[IFB]: Fix crash on input device removal
[deliverable/linux.git] / include / linux / skbuff.h
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/cache.h>
21
22 #include <asm/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/net.h>
26 #include <linux/textsearch.h>
27 #include <net/checksum.h>
28 #include <linux/rcupdate.h>
29 #include <linux/dmaengine.h>
30
31 #define HAVE_ALLOC_SKB /* For the drivers to know */
32 #define HAVE_ALIGNABLE_SKB /* Ditto 8) */
33
34 #define CHECKSUM_NONE 0
35 #define CHECKSUM_PARTIAL 1
36 #define CHECKSUM_UNNECESSARY 2
37 #define CHECKSUM_COMPLETE 3
38
39 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
40 ~(SMP_CACHE_BYTES - 1))
41 #define SKB_MAX_ORDER(X, ORDER) (((PAGE_SIZE << (ORDER)) - (X) - \
42 sizeof(struct skb_shared_info)) & \
43 ~(SMP_CACHE_BYTES - 1))
44 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
45 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
46
47 /* A. Checksumming of received packets by device.
48 *
49 * NONE: device failed to checksum this packet.
50 * skb->csum is undefined.
51 *
52 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
53 * skb->csum is undefined.
54 * It is bad option, but, unfortunately, many of vendors do this.
55 * Apparently with secret goal to sell you new device, when you
56 * will add new protocol to your host. F.e. IPv6. 8)
57 *
58 * COMPLETE: the most generic way. Device supplied checksum of _all_
59 * the packet as seen by netif_rx in skb->csum.
60 * NOTE: Even if device supports only some protocols, but
61 * is able to produce some skb->csum, it MUST use COMPLETE,
62 * not UNNECESSARY.
63 *
64 * B. Checksumming on output.
65 *
66 * NONE: skb is checksummed by protocol or csum is not required.
67 *
68 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
69 * from skb->h.raw to the end and to record the checksum
70 * at skb->h.raw+skb->csum.
71 *
72 * Device must show its capabilities in dev->features, set
73 * at device setup time.
74 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
75 * everything.
76 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
77 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
78 * TCP/UDP over IPv4. Sigh. Vendors like this
79 * way by an unknown reason. Though, see comment above
80 * about CHECKSUM_UNNECESSARY. 8)
81 *
82 * Any questions? No questions, good. --ANK
83 */
84
85 struct net_device;
86
87 #ifdef CONFIG_NETFILTER
88 struct nf_conntrack {
89 atomic_t use;
90 void (*destroy)(struct nf_conntrack *);
91 };
92
93 #ifdef CONFIG_BRIDGE_NETFILTER
94 struct nf_bridge_info {
95 atomic_t use;
96 struct net_device *physindev;
97 struct net_device *physoutdev;
98 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
99 struct net_device *netoutdev;
100 #endif
101 unsigned int mask;
102 unsigned long data[32 / sizeof(unsigned long)];
103 };
104 #endif
105
106 #endif
107
108 struct sk_buff_head {
109 /* These two members must be first. */
110 struct sk_buff *next;
111 struct sk_buff *prev;
112
113 __u32 qlen;
114 spinlock_t lock;
115 };
116
117 struct sk_buff;
118
119 /* To allow 64K frame to be packed as single skb without frag_list */
120 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
121
122 typedef struct skb_frag_struct skb_frag_t;
123
124 struct skb_frag_struct {
125 struct page *page;
126 __u16 page_offset;
127 __u16 size;
128 };
129
130 /* This data is invariant across clones and lives at
131 * the end of the header data, ie. at skb->end.
132 */
133 struct skb_shared_info {
134 atomic_t dataref;
135 unsigned short nr_frags;
136 unsigned short gso_size;
137 /* Warning: this field is not always filled in (UFO)! */
138 unsigned short gso_segs;
139 unsigned short gso_type;
140 __be32 ip6_frag_id;
141 struct sk_buff *frag_list;
142 skb_frag_t frags[MAX_SKB_FRAGS];
143 };
144
145 /* We divide dataref into two halves. The higher 16 bits hold references
146 * to the payload part of skb->data. The lower 16 bits hold references to
147 * the entire skb->data. It is up to the users of the skb to agree on
148 * where the payload starts.
149 *
150 * All users must obey the rule that the skb->data reference count must be
151 * greater than or equal to the payload reference count.
152 *
153 * Holding a reference to the payload part means that the user does not
154 * care about modifications to the header part of skb->data.
