[SK_BUFF]: Introduce arp_hdr(), remove skb->nh.arph
[deliverable/linux.git] / include / linux / skbuff.h
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/cache.h>
21
22 #include <asm/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/net.h>
26 #include <linux/textsearch.h>
27 #include <net/checksum.h>
28 #include <linux/rcupdate.h>
29 #include <linux/dmaengine.h>
30 #include <linux/hrtimer.h>
31
32 #define HAVE_ALLOC_SKB /* For the drivers to know */
33 #define HAVE_ALIGNABLE_SKB /* Ditto 8) */
34
35 #define CHECKSUM_NONE 0
36 #define CHECKSUM_PARTIAL 1
37 #define CHECKSUM_UNNECESSARY 2
38 #define CHECKSUM_COMPLETE 3
39
40 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
41 ~(SMP_CACHE_BYTES - 1))
42 #define SKB_WITH_OVERHEAD(X) \
43 (((X) - sizeof(struct skb_shared_info)) & \
44 ~(SMP_CACHE_BYTES - 1))
45 #define SKB_MAX_ORDER(X, ORDER) \
46 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
47 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
48 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
49
50 /* A. Checksumming of received packets by device.
51 *
52 * NONE: device failed to checksum this packet.
53 * skb->csum is undefined.
54 *
55 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
56 * skb->csum is undefined.
57 * It is bad option, but, unfortunately, many of vendors do this.
58 * Apparently with secret goal to sell you new device, when you
59 * will add new protocol to your host. F.e. IPv6. 8)
60 *
61 * COMPLETE: the most generic way. Device supplied checksum of _all_
62 * the packet as seen by netif_rx in skb->csum.
63 * NOTE: Even if device supports only some protocols, but
64 * is able to produce some skb->csum, it MUST use COMPLETE,
65 * not UNNECESSARY.
66 *
67 * B. Checksumming on output.
68 *
69 * NONE: skb is checksummed by protocol or csum is not required.
70 *
71 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
72 * from skb->h.raw to the end and to record the checksum
73 * at skb->h.raw+skb->csum.
74 *
75 * Device must show its capabilities in dev->features, set
76 * at device setup time.
77 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
78 * everything.
79 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
80 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
81 * TCP/UDP over IPv4. Sigh. Vendors like this
82 * way by an unknown reason. Though, see comment above
83 * about CHECKSUM_UNNECESSARY. 8)
84 *
85 * Any questions? No questions, good. --ANK
86 */
87
88 struct net_device;
89
90 #ifdef CONFIG_NETFILTER
91 struct nf_conntrack {
92 atomic_t use;
93 void (*destroy)(struct nf_conntrack *);
94 };
95
96 #ifdef CONFIG_BRIDGE_NETFILTER
97 struct nf_bridge_info {
98 atomic_t use;
99 struct net_device *physindev;
100 struct net_device *physoutdev;
101 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
102 struct net_device *netoutdev;
103 #endif
104 unsigned int mask;
105 unsigned long data[32 / sizeof(unsigned long)];
106 };
107 #endif
108
109 #endif
110
111 struct sk_buff_head {
112 /* These two members must be first. */
113 struct sk_buff *next;
114 struct sk_buff *prev;
115
116 __u32 qlen;
117 spinlock_t lock;
118 };
119
120 struct sk_buff;
121
122 /* To allow 64K frame to be packed as single skb without frag_list */
123 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
124
125 typedef struct skb_frag_struct skb_frag_t;
126
127 struct skb_frag_struct {
128 struct page *page;
129 __u16 page_offset;
130 __u16 size;
131 };
132
133 /* This data is invariant across clones and lives at
134 * the end of the header data, ie. at skb->end.
135 */
136 struct skb_shared_info {
137 atomic_t dataref;
138 unsigned short nr_frags;
139 unsigned short gso_size;
140 /* Warning: this field is not always filled in (UFO)! */
141 unsigned short gso_segs;
142 unsigned short gso_type;
143 __be32 ip6_frag_id;
144 struct sk_buff *frag_list;
145 skb_frag_t frags[MAX_SKB_FRAGS];
146 };
147
148 /* We divide dataref into two halves. The higher 16 bits hold references
149 * to the payload part of skb->data. The lower 16 bits hold references to
150 * the entire skb->data. It is up to the users of the skb to agree on
151 * where the payload starts.
152 *
153 * All users must obey the rule that the skb->data reference count must be
154 * greater than or equal to the payload reference count.
155 *
156 * Holding a reference to the payload part means that the user does not
157 * care about modifications to the header part of skb->data.
