Merge branch 'for-2.6.25' of git://git.kernel.org/pub/scm/linux/kernel/git/olof/pasem...
[deliverable/linux.git] / include / linux / skbuff.h
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/cache.h>
21
22 #include <asm/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/net.h>
26 #include <linux/textsearch.h>
27 #include <net/checksum.h>
28 #include <linux/rcupdate.h>
29 #include <linux/dmaengine.h>
30 #include <linux/hrtimer.h>
31
32 #define HAVE_ALLOC_SKB /* For the drivers to know */
33 #define HAVE_ALIGNABLE_SKB /* Ditto 8) */
34
35 /* Don't change this without changing skb_csum_unnecessary! */
36 #define CHECKSUM_NONE 0
37 #define CHECKSUM_UNNECESSARY 1
38 #define CHECKSUM_COMPLETE 2
39 #define CHECKSUM_PARTIAL 3
40
41 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
42 ~(SMP_CACHE_BYTES - 1))
43 #define SKB_WITH_OVERHEAD(X) \
44 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
45 #define SKB_MAX_ORDER(X, ORDER) \
46 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
47 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
48 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
49
50 /* A. Checksumming of received packets by device.
51 *
52 * NONE: device failed to checksum this packet.
53 * skb->csum is undefined.
54 *
55 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
56 * skb->csum is undefined.
57 * It is bad option, but, unfortunately, many of vendors do this.
58 * Apparently with secret goal to sell you new device, when you
59 * will add new protocol to your host. F.e. IPv6. 8)
60 *
61 * COMPLETE: the most generic way. Device supplied checksum of _all_
62 * the packet as seen by netif_rx in skb->csum.
63 * NOTE: Even if device supports only some protocols, but
64 * is able to produce some skb->csum, it MUST use COMPLETE,
65 * not UNNECESSARY.
66 *
67 * PARTIAL: identical to the case for output below. This may occur
68 * on a packet received directly from another Linux OS, e.g.,
69 * a virtualised Linux kernel on the same host. The packet can
70 * be treated in the same way as UNNECESSARY except that on
71 * output (i.e., forwarding) the checksum must be filled in
72 * by the OS or the hardware.
73 *
74 * B. Checksumming on output.
75 *
76 * NONE: skb is checksummed by protocol or csum is not required.
77 *
78 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
79 * from skb->csum_start to the end and to record the checksum
80 * at skb->csum_start + skb->csum_offset.
81 *
82 * Device must show its capabilities in dev->features, set
83 * at device setup time.
84 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
85 * everything.
86 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
87 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
88 * TCP/UDP over IPv4. Sigh. Vendors like this
89 * way by an unknown reason. Though, see comment above
90 * about CHECKSUM_UNNECESSARY. 8)
91 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
92 *
93 * Any questions? No questions, good. --ANK
94 */
95
96 struct net_device;
97 struct scatterlist;
98
99 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
100 struct nf_conntrack {
101 atomic_t use;
102 };
103 #endif
104
105 #ifdef CONFIG_BRIDGE_NETFILTER
106 struct nf_bridge_info {
107 atomic_t use;
108 struct net_device *physindev;
109 struct net_device *physoutdev;
110 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
111 struct net_device *netoutdev;
112 #endif
113 unsigned int mask;
114 unsigned long data[32 / sizeof(unsigned long)];
115 };
116 #endif
117
118 struct sk_buff_head {
119 /* These two members must be first. */
120 struct sk_buff *next;
121 struct sk_buff *prev;
122
123 __u32 qlen;
124 spinlock_t lock;
125 };
126
127 struct sk_buff;
128
129 /* To allow 64K frame to be packed as single skb without frag_list */
130 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
131
132 typedef struct skb_frag_struct skb_frag_t;
133
134 struct skb_frag_struct {
135 struct page *page;
136 __u32 page_offset;
137 __u32 size;
138 };
139
140 /* This data is invariant across clones and lives at
141 * the end of the header data, ie. at skb->end.
142 */
143 struct skb_shared_info {
144 atomic_t dataref;
145 unsigned short nr_frags;
146 unsigned short gso_size;
147 /* Warning: this field is not always filled in (UFO)! */
148 unsigned short gso_segs;
149 unsigned short gso_type;
150 __be32 ip6_frag_id;
151 struct sk_buff *frag_list;
152 skb_frag_t frags[MAX_SKB_FRAGS];
153 };
154
155 /* We divide dataref into two halves. The higher 16 bits hold references
156 * to the payload part of skb->data. The lower 16 bits hold references to
157 * the entire skb->data. A clone of a headerless skb holds the length of
158 * the header in skb->hdr_len.
159 *
160 * All users must obey the rule that the skb->data reference count must be
161 * greater than or equal to the payload reference count.
162 *
163 * Holding a reference to the payload part means that the user does not
164 * care about modifications to the header part of skb->data.
