment of the resulting
1731 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1732 * on some architectures. An architecture can override this value,
1733 * perhaps setting it to a cacheline in size (since that will maintain
1734 * cacheline alignment of the DMA). It must be a power of 2.
1735 *
1736 * Various parts of the networking layer expect at least 32 bytes of
1737 * headroom, you should not reduce this.
1738 *
1739 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
1740 * to reduce average number of cache lines per packet.
1741 * get_rps_cpus() for example only access one 64 bytes aligned block :
1742 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
1743 */
1744 #ifndef NET_SKB_PAD
1745 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
1746 #endif
1747
1748 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1749
1750 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1751 {
1752 if (unlikely(skb_is_nonlinear(skb))) {
1753 WARN_ON(1);
1754 return;
1755 }
1756 skb->len = len;
1757 skb_set_tail_pointer(skb, len);
1758 }
1759
1760 void skb_trim(struct sk_buff *skb, unsigned int len);
1761
1762 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1763 {
1764 if (skb->data_len)
1765 return ___pskb_trim(skb, len);
1766 __skb_trim(skb, len);
1767 return 0;
1768 }
1769
1770 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1771 {
1772 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1773 }
1774
1775 /**
1776 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1777 * @skb: buffer to alter
1778 * @len: new length
1779 *
1780 * This is identical to pskb_trim except that the caller knows that
1781 * the skb is not cloned so we should never get an error due to out-
1782 * of-memory.
1783 */
1784 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1785 {
1786 int err = pskb_trim(skb, len);
1787 BUG_ON(err);
1788 }
1789
1790 /**
1791 * skb_orphan - orphan a buffer
1792 * @skb: buffer to orphan
1793 *
1794 * If a buffer currently has an owner then we call the owner's
1795 * destructor function and make the @skb unowned. The buffer continues
1796 * to exist but is no longer charged to its former owner.
1797 */
1798 static inline void skb_orphan(struct sk_buff *skb)
1799 {
1800 if (skb->destructor) {
1801 skb->destructor(skb);
1802 skb->destructor = NULL;
1803 skb->sk = NULL;
1804 } else {
1805 BUG_ON(skb->sk);
1806 }
1807 }
1808
1809 /**
1810 * skb_orphan_frags - orphan the frags contained in a buffer
1811 * @skb: buffer to orphan frags from
1812 * @gfp_mask: allocation mask for replacement pages
1813 *
1814 * For each frag in the SKB which needs a destructor (i.e. has an
1815 * owner) create a copy of that frag and release the original
1816 * page by calling the destructor.
1817 */
1818 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
1819 {
1820 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
1821 return 0;
1822 return skb_copy_ubufs(skb, gfp_mask);
1823 }
1824
1825 /**
1826 * __skb_queue_purge - empty a list
1827 * @list: list to empty
1828 *
1829 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1830 * the list and one reference dropped. This function does not take the
1831 * list lock and the caller must hold the relevant locks to use it.
1832 */
1833 void skb_queue_purge(struct sk_buff_head *list);
1834 static inline void __skb_queue_purge(struct sk_buff_head *list)
1835 {
1836 struct sk_buff *skb;
1837 while ((skb = __skb_dequeue(list)) != NULL)
1838 kfree_skb(skb);
1839 }
1840
1841 #define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768)
1842 #define NETDEV_FRAG_PAGE_MAX_SIZE (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER)
1843 #define NETDEV_PAGECNT_MAX_BIAS NETDEV_FRAG_PAGE_MAX_SIZE
1844
1845 void *netdev_alloc_frag(unsigned int fragsz);
1846
1847 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
1848 gfp_t gfp_mask);
1849
1850 /**
1851 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1852 * @dev: network device to receive on
1853 * @length: length to allocate
1854 *
1855 * Allocate a new &sk_buff and assign it a usage count of one. The
1856 * buffer has unspecified headroom built in. Users should allocate
1857 * the headroom they think they need without accounting for the
1858 * built in space. The built in space is used for optimisations.