158 */
159 #define SKB_DATAREF_SHIFT 16
160 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
161
162
163 enum {
164 SKB_FCLONE_UNAVAILABLE,
165 SKB_FCLONE_ORIG,
166 SKB_FCLONE_CLONE,
167 };
168
169 enum {
170 SKB_GSO_TCPV4 = 1 << 0,
171 SKB_GSO_UDP = 1 << 1,
172
173 /* This indicates the skb is from an untrusted source. */
174 SKB_GSO_DODGY = 1 << 2,
175
176 /* This indicates the tcp segment has CWR set. */
177 SKB_GSO_TCP_ECN = 1 << 3,
178
179 SKB_GSO_TCPV6 = 1 << 4,
180 };
181
182 /**
183 * struct sk_buff - socket buffer
184 * @next: Next buffer in list
185 * @prev: Previous buffer in list
186 * @sk: Socket we are owned by
187 * @tstamp: Time we arrived
188 * @dev: Device we arrived on/are leaving by
189 * @iif: ifindex of device we arrived on
190 * @h: Transport layer header
191 * @nh: Network layer header
192 * @mac: Link layer header
193 * @dst: destination entry
194 * @sp: the security path, used for xfrm
195 * @cb: Control buffer. Free for use by every layer. Put private vars here
196 * @len: Length of actual data
197 * @data_len: Data length
198 * @mac_len: Length of link layer header
199 * @csum: Checksum
200 * @local_df: allow local fragmentation
201 * @cloned: Head may be cloned (check refcnt to be sure)
202 * @nohdr: Payload reference only, must not modify header
203 * @pkt_type: Packet class
204 * @fclone: skbuff clone status
205 * @ip_summed: Driver fed us an IP checksum
206 * @priority: Packet queueing priority
207 * @users: User count - see {datagram,tcp}.c
208 * @protocol: Packet protocol from driver
209 * @truesize: Buffer size
210 * @head: Head of buffer
211 * @data: Data head pointer
212 * @tail: Tail pointer
213 * @end: End pointer
214 * @destructor: Destruct function
215 * @mark: Generic packet mark
216 * @nfct: Associated connection, if any
217 * @ipvs_property: skbuff is owned by ipvs
218 * @nfctinfo: Relationship of this skb to the connection
219 * @nfct_reasm: netfilter conntrack re-assembly pointer
220 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
221 * @tc_index: Traffic control index
222 * @tc_verd: traffic control verdict
223 * @dma_cookie: a cookie to one of several possible DMA operations
224 * done by skb DMA functions
225 * @secmark: security marking
226 */
227
228 struct sk_buff {
229 /* These two members must be first. */
230 struct sk_buff *next;
231 struct sk_buff *prev;
232
233 struct sock *sk;
234 ktime_t tstamp;
235 struct net_device *dev;
236 int iif;
237 /* 4 byte hole on 64 bit*/
238
239 union {
240 struct tcphdr *th;
241 struct udphdr *uh;
242 struct icmphdr *icmph;
243 struct igmphdr *igmph;
244 struct iphdr *ipiph;
245 struct ipv6hdr *ipv6h;
246 unsigned char *raw;
247 } h;
248
249 union {
250 struct ipv6hdr *ipv6h;
251 unsigned char *raw;
252 } nh;
253
254 union {
255 unsigned char *raw;
256 } mac;
257
258 struct dst_entry *dst;
259 struct sec_path *sp;
260
261 /*
262 * This is the control buffer. It is free to use for every
263 * layer. Please put your private variables there. If you
264 * want to keep them across layers you have to do a skb_clone()
265 * first. This is owned by whoever has the skb queued ATM.