165 */
166 #define SKB_DATAREF_SHIFT 16
167 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
168
169
170 enum {
171 SKB_FCLONE_UNAVAILABLE,
172 SKB_FCLONE_ORIG,
173 SKB_FCLONE_CLONE,
174 };
175
176 enum {
177 SKB_GSO_TCPV4 = 1 << 0,
178 SKB_GSO_UDP = 1 << 1,
179
180 /* This indicates the skb is from an untrusted source. */
181 SKB_GSO_DODGY = 1 << 2,
182
183 /* This indicates the tcp segment has CWR set. */
184 SKB_GSO_TCP_ECN = 1 << 3,
185
186 SKB_GSO_TCPV6 = 1 << 4,
187 };
188
189 #if BITS_PER_LONG > 32
190 #define NET_SKBUFF_DATA_USES_OFFSET 1
191 #endif
192
193 #ifdef NET_SKBUFF_DATA_USES_OFFSET
194 typedef unsigned int sk_buff_data_t;
195 #else
196 typedef unsigned char *sk_buff_data_t;
197 #endif
198
199 /**
200 * struct sk_buff - socket buffer
201 * @next: Next buffer in list
202 * @prev: Previous buffer in list
203 * @sk: Socket we are owned by
204 * @tstamp: Time we arrived
205 * @dev: Device we arrived on/are leaving by
206 * @transport_header: Transport layer header
207 * @network_header: Network layer header
208 * @mac_header: Link layer header
209 * @dst: destination entry
210 * @sp: the security path, used for xfrm
211 * @cb: Control buffer. Free for use by every layer. Put private vars here
212 * @len: Length of actual data
213 * @data_len: Data length
214 * @mac_len: Length of link layer header
215 * @hdr_len: writable header length of cloned skb
216 * @csum: Checksum (must include start/offset pair)
217 * @csum_start: Offset from skb->head where checksumming should start
218 * @csum_offset: Offset from csum_start where checksum should be stored
219 * @local_df: allow local fragmentation
220 * @cloned: Head may be cloned (check refcnt to be sure)
221 * @nohdr: Payload reference only, must not modify header
222 * @pkt_type: Packet class
223 * @fclone: skbuff clone status
224 * @ip_summed: Driver fed us an IP checksum
225 * @priority: Packet queueing priority
226 * @users: User count - see {datagram,tcp}.c
227 * @protocol: Packet protocol from driver
228 * @truesize: Buffer size
229 * @head: Head of buffer
230 * @data: Data head pointer
231 * @tail: Tail pointer
232 * @end: End pointer
233 * @destructor: Destruct function
234 * @mark: Generic packet mark
235 * @nfct: Associated connection, if any
236 * @ipvs_property: skbuff is owned by ipvs
237 * @nf_trace: netfilter packet trace flag
238 * @nfctinfo: Relationship of this skb to the connection
239 * @nfct_reasm: netfilter conntrack re-assembly pointer
240 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
241 * @iif: ifindex of device we arrived on
242 * @queue_mapping: Queue mapping for multiqueue devices
243 * @tc_index: Traffic control index
244 * @tc_verd: traffic control verdict
245 * @dma_cookie: a cookie to one of several possible DMA operations
246 * done by skb DMA functions
247 * @secmark: security marking
248 */
249
250 struct sk_buff {
251 /* These two members must be first. */
252 struct sk_buff *next;
253 struct sk_buff *prev;
254
255 struct sock *sk;
256 ktime_t tstamp;
257 struct net_device *dev;
258
259 struct dst_entry *dst;
260 struct sec_path *sp;
261
262 /*
263 * This is the control buffer. It is free to use for every
264 * layer. Please put your private variables there. If you
265 * want to keep them across layers you have to do a skb_clone()
266 * first. This is owned by whoever has the skb queued ATM.
267 */
268 char cb[48];
269
270 unsigned int len,
271 data_len;
272 __u16 mac_len,
273 hdr_len;
274 union {
275 __wsum csum;
276 struct {
277 __u16 csum_start;
278 __u16 csum_offset;
279 };
280 };
281 __u32 priority;
282 __u8 local_df:1,
283 cloned:1,
284 ip_summed:2,
285 nohdr:1,
286 nfctinfo:3;
287 __u8 pkt_type:3,
288 fclone:2,
289 ipvs_property:1,
290 nf_trace:1;
291 __be16 protocol;
292
293 void (*destructor)(struct sk_buff *skb);
294 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
295 struct nf_conntrack *nfct;
296 struct sk_buff *nfct_reasm;
297 #endif
298 #ifdef CONFIG_BRIDGE_NETFILTER
299 struct nf_bridge_info *nf_bridge;
300 #endif
301
302 int iif;
303 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
304 __u16 queue_mapping;
305 #endif
306 #ifdef CONFIG_NET_SCHED
307 __u16 tc_index; /* traffic control index */
308 #ifdef CONFIG_NET_CLS_ACT
309 __u16 tc_verd; /* traffic control verdict */
310 #endif
311 #endif
312 /* 2 byte hole */
313
314 #ifdef CONFIG_NET_DMA
315 dma_cookie_t dma_cookie;
316 #endif
317 #ifdef CONFIG_NETWORK_SECMARK
318 __u32 secmark;
319 #endif
320
321 __u32 mark;
322
323 sk_buff_data_t transport_header;
324 sk_buff_data_t network_header;
325 sk_buff_data_t mac_header;
326 /* These elements must be at the end, see alloc_skb() for details. */
327 sk_buff_data_t tail;
328 sk_buff_data_t end;
329 unsigned char *head,
330 *data;
331 unsigned int truesize;
332 atomic_t users;
333 };
334
335 #ifdef __KERNEL__
336 /*
337 * Handling routines are only of interest to the kernel
338 */
339 #include <linux/slab.h>
340
341 #include <asm/system.h>
342
343 extern void kfree_skb(struct sk_buff *skb);
344 extern void __kfree_skb(struct sk_buff *skb);
345 extern struct sk_buff *__alloc_skb(unsigned int size,
346 gfp_t priority, int fclone, int node);
347 static inline struct sk_buff *alloc_skb(unsigned int size,
348 gfp_t priority)
349 {
350 return __alloc_skb(size, priority, 0, -1);
351 }
352
353 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
354 gfp_t priority)
355 {
356 return __alloc_skb(size, priority, 1, -1);
357 }
358
359 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
360 extern struct sk_buff *skb_clone(struct sk_buff *skb,
361 gfp_t priority);
362 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
363 gfp_t priority);
364 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
365 gfp_t gfp_mask);
366 extern int pskb_expand_head(struct sk_buff *skb,
367 int nhead, int ntail,
368 gfp_t gfp_mask);
369 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
370 unsigned int headroom);
371 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
372 int newheadroom, int newtailroom,
373 gfp_t priority);
374 extern int skb_to_sgvec(struct sk_buff *skb,
375 struct scatterlist *sg, int offset,
376 int len);
377 extern int skb_cow_data(struct sk_buff *skb, int tailbits,
378 struct sk_buff **trailer);
379 extern int skb_pad(struct sk_buff *skb, int pad);
380 #define dev_kfree_skb(a) kfree_skb(a)
381 extern void skb_over_panic(struct sk_buff *skb, int len,
382 void *here);
383 extern void skb_under_panic(struct sk_buff *skb, int len,
384 void *here);
385 extern void skb_truesize_bug(struct sk_buff *skb);
386
387 static inline void skb_truesize_check(struct sk_buff *skb)
388 {
389 int len = sizeof(struct sk_buff) + skb->len;
390
391 if (unlikely((int)skb->truesize < len))
392 skb_truesize_bug(skb);
393 }
394
395 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
396 int getfrag(void *from, char *to, int offset,
397 int len,int odd, struct sk_buff *skb),
398 void *from, int length);
399
400 struct skb_seq_state
401 {
402 __u32 lower_offset;
403 __u32 upper_offset;
404 __u32 frag_idx;
405 __u32 stepped_offset;
406 struct sk_buff *root_skb;
407 struct sk_buff *cur_skb;
408 __u8 *frag_data;
409 };
410
411 extern void skb_prepare_seq_read(struct sk_buff *skb,
412 unsigned int from, unsigned int to,
413 struct skb_seq_state *st);
414 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
415 struct skb_seq_state *st);
416 extern void skb_abort_seq_read(struct skb_seq_state *st);
417
418 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
419 unsigned int to, struct ts_config *config,
420 struct ts_state *state);
421
422 #ifdef NET_SKBUFF_DATA_USES_OFFSET
423 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
424 {
425 return skb->head + skb->end;
426 }
427 #else
428 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
429 {
430 return skb->end;
431 }
432 #endif
433
434 /* Internal */
435 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
436
437 /**
438 * skb_queue_empty - check if a queue is empty
439 * @list: queue head
440 *
441 * Returns true if the queue is empty, false otherwise.