155 */
156 #define SKB_DATAREF_SHIFT 16
157 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
158
159 struct skb_timeval {
160 u32 off_sec;
161 u32 off_usec;
162 };
163
164
165 enum {
166 SKB_FCLONE_UNAVAILABLE,
167 SKB_FCLONE_ORIG,
168 SKB_FCLONE_CLONE,
169 };
170
171 enum {
172 SKB_GSO_TCPV4 = 1 << 0,
173 SKB_GSO_UDP = 1 << 1,
174
175 /* This indicates the skb is from an untrusted source. */
176 SKB_GSO_DODGY = 1 << 2,
177
178 /* This indicates the tcp segment has CWR set. */
179 SKB_GSO_TCP_ECN = 1 << 3,
180
181 SKB_GSO_TCPV6 = 1 << 4,
182 };
183
184 /**
185 * struct sk_buff - socket buffer
186 * @next: Next buffer in list
187 * @prev: Previous buffer in list
188 * @sk: Socket we are owned by
189 * @tstamp: Time we arrived
190 * @dev: Device we arrived on/are leaving by
191 * @iif: ifindex of device we arrived on
192 * @h: Transport layer header
193 * @nh: Network layer header
194 * @mac: Link layer header
195 * @dst: destination entry
196 * @sp: the security path, used for xfrm
197 * @cb: Control buffer. Free for use by every layer. Put private vars here
198 * @len: Length of actual data
199 * @data_len: Data length
200 * @mac_len: Length of link layer header
201 * @csum: Checksum
202 * @local_df: allow local fragmentation
203 * @cloned: Head may be cloned (check refcnt to be sure)
204 * @nohdr: Payload reference only, must not modify header
205 * @pkt_type: Packet class
206 * @fclone: skbuff clone status
207 * @ip_summed: Driver fed us an IP checksum
208 * @priority: Packet queueing priority
209 * @users: User count - see {datagram,tcp}.c
210 * @protocol: Packet protocol from driver
211 * @truesize: Buffer size
212 * @head: Head of buffer
213 * @data: Data head pointer
214 * @tail: Tail pointer
215 * @end: End pointer
216 * @destructor: Destruct function
217 * @mark: Generic packet mark
218 * @nfct: Associated connection, if any
219 * @ipvs_property: skbuff is owned by ipvs
220 * @nfctinfo: Relationship of this skb to the connection
221 * @nfct_reasm: netfilter conntrack re-assembly pointer
222 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
223 * @tc_index: Traffic control index
224 * @tc_verd: traffic control verdict
225 * @dma_cookie: a cookie to one of several possible DMA operations
226 * done by skb DMA functions
227 * @secmark: security marking
228 */
229
230 struct sk_buff {
231 /* These two members must be first. */
232 struct sk_buff *next;
233 struct sk_buff *prev;
234
235 struct sock *sk;
236 struct skb_timeval tstamp;
237 struct net_device *dev;
238 int iif;
239 /* 4 byte hole on 64 bit*/
240
241 union {
242 struct tcphdr *th;
243 struct udphdr *uh;
244 struct icmphdr *icmph;
245 struct igmphdr *igmph;
246 struct iphdr *ipiph;
247 struct ipv6hdr *ipv6h;
248 unsigned char *raw;
249 } h;
250
251 union {
252 struct iphdr *iph;
253 struct ipv6hdr *ipv6h;
254 struct arphdr *arph;
255 unsigned char *raw;
256 } nh;
257
258 union {
259 unsigned char *raw;
260 } mac;
261
262 struct dst_entry *dst;
263 struct sec_path *sp;
264
265 /*
266 * This is the control buffer. It is free to use for every
267 * layer. Please put your private variables there. If you
268 * want to keep them across layers you have to do a skb_clone()
269 * first. This is owned by whoever has the skb queued ATM.
270 */
271 char cb[48];
272
273 unsigned int len,
274 data_len,
275 mac_len;
276 union {
277 __wsum csum;
278 __u32 csum_offset;
279 };
280 __u32 priority;
281 __u8 local_df:1,
282 cloned:1,
283 ip_summed:2,
284 nohdr:1,
285 nfctinfo:3;
286 __u8 pkt_type:3,
287 fclone:2,
288 ipvs_property:1;
289 __be16 protocol;
290
291 void (*destructor)(struct sk_buff *skb);
292 #ifdef CONFIG_NETFILTER
293 struct nf_conntrack *nfct;
294 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
295 struct sk_buff *nfct_reasm;
296 #endif
297 #ifdef CONFIG_BRIDGE_NETFILTER
298 struct nf_bridge_info *nf_bridge;
299 #endif
300 #endif /* CONFIG_NETFILTER */
301 #ifdef CONFIG_NET_SCHED
302 __u16 tc_index; /* traffic control index */
303 #ifdef CONFIG_NET_CLS_ACT
304 __u16 tc_verd; /* traffic control verdict */
305 #endif
306 #endif
307 #ifdef CONFIG_NET_DMA
308 dma_cookie_t dma_cookie;
309 #endif
310 #ifdef CONFIG_NETWORK_SECMARK
311 __u32 secmark;
312 #endif
313
314 __u32 mark;
315
316 /* These elements must be at the end, see alloc_skb() for details. */
317 unsigned int truesize;
318 atomic_t users;
319 unsigned char *head,
320 *data,
321 *tail,
322 *end;
323 };
324
325 #ifdef __KERNEL__
326 /*
327 * Handling routines are only of interest to the kernel
328 */
329 #include <linux/slab.h>
330
331 #include <asm/system.h>
332
333 extern void kfree_skb(struct sk_buff *skb);
334 extern void __kfree_skb(struct sk_buff *skb);
335 extern struct sk_buff *__alloc_skb(unsigned int size,
336 gfp_t priority, int fclone, int node);
337 static inline struct sk_buff *alloc_skb(unsigned int size,
338 gfp_t priority)
339 {
340 return __alloc_skb(size, priority, 0, -1);
341 }
342
343 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
344 gfp_t priority)
345 {
346 return __alloc_skb(size, priority, 1, -1);
347 }
348
349 extern struct sk_buff *alloc_skb_from_cache(struct kmem_cache *cp,
350 unsigned int size,
351 gfp_t priority);
352 extern void kfree_skbmem(struct sk_buff *skb);
353 extern struct sk_buff *skb_clone(struct sk_buff *skb,
354 gfp_t priority);
355 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
356 gfp_t priority);
357 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
358 gfp_t gfp_mask);
359 extern int pskb_expand_head(struct sk_buff *skb,
360 int nhead, int ntail,
361 gfp_t gfp_mask);