1859 *
1860 * %NULL is returned if there is no free memory. Although this function
1861 * allocates memory it can be called from an interrupt.
1862 */
1863 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1864 unsigned int length)
1865 {
1866 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1867 }
1868
1869 /* legacy helper around __netdev_alloc_skb() */
1870 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1871 gfp_t gfp_mask)
1872 {
1873 return __netdev_alloc_skb(NULL, length, gfp_mask);
1874 }
1875
1876 /* legacy helper around netdev_alloc_skb() */
1877 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1878 {
1879 return netdev_alloc_skb(NULL, length);
1880 }
1881
1882
1883 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
1884 unsigned int length, gfp_t gfp)
1885 {
1886 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
1887
1888 if (NET_IP_ALIGN && skb)
1889 skb_reserve(skb, NET_IP_ALIGN);
1890 return skb;
1891 }
1892
1893 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
1894 unsigned int length)
1895 {
1896 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
1897 }
1898
1899 /**
1900 * __skb_alloc_pages - allocate pages for ps-rx on a skb and preserve pfmemalloc data
1901 * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX
1902 * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used
1903 * @order: size of the allocation
1904 *
1905 * Allocate a new page.
1906 *
1907 * %NULL is returned if there is no free memory.
1908 */
1909 static inline struct page *__skb_alloc_pages(gfp_t gfp_mask,
1910 struct sk_buff *skb,
1911 unsigned int order)
1912 {
1913 struct page *page;
1914
1915 gfp_mask |= __GFP_COLD;
1916
1917 if (!(gfp_mask & __GFP_NOMEMALLOC))
1918 gfp_mask |= __GFP_MEMALLOC;
1919
1920 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
1921 if (skb && page && page->pfmemalloc)
1922 skb->pfmemalloc = true;
1923
1924 return page;
1925 }
1926
1927 /**
1928 * __skb_alloc_page - allocate a page for ps-rx for a given skb and preserve pfmemalloc data
1929 * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX
1930 * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used
1931 *
1932 * Allocate a new page.
1933 *
1934 * %NULL is returned if there is no free memory.
1935 */
1936 static inline struct page *__skb_alloc_page(gfp_t gfp_mask,
1937 struct sk_buff *skb)
1938 {
1939 return __skb_alloc_pages(gfp_mask, skb, 0);
1940 }
1941
1942 /**
1943 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
1944 * @page: The page that was allocated from skb_alloc_page
1945 * @skb: The skb that may need pfmemalloc set
1946 */
1947 static inline void skb_propagate_pfmemalloc(struct page *page,
1948 struct sk_buff *skb)
1949 {
1950 if (page && page->pfmemalloc)
1951 skb->pfmemalloc = true;
1952 }
1953
1954 /**
1955 * skb_frag_page - retrieve the page refered to by a paged fragment
1956 * @frag: the paged fragment
1957 *
1958 * Returns the &struct page associated with @frag.
1959 */
1960 static inline struct page *skb_frag_page(const skb_frag_t *frag)
1961 {
1962 return frag->page.p;
1963 }
1964
1965 /**
1966 * __skb_frag_ref - take an addition reference on a paged fragment.
1967 * @frag: the paged fragment
1968 *
1969 * Takes an additional reference on the paged fragment @frag.
1970 */
1971 static inline void __skb_frag_ref(skb_frag_t *frag)
1972 {
1973 get_page(skb_frag_page(frag));
1974 }
1975
1976 /**
1977 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
1978 * @skb: the buffer
1979 * @f: the fragment offset.
1980 *
1981 * Takes an additional reference on the @f'th paged fragment of @skb.
1982 */
1983 static inline void skb_frag_ref(struct sk_buff *skb, int f)
1984 {
1985 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
1986 }
1987
1988 /**
1989 * __skb_frag_unref - release a reference on a paged fragment.
1990 * @frag: the paged fragment
1991 *
1992 * Releases a reference on the paged fragment @frag.