442 */
443 static inline int skb_queue_empty(const struct sk_buff_head *list)
444 {
445 return list->next == (struct sk_buff *)list;
446 }
447
448 /**
449 * skb_get - reference buffer
450 * @skb: buffer to reference
451 *
452 * Makes another reference to a socket buffer and returns a pointer
453 * to the buffer.
454 */
455 static inline struct sk_buff *skb_get(struct sk_buff *skb)
456 {
457 atomic_inc(&skb->users);
458 return skb;
459 }
460
461 /*
462 * If users == 1, we are the only owner and are can avoid redundant
463 * atomic change.
464 */
465
466 /**
467 * skb_cloned - is the buffer a clone
468 * @skb: buffer to check
469 *
470 * Returns true if the buffer was generated with skb_clone() and is
471 * one of multiple shared copies of the buffer. Cloned buffers are
472 * shared data so must not be written to under normal circumstances.
473 */
474 static inline int skb_cloned(const struct sk_buff *skb)
475 {
476 return skb->cloned &&
477 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
478 }
479
480 /**
481 * skb_header_cloned - is the header a clone
482 * @skb: buffer to check
483 *
484 * Returns true if modifying the header part of the buffer requires
485 * the data to be copied.
486 */
487 static inline int skb_header_cloned(const struct sk_buff *skb)
488 {
489 int dataref;
490
491 if (!skb->cloned)
492 return 0;
493
494 dataref = atomic_read(&skb_shinfo(skb)->dataref);
495 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
496 return dataref != 1;
497 }
498
499 /**
500 * skb_header_release - release reference to header
501 * @skb: buffer to operate on
502 *
503 * Drop a reference to the header part of the buffer. This is done
504 * by acquiring a payload reference. You must not read from the header
505 * part of skb->data after this.
506 */
507 static inline void skb_header_release(struct sk_buff *skb)
508 {
509 BUG_ON(skb->nohdr);
510 skb->nohdr = 1;
511 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
512 }
513
514 /**
515 * skb_shared - is the buffer shared
516 * @skb: buffer to check
517 *
518 * Returns true if more than one person has a reference to this
519 * buffer.
520 */
521 static inline int skb_shared(const struct sk_buff *skb)
522 {
523 return atomic_read(&skb->users) != 1;
524 }
525
526 /**
527 * skb_share_check - check if buffer is shared and if so clone it
528 * @skb: buffer to check
529 * @pri: priority for memory allocation
530 *
531 * If the buffer is shared the buffer is cloned and the old copy
532 * drops a reference. A new clone with a single reference is returned.
533 * If the buffer is not shared the original buffer is returned. When
534 * being called from interrupt status or with spinlocks held pri must
535 * be GFP_ATOMIC.
536 *
537 * NULL is returned on a memory allocation failure.
538 */
539 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
540 gfp_t pri)
541 {
542 might_sleep_if(pri & __GFP_WAIT);
543 if (skb_shared(skb)) {
544 struct sk_buff *nskb = skb_clone(skb, pri);
545 kfree_skb(skb);
546 skb = nskb;
547 }
548 return skb;
549 }
550
551 /*
552 * Copy shared buffers into a new sk_buff. We effectively do COW on
553 * packets to handle cases where we have a local reader and forward
554 * and a couple of other messy ones. The normal one is tcpdumping
555 * a packet thats being forwarded.
556 */
557
558 /**
559 * skb_unshare - make a copy of a shared buffer
560 * @skb: buffer to check
561 * @pri: priority for memory allocation
562 *
563 * If the socket buffer is a clone then this function creates a new
564 * copy of the data, drops a reference count on the old copy and returns
565 * the new copy with the reference count at 1. If the buffer is not a clone
566 * the original buffer is returned. When called with a spinlock held or
567 * from interrupt state @pri must be %GFP_ATOMIC
568 *
569 * %NULL is returned on a memory allocation failure.
570 */
571 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
572 gfp_t pri)
573 {
574 might_sleep_if(pri & __GFP_WAIT);
575 if (skb_cloned(skb)) {
576 struct sk_buff *nskb = skb_copy(skb, pri);
577 kfree_skb(skb); /* Free our shared copy */
578 skb = nskb;
579 }
580 return skb;
581 }
582
583 /**
584 * skb_peek
585 * @list_: list to peek at
586 *
587 * Peek an &sk_buff. Unlike most other operations you _MUST_
588 * be careful with this one. A peek leaves the buffer on the
589 * list and someone else may run off with it. You must hold
590 * the appropriate locks or have a private queue to do this.
591 *
592 * Returns %NULL for an empty list or a pointer to the head element.
593 * The reference count is not incremented and the reference is therefore
594 * volatile. Use with caution.
595 */
596 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
597 {
598 struct sk_buff *list = ((struct sk_buff *)list_)->next;
599 if (list == (struct sk_buff *)list_)
600 list = NULL;
601 return list;
602 }
603
604 /**
605 * skb_peek_tail
606 * @list_: list to peek at
607 *
608 * Peek an &sk_buff. Unlike most other operations you _MUST_
609 * be careful with this one. A peek leaves the buffer on the
610 * list and someone else may run off with it. You must hold
611 * the appropriate locks or have a private queue to do this.
612 *
613 * Returns %NULL for an empty list or a pointer to the tail element.
614 * The reference count is not incremented and the reference is therefore
615 * volatile. Use with caution.
616 */
617 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
618 {
619 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
620 if (list == (struct sk_buff *)list_)
621 list = NULL;
622 return list;
623 }
624
625 /**
626 * skb_queue_len - get queue length
627 * @list_: list to measure
628 *
629 * Return the length of an &sk_buff queue.