266 */
267 char cb[48];
268
269 unsigned int len,
270 data_len,
271 mac_len;
272 union {
273 __wsum csum;
274 __u32 csum_offset;
275 };
276 __u32 priority;
277 __u8 local_df:1,
278 cloned:1,
279 ip_summed:2,
280 nohdr:1,
281 nfctinfo:3;
282 __u8 pkt_type:3,
283 fclone:2,
284 ipvs_property:1;
285 __be16 protocol;
286
287 void (*destructor)(struct sk_buff *skb);
288 #ifdef CONFIG_NETFILTER
289 struct nf_conntrack *nfct;
290 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
291 struct sk_buff *nfct_reasm;
292 #endif
293 #ifdef CONFIG_BRIDGE_NETFILTER
294 struct nf_bridge_info *nf_bridge;
295 #endif
296 #endif /* CONFIG_NETFILTER */
297 #ifdef CONFIG_NET_SCHED
298 __u16 tc_index; /* traffic control index */
299 #ifdef CONFIG_NET_CLS_ACT
300 __u16 tc_verd; /* traffic control verdict */
301 #endif
302 #endif
303 #ifdef CONFIG_NET_DMA
304 dma_cookie_t dma_cookie;
305 #endif
306 #ifdef CONFIG_NETWORK_SECMARK
307 __u32 secmark;
308 #endif
309
310 __u32 mark;
311
312 /* These elements must be at the end, see alloc_skb() for details. */
313 unsigned int truesize;
314 atomic_t users;
315 unsigned char *head,
316 *data,
317 *tail,
318 *end;
319 };
320
321 #ifdef __KERNEL__
322 /*
323 * Handling routines are only of interest to the kernel
324 */
325 #include <linux/slab.h>
326
327 #include <asm/system.h>
328
329 extern void kfree_skb(struct sk_buff *skb);
330 extern void __kfree_skb(struct sk_buff *skb);
331 extern struct sk_buff *__alloc_skb(unsigned int size,
332 gfp_t priority, int fclone, int node);
333 static inline struct sk_buff *alloc_skb(unsigned int size,
334 gfp_t priority)
335 {
336 return __alloc_skb(size, priority, 0, -1);
337 }
338
339 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
340 gfp_t priority)
341 {
342 return __alloc_skb(size, priority, 1, -1);
343 }
344
345 extern void kfree_skbmem(struct sk_buff *skb);
346 extern struct sk_buff *skb_clone(struct sk_buff *skb,
347 gfp_t priority);
348 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
349 gfp_t priority);
350 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
351 gfp_t gfp_mask);
352 extern int pskb_expand_head(struct sk_buff *skb,
353 int nhead, int ntail,
354 gfp_t gfp_mask);
355 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
356 unsigned int headroom);
357 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
358 int newheadroom, int newtailroom,
359 gfp_t priority);
360 extern int skb_pad(struct sk_buff *skb, int pad);
361 #define dev_kfree_skb(a) kfree_skb(a)
362 extern void skb_over_panic(struct sk_buff *skb, int len,
363 void *here);
364 extern void skb_under_panic(struct sk_buff *skb, int len,
365 void *here);
366 extern void skb_truesize_bug(struct sk_buff *skb);
367
368 static inline void skb_truesize_check(struct sk_buff *skb)
369 {
370 if (unlikely((int)skb->truesize < sizeof(struct sk_buff) + skb->len))
371 skb_truesize_bug(skb);
372 }
373
374 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
375 int getfrag(void *from, char *to, int offset,
376 int len,int odd, struct sk_buff *skb),
377 void *from, int length);
378
379 struct skb_seq_state
380 {
381 __u32 lower_offset;
382 __u32 upper_offset;
383 __u32 frag_idx;
384 __u32 stepped_offset;
385 struct sk_buff *root_skb;
386 struct sk_buff *cur_skb;
387 __u8 *frag_data;
388 };
389
390 extern void skb_prepare_seq_read(struct sk_buff *skb,
391 unsigned int from, unsigned int to,
392 struct skb_seq_state *st);
393 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
394 struct skb_seq_state *st);
395 extern void skb_abort_seq_read(struct skb_seq_state *st);
396
397 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
398 unsigned int to, struct ts_config *config,
399 struct ts_state *state);
400
401 /* Internal */
402 #define skb_shinfo(SKB) ((struct skb_shared_info *)((SKB)->end))
403
404 /**
405 * skb_queue_empty - check if a queue is empty
406 * @list: queue head
407 *
408 * Returns true if the queue is empty, false otherwise.
409 */
410 static inline int skb_queue_empty(const struct sk_buff_head *list)
411 {
412 return list->next == (struct sk_buff *)list;
413 }
414
415 /**
416 * skb_get - reference buffer
417 * @skb: buffer to reference
418 *
419 * Makes another reference to a socket buffer and returns a pointer
420 * to the buffer.
421 */
422 static inline struct sk_buff *skb_get(struct sk_buff *skb)
423 {
424 atomic_inc(&skb->users);
425 return skb;
426 }
427
428 /*
429 * If users == 1, we are the only owner and are can avoid redundant
430 * atomic change.
431 */
432
433 /**
434 * skb_cloned - is the buffer a clone
435 * @skb: buffer to check
436 *
437 * Returns true if the buffer was generated with skb_clone() and is
438 * one of multiple shared copies of the buffer. Cloned buffers are
439 * shared data so must not be written to under normal circumstances.
440 */
441 static inline int skb_cloned(const struct sk_buff *skb)
442 {
443 return skb->cloned &&
444 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
445 }
446
447 /**
448 * skb_header_cloned - is the header a clone
449 * @skb: buffer to check
450 *
451 * Returns true if modifying the header part of the buffer requires
452 * the data to be copied.