362 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
363 unsigned int headroom);
364 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
365 int newheadroom, int newtailroom,
366 gfp_t priority);
367 extern int skb_pad(struct sk_buff *skb, int pad);
368 #define dev_kfree_skb(a) kfree_skb(a)
369 extern void skb_over_panic(struct sk_buff *skb, int len,
370 void *here);
371 extern void skb_under_panic(struct sk_buff *skb, int len,
372 void *here);
373 extern void skb_truesize_bug(struct sk_buff *skb);
374
375 static inline void skb_truesize_check(struct sk_buff *skb)
376 {
377 if (unlikely((int)skb->truesize < sizeof(struct sk_buff) + skb->len))
378 skb_truesize_bug(skb);
379 }
380
381 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
382 int getfrag(void *from, char *to, int offset,
383 int len,int odd, struct sk_buff *skb),
384 void *from, int length);
385
386 struct skb_seq_state
387 {
388 __u32 lower_offset;
389 __u32 upper_offset;
390 __u32 frag_idx;
391 __u32 stepped_offset;
392 struct sk_buff *root_skb;
393 struct sk_buff *cur_skb;
394 __u8 *frag_data;
395 };
396
397 extern void skb_prepare_seq_read(struct sk_buff *skb,
398 unsigned int from, unsigned int to,
399 struct skb_seq_state *st);
400 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
401 struct skb_seq_state *st);
402 extern void skb_abort_seq_read(struct skb_seq_state *st);
403
404 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
405 unsigned int to, struct ts_config *config,
406 struct ts_state *state);
407
408 /* Internal */
409 #define skb_shinfo(SKB) ((struct skb_shared_info *)((SKB)->end))
410
411 /**
412 * skb_queue_empty - check if a queue is empty
413 * @list: queue head
414 *
415 * Returns true if the queue is empty, false otherwise.
416 */
417 static inline int skb_queue_empty(const struct sk_buff_head *list)
418 {
419 return list->next == (struct sk_buff *)list;
420 }
421
422 /**
423 * skb_get - reference buffer
424 * @skb: buffer to reference
425 *
426 * Makes another reference to a socket buffer and returns a pointer
427 * to the buffer.
428 */
429 static inline struct sk_buff *skb_get(struct sk_buff *skb)
430 {
431 atomic_inc(&skb->users);
432 return skb;
433 }
434
435 /*
436 * If users == 1, we are the only owner and are can avoid redundant
437 * atomic change.
438 */
439
440 /**
441 * skb_cloned - is the buffer a clone
442 * @skb: buffer to check
443 *
444 * Returns true if the buffer was generated with skb_clone() and is
445 * one of multiple shared copies of the buffer. Cloned buffers are
446 * shared data so must not be written to under normal circumstances.
447 */
448 static inline int skb_cloned(const struct sk_buff *skb)
449 {
450 return skb->cloned &&
451 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
452 }
453
454 /**
455 * skb_header_cloned - is the header a clone
456 * @skb: buffer to check
457 *
458 * Returns true if modifying the header part of the buffer requires
459 * the data to be copied.
460 */
461 static inline int skb_header_cloned(const struct sk_buff *skb)
462 {
463 int dataref;
464
465 if (!skb->cloned)
466 return 0;
467
468 dataref = atomic_read(&skb_shinfo(skb)->dataref);
469 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
470 return dataref != 1;
471 }
472
473 /**
474 * skb_header_release - release reference to header
475 * @skb: buffer to operate on
476 *
477 * Drop a reference to the header part of the buffer. This is done
478 * by acquiring a payload reference. You must not read from the header
479 * part of skb->data after this.
480 */
481 static inline void skb_header_release(struct sk_buff *skb)
482 {
483 BUG_ON(skb->nohdr);
484 skb->nohdr = 1;
485 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
486 }
487
488 /**
489 * skb_shared - is the buffer shared
490 * @skb: buffer to check
491 *
492 * Returns true if more than one person has a reference to this
493 * buffer.
494 */
495 static inline int skb_shared(const struct sk_buff *skb)
496 {
497 return atomic_read(&skb->users) != 1;
498 }
499
500 /**
501 * skb_share_check - check if buffer is shared and if so clone it
502 * @skb: buffer to check
503 * @pri: priority for memory allocation
504 *
505 * If the buffer is shared the buffer is cloned and the old copy
506 * drops a reference. A new clone with a single reference is returned.
507 * If the buffer is not shared the original buffer is returned. When
508 * being called from interrupt status or with spinlocks held pri must
509 * be GFP_ATOMIC.
510 *
511 * NULL is returned on a memory allocation failure.
512 */
513 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
514 gfp_t pri)
515 {
516 might_sleep_if(pri & __GFP_WAIT);
517 if (skb_shared(skb)) {
518 struct sk_buff *nskb = skb_clone(skb, pri);
519 kfree_skb(skb);
520 skb = nskb;
521 }
522 return skb;
523 }
524
525 /*
526 * Copy shared buffers into a new sk_buff. We effectively do COW on
527 * packets to handle cases where we have a local reader and forward
528 * and a couple of other messy ones. The normal one is tcpdumping
529 * a packet thats being forwarded.
530 */
531
532 /**
533 * skb_unshare - make a copy of a shared buffer
534 * @skb: buffer to check
535 * @pri: priority for memory allocation
536 *
537 * If the socket buffer is a clone then this function creates a new
538 * copy of the data, drops a reference count on the old copy and returns
539 * the new copy with the reference count at 1. If the buffer is not a clone
540 * the original buffer is returned. When called with a spinlock held or
541 * from interrupt state @pri must be %GFP_ATOMIC
542 *
543 * %NULL is returned on a memory allocation failure.