630 */
631 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
632 {
633 return list_->qlen;
634 }
635
636 /*
637 * This function creates a split out lock class for each invocation;
638 * this is needed for now since a whole lot of users of the skb-queue
639 * infrastructure in drivers have different locking usage (in hardirq)
640 * than the networking core (in softirq only). In the long run either the
641 * network layer or drivers should need annotation to consolidate the
642 * main types of usage into 3 classes.
643 */
644 static inline void skb_queue_head_init(struct sk_buff_head *list)
645 {
646 spin_lock_init(&list->lock);
647 list->prev = list->next = (struct sk_buff *)list;
648 list->qlen = 0;
649 }
650
651 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
652 struct lock_class_key *class)
653 {
654 skb_queue_head_init(list);
655 lockdep_set_class(&list->lock, class);
656 }
657
658 /*
659 * Insert an sk_buff at the start of a list.
660 *
661 * The "__skb_xxxx()" functions are the non-atomic ones that
662 * can only be called with interrupts disabled.
663 */
664
665 /**
666 * __skb_queue_after - queue a buffer at the list head
667 * @list: list to use
668 * @prev: place after this buffer
669 * @newsk: buffer to queue
670 *
671 * Queue a buffer int the middle of a list. This function takes no locks
672 * and you must therefore hold required locks before calling it.
673 *
674 * A buffer cannot be placed on two lists at the same time.
675 */
676 static inline void __skb_queue_after(struct sk_buff_head *list,
677 struct sk_buff *prev,
678 struct sk_buff *newsk)
679 {
680 struct sk_buff *next;
681 list->qlen++;
682
683 next = prev->next;
684 newsk->next = next;
685 newsk->prev = prev;
686 next->prev = prev->next = newsk;
687 }
688
689 /**
690 * __skb_queue_head - queue a buffer at the list head
691 * @list: list to use
692 * @newsk: buffer to queue
693 *
694 * Queue a buffer at the start of a list. This function takes no locks
695 * and you must therefore hold required locks before calling it.
696 *
697 * A buffer cannot be placed on two lists at the same time.
698 */
699 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
700 static inline void __skb_queue_head(struct sk_buff_head *list,
701 struct sk_buff *newsk)
702 {
703 __skb_queue_after(list, (struct sk_buff *)list, newsk);
704 }
705
706 /**
707 * __skb_queue_tail - queue a buffer at the list tail
708 * @list: list to use
709 * @newsk: buffer to queue
710 *
711 * Queue a buffer at the end of a list. This function takes no locks
712 * and you must therefore hold required locks before calling it.
713 *
714 * A buffer cannot be placed on two lists at the same time.
715 */
716 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
717 static inline void __skb_queue_tail(struct sk_buff_head *list,
718 struct sk_buff *newsk)
719 {
720 struct sk_buff *prev, *next;
721
722 list->qlen++;
723 next = (struct sk_buff *)list;
724 prev = next->prev;
725 newsk->next = next;
726 newsk->prev = prev;
727 next->prev = prev->next = newsk;
728 }
729
730
731 /**
732 * __skb_dequeue - remove from the head of the queue
733 * @list: list to dequeue from
734 *
735 * Remove the head of the list. This function does not take any locks
736 * so must be used with appropriate locks held only. The head item is
737 * returned or %NULL if the list is empty.
738 */
739 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
740 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
741 {
742 struct sk_buff *next, *prev, *result;
743
744 prev = (struct sk_buff *) list;
745 next = prev->next;
746 result = NULL;
747 if (next != prev) {
748 result = next;
749 next = next->next;
750 list->qlen--;
751 next->prev = prev;
752 prev->next = next;
753 result->next = result->prev = NULL;
754 }
755 return result;
756 }
757
758
759 /*
760 * Insert a packet on a list.
761 */
762 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
763 static inline void __skb_insert(struct sk_buff *newsk,
764 struct sk_buff *prev, struct sk_buff *next,
765 struct sk_buff_head *list)
766 {
767 newsk->next = next;
768 newsk->prev = prev;
769 next->prev = prev->next = newsk;
770 list->qlen++;
771 }
772
773 /*
774 * Place a packet after a given packet in a list.
775 */
776 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
777 static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
778 {
779 __skb_insert(newsk, old, old->next, list);
780 }
781
782 /*
783 * remove sk_buff from list. _Must_ be called atomically, and with
784 * the list known..
785 */
786 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
787 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
788 {
789 struct sk_buff *next, *prev;
790
791 list->qlen--;
792 next = skb->next;
793 prev = skb->prev;
794 skb->next = skb->prev = NULL;
795 next->prev = prev;
796 prev->next = next;
797 }
798
799
800 /* XXX: more streamlined implementation */
801
802 /**
803 * __skb_dequeue_tail - remove from the tail of the queue
804 * @list: list to dequeue from
805 *
806 * Remove the tail of the list. This function does not take any locks
807 * so must be used with appropriate locks held only. The tail item is
808 * returned or %NULL if the list is empty.
809 */
810 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
811 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
812 {
813 struct sk_buff *skb = skb_peek_tail(list);
814 if (skb)
815 __skb_unlink(skb, list);
816 return skb;
817 }
818
819
820 static inline int skb_is_nonlinear(const struct sk_buff *skb)
821 {
822 return skb->data_len;
823 }
824
825 static inline unsigned int skb_headlen(const struct sk_buff *skb)
826 {
827 return skb->len - skb->data_len;
828 }
829
830 static inline int skb_pagelen(const struct sk_buff *skb)
831 {
832 int i, len = 0;
833
834 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
835 len += skb_shinfo(skb)->frags[i].size;
836 return len + skb_headlen(skb);
837 }
838
839 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
840 struct page *page, int off, int size)
841 {
842 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
843
844 frag->page = page;
845 frag->page_offset = off;
846 frag->size = size;
847 skb_shinfo(skb)->nr_frags = i + 1;
848 }
849
850 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
851 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
852 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
853
854 #ifdef NET_SKBUFF_DATA_USES_OFFSET
855 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
856 {
857 return skb->head + skb->tail;
858 }
859
860 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
861 {
862 skb->tail = skb->data - skb->head;
863 }
864
865 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
866 {
867 skb_reset_tail_pointer(skb);
868 skb->tail += offset;
869 }
870 #else /* NET_SKBUFF_DATA_USES_OFFSET */
871 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
872 {
873 return skb->tail;
874 }
875
876 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
877 {
878 skb->tail = skb->data;
879 }
880
881 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
882 {
883 skb->tail = skb->data + offset;
884 }
885
886 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
887
888 /*
889 * Add data to an sk_buff
890 */
891 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
892 {
893 unsigned char *tmp = skb_tail_pointer(skb);
894 SKB_LINEAR_ASSERT(skb);
895 skb->tail += len;
896 skb->len += len;
897 return tmp;
898 }
899
900 /**
901 * skb_put - add data to a buffer
902 * @skb: buffer to use
903 * @len: amount of data to add
904 *
905 * This function extends the used data area of the buffer. If this would
906 * exceed the total buffer size the kernel will panic. A pointer to the
907 * first byte of the extra data is returned.