453 */
454 static inline int skb_header_cloned(const struct sk_buff *skb)
455 {
456 int dataref;
457
458 if (!skb->cloned)
459 return 0;
460
461 dataref = atomic_read(&skb_shinfo(skb)->dataref);
462 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
463 return dataref != 1;
464 }
465
466 /**
467 * skb_header_release - release reference to header
468 * @skb: buffer to operate on
469 *
470 * Drop a reference to the header part of the buffer. This is done
471 * by acquiring a payload reference. You must not read from the header
472 * part of skb->data after this.
473 */
474 static inline void skb_header_release(struct sk_buff *skb)
475 {
476 BUG_ON(skb->nohdr);
477 skb->nohdr = 1;
478 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
479 }
480
481 /**
482 * skb_shared - is the buffer shared
483 * @skb: buffer to check
484 *
485 * Returns true if more than one person has a reference to this
486 * buffer.
487 */
488 static inline int skb_shared(const struct sk_buff *skb)
489 {
490 return atomic_read(&skb->users) != 1;
491 }
492
493 /**
494 * skb_share_check - check if buffer is shared and if so clone it
495 * @skb: buffer to check
496 * @pri: priority for memory allocation
497 *
498 * If the buffer is shared the buffer is cloned and the old copy
499 * drops a reference. A new clone with a single reference is returned.
500 * If the buffer is not shared the original buffer is returned. When
501 * being called from interrupt status or with spinlocks held pri must
502 * be GFP_ATOMIC.
503 *
504 * NULL is returned on a memory allocation failure.
505 */
506 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
507 gfp_t pri)
508 {
509 might_sleep_if(pri & __GFP_WAIT);
510 if (skb_shared(skb)) {
511 struct sk_buff *nskb = skb_clone(skb, pri);
512 kfree_skb(skb);
513 skb = nskb;
514 }
515 return skb;
516 }
517
518 /*
519 * Copy shared buffers into a new sk_buff. We effectively do COW on
520 * packets to handle cases where we have a local reader and forward
521 * and a couple of other messy ones. The normal one is tcpdumping
522 * a packet thats being forwarded.
523 */
524
525 /**
526 * skb_unshare - make a copy of a shared buffer
527 * @skb: buffer to check
528 * @pri: priority for memory allocation
529 *
530 * If the socket buffer is a clone then this function creates a new
531 * copy of the data, drops a reference count on the old copy and returns
532 * the new copy with the reference count at 1. If the buffer is not a clone
533 * the original buffer is returned. When called with a spinlock held or
534 * from interrupt state @pri must be %GFP_ATOMIC
535 *
536 * %NULL is returned on a memory allocation failure.
537 */
538 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
539 gfp_t pri)
540 {
541 might_sleep_if(pri & __GFP_WAIT);
542 if (skb_cloned(skb)) {
543 struct sk_buff *nskb = skb_copy(skb, pri);
544 kfree_skb(skb); /* Free our shared copy */
545 skb = nskb;
546 }
547 return skb;
548 }
549
550 /**
551 * skb_peek
552 * @list_: list to peek at
553 *
554 * Peek an &sk_buff. Unlike most other operations you _MUST_
555 * be careful with this one. A peek leaves the buffer on the
556 * list and someone else may run off with it. You must hold
557 * the appropriate locks or have a private queue to do this.
558 *
559 * Returns %NULL for an empty list or a pointer to the head element.
560 * The reference count is not incremented and the reference is therefore
561 * volatile. Use with caution.
562 */
563 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
564 {
565 struct sk_buff *list = ((struct sk_buff *)list_)->next;
566 if (list == (struct sk_buff *)list_)
567 list = NULL;
568 return list;
569 }
570
571 /**
572 * skb_peek_tail
573 * @list_: list to peek at
574 *
575 * Peek an &sk_buff. Unlike most other operations you _MUST_
576 * be careful with this one. A peek leaves the buffer on the
577 * list and someone else may run off with it. You must hold
578 * the appropriate locks or have a private queue to do this.
579 *
580 * Returns %NULL for an empty list or a pointer to the tail element.
581 * The reference count is not incremented and the reference is therefore
582 * volatile. Use with caution.
583 */
584 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
585 {
586 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
587 if (list == (struct sk_buff *)list_)
588 list = NULL;
589 return list;
590 }
591
592 /**
593 * skb_queue_len - get queue length
594 * @list_: list to measure
595 *
596 * Return the length of an &sk_buff queue.