544 */
545 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
546 gfp_t pri)
547 {
548 might_sleep_if(pri & __GFP_WAIT);
549 if (skb_cloned(skb)) {
550 struct sk_buff *nskb = skb_copy(skb, pri);
551 kfree_skb(skb); /* Free our shared copy */
552 skb = nskb;
553 }
554 return skb;
555 }
556
557 /**
558 * skb_peek
559 * @list_: list to peek at
560 *
561 * Peek an &sk_buff. Unlike most other operations you _MUST_
562 * be careful with this one. A peek leaves the buffer on the
563 * list and someone else may run off with it. You must hold
564 * the appropriate locks or have a private queue to do this.
565 *
566 * Returns %NULL for an empty list or a pointer to the head element.
567 * The reference count is not incremented and the reference is therefore
568 * volatile. Use with caution.
569 */
570 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
571 {
572 struct sk_buff *list = ((struct sk_buff *)list_)->next;
573 if (list == (struct sk_buff *)list_)
574 list = NULL;
575 return list;
576 }
577
578 /**
579 * skb_peek_tail
580 * @list_: list to peek at
581 *
582 * Peek an &sk_buff. Unlike most other operations you _MUST_
583 * be careful with this one. A peek leaves the buffer on the
584 * list and someone else may run off with it. You must hold
585 * the appropriate locks or have a private queue to do this.
586 *
587 * Returns %NULL for an empty list or a pointer to the tail element.
588 * The reference count is not incremented and the reference is therefore
589 * volatile. Use with caution.
590 */
591 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
592 {
593 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
594 if (list == (struct sk_buff *)list_)
595 list = NULL;
596 return list;
597 }
598
599 /**
600 * skb_queue_len - get queue length
601 * @list_: list to measure
602 *
603 * Return the length of an &sk_buff queue.
604 */
605 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
606 {
607 return list_->qlen;
608 }
609
610 /*
611 * This function creates a split out lock class for each invocation;
612 * this is needed for now since a whole lot of users of the skb-queue
613 * infrastructure in drivers have different locking usage (in hardirq)
614 * than the networking core (in softirq only). In the long run either the
615 * network layer or drivers should need annotation to consolidate the
616 * main types of usage into 3 classes.
617 */
618 static inline void skb_queue_head_init(struct sk_buff_head *list)
619 {
620 spin_lock_init(&list->lock);
621 list->prev = list->next = (struct sk_buff *)list;
622 list->qlen = 0;
623 }
624
625 /*
626 * Insert an sk_buff at the start of a list.
627 *
628 * The "__skb_xxxx()" functions are the non-atomic ones that
629 * can only be called with interrupts disabled.
630 */
631
632 /**
633 * __skb_queue_after - queue a buffer at the list head
634 * @list: list to use
635 * @prev: place after this buffer
636 * @newsk: buffer to queue
637 *
638 * Queue a buffer int the middle of a list. This function takes no locks
639 * and you must therefore hold required locks before calling it.
640 *
641 * A buffer cannot be placed on two lists at the same time.
642 */
643 static inline void __skb_queue_after(struct sk_buff_head *list,
644 struct sk_buff *prev,
645 struct sk_buff *newsk)
646 {
647 struct sk_buff *next;
648 list->qlen++;
649
650 next = prev->next;
651 newsk->next = next;
652 newsk->prev = prev;
653 next->prev = prev->next = newsk;
654 }
655
656 /**
657 * __skb_queue_head - queue a buffer at the list head
658 * @list: list to use
659 * @newsk: buffer to queue
660 *
661 * Queue a buffer at the start of a list. This function takes no locks
662 * and you must therefore hold required locks before calling it.
663 *
664 * A buffer cannot be placed on two lists at the same time.
665 */
666 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
667 static inline void __skb_queue_head(struct sk_buff_head *list,
668 struct sk_buff *newsk)
669 {
670 __skb_queue_after(list, (struct sk_buff *)list, newsk);
671 }
672
673 /**
674 * __skb_queue_tail - queue a buffer at the list tail
675 * @list: list to use
676 * @newsk: buffer to queue
677 *
678 * Queue a buffer at the end of a list. This function takes no locks
679 * and you must therefore hold required locks before calling it.
680 *
681 * A buffer cannot be placed on two lists at the same time.
682 */
683 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
684 static inline void __skb_queue_tail(struct sk_buff_head *list,
685 struct sk_buff *newsk)
686 {
687 struct sk_buff *prev, *next;
688
689 list->qlen++;
690 next = (struct sk_buff *)list;
691 prev = next->prev;
692 newsk->next = next;
693 newsk->prev = prev;
694 next->prev = prev->next = newsk;
695 }
696
697
698 /**
699 * __skb_dequeue - remove from the head of the queue
700 * @list: list to dequeue from
701 *
702 * Remove the head of the list. This function does not take any locks
703 * so must be used with appropriate locks held only. The head item is
704 * returned or %NULL if the list is empty.
705 */
706 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
707 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
708 {
709 struct sk_buff *next, *prev, *result;
710
711 prev = (struct sk_buff *) list;
712 next = prev->next;
713 result = NULL;
714 if (next != prev) {
715 result = next;
716 next = next->next;
717 list->qlen--;
718 next->prev = prev;
719 prev->next = next;
720 result->next = result->prev = NULL;
721 }
722 return result;
723 }
724
725
726 /*
727 * Insert a packet on a list.