908 */
909 static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
910 {
911 unsigned char *tmp = skb_tail_pointer(skb);
912 SKB_LINEAR_ASSERT(skb);
913 skb->tail += len;
914 skb->len += len;
915 if (unlikely(skb->tail > skb->end))
916 skb_over_panic(skb, len, current_text_addr());
917 return tmp;
918 }
919
920 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
921 {
922 skb->data -= len;
923 skb->len += len;
924 return skb->data;
925 }
926
927 /**
928 * skb_push - add data to the start of a buffer
929 * @skb: buffer to use
930 * @len: amount of data to add
931 *
932 * This function extends the used data area of the buffer at the buffer
933 * start. If this would exceed the total buffer headroom the kernel will
934 * panic. A pointer to the first byte of the extra data is returned.
935 */
936 static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
937 {
938 skb->data -= len;
939 skb->len += len;
940 if (unlikely(skb->data<skb->head))
941 skb_under_panic(skb, len, current_text_addr());
942 return skb->data;
943 }
944
945 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
946 {
947 skb->len -= len;
948 BUG_ON(skb->len < skb->data_len);
949 return skb->data += len;
950 }
951
952 /**
953 * skb_pull - remove data from the start of a buffer
954 * @skb: buffer to use
955 * @len: amount of data to remove
956 *
957 * This function removes data from the start of a buffer, returning
958 * the memory to the headroom. A pointer to the next data in the buffer
959 * is returned. Once the data has been pulled future pushes will overwrite
960 * the old data.
961 */
962 static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
963 {
964 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
965 }
966
967 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
968
969 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
970 {
971 if (len > skb_headlen(skb) &&
972 !__pskb_pull_tail(skb, len-skb_headlen(skb)))
973 return NULL;
974 skb->len -= len;
975 return skb->data += len;
976 }
977
978 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
979 {
980 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
981 }
982
983 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
984 {
985 if (likely(len <= skb_headlen(skb)))
986 return 1;
987 if (unlikely(len > skb->len))
988 return 0;
989 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
990 }
991
992 /**
993 * skb_headroom - bytes at buffer head
994 * @skb: buffer to check
995 *
996 * Return the number of bytes of free space at the head of an &sk_buff.
997 */
998 static inline unsigned int skb_headroom(const struct sk_buff *skb)
999 {
1000 return skb->data - skb->head;
1001 }
1002
1003 /**
1004 * skb_tailroom - bytes at buffer end
1005 * @skb: buffer to check
1006 *
1007 * Return the number of bytes of free space at the tail of an sk_buff
1008 */
1009 static inline int skb_tailroom(const struct sk_buff *skb)
1010 {
1011 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1012 }
1013
1014 /**
1015 * skb_reserve - adjust headroom
1016 * @skb: buffer to alter
1017 * @len: bytes to move
1018 *
1019 * Increase the headroom of an empty &sk_buff by reducing the tail
1020 * room. This is only allowed for an empty buffer.
1021 */
1022 static inline void skb_reserve(struct sk_buff *skb, int len)
1023 {
1024 skb->data += len;
1025 skb->tail += len;
1026 }
1027
1028 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1029 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1030 {
1031 return skb->head + skb->transport_header;
1032 }
1033
1034 static inline void skb_reset_transport_header(struct sk_buff *skb)
1035 {
1036 skb->transport_header = skb->data - skb->head;
1037 }
1038
1039 static inline void skb_set_transport_header(struct sk_buff *skb,
1040 const int offset)
1041 {
1042 skb_reset_transport_header(skb);
1043 skb->transport_header += offset;
1044 }
1045
1046 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1047 {
1048 return skb->head + skb->network_header;
1049 }
1050
1051 static inline void skb_reset_network_header(struct sk_buff *skb)
1052 {
1053 skb->network_header = skb->data - skb->head;
1054 }
1055
1056 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1057 {
1058 skb_reset_network_header(skb);
1059 skb->network_header += offset;
1060 }
1061
1062 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1063 {
1064 return skb->head + skb->mac_header;
1065 }
1066
1067 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1068 {
1069 return skb->mac_header != ~0U;
1070 }
1071
1072 static inline void skb_reset_mac_header(struct sk_buff *skb)
1073 {
1074 skb->mac_header = skb->data - skb->head;
1075 }
1076
1077 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1078 {
1079 skb_reset_mac_header(skb);
1080 skb->mac_header += offset;
1081 }
1082
1083 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1084
1085 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1086 {
1087 return skb->transport_header;
1088 }
1089
1090 static inline void skb_reset_transport_header(struct sk_buff *skb)
1091 {
1092 skb->transport_header = skb->data;
1093 }
1094
1095 static inline void skb_set_transport_header(struct sk_buff *skb,
1096 const int offset)
1097 {
1098 skb->transport_header = skb->data + offset;
1099 }
1100
1101 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1102 {
1103 return skb->network_header;
1104 }
1105
1106 static inline void skb_reset_network_header(struct sk_buff *skb)
1107 {
1108 skb->network_header = skb->data;
1109 }
1110
1111 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1112 {
1113 skb->network_header = skb->data + offset;
1114 }
1115
1116 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1117 {
1118 return skb->mac_header;
1119 }
1120
1121 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1122 {
1123 return skb->mac_header != NULL;
1124 }
1125
1126 static inline void skb_reset_mac_header(struct sk_buff *skb)
1127 {
1128 skb->mac_header = skb->data;
1129 }
1130
1131 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1132 {
1133 skb->mac_header = skb->data + offset;
1134 }
1135 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1136
1137 static inline int skb_transport_offset(const struct sk_buff *skb)
1138 {
1139 return skb_transport_header(skb) - skb->data;
1140 }
1141
1142 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1143 {
1144 return skb->transport_header - skb->network_header;
1145 }
1146
1147 static inline int skb_network_offset(const struct sk_buff *skb)
1148 {
1149 return skb_network_header(skb) - skb->data;
1150 }
1151
1152 /*
1153 * CPUs often take a performance hit when accessing unaligned memory
1154 * locations. The actual performance hit varies, it can be small if the
1155 * hardware handles it or large if we have to take an exception and fix it
1156 * in software.