1993 */
1994 static inline void __skb_frag_unref(skb_frag_t *frag)
1995 {
1996 put_page(skb_frag_page(frag));
1997 }
1998
1999 /**
2000 * skb_frag_unref - release a reference on a paged fragment of an skb.
2001 * @skb: the buffer
2002 * @f: the fragment offset
2003 *
2004 * Releases a reference on the @f'th paged fragment of @skb.
2005 */
2006 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2007 {
2008 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2009 }
2010
2011 /**
2012 * skb_frag_address - gets the address of the data contained in a paged fragment
2013 * @frag: the paged fragment buffer
2014 *
2015 * Returns the address of the data within @frag. The page must already
2016 * be mapped.
2017 */
2018 static inline void *skb_frag_address(const skb_frag_t *frag)
2019 {
2020 return page_address(skb_frag_page(frag)) + frag->page_offset;
2021 }
2022
2023 /**
2024 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2025 * @frag: the paged fragment buffer
2026 *
2027 * Returns the address of the data within @frag. Checks that the page
2028 * is mapped and returns %NULL otherwise.
2029 */
2030 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2031 {
2032 void *ptr = page_address(skb_frag_page(frag));
2033 if (unlikely(!ptr))
2034 return NULL;
2035
2036 return ptr + frag->page_offset;
2037 }
2038
2039 /**
2040 * __skb_frag_set_page - sets the page contained in a paged fragment
2041 * @frag: the paged fragment
2042 * @page: the page to set
2043 *
2044 * Sets the fragment @frag to contain @page.
2045 */
2046 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2047 {
2048 frag->page.p = page;
2049 }
2050
2051 /**
2052 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2053 * @skb: the buffer
2054 * @f: the fragment offset
2055 * @page: the page to set
2056 *
2057 * Sets the @f'th fragment of @skb to contain @page.
2058 */
2059 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2060 struct page *page)
2061 {
2062 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2063 }
2064
2065 /**
2066 * skb_frag_dma_map - maps a paged fragment via the DMA API
2067 * @dev: the device to map the fragment to
2068 * @frag: the paged fragment to map
2069 * @offset: the offset within the fragment (starting at the
2070 * fragment's own offset)
2071 * @size: the number of bytes to map
2072 * @dir: the direction of the mapping (%PCI_DMA_*)
2073 *
2074 * Maps the page associated with @frag to @device.
2075 */
2076 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2077 const skb_frag_t *frag,
2078 size_t offset, size_t size,
2079 enum dma_data_direction dir)
2080 {
2081 return dma_map_page(dev, skb_frag_page(frag),
2082 frag->page_offset + offset, size, dir);
2083 }
2084
2085 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2086 gfp_t gfp_mask)
2087 {
2088 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2089 }
2090
2091 /**
2092 * skb_clone_writable - is the header of a clone writable
2093 * @skb: buffer to check
2094 * @len: length up to which to write
2095 *
2096 * Returns true if modifying the header part of the cloned buffer
2097 * does not requires the data to be copied.
2098 */
2099 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2100 {
2101 return !skb_header_cloned(skb) &&
2102 skb_headroom(skb) + len <= skb->hdr_len;
2103 }
2104
2105 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2106 int cloned)
2107 {
2108 int delta = 0;
2109
2110 if (headroom > skb_headroom(skb))
2111 delta = headroom - skb_headroom(skb);
2112
2113 if (delta || cloned)
2114 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2115 GFP_ATOMIC);
2116 return 0;
2117 }
2118
2119 /**
2120 * skb_cow - copy header of skb when it is required
2121 * @skb: buffer to cow
2122 * @headroom: needed headroom
2123 *
2124 * If the skb passed lacks sufficient headroom or its data part
2125 * is shared, data is reallocated. If reallocation fails, an error
2126 * is returned and original skb is not changed.
2127 *
2128 * The result is skb with writable area skb->head...skb->tail
2129 * and at least @headroom of space at head.