728 */
729 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
730 static inline void __skb_insert(struct sk_buff *newsk,
731 struct sk_buff *prev, struct sk_buff *next,
732 struct sk_buff_head *list)
733 {
734 newsk->next = next;
735 newsk->prev = prev;
736 next->prev = prev->next = newsk;
737 list->qlen++;
738 }
739
740 /*
741 * Place a packet after a given packet in a list.
742 */
743 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
744 static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
745 {
746 __skb_insert(newsk, old, old->next, list);
747 }
748
749 /*
750 * remove sk_buff from list. _Must_ be called atomically, and with
751 * the list known..
752 */
753 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
754 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
755 {
756 struct sk_buff *next, *prev;
757
758 list->qlen--;
759 next = skb->next;
760 prev = skb->prev;
761 skb->next = skb->prev = NULL;
762 next->prev = prev;
763 prev->next = next;
764 }
765
766
767 /* XXX: more streamlined implementation */
768
769 /**
770 * __skb_dequeue_tail - remove from the tail of the queue
771 * @list: list to dequeue from
772 *
773 * Remove the tail of the list. This function does not take any locks
774 * so must be used with appropriate locks held only. The tail item is
775 * returned or %NULL if the list is empty.
776 */
777 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
778 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
779 {
780 struct sk_buff *skb = skb_peek_tail(list);
781 if (skb)
782 __skb_unlink(skb, list);
783 return skb;
784 }
785
786
787 static inline int skb_is_nonlinear(const struct sk_buff *skb)
788 {
789 return skb->data_len;
790 }
791
792 static inline unsigned int skb_headlen(const struct sk_buff *skb)
793 {
794 return skb->len - skb->data_len;
795 }
796
797 static inline int skb_pagelen(const struct sk_buff *skb)
798 {
799 int i, len = 0;
800
801 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
802 len += skb_shinfo(skb)->frags[i].size;
803 return len + skb_headlen(skb);
804 }
805
806 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
807 struct page *page, int off, int size)
808 {
809 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
810
811 frag->page = page;
812 frag->page_offset = off;
813 frag->size = size;
814 skb_shinfo(skb)->nr_frags = i + 1;
815 }
816
817 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
818 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
819 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
820
821 /*
822 * Add data to an sk_buff
823 */
824 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
825 {
826 unsigned char *tmp = skb->tail;
827 SKB_LINEAR_ASSERT(skb);
828 skb->tail += len;
829 skb->len += len;
830 return tmp;
831 }
832
833 /**
834 * skb_put - add data to a buffer
835 * @skb: buffer to use
836 * @len: amount of data to add
837 *
838 * This function extends the used data area of the buffer. If this would
839 * exceed the total buffer size the kernel will panic. A pointer to the
840 * first byte of the extra data is returned.
841 */
842 static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
843 {
844 unsigned char *tmp = skb->tail;
845 SKB_LINEAR_ASSERT(skb);
846 skb->tail += len;
847 skb->len += len;
848 if (unlikely(skb->tail>skb->end))
849 skb_over_panic(skb, len, current_text_addr());
850 return tmp;
851 }
852
853 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
854 {
855 skb->data -= len;
856 skb->len += len;
857 return skb->data;
858 }
859
860 /**
861 * skb_push - add data to the start of a buffer
862 * @skb: buffer to use
863 * @len: amount of data to add
864 *
865 * This function extends the used data area of the buffer at the buffer
866 * start. If this would exceed the total buffer headroom the kernel will
867 * panic. A pointer to the first byte of the extra data is returned.
868 */
869 static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
870 {
871 skb->data -= len;
872 skb->len += len;
873 if (unlikely(skb->data<skb->head))
874 skb_under_panic(skb, len, current_text_addr());
875 return skb->data;
876 }
877
878 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
879 {
880 skb->len -= len;
881 BUG_ON(skb->len < skb->data_len);
882 return skb->data += len;
883 }
884
885 /**
886 * skb_pull - remove data from the start of a buffer
887 * @skb: buffer to use
888 * @len: amount of data to remove
889 *
890 * This function removes data from the start of a buffer, returning
891 * the memory to the headroom. A pointer to the next data in the buffer
892 * is returned. Once the data has been pulled future pushes will overwrite
893 * the old data.
894 */
895 static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
896 {
897 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
898 }
899
900 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
901
902 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
903 {
904 if (len > skb_headlen(skb) &&
905 !__pskb_pull_tail(skb, len-skb_headlen(skb)))
906 return NULL;
907 skb->len -= len;
908 return skb->data += len;
909 }
910
911 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
912 {
913 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
914 }
915
916 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
917 {
918 if (likely(len <= skb_headlen(skb)))
919 return 1;
920 if (unlikely(len > skb->len))
921 return 0;
922 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
923 }
924
925 /**
926 * skb_headroom - bytes at buffer head
927 * @skb: buffer to check
928 *
929 * Return the number of bytes of free space at the head of an &sk_buff.
930 */
931 static inline int skb_headroom(const struct sk_buff *skb)
932 {
933 return skb->data - skb->head;
934 }
935
936 /**
937 * skb_tailroom - bytes at buffer end
938 * @skb: buffer to check
939 *
940 * Return the number of bytes of free space at the tail of an sk_buff
941 */
942 static inline int skb_tailroom(const struct sk_buff *skb)
943 {
944 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
945 }
946
947 /**
948 * skb_reserve - adjust headroom
949 * @skb: buffer to alter
950 * @len: bytes to move
951 *
952 * Increase the headroom of an empty &sk_buff by reducing the tail
953 * room. This is only allowed for an empty buffer.