1157 *
1158 * Since an ethernet header is 14 bytes network drivers often end up with
1159 * the IP header at an unaligned offset. The IP header can be aligned by
1160 * shifting the start of the packet by 2 bytes. Drivers should do this
1161 * with:
1162 *
1163 * skb_reserve(NET_IP_ALIGN);
1164 *
1165 * The downside to this alignment of the IP header is that the DMA is now
1166 * unaligned. On some architectures the cost of an unaligned DMA is high
1167 * and this cost outweighs the gains made by aligning the IP header.
1168 *
1169 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1170 * to be overridden.
1171 */
1172 #ifndef NET_IP_ALIGN
1173 #define NET_IP_ALIGN 2
1174 #endif
1175
1176 /*
1177 * The networking layer reserves some headroom in skb data (via
1178 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1179 * the header has to grow. In the default case, if the header has to grow
1180 * 16 bytes or less we avoid the reallocation.
1181 *
1182 * Unfortunately this headroom changes the DMA alignment of the resulting
1183 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1184 * on some architectures. An architecture can override this value,
1185 * perhaps setting it to a cacheline in size (since that will maintain
1186 * cacheline alignment of the DMA). It must be a power of 2.
1187 *
1188 * Various parts of the networking layer expect at least 16 bytes of
1189 * headroom, you should not reduce this.
1190 */
1191 #ifndef NET_SKB_PAD
1192 #define NET_SKB_PAD 16
1193 #endif
1194
1195 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1196
1197 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1198 {
1199 if (unlikely(skb->data_len)) {
1200 WARN_ON(1);
1201 return;
1202 }
1203 skb->len = len;
1204 skb_set_tail_pointer(skb, len);
1205 }
1206
1207 /**
1208 * skb_trim - remove end from a buffer
1209 * @skb: buffer to alter
1210 * @len: new length
1211 *
1212 * Cut the length of a buffer down by removing data from the tail. If
1213 * the buffer is already under the length specified it is not modified.
1214 * The skb must be linear.
1215 */
1216 static inline void skb_trim(struct sk_buff *skb, unsigned int len)
1217 {
1218 if (skb->len > len)
1219 __skb_trim(skb, len);
1220 }
1221
1222
1223 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1224 {
1225 if (skb->data_len)
1226 return ___pskb_trim(skb, len);
1227 __skb_trim(skb, len);
1228 return 0;
1229 }
1230
1231 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1232 {
1233 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1234 }
1235
1236 /**
1237 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1238 * @skb: buffer to alter
1239 * @len: new length
1240 *
1241 * This is identical to pskb_trim except that the caller knows that
1242 * the skb is not cloned so we should never get an error due to out-
1243 * of-memory.
1244 */
1245 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1246 {
1247 int err = pskb_trim(skb, len);
1248 BUG_ON(err);
1249 }
1250
1251 /**
1252 * skb_orphan - orphan a buffer
1253 * @skb: buffer to orphan
1254 *
1255 * If a buffer currently has an owner then we call the owner's
1256 * destructor function and make the @skb unowned. The buffer continues
1257 * to exist but is no longer charged to its former owner.
1258 */
1259 static inline void skb_orphan(struct sk_buff *skb)
1260 {
1261 if (skb->destructor)
1262 skb->destructor(skb);
1263 skb->destructor = NULL;
1264 skb->sk = NULL;
1265 }
1266
1267 /**
1268 * __skb_queue_purge - empty a list
1269 * @list: list to empty
1270 *
1271 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1272 * the list and one reference dropped. This function does not take the
1273 * list lock and the caller must hold the relevant locks to use it.
1274 */
1275 extern void skb_queue_purge(struct sk_buff_head *list);
1276 static inline void __skb_queue_purge(struct sk_buff_head *list)
1277 {
1278 struct sk_buff *skb;
1279 while ((skb = __skb_dequeue(list)) != NULL)
1280 kfree_skb(skb);
1281 }
1282
1283 /**
1284 * __dev_alloc_skb - allocate an skbuff for receiving
1285 * @length: length to allocate
1286 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1287 *
1288 * Allocate a new &sk_buff and assign it a usage count of one. The
1289 * buffer has unspecified headroom built in. Users should allocate
1290 * the headroom they think they need without accounting for the
1291 * built in space. The built in space is used for optimisations.
1292 *
1293 * %NULL is returned if there is no free memory.
1294 */
1295 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1296 gfp_t gfp_mask)
1297 {
1298 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1299 if (likely(skb))
1300 skb_reserve(skb, NET_SKB_PAD);
1301 return skb;
1302 }
1303
1304 /**
1305 * dev_alloc_skb - allocate an skbuff for receiving
1306 * @length: length to allocate
1307 *
1308 * Allocate a new &sk_buff and assign it a usage count of one. The
1309 * buffer has unspecified headroom built in. Users should allocate
1310 * the headroom they think they need without accounting for the
1311 * built in space. The built in space is used for optimisations.
1312 *
1313 * %NULL is returned if there is no free memory. Although this function
1314 * allocates memory it can be called from an interrupt.
1315 */
1316 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1317 {
1318 return __dev_alloc_skb(length, GFP_ATOMIC);
1319 }
1320
1321 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1322 unsigned int length, gfp_t gfp_mask);
1323
1324 /**
1325 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1326 * @dev: network device to receive on
1327 * @length: length to allocate
1328 *
1329 * Allocate a new &sk_buff and assign it a usage count of one. The
1330 * buffer has unspecified headroom built in. Users should allocate
1331 * the headroom they think they need without accounting for the
1332 * built in space. The built in space is used for optimisations.
1333 *
1334 * %NULL is returned if there is no free memory. Although this function
1335 * allocates memory it can be called from an interrupt.
1336 */
1337 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1338 unsigned int length)
1339 {
1340 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1341 }
1342
1343 /**
1344 * skb_clone_writable - is the header of a clone writable
1345 * @skb: buffer to check
1346 * @len: length up to which to write
1347 *
1348 * Returns true if modifying the header part of the cloned buffer
1349 * does not requires the data to be copied.