2130 */
2131 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2132 {
2133 return __skb_cow(skb, headroom, skb_cloned(skb));
2134 }
2135
2136 /**
2137 * skb_cow_head - skb_cow but only making the head writable
2138 * @skb: buffer to cow
2139 * @headroom: needed headroom
2140 *
2141 * This function is identical to skb_cow except that we replace the
2142 * skb_cloned check by skb_header_cloned. It should be used when
2143 * you only need to push on some header and do not need to modify
2144 * the data.
2145 */
2146 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2147 {
2148 return __skb_cow(skb, headroom, skb_header_cloned(skb));
2149 }
2150
2151 /**
2152 * skb_padto - pad an skbuff up to a minimal size
2153 * @skb: buffer to pad
2154 * @len: minimal length
2155 *
2156 * Pads up a buffer to ensure the trailing bytes exist and are
2157 * blanked. If the buffer already contains sufficient data it
2158 * is untouched. Otherwise it is extended. Returns zero on
2159 * success. The skb is freed on error.
2160 */
2161
2162 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2163 {
2164 unsigned int size = skb->len;
2165 if (likely(size >= len))
2166 return 0;
2167 return skb_pad(skb, len - size);
2168 }
2169
2170 static inline int skb_add_data(struct sk_buff *skb,
2171 char __user *from, int copy)
2172 {
2173 const int off = skb->len;
2174
2175 if (skb->ip_summed == CHECKSUM_NONE) {
2176 int err = 0;
2177 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
2178 copy, 0, &err);
2179 if (!err) {
2180 skb->csum = csum_block_add(skb->csum, csum, off);
2181 return 0;
2182 }
2183 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
2184 return 0;
2185
2186 __skb_trim(skb, off);
2187 return -EFAULT;
2188 }
2189
2190 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2191 const struct page *page, int off)
2192 {
2193 if (i) {
2194 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
2195
2196 return page == skb_frag_page(frag) &&
2197 off == frag->page_offset + skb_frag_size(frag);
2198 }
2199 return false;
2200 }
2201
2202 static inline int __skb_linearize(struct sk_buff *skb)
2203 {
2204 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2205 }
2206
2207 /**
2208 * skb_linearize - convert paged skb to linear one
2209 * @skb: buffer to linarize
2210 *
2211 * If there is no free memory -ENOMEM is returned, otherwise zero
2212 * is returned and the old skb data released.
2213 */
2214 static inline int skb_linearize(struct sk_buff *skb)
2215 {
2216 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2217 }
2218
2219 /**
2220 * skb_has_shared_frag - can any frag be overwritten
2221 * @skb: buffer to test
2222 *
2223 * Return true if the skb has at least one frag that might be modified
2224 * by an external entity (as in vmsplice()/sendfile())
2225 */
2226 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
2227 {
2228 return skb_is_nonlinear(skb) &&
2229 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2230 }
2231
2232 /**
2233 * skb_linearize_cow - make sure skb is linear and writable
2234 * @skb: buffer to process
2235 *
2236 * If there is no free memory -ENOMEM is returned, otherwise zero
2237 * is returned and the old skb data released.
2238 */
2239 static inline int skb_linearize_cow(struct sk_buff *skb)
2240 {
2241 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2242 __skb_linearize(skb) : 0;
2243 }
2244
2245 /**
2246 * skb_postpull_rcsum - update checksum for received skb after pull
2247 * @skb: buffer to update
2248 * @start: start of data before pull
2249 * @len: length of data pulled
2250 *
2251 * After doing a pull on a received packet, you need to call this to
2252 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2253 * CHECKSUM_NONE so that it can be recomputed from scratch.
2254 */
2255
2256 static inline void skb_postpull_rcsum(struct sk_buff *skb,
2257 const void *start, unsigned int len)
2258 {
2259 if (skb->ip_summed == CHECKSUM_COMPLETE)
2260 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2261 }
2262
2263 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2264
2265 /**
2266 * pskb_trim_rcsum - trim received skb and update checksum
2267 * @skb: buffer to trim
2268 * @len: new length
2269 *
2270 * This is exactly the same as pskb_trim except that it ensures the
2271 * checksum of received packets are still valid after the operation.