954 */
955 static inline void skb_reserve(struct sk_buff *skb, int len)
956 {
957 skb->data += len;
958 skb->tail += len;
959 }
960
961 /*
962 * CPUs often take a performance hit when accessing unaligned memory
963 * locations. The actual performance hit varies, it can be small if the
964 * hardware handles it or large if we have to take an exception and fix it
965 * in software.
966 *
967 * Since an ethernet header is 14 bytes network drivers often end up with
968 * the IP header at an unaligned offset. The IP header can be aligned by
969 * shifting the start of the packet by 2 bytes. Drivers should do this
970 * with:
971 *
972 * skb_reserve(NET_IP_ALIGN);
973 *
974 * The downside to this alignment of the IP header is that the DMA is now
975 * unaligned. On some architectures the cost of an unaligned DMA is high
976 * and this cost outweighs the gains made by aligning the IP header.
977 *
978 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
979 * to be overridden.
980 */
981 #ifndef NET_IP_ALIGN
982 #define NET_IP_ALIGN 2
983 #endif
984
985 /*
986 * The networking layer reserves some headroom in skb data (via
987 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
988 * the header has to grow. In the default case, if the header has to grow
989 * 16 bytes or less we avoid the reallocation.
990 *
991 * Unfortunately this headroom changes the DMA alignment of the resulting
992 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
993 * on some architectures. An architecture can override this value,
994 * perhaps setting it to a cacheline in size (since that will maintain
995 * cacheline alignment of the DMA). It must be a power of 2.
996 *
997 * Various parts of the networking layer expect at least 16 bytes of
998 * headroom, you should not reduce this.
999 */
1000 #ifndef NET_SKB_PAD
1001 #define NET_SKB_PAD 16
1002 #endif
1003
1004 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1005
1006 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1007 {
1008 if (unlikely(skb->data_len)) {
1009 WARN_ON(1);
1010 return;
1011 }
1012 skb->len = len;
1013 skb->tail = skb->data + len;
1014 }
1015
1016 /**
1017 * skb_trim - remove end from a buffer
1018 * @skb: buffer to alter
1019 * @len: new length
1020 *
1021 * Cut the length of a buffer down by removing data from the tail. If
1022 * the buffer is already under the length specified it is not modified.
1023 * The skb must be linear.
1024 */
1025 static inline void skb_trim(struct sk_buff *skb, unsigned int len)
1026 {
1027 if (skb->len > len)
1028 __skb_trim(skb, len);
1029 }
1030
1031
1032 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1033 {
1034 if (skb->data_len)
1035 return ___pskb_trim(skb, len);
1036 __skb_trim(skb, len);
1037 return 0;
1038 }
1039
1040 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1041 {
1042 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1043 }
1044
1045 /**
1046 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1047 * @skb: buffer to alter
1048 * @len: new length
1049 *
1050 * This is identical to pskb_trim except that the caller knows that
1051 * the skb is not cloned so we should never get an error due to out-
1052 * of-memory.
1053 */
1054 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1055 {
1056 int err = pskb_trim(skb, len);
1057 BUG_ON(err);
1058 }
1059
1060 /**
1061 * skb_orphan - orphan a buffer
1062 * @skb: buffer to orphan
1063 *
1064 * If a buffer currently has an owner then we call the owner's
1065 * destructor function and make the @skb unowned. The buffer continues
1066 * to exist but is no longer charged to its former owner.
1067 */
1068 static inline void skb_orphan(struct sk_buff *skb)
1069 {
1070 if (skb->destructor)
1071 skb->destructor(skb);
1072 skb->destructor = NULL;
1073 skb->sk = NULL;
1074 }
1075
1076 /**
1077 * __skb_queue_purge - empty a list
1078 * @list: list to empty
1079 *
1080 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1081 * the list and one reference dropped. This function does not take the
1082 * list lock and the caller must hold the relevant locks to use it.
1083 */
1084 extern void skb_queue_purge(struct sk_buff_head *list);
1085 static inline void __skb_queue_purge(struct sk_buff_head *list)
1086 {
1087 struct sk_buff *skb;
1088 while ((skb = __skb_dequeue(list)) != NULL)
1089 kfree_skb(skb);
1090 }
1091
1092 /**
1093 * __dev_alloc_skb - allocate an skbuff for receiving
1094 * @length: length to allocate
1095 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1096 *
1097 * Allocate a new &sk_buff and assign it a usage count of one. The
1098 * buffer has unspecified headroom built in. Users should allocate
1099 * the headroom they think they need without accounting for the
1100 * built in space. The built in space is used for optimisations.
1101 *
1102 * %NULL is returned if there is no free memory.
1103 */
1104 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1105 gfp_t gfp_mask)
1106 {
1107 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1108 if (likely(skb))
1109 skb_reserve(skb, NET_SKB_PAD);
1110 return skb;
1111 }
1112
1113 /**
1114 * dev_alloc_skb - allocate an skbuff for receiving
1115 * @length: length to allocate
1116 *
1117 * Allocate a new &sk_buff and assign it a usage count of one. The
1118 * buffer has unspecified headroom built in. Users should allocate
1119 * the headroom they think they need without accounting for the
1120 * built in space. The built in space is used for optimisations.