597 */
598 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
599 {
600 return list_->qlen;
601 }
602
603 /*
604 * This function creates a split out lock class for each invocation;
605 * this is needed for now since a whole lot of users of the skb-queue
606 * infrastructure in drivers have different locking usage (in hardirq)
607 * than the networking core (in softirq only). In the long run either the
608 * network layer or drivers should need annotation to consolidate the
609 * main types of usage into 3 classes.
610 */
611 static inline void skb_queue_head_init(struct sk_buff_head *list)
612 {
613 spin_lock_init(&list->lock);
614 list->prev = list->next = (struct sk_buff *)list;
615 list->qlen = 0;
616 }
617
618 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
619 struct lock_class_key *class)
620 {
621 skb_queue_head_init(list);
622 lockdep_set_class(&list->lock, class);
623 }
624
625 /*
626 * Insert an sk_buff at the start of a list.
627 *
628 * The "__skb_xxxx()" functions are the non-atomic ones that
629 * can only be called with interrupts disabled.
630 */
631
632 /**
633 * __skb_queue_after - queue a buffer at the list head
634 * @list: list to use
635 * @prev: place after this buffer
636 * @newsk: buffer to queue
637 *
638 * Queue a buffer int the middle of a list. This function takes no locks
639 * and you must therefore hold required locks before calling it.
640 *
641 * A buffer cannot be placed on two lists at the same time.
642 */
643 static inline void __skb_queue_after(struct sk_buff_head *list,
644 struct sk_buff *prev,
645 struct sk_buff *newsk)
646 {
647 struct sk_buff *next;
648 list->qlen++;
649
650 next = prev->next;
651 newsk->next = next;
652 newsk->prev = prev;
653 next->prev = prev->next = newsk;
654 }
655
656 /**
657 * __skb_queue_head - queue a buffer at the list head
658 * @list: list to use
659 * @newsk: buffer to queue
660 *
661 * Queue a buffer at the start of a list. This function takes no locks
662 * and you must therefore hold required locks before calling it.
663 *
664 * A buffer cannot be placed on two lists at the same time.
665 */
666 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
667 static inline void __skb_queue_head(struct sk_buff_head *list,
668 struct sk_buff *newsk)
669 {
670 __skb_queue_after(list, (struct sk_buff *)list, newsk);
671 }
672
673 /**
674 * __skb_queue_tail - queue a buffer at the list tail
675 * @list: list to use
676 * @newsk: buffer to queue
677 *
678 * Queue a buffer at the end of a list. This function takes no locks
679 * and you must therefore hold required locks before calling it.
680 *
681 * A buffer cannot be placed on two lists at the same time.
682 */
683 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
684 static inline void __skb_queue_tail(struct sk_buff_head *list,
685 struct sk_buff *newsk)
686 {
687 struct sk_buff *prev, *next;
688
689 list->qlen++;
690 next = (struct sk_buff *)list;
691 prev = next->prev;
692 newsk->next = next;
693 newsk->prev = prev;
694 next->prev = prev->next = newsk;
695 }
696
697
698 /**
699 * __skb_dequeue - remove from the head of the queue
700 * @list: list to dequeue from
701 *
702 * Remove the head of the list. This function does not take any locks
703 * so must be used with appropriate locks held only. The head item is
704 * returned or %NULL if the list is empty.
705 */
706 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
707 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
708 {
709 struct sk_buff *next, *prev, *result;
710
711 prev = (struct sk_buff *) list;
712 next = prev->next;
713 result = NULL;
714 if (next != prev) {
715 result = next;
716 next = next->next;
717 list->qlen--;
718 next->prev = prev;
719 prev->next = next;
720 result->next = result->prev = NULL;
721 }
722 return result;
723 }
724
725
726 /*
727 * Insert a packet on a list.
728 */
729 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
730 static inline void __skb_insert(struct sk_buff *newsk,
731 struct sk_buff *prev, struct sk_buff *next,
732 struct sk_buff_head *list)
733 {
734 newsk->next = next;
735 newsk->prev = prev;
736 next->prev = prev->next = newsk;
737 list->qlen++;
738 }
739
740 /*
741 * Place a packet after a given packet in a list.
742 */
743 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
744 static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
745 {
746 __skb_insert(newsk, old, old->next, list);
747 }
748
749 /*
750 * remove sk_buff from list. _Must_ be called atomically, and with
751 * the list known..
752 */
753 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
754 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
755 {
756 struct sk_buff *next, *prev;
757
758 list->qlen--;
759 next = skb->next;
760 prev = skb->prev;
761 skb->next = skb->prev = NULL;
762 next->prev = prev;
763 prev->next = next;
764 }
765
766
767 /* XXX: more streamlined implementation */
768
769 /**
770 * __skb_dequeue_tail - remove from the tail of the queue
771 * @list: list to dequeue from
772 *
773 * Remove the tail of the list. This function does not take any locks
774 * so must be used with appropriate locks held only. The tail item is
775 * returned or %NULL if the list is empty.