2272 */
2273
2274 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2275 {
2276 if (likely(len >= skb->len))
2277 return 0;
2278 if (skb->ip_summed == CHECKSUM_COMPLETE)
2279 skb->ip_summed = CHECKSUM_NONE;
2280 return __pskb_trim(skb, len);
2281 }
2282
2283 #define skb_queue_walk(queue, skb) \
2284 for (skb = (queue)->next; \
2285 skb != (struct sk_buff *)(queue); \
2286 skb = skb->next)
2287
2288 #define skb_queue_walk_safe(queue, skb, tmp) \
2289 for (skb = (queue)->next, tmp = skb->next; \
2290 skb != (struct sk_buff *)(queue); \
2291 skb = tmp, tmp = skb->next)
2292
2293 #define skb_queue_walk_from(queue, skb) \
2294 for (; skb != (struct sk_buff *)(queue); \
2295 skb = skb->next)
2296
2297 #define skb_queue_walk_from_safe(queue, skb, tmp) \
2298 for (tmp = skb->next; \
2299 skb != (struct sk_buff *)(queue); \
2300 skb = tmp, tmp = skb->next)
2301
2302 #define skb_queue_reverse_walk(queue, skb) \
2303 for (skb = (queue)->prev; \
2304 skb != (struct sk_buff *)(queue); \
2305 skb = skb->prev)
2306
2307 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
2308 for (skb = (queue)->prev, tmp = skb->prev; \
2309 skb != (struct sk_buff *)(queue); \
2310 skb = tmp, tmp = skb->prev)
2311
2312 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
2313 for (tmp = skb->prev; \
2314 skb != (struct sk_buff *)(queue); \
2315 skb = tmp, tmp = skb->prev)
2316
2317 static inline bool skb_has_frag_list(const struct sk_buff *skb)
2318 {
2319 return skb_shinfo(skb)->frag_list != NULL;
2320 }
2321
2322 static inline void skb_frag_list_init(struct sk_buff *skb)
2323 {
2324 skb_shinfo(skb)->frag_list = NULL;
2325 }
2326
2327 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
2328 {
2329 frag->next = skb_shinfo(skb)->frag_list;
2330 skb_shinfo(skb)->frag_list = frag;
2331 }
2332
2333 #define skb_walk_frags(skb, iter) \
2334 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2335
2336 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2337 int *peeked, int *off, int *err);
2338 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
2339 int *err);
2340 unsigned int datagram_poll(struct file *file, struct socket *sock,
2341 struct poll_table_struct *wait);
2342 int skb_copy_datagram_iovec(const struct sk_buff *from, int offset,
2343 struct iovec *to, int size);
2344 int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, int hlen,
2345 struct iovec *iov);
2346 int skb_copy_datagram_from_iovec(struct sk_buff *skb, int offset,
2347 const struct iovec *from, int from_offset,
2348 int len);
2349 int zerocopy_sg_from_iovec(struct sk_buff *skb, const struct iovec *frm,
2350 int offset, size_t count);
2351 int skb_copy_datagram_const_iovec(const struct sk_buff *from, int offset,
2352 const struct iovec *to, int to_offset,
2353 int size);
2354 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2355 void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb);
2356 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
2357 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
2358 __wsum csum);
2359 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
2360 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
2361 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
2362 int len, __wsum csum);
2363 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
2364 struct pipe_inode_info *pipe, unsigned int len,
2365 unsigned int flags);
2366 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2367 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
2368 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
2369 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
2370
2371 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
2372
2373 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
2374 int len, void *buffer)
2375 {
2376 int hlen = skb_headlen(skb);
2377
2378 if (hlen - offset >= len)
2379 return skb->data + offset;
2380
2381 if (skb_copy_bits(skb, offset, buffer, len) < 0)
2382 return NULL;
2383
2384 return buffer;
2385 }
2386
2387 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2388 void *to,
2389 const unsigned int len)
2390 {
2391 memcpy(to, skb->data, len);
2392 }
2393
2394 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2395 const int offset, void *to,
2396 const unsigned int len)
2397 {
2398 memcpy(to, skb->data + offset, len);
2399 }
2400
2401 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2402 const void *from,
2403 const unsigned int len)
2404 {
2405 memcpy(skb->data, from, len);
2406 }
2407
2408 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2409 const int offset,
2410 const void *from,
2411 const unsigned int len)
2412 {
2413 memcpy(skb->data + offset, from, len);
2414 }
2415
2416 void skb_init(void);
2417
2418 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2419 {
2420 return skb->tstamp;
2421 }
2422
2423 /**
2424 * skb_get_timestamp - get timestamp from a skb
2425 * @skb: skb to get stamp from
2426 * @stamp: pointer to struct timeval to store stamp in
2427 *
2428 * Timestamps are stored in the skb as offsets to a base timestamp.