1121 *
1122 * %NULL is returned if there is no free memory. Although this function
1123 * allocates memory it can be called from an interrupt.
1124 */
1125 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1126 {
1127 return __dev_alloc_skb(length, GFP_ATOMIC);
1128 }
1129
1130 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1131 unsigned int length, gfp_t gfp_mask);
1132
1133 /**
1134 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1135 * @dev: network device to receive on
1136 * @length: length to allocate
1137 *
1138 * Allocate a new &sk_buff and assign it a usage count of one. The
1139 * buffer has unspecified headroom built in. Users should allocate
1140 * the headroom they think they need without accounting for the
1141 * built in space. The built in space is used for optimisations.
1142 *
1143 * %NULL is returned if there is no free memory. Although this function
1144 * allocates memory it can be called from an interrupt.
1145 */
1146 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1147 unsigned int length)
1148 {
1149 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1150 }
1151
1152 /**
1153 * skb_cow - copy header of skb when it is required
1154 * @skb: buffer to cow
1155 * @headroom: needed headroom
1156 *
1157 * If the skb passed lacks sufficient headroom or its data part
1158 * is shared, data is reallocated. If reallocation fails, an error
1159 * is returned and original skb is not changed.
1160 *
1161 * The result is skb with writable area skb->head...skb->tail
1162 * and at least @headroom of space at head.
1163 */
1164 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1165 {
1166 int delta = (headroom > NET_SKB_PAD ? headroom : NET_SKB_PAD) -
1167 skb_headroom(skb);
1168
1169 if (delta < 0)
1170 delta = 0;
1171
1172 if (delta || skb_cloned(skb))
1173 return pskb_expand_head(skb, (delta + (NET_SKB_PAD-1)) &
1174 ~(NET_SKB_PAD-1), 0, GFP_ATOMIC);
1175 return 0;
1176 }
1177
1178 /**
1179 * skb_padto - pad an skbuff up to a minimal size
1180 * @skb: buffer to pad
1181 * @len: minimal length
1182 *
1183 * Pads up a buffer to ensure the trailing bytes exist and are
1184 * blanked. If the buffer already contains sufficient data it
1185 * is untouched. Otherwise it is extended. Returns zero on
1186 * success. The skb is freed on error.
1187 */
1188
1189 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1190 {
1191 unsigned int size = skb->len;
1192 if (likely(size >= len))
1193 return 0;
1194 return skb_pad(skb, len-size);
1195 }
1196
1197 static inline int skb_add_data(struct sk_buff *skb,
1198 char __user *from, int copy)
1199 {
1200 const int off = skb->len;
1201
1202 if (skb->ip_summed == CHECKSUM_NONE) {
1203 int err = 0;
1204 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1205 copy, 0, &err);
1206 if (!err) {
1207 skb->csum = csum_block_add(skb->csum, csum, off);
1208 return 0;
1209 }
1210 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1211 return 0;
1212
1213 __skb_trim(skb, off);
1214 return -EFAULT;
1215 }
1216
1217 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1218 struct page *page, int off)
1219 {
1220 if (i) {
1221 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1222
1223 return page == frag->page &&
1224 off == frag->page_offset + frag->size;
1225 }
1226 return 0;
1227 }
1228
1229 static inline int __skb_linearize(struct sk_buff *skb)
1230 {
1231 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1232 }
1233
1234 /**
1235 * skb_linearize - convert paged skb to linear one
1236 * @skb: buffer to linarize
1237 *
1238 * If there is no free memory -ENOMEM is returned, otherwise zero
1239 * is returned and the old skb data released.
1240 */
1241 static inline int skb_linearize(struct sk_buff *skb)
1242 {
1243 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1244 }
1245
1246 /**
1247 * skb_linearize_cow - make sure skb is linear and writable
1248 * @skb: buffer to process
1249 *
1250 * If there is no free memory -ENOMEM is returned, otherwise zero
1251 * is returned and the old skb data released.
1252 */
1253 static inline int skb_linearize_cow(struct sk_buff *skb)
1254 {
1255 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1256 __skb_linearize(skb) : 0;
1257 }
1258
1259 /**
1260 * skb_postpull_rcsum - update checksum for received skb after pull
1261 * @skb: buffer to update
1262 * @start: start of data before pull
1263 * @len: length of data pulled
1264 *
1265 * After doing a pull on a received packet, you need to call this to
1266 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1267 * CHECKSUM_NONE so that it can be recomputed from scratch.
1268 */
1269
1270 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1271 const void *start, unsigned int len)
1272 {
1273 if (skb->ip_summed == CHECKSUM_COMPLETE)
1274 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1275 }
1276
1277 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1278
1279 /**
1280 * pskb_trim_rcsum - trim received skb and update checksum
1281 * @skb: buffer to trim
1282 * @len: new length
1283 *
1284 * This is exactly the same as pskb_trim except that it ensures the
1285 * checksum of received packets are still valid after the operation.