1350 */
1351 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1352 {
1353 return !skb_header_cloned(skb) &&
1354 skb_headroom(skb) + len <= skb->hdr_len;
1355 }
1356
1357 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1358 int cloned)
1359 {
1360 int delta = 0;
1361
1362 if (headroom < NET_SKB_PAD)
1363 headroom = NET_SKB_PAD;
1364 if (headroom > skb_headroom(skb))
1365 delta = headroom - skb_headroom(skb);
1366
1367 if (delta || cloned)
1368 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1369 GFP_ATOMIC);
1370 return 0;
1371 }
1372
1373 /**
1374 * skb_cow - copy header of skb when it is required
1375 * @skb: buffer to cow
1376 * @headroom: needed headroom
1377 *
1378 * If the skb passed lacks sufficient headroom or its data part
1379 * is shared, data is reallocated. If reallocation fails, an error
1380 * is returned and original skb is not changed.
1381 *
1382 * The result is skb with writable area skb->head...skb->tail
1383 * and at least @headroom of space at head.
1384 */
1385 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1386 {
1387 return __skb_cow(skb, headroom, skb_cloned(skb));
1388 }
1389
1390 /**
1391 * skb_cow_head - skb_cow but only making the head writable
1392 * @skb: buffer to cow
1393 * @headroom: needed headroom
1394 *
1395 * This function is identical to skb_cow except that we replace the
1396 * skb_cloned check by skb_header_cloned. It should be used when
1397 * you only need to push on some header and do not need to modify
1398 * the data.
1399 */
1400 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1401 {
1402 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1403 }
1404
1405 /**
1406 * skb_padto - pad an skbuff up to a minimal size
1407 * @skb: buffer to pad
1408 * @len: minimal length
1409 *
1410 * Pads up a buffer to ensure the trailing bytes exist and are
1411 * blanked. If the buffer already contains sufficient data it
1412 * is untouched. Otherwise it is extended. Returns zero on
1413 * success. The skb is freed on error.
1414 */
1415
1416 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1417 {
1418 unsigned int size = skb->len;
1419 if (likely(size >= len))
1420 return 0;
1421 return skb_pad(skb, len-size);
1422 }
1423
1424 static inline int skb_add_data(struct sk_buff *skb,
1425 char __user *from, int copy)
1426 {
1427 const int off = skb->len;
1428
1429 if (skb->ip_summed == CHECKSUM_NONE) {
1430 int err = 0;
1431 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1432 copy, 0, &err);
1433 if (!err) {
1434 skb->csum = csum_block_add(skb->csum, csum, off);
1435 return 0;
1436 }
1437 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1438 return 0;
1439
1440 __skb_trim(skb, off);
1441 return -EFAULT;
1442 }
1443
1444 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1445 struct page *page, int off)
1446 {
1447 if (i) {
1448 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1449
1450 return page == frag->page &&
1451 off == frag->page_offset + frag->size;
1452 }
1453 return 0;
1454 }
1455
1456 static inline int __skb_linearize(struct sk_buff *skb)
1457 {
1458 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1459 }
1460
1461 /**
1462 * skb_linearize - convert paged skb to linear one
1463 * @skb: buffer to linarize
1464 *
1465 * If there is no free memory -ENOMEM is returned, otherwise zero
1466 * is returned and the old skb data released.
1467 */
1468 static inline int skb_linearize(struct sk_buff *skb)
1469 {
1470 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1471 }
1472
1473 /**
1474 * skb_linearize_cow - make sure skb is linear and writable
1475 * @skb: buffer to process
1476 *
1477 * If there is no free memory -ENOMEM is returned, otherwise zero
1478 * is returned and the old skb data released.
1479 */
1480 static inline int skb_linearize_cow(struct sk_buff *skb)
1481 {
1482 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1483 __skb_linearize(skb) : 0;
1484 }
1485
1486 /**
1487 * skb_postpull_rcsum - update checksum for received skb after pull
1488 * @skb: buffer to update
1489 * @start: start of data before pull
1490 * @len: length of data pulled
1491 *
1492 * After doing a pull on a received packet, you need to call this to
1493 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1494 * CHECKSUM_NONE so that it can be recomputed from scratch.
1495 */
1496
1497 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1498 const void *start, unsigned int len)
1499 {
1500 if (skb->ip_summed == CHECKSUM_COMPLETE)
1501 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1502 }
1503
1504 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1505
1506 /**
1507 * pskb_trim_rcsum - trim received skb and update checksum
1508 * @skb: buffer to trim
1509 * @len: new length
1510 *
1511 * This is exactly the same as pskb_trim except that it ensures the
1512 * checksum of received packets are still valid after the operation.
1513 */
1514
1515 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1516 {
1517 if (likely(len >= skb->len))
1518 return 0;
1519 if (skb->ip_summed == CHECKSUM_COMPLETE)
1520 skb->ip_summed = CHECKSUM_NONE;
1521 return __pskb_trim(skb, len);
1522 }
1523
1524 #define skb_queue_walk(queue, skb) \
1525 for (skb = (queue)->next; \
1526 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1527 skb = skb->next)
1528
1529 #define skb_queue_walk_safe(queue, skb, tmp) \
1530 for (skb = (queue)->next, tmp = skb->next; \
1531 skb != (struct sk_buff *)(queue); \
1532 skb = tmp, tmp = skb->next)
1533
1534 #define skb_queue_reverse_walk(queue, skb) \
1535 for (skb = (queue)->prev; \
1536 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1537 skb = skb->prev)
1538
1539
1540 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1541 int noblock, int *err);
1542 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1543 struct poll_table_struct *wait);
1544 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1545 int offset, struct iovec *to,
1546 int size);
1547 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1548 int hlen,
1549 struct iovec *iov);
1550 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1551 extern void skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1552 unsigned int flags);
1553 extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
1554 int len, __wsum csum);
1555 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1556 void *to, int len);
1557 extern int skb_store_bits(struct sk_buff *skb, int offset,
1558 const void *from, int len);
1559 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
1560 int offset, u8 *to, int len,
1561 __wsum csum);
1562 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1563 extern void skb_split(struct sk_buff *skb,
1564 struct sk_buff *skb1, const u32 len);
1565
1566 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1567
1568 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1569 int len, void *buffer)
1570 {
1571 int hlen = skb_headlen(skb);
1572
1573 if (hlen - offset >= len)
1574 return skb->data + offset;
1575
1576 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1577 return NULL;
1578
1579 return buffer;
1580 }
1581
1582 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1583 void *to,
1584 const unsigned int len)
1585 {
1586 memcpy(to, skb->data, len);
1587 }
1588
1589 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1590 const int offset, void *to,
1591 const unsigned int len)
1592 {
1593 memcpy(to, skb->data + offset, len);
1594 }
1595
1596 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1597 const void *from,
1598 const unsigned int len)
1599 {
1600 memcpy(skb->data, from, len);
1601 }
1602
1603 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1604 const int offset,
1605 const void *from,
1606 const unsigned int len)
1607 {
1608 memcpy(skb->data + offset, from, len);
1609 }
1610
1611 extern void skb_init(void);
1612
1613 /**
1614 * skb_get_timestamp - get timestamp from a skb
1615 * @skb: skb to get stamp from
1616 * @stamp: pointer to struct timeval to store stamp in
1617 *
1618 * Timestamps are stored in the skb as offsets to a base timestamp.