776 */
777 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
778 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
779 {
780 struct sk_buff *skb = skb_peek_tail(list);
781 if (skb)
782 __skb_unlink(skb, list);
783 return skb;
784 }
785
786
787 static inline int skb_is_nonlinear(const struct sk_buff *skb)
788 {
789 return skb->data_len;
790 }
791
792 static inline unsigned int skb_headlen(const struct sk_buff *skb)
793 {
794 return skb->len - skb->data_len;
795 }
796
797 static inline int skb_pagelen(const struct sk_buff *skb)
798 {
799 int i, len = 0;
800
801 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
802 len += skb_shinfo(skb)->frags[i].size;
803 return len + skb_headlen(skb);
804 }
805
806 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
807 struct page *page, int off, int size)
808 {
809 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
810
811 frag->page = page;
812 frag->page_offset = off;
813 frag->size = size;
814 skb_shinfo(skb)->nr_frags = i + 1;
815 }
816
817 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
818 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
819 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
820
821 /*
822 * Add data to an sk_buff
823 */
824 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
825 {
826 unsigned char *tmp = skb->tail;
827 SKB_LINEAR_ASSERT(skb);
828 skb->tail += len;
829 skb->len += len;
830 return tmp;
831 }
832
833 /**
834 * skb_put - add data to a buffer
835 * @skb: buffer to use
836 * @len: amount of data to add
837 *
838 * This function extends the used data area of the buffer. If this would
839 * exceed the total buffer size the kernel will panic. A pointer to the
840 * first byte of the extra data is returned.
841 */
842 static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
843 {
844 unsigned char *tmp = skb->tail;
845 SKB_LINEAR_ASSERT(skb);
846 skb->tail += len;
847 skb->len += len;
848 if (unlikely(skb->tail>skb->end))
849 skb_over_panic(skb, len, current_text_addr());
850 return tmp;
851 }
852
853 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
854 {
855 skb->data -= len;
856 skb->len += len;
857 return skb->data;
858 }
859
860 /**
861 * skb_push - add data to the start of a buffer
862 * @skb: buffer to use
863 * @len: amount of data to add
864 *
865 * This function extends the used data area of the buffer at the buffer
866 * start. If this would exceed the total buffer headroom the kernel will
867 * panic. A pointer to the first byte of the extra data is returned.
868 */
869 static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
870 {
871 skb->data -= len;
872 skb->len += len;
873 if (unlikely(skb->data<skb->head))
874 skb_under_panic(skb, len, current_text_addr());
875 return skb->data;
876 }
877
878 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
879 {
880 skb->len -= len;
881 BUG_ON(skb->len < skb->data_len);
882 return skb->data += len;
883 }
884
885 /**
886 * skb_pull - remove data from the start of a buffer
887 * @skb: buffer to use
888 * @len: amount of data to remove
889 *
890 * This function removes data from the start of a buffer, returning
891 * the memory to the headroom. A pointer to the next data in the buffer
892 * is returned. Once the data has been pulled future pushes will overwrite
893 * the old data.
894 */
895 static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
896 {
897 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
898 }
899
900 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
901
902 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
903 {
904 if (len > skb_headlen(skb) &&
905 !__pskb_pull_tail(skb, len-skb_headlen(skb)))
906 return NULL;
907 skb->len -= len;
908 return skb->data += len;
909 }
910
911 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
912 {
913 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
914 }
915
916 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
917 {
918 if (likely(len <= skb_headlen(skb)))
919 return 1;
920 if (unlikely(len > skb->len))
921 return 0;
922 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
923 }
924
925 /**
926 * skb_headroom - bytes at buffer head
927 * @skb: buffer to check
928 *
929 * Return the number of bytes of free space at the head of an &sk_buff.
930 */
931 static inline int skb_headroom(const struct sk_buff *skb)
932 {
933 return skb->data - skb->head;
934 }
935
936 /**
937 * skb_tailroom - bytes at buffer end
938 * @skb: buffer to check
939 *
940 * Return the number of bytes of free space at the tail of an sk_buff
941 */
942 static inline int skb_tailroom(const struct sk_buff *skb)
943 {
944 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
945 }
946
947 /**
948 * skb_reserve - adjust headroom
949 * @skb: buffer to alter
950 * @len: bytes to move
951 *
952 * Increase the headroom of an empty &sk_buff by reducing the tail
953 * room. This is only allowed for an empty buffer.