1286 */
1287
1288 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1289 {
1290 if (likely(len >= skb->len))
1291 return 0;
1292 if (skb->ip_summed == CHECKSUM_COMPLETE)
1293 skb->ip_summed = CHECKSUM_NONE;
1294 return __pskb_trim(skb, len);
1295 }
1296
1297 #define skb_queue_walk(queue, skb) \
1298 for (skb = (queue)->next; \
1299 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1300 skb = skb->next)
1301
1302 #define skb_queue_reverse_walk(queue, skb) \
1303 for (skb = (queue)->prev; \
1304 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1305 skb = skb->prev)
1306
1307
1308 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1309 int noblock, int *err);
1310 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1311 struct poll_table_struct *wait);
1312 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1313 int offset, struct iovec *to,
1314 int size);
1315 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1316 int hlen,
1317 struct iovec *iov);
1318 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1319 extern void skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1320 unsigned int flags);
1321 extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
1322 int len, __wsum csum);
1323 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1324 void *to, int len);
1325 extern int skb_store_bits(const struct sk_buff *skb, int offset,
1326 void *from, int len);
1327 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
1328 int offset, u8 *to, int len,
1329 __wsum csum);
1330 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1331 extern void skb_split(struct sk_buff *skb,
1332 struct sk_buff *skb1, const u32 len);
1333
1334 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1335
1336 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1337 int len, void *buffer)
1338 {
1339 int hlen = skb_headlen(skb);
1340
1341 if (hlen - offset >= len)
1342 return skb->data + offset;
1343
1344 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1345 return NULL;
1346
1347 return buffer;
1348 }
1349
1350 extern void skb_init(void);
1351 extern void skb_add_mtu(int mtu);
1352
1353 /**
1354 * skb_get_timestamp - get timestamp from a skb
1355 * @skb: skb to get stamp from
1356 * @stamp: pointer to struct timeval to store stamp in
1357 *
1358 * Timestamps are stored in the skb as offsets to a base timestamp.
1359 * This function converts the offset back to a struct timeval and stores
1360 * it in stamp.
1361 */
1362 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1363 {
1364 stamp->tv_sec = skb->tstamp.off_sec;
1365 stamp->tv_usec = skb->tstamp.off_usec;
1366 }
1367
1368 /**
1369 * skb_set_timestamp - set timestamp of a skb
1370 * @skb: skb to set stamp of
1371 * @stamp: pointer to struct timeval to get stamp from
1372 *
1373 * Timestamps are stored in the skb as offsets to a base timestamp.
1374 * This function converts a struct timeval to an offset and stores
1375 * it in the skb.
1376 */
1377 static inline void skb_set_timestamp(struct sk_buff *skb, const struct timeval *stamp)
1378 {
1379 skb->tstamp.off_sec = stamp->tv_sec;
1380 skb->tstamp.off_usec = stamp->tv_usec;
1381 }
1382
1383 extern void __net_timestamp(struct sk_buff *skb);
1384
1385 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1386
1387 /**
1388 * skb_checksum_complete - Calculate checksum of an entire packet
1389 * @skb: packet to process
1390 *
1391 * This function calculates the checksum over the entire packet plus
1392 * the value of skb->csum. The latter can be used to supply the
1393 * checksum of a pseudo header as used by TCP/UDP. It returns the
1394 * checksum.
1395 *
1396 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
1397 * this function can be used to verify that checksum on received
1398 * packets. In that case the function should return zero if the
1399 * checksum is correct. In particular, this function will return zero
1400 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1401 * hardware has already verified the correctness of the checksum.
1402 */
1403 static inline unsigned int skb_checksum_complete(struct sk_buff *skb)
1404 {
1405 return skb->ip_summed != CHECKSUM_UNNECESSARY &&
1406 __skb_checksum_complete(skb);
1407 }
1408
1409 #ifdef CONFIG_NETFILTER
1410 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1411 {
1412 if (nfct && atomic_dec_and_test(&nfct->use))
1413 nfct->destroy(nfct);
1414 }
1415 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1416 {
1417 if (nfct)
1418 atomic_inc(&nfct->use);
1419 }
1420 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1421 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1422 {
1423 if (skb)
1424 atomic_inc(&skb->users);
1425 }
1426 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1427 {
1428 if (skb)
1429 kfree_skb(skb);
1430 }
1431 #endif
1432 #ifdef CONFIG_BRIDGE_NETFILTER
1433 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1434 {
1435 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1436 kfree(nf_bridge);
1437 }
1438 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1439 {
1440 if (nf_bridge)
1441 atomic_inc(&nf_bridge->use);
1442 }
1443 #endif /* CONFIG_BRIDGE_NETFILTER */
1444 static inline void nf_reset(struct sk_buff *skb)
1445 {
1446 nf_conntrack_put(skb->nfct);
1447 skb->nfct = NULL;
1448 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1449 nf_conntrack_put_reasm(skb->nfct_reasm);
1450 skb->nfct_reasm = NULL;
1451 #endif
1452 #ifdef CONFIG_BRIDGE_NETFILTER
1453 nf_bridge_put(skb->nf_bridge);
1454 skb->nf_bridge = NULL;
1455 #endif
1456 }
1457
1458 #else /* CONFIG_NETFILTER */
1459 static inline void nf_reset(struct sk_buff *skb) {}
1460 #endif /* CONFIG_NETFILTER */
1461
1462 #ifdef CONFIG_NETWORK_SECMARK
1463 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1464 {
1465 to->secmark = from->secmark;
1466 }
1467
1468 static inline void skb_init_secmark(struct sk_buff *skb)
1469 {
1470 skb->secmark = 0;
1471 }
1472 #else
1473 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1474 { }
1475
1476 static inline void skb_init_secmark(struct sk_buff *skb)
1477 { }
1478 #endif
1479
1480 static inline int skb_is_gso(const struct sk_buff *skb)
1481 {
1482 return skb_shinfo(skb)->gso_size;
1483 }
1484
1485 #endif /* __KERNEL__ */
1486 #endif /* _LINUX_SKBUFF_H */
This page took 0.064866 seconds and 6 git commands to generate.