2429 * This function converts the offset back to a struct timeval and stores
2430 * it in stamp.
2431 */
2432 static inline void skb_get_timestamp(const struct sk_buff *skb,
2433 struct timeval *stamp)
2434 {
2435 *stamp = ktime_to_timeval(skb->tstamp);
2436 }
2437
2438 static inline void skb_get_timestampns(const struct sk_buff *skb,
2439 struct timespec *stamp)
2440 {
2441 *stamp = ktime_to_timespec(skb->tstamp);
2442 }
2443
2444 static inline void __net_timestamp(struct sk_buff *skb)
2445 {
2446 skb->tstamp = ktime_get_real();
2447 }
2448
2449 static inline ktime_t net_timedelta(ktime_t t)
2450 {
2451 return ktime_sub(ktime_get_real(), t);
2452 }
2453
2454 static inline ktime_t net_invalid_timestamp(void)
2455 {
2456 return ktime_set(0, 0);
2457 }
2458
2459 void skb_timestamping_init(void);
2460
2461 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2462
2463 void skb_clone_tx_timestamp(struct sk_buff *skb);
2464 bool skb_defer_rx_timestamp(struct sk_buff *skb);
2465
2466 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2467
2468 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2469 {
2470 }
2471
2472 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2473 {
2474 return false;
2475 }
2476
2477 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2478
2479 /**
2480 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2481 *
2482 * PHY drivers may accept clones of transmitted packets for
2483 * timestamping via their phy_driver.txtstamp method. These drivers
2484 * must call this function to return the skb back to the stack, with
2485 * or without a timestamp.
2486 *
2487 * @skb: clone of the the original outgoing packet
2488 * @hwtstamps: hardware time stamps, may be NULL if not available
2489 *
2490 */
2491 void skb_complete_tx_timestamp(struct sk_buff *skb,
2492 struct skb_shared_hwtstamps *hwtstamps);
2493
2494 /**
2495 * skb_tstamp_tx - queue clone of skb with send time stamps
2496 * @orig_skb: the original outgoing packet
2497 * @hwtstamps: hardware time stamps, may be NULL if not available
2498 *
2499 * If the skb has a socket associated, then this function clones the
2500 * skb (thus sharing the actual data and optional structures), stores
2501 * the optional hardware time stamping information (if non NULL) or
2502 * generates a software time stamp (otherwise), then queues the clone
2503 * to the error queue of the socket. Errors are silently ignored.
2504 */
2505 void skb_tstamp_tx(struct sk_buff *orig_skb,
2506 struct skb_shared_hwtstamps *hwtstamps);
2507
2508 static inline void sw_tx_timestamp(struct sk_buff *skb)
2509 {
2510 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2511 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2512 skb_tstamp_tx(skb, NULL);
2513 }
2514
2515 /**
2516 * skb_tx_timestamp() - Driver hook for transmit timestamping
2517 *
2518 * Ethernet MAC Drivers should call this function in their hard_xmit()
2519 * function immediately before giving the sk_buff to the MAC hardware.
2520 *
2521 * @skb: A socket buffer.