954 */
955 static inline void skb_reserve(struct sk_buff *skb, int len)
956 {
957 skb->data += len;
958 skb->tail += len;
959 }
960
961 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
962 {
963 return skb->nh.raw;
964 }
965
966 static inline void skb_reset_network_header(struct sk_buff *skb)
967 {
968 skb->nh.raw = skb->data;
969 }
970
971 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
972 {
973 skb->nh.raw = skb->data + offset;
974 }
975
976 static inline int skb_network_offset(const struct sk_buff *skb)
977 {
978 return skb->nh.raw - skb->data;
979 }
980
981 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
982 {
983 return skb->mac.raw;
984 }
985
986 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
987 {
988 return skb->mac.raw != NULL;
989 }
990
991 static inline void skb_reset_mac_header(struct sk_buff *skb)
992 {
993 skb->mac.raw = skb->data;
994 }
995
996 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
997 {
998 skb->mac.raw = skb->data + offset;
999 }
1000
1001 /*
1002 * CPUs often take a performance hit when accessing unaligned memory
1003 * locations. The actual performance hit varies, it can be small if the
1004 * hardware handles it or large if we have to take an exception and fix it
1005 * in software.
1006 *
1007 * Since an ethernet header is 14 bytes network drivers often end up with
1008 * the IP header at an unaligned offset. The IP header can be aligned by
1009 * shifting the start of the packet by 2 bytes. Drivers should do this
1010 * with:
1011 *
1012 * skb_reserve(NET_IP_ALIGN);
1013 *
1014 * The downside to this alignment of the IP header is that the DMA is now
1015 * unaligned. On some architectures the cost of an unaligned DMA is high
1016 * and this cost outweighs the gains made by aligning the IP header.
1017 *
1018 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1019 * to be overridden.
1020 */
1021 #ifndef NET_IP_ALIGN
1022 #define NET_IP_ALIGN 2
1023 #endif
1024
1025 /*
1026 * The networking layer reserves some headroom in skb data (via
1027 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1028 * the header has to grow. In the default case, if the header has to grow
1029 * 16 bytes or less we avoid the reallocation.
1030 *
1031 * Unfortunately this headroom changes the DMA alignment of the resulting
1032 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1033 * on some architectures. An architecture can override this value,
1034 * perhaps setting it to a cacheline in size (since that will maintain
1035 * cacheline alignment of the DMA). It must be a power of 2.
1036 *
1037 * Various parts of the networking layer expect at least 16 bytes of
1038 * headroom, you should not reduce this.
1039 */
1040 #ifndef NET_SKB_PAD
1041 #define NET_SKB_PAD 16
1042 #endif
1043
1044 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1045
1046 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1047 {
1048 if (unlikely(skb->data_len)) {
1049 WARN_ON(1);
1050 return;
1051 }
1052 skb->len = len;
1053 skb->tail = skb->data + len;
1054 }
1055
1056 /**
1057 * skb_trim - remove end from a buffer
1058 * @skb: buffer to alter
1059 * @len: new length
1060 *
1061 * Cut the length of a buffer down by removing data from the tail. If
1062 * the buffer is already under the length specified it is not modified.
1063 * The skb must be linear.
1064 */
1065 static inline void skb_trim(struct sk_buff *skb, unsigned int len)
1066 {
1067 if (skb->len > len)
1068 __skb_trim(skb, len);
1069 }
1070
1071
1072 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1073 {
1074 if (skb->data_len)
1075 return ___pskb_trim(skb, len);
1076 __skb_trim(skb, len);
1077 return 0;
1078 }
1079
1080 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1081 {
1082 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1083 }
1084
1085 /**
1086 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1087 * @skb: buffer to alter
1088 * @len: new length
1089 *
1090 * This is identical to pskb_trim except that the caller knows that
1091 * the skb is not cloned so we should never get an error due to out-
1092 * of-memory.
1093 */
1094 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1095 {
1096 int err = pskb_trim(skb, len);
1097 BUG_ON(err);
1098 }
1099
1100 /**
1101 * skb_orphan - orphan a buffer
1102 * @skb: buffer to orphan
1103 *
1104 * If a buffer currently has an owner then we call the owner's
1105 * destructor function and make the @skb unowned. The buffer continues
1106 * to exist but is no longer charged to its former owner.
1107 */
1108 static inline void skb_orphan(struct sk_buff *skb)
1109 {
1110 if (skb->destructor)
1111 skb->destructor(skb);
1112 skb->destructor = NULL;
1113 skb->sk = NULL;
1114 }
1115
1116 /**
1117 * __skb_queue_purge - empty a list
1118 * @list: list to empty
1119 *
1120 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1121 * the list and one reference dropped. This function does not take the
1122 * list lock and the caller must hold the relevant locks to use it.