1619 * This function converts the offset back to a struct timeval and stores
1620 * it in stamp.
1621 */
1622 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1623 {
1624 *stamp = ktime_to_timeval(skb->tstamp);
1625 }
1626
1627 static inline void __net_timestamp(struct sk_buff *skb)
1628 {
1629 skb->tstamp = ktime_get_real();
1630 }
1631
1632 static inline ktime_t net_timedelta(ktime_t t)
1633 {
1634 return ktime_sub(ktime_get_real(), t);
1635 }
1636
1637 static inline ktime_t net_invalid_timestamp(void)
1638 {
1639 return ktime_set(0, 0);
1640 }
1641
1642 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1643 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1644
1645 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
1646 {
1647 return skb->ip_summed & CHECKSUM_UNNECESSARY;
1648 }
1649
1650 /**
1651 * skb_checksum_complete - Calculate checksum of an entire packet
1652 * @skb: packet to process
1653 *
1654 * This function calculates the checksum over the entire packet plus
1655 * the value of skb->csum. The latter can be used to supply the
1656 * checksum of a pseudo header as used by TCP/UDP. It returns the
1657 * checksum.
1658 *
1659 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
1660 * this function can be used to verify that checksum on received
1661 * packets. In that case the function should return zero if the
1662 * checksum is correct. In particular, this function will return zero
1663 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1664 * hardware has already verified the correctness of the checksum.
1665 */
1666 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
1667 {
1668 return skb_csum_unnecessary(skb) ?
1669 0 : __skb_checksum_complete(skb);
1670 }
1671
1672 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1673 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
1674 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1675 {
1676 if (nfct && atomic_dec_and_test(&nfct->use))
1677 nf_conntrack_destroy(nfct);
1678 }
1679 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1680 {
1681 if (nfct)
1682 atomic_inc(&nfct->use);
1683 }
1684 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1685 {
1686 if (skb)
1687 atomic_inc(&skb->users);
1688 }
1689 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1690 {
1691 if (skb)
1692 kfree_skb(skb);
1693 }
1694 #endif
1695 #ifdef CONFIG_BRIDGE_NETFILTER
1696 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1697 {
1698 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1699 kfree(nf_bridge);
1700 }
1701 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1702 {
1703 if (nf_bridge)
1704 atomic_inc(&nf_bridge->use);
1705 }
1706 #endif /* CONFIG_BRIDGE_NETFILTER */
1707 static inline void nf_reset(struct sk_buff *skb)
1708 {
1709 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1710 nf_conntrack_put(skb->nfct);
1711 skb->nfct = NULL;
1712 nf_conntrack_put_reasm(skb->nfct_reasm);
1713 skb->nfct_reasm = NULL;
1714 #endif
1715 #ifdef CONFIG_BRIDGE_NETFILTER
1716 nf_bridge_put(skb->nf_bridge);
1717 skb->nf_bridge = NULL;
1718 #endif
1719 }
1720
1721 /* Note: This doesn't put any conntrack and bridge info in dst. */
1722 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1723 {
1724 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1725 dst->nfct = src->nfct;
1726 nf_conntrack_get(src->nfct);
1727 dst->nfctinfo = src->nfctinfo;
1728 dst->nfct_reasm = src->nfct_reasm;
1729 nf_conntrack_get_reasm(src->nfct_reasm);
1730 #endif
1731 #ifdef CONFIG_BRIDGE_NETFILTER
1732 dst->nf_bridge = src->nf_bridge;
1733 nf_bridge_get(src->nf_bridge);
1734 #endif
1735 }
1736
1737 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1738 {
1739 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1740 nf_conntrack_put(dst->nfct);
1741 nf_conntrack_put_reasm(dst->nfct_reasm);
1742 #endif
1743 #ifdef CONFIG_BRIDGE_NETFILTER
1744 nf_bridge_put(dst->nf_bridge);
1745 #endif
1746 __nf_copy(dst, src);
1747 }
1748
1749 #ifdef CONFIG_NETWORK_SECMARK
1750 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1751 {
1752 to->secmark = from->secmark;
1753 }
1754
1755 static inline void skb_init_secmark(struct sk_buff *skb)
1756 {
1757 skb->secmark = 0;
1758 }
1759 #else
1760 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1761 { }
1762
1763 static inline void skb_init_secmark(struct sk_buff *skb)
1764 { }
1765 #endif
1766
1767 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
1768 {
1769 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1770 skb->queue_mapping = queue_mapping;
1771 #endif
1772 }
1773
1774 static inline u16 skb_get_queue_mapping(struct sk_buff *skb)
1775 {
1776 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1777 return skb->queue_mapping;
1778 #else
1779 return 0;
1780 #endif
1781 }
1782
1783 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
1784 {
1785 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1786 to->queue_mapping = from->queue_mapping;
1787 #endif
1788 }
1789
1790 static inline int skb_is_gso(const struct sk_buff *skb)
1791 {
1792 return skb_shinfo(skb)->gso_size;
1793 }
1794
1795 static inline int skb_is_gso_v6(const struct sk_buff *skb)
1796 {
1797 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
1798 }
1799
1800 static inline void skb_forward_csum(struct sk_buff *skb)
1801 {
1802 /* Unfortunately we don't support this one. Any brave souls? */
1803 if (skb->ip_summed == CHECKSUM_COMPLETE)
1804 skb->ip_summed = CHECKSUM_NONE;
1805 }
1806
1807 #endif /* __KERNEL__ */
1808 #endif /* _LINUX_SKBUFF_H */
This page took 0.127837 seconds and 6 git commands to generate.