2522 */
2523 static inline void skb_tx_timestamp(struct sk_buff *skb)
2524 {
2525 skb_clone_tx_timestamp(skb);
2526 sw_tx_timestamp(skb);
2527 }
2528
2529 /**
2530 * skb_complete_wifi_ack - deliver skb with wifi status
2531 *
2532 * @skb: the original outgoing packet
2533 * @acked: ack status
2534 *
2535 */
2536 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
2537
2538 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2539 __sum16 __skb_checksum_complete(struct sk_buff *skb);
2540
2541 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2542 {
2543 return skb->ip_summed & CHECKSUM_UNNECESSARY;
2544 }
2545
2546 /**
2547 * skb_checksum_complete - Calculate checksum of an entire packet
2548 * @skb: packet to process
2549 *
2550 * This function calculates the checksum over the entire packet plus
2551 * the value of skb->csum. The latter can be used to supply the
2552 * checksum of a pseudo header as used by TCP/UDP. It returns the
2553 * checksum.
2554 *
2555 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
2556 * this function can be used to verify that checksum on received
2557 * packets. In that case the function should return zero if the
2558 * checksum is correct. In particular, this function will return zero
2559 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2560 * hardware has already verified the correctness of the checksum.
2561 */
2562 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2563 {
2564 return skb_csum_unnecessary(skb) ?
2565 0 : __skb_checksum_complete(skb);
2566 }
2567
2568 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2569 void nf_conntrack_destroy(struct nf_conntrack *nfct);
2570 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
2571 {
2572 if (nfct && atomic_dec_and_test(&nfct->use))
2573 nf_conntrack_destroy(nfct);
2574 }
2575 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
2576 {
2577 if (nfct)
2578 atomic_inc(&nfct->use);
2579 }
2580 #endif
2581 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2582 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
2583 {
2584 if (skb)
2585 atomic_inc(&skb->users);
2586 }
2587 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
2588 {
2589 if (skb)
2590 kfree_skb(skb);
2591 }
2592 #endif
2593 #ifdef CONFIG_BRIDGE_NETFILTER
2594 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
2595 {
2596 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
2597 kfree(nf_bridge);
2598 }
2599 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
2600 {
2601 if (nf_bridge)
2602 atomic_inc(&nf_bridge->use);
2603 }
2604 #endif /* CONFIG_BRIDGE_NETFILTER */
2605 static inline void nf_reset(struct sk_buff *skb)
2606 {
2607 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2608 nf_conntrack_put(skb->nfct);
2609 skb->nfct = NULL;
2610 #endif
2611 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2612 nf_conntrack_put_reasm(skb->nfct_reasm);
2613 skb->nfct_reasm = NULL;
2614 #endif
2615 #ifdef CONFIG_BRIDGE_NETFILTER
2616 nf_bridge_put(skb->nf_bridge);
2617 skb->nf_bridge = NULL;
2618 #endif
2619 }
2620
2621 static inline void nf_reset_trace(struct sk_buff *skb)
2622 {
2623 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
2624 skb->nf_trace = 0;
2625 #endif
2626 }
2627
2628 /* Note: This doesn't put any conntrack and bridge info in dst. */
2629 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2630 {
2631 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2632 dst->nfct = src->nfct;
2633 nf_conntrack_get(src->nfct);
2634 dst->nfctinfo = src->nfctinfo;
2635 #endif
2636 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2637 dst->nfct_reasm = src->nfct_reasm;
2638 nf_conntrack_get_reasm(src->nfct_reasm);
2639 #endif
2640 #ifdef CONFIG_BRIDGE_NETFILTER
2641 dst->nf_bridge = src->nf_bridge;
2642 nf_bridge_get(src->nf_bridge);
2643 #endif
2644 }
2645
2646 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2647 {
2648 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2649 nf_conntrack_put(dst->nfct);
2650 #endif
2651 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2652 nf_conntrack_put_reasm(dst->nfct_reasm);
2653 #endif
2654 #ifdef CONFIG_BRIDGE_NETFILTER
2655 nf_bridge_put(dst->nf_bridge);
2656 #endif
2657 __nf_copy(dst, src);
2658 }
2659
2660 #ifdef CONFIG_NETWORK_SECMARK
2661 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2662 {
2663 to->secmark = from->secmark;
2664 }
2665