1123 */
1124 extern void skb_queue_purge(struct sk_buff_head *list);
1125 static inline void __skb_queue_purge(struct sk_buff_head *list)
1126 {
1127 struct sk_buff *skb;
1128 while ((skb = __skb_dequeue(list)) != NULL)
1129 kfree_skb(skb);
1130 }
1131
1132 /**
1133 * __dev_alloc_skb - allocate an skbuff for receiving
1134 * @length: length to allocate
1135 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1136 *
1137 * Allocate a new &sk_buff and assign it a usage count of one. The
1138 * buffer has unspecified headroom built in. Users should allocate
1139 * the headroom they think they need without accounting for the
1140 * built in space. The built in space is used for optimisations.
1141 *
1142 * %NULL is returned if there is no free memory.
1143 */
1144 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1145 gfp_t gfp_mask)
1146 {
1147 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1148 if (likely(skb))
1149 skb_reserve(skb, NET_SKB_PAD);
1150 return skb;
1151 }
1152
1153 /**
1154 * dev_alloc_skb - allocate an skbuff for receiving
1155 * @length: length to allocate
1156 *
1157 * Allocate a new &sk_buff and assign it a usage count of one. The
1158 * buffer has unspecified headroom built in. Users should allocate
1159 * the headroom they think they need without accounting for the
1160 * built in space. The built in space is used for optimisations.
1161 *
1162 * %NULL is returned if there is no free memory. Although this function
1163 * allocates memory it can be called from an interrupt.
1164 */
1165 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1166 {
1167 return __dev_alloc_skb(length, GFP_ATOMIC);
1168 }
1169
1170 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1171 unsigned int length, gfp_t gfp_mask);
1172
1173 /**
1174 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1175 * @dev: network device to receive on
1176 * @length: length to allocate
1177 *
1178 * Allocate a new &sk_buff and assign it a usage count of one. The
1179 * buffer has unspecified headroom built in. Users should allocate
1180 * the headroom they think they need without accounting for the
1181 * built in space. The built in space is used for optimisations.
1182 *
1183 * %NULL is returned if there is no free memory. Although this function
1184 * allocates memory it can be called from an interrupt.
1185 */
1186 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1187 unsigned int length)
1188 {
1189 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1190 }
1191
1192 /**
1193 * skb_cow - copy header of skb when it is required
1194 * @skb: buffer to cow
1195 * @headroom: needed headroom
1196 *
1197 * If the skb passed lacks sufficient headroom or its data part
1198 * is shared, data is reallocated. If reallocation fails, an error
1199 * is returned and original skb is not changed.
1200 *
1201 * The result is skb with writable area skb->head...skb->tail
1202 * and at least @headroom of space at head.
1203 */
1204 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1205 {
1206 int delta = (headroom > NET_SKB_PAD ? headroom : NET_SKB_PAD) -
1207 skb_headroom(skb);
1208
1209 if (delta < 0)
1210 delta = 0;
1211
1212 if (delta || skb_cloned(skb))
1213 return pskb_expand_head(skb, (delta + (NET_SKB_PAD-1)) &
1214 ~(NET_SKB_PAD-1), 0, GFP_ATOMIC);
1215 return 0;
1216 }
1217
1218 /**
1219 * skb_padto - pad an skbuff up to a minimal size
1220 * @skb: buffer to pad
1221 * @len: minimal length
1222 *
1223 * Pads up a buffer to ensure the trailing bytes exist and are
1224 * blanked. If the buffer already contains sufficient data it
1225 * is untouched. Otherwise it is extended. Returns zero on
1226 * success. The skb is freed on error.
1227 */
1228
1229 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1230 {
1231 unsigned int size = skb->len;
1232 if (likely(size >= len))
1233 return 0;
1234 return skb_pad(skb, len-size);
1235 }
1236
1237 static inline int skb_add_data(struct sk_buff *skb,
1238 char __user *from, int copy)
1239 {
1240 const int off = skb->len;
1241
1242 if (skb->ip_summed == CHECKSUM_NONE) {
1243 int err = 0;
1244 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1245 copy, 0, &err);
1246 if (!err) {
1247 skb->csum = csum_block_add(skb->csum, csum, off);
1248 return 0;
1249 }
1250 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1251 return 0;
1252
1253 __skb_trim(skb, off);
1254 return -EFAULT;
1255 }
1256
1257 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1258 struct page *page, int off)
1259 {
1260 if (i) {
1261 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1262
1263 return page == frag->page &&
1264 off == frag->