2666 static inline void skb_init_secmark(struct sk_buff *skb)
2667 {
2668 skb->secmark = 0;
2669 }
2670 #else
2671 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2672 { }
2673
2674 static inline void skb_init_secmark(struct sk_buff *skb)
2675 { }
2676 #endif
2677
2678 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2679 {
2680 skb->queue_mapping = queue_mapping;
2681 }
2682
2683 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2684 {
2685 return skb->queue_mapping;
2686 }
2687
2688 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2689 {
2690 to->queue_mapping = from->queue_mapping;
2691 }
2692
2693 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2694 {
2695 skb->queue_mapping = rx_queue + 1;
2696 }
2697
2698 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2699 {
2700 return skb->queue_mapping - 1;
2701 }
2702
2703 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2704 {
2705 return skb->queue_mapping != 0;
2706 }
2707
2708 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2709 unsigned int num_tx_queues);
2710
2711 #ifdef CONFIG_XFRM
2712 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2713 {
2714 return skb->sp;
2715 }
2716 #else
2717 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2718 {
2719 return NULL;
2720 }
2721 #endif
2722
2723 /* Keeps track of mac header offset relative to skb->head.
2724 * It is useful for TSO of Tunneling protocol. e.g. GRE.
2725 * For non-tunnel skb it points to skb_mac_header() and for
2726 * tunnel skb it points to outer mac header. */
2727 struct skb_gso_cb {
2728 int mac_offset;
2729 };
2730 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb)
2731
2732 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
2733 {
2734 return (skb_mac_header(inner_skb) - inner_skb->head) -
2735 SKB_GSO_CB(inner_skb)->mac_offset;
2736 }
2737
2738 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
2739 {
2740 int new_headroom, headroom;
2741 int ret;
2742
2743 headroom = skb_headroom(skb);
2744 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
2745 if (ret)
2746 return ret;
2747
2748 new_headroom = skb_headroom(skb);
2749 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
2750 return 0;
2751 }
2752
2753 static inline bool skb_is_gso(const struct sk_buff *skb)
2754 {
2755 return skb_shinfo(skb)->gso_size;
2756 }
2757
2758 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
2759 {
2760 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2761 }
2762
2763 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2764
2765 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2766 {
2767 /* LRO sets gso_size but not gso_type, whereas if GSO is really
2768 * wanted then gso_type will be set. */
2769 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2770
2771 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
2772 unlikely(shinfo->gso_type == 0)) {
2773 __skb_warn_lro_forwarding(skb);
2774 return true;
2775 }
2776 return false;
2777 }
2778
2779 static inline void skb_forward_csum(struct sk_buff *skb)
2780 {
2781 /* Unfortunately we don't support this one. Any brave souls? */
2782 if (skb->ip_summed == CHECKSUM_COMPLETE)
2783 skb->ip_summed = CHECKSUM_NONE;
2784 }
2785
2786 /**
2787 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
2788 * @skb: skb to check
2789 *
2790 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
2791 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
2792 * use this helper, to document places where we make this assertion.
2793 */
2794 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
2795 {
2796 #ifdef DEBUG
2797 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
2798 #endif
2799 }
2800
2801 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2802
2803 u32 __skb_get_poff(const struct sk_buff *skb);
2804
2805 /**
2806 * skb_head_is_locked - Determine if the skb->head is locked down
2807 * @skb: skb to check
2808 *
2809 * The head on skbs build around a head frag can be removed if they are
2810 * not cloned. This function returns true if the skb head is locked down
2811 * due to either being allocated via kmalloc, or by being a clone with
2812 * multiple references to the head.
2813 */
2814 static inline bool skb_head_is_locked(const struct sk_buff *skb)
2815 {
2816 return !skb->head_frag || skb_cloned(skb);
2817 }
2818 #endif /* __KERNEL__ */
2819 #endif /* _LINUX_SKBUFF_H */
This page took 0.104005 seconds and 6 git commands to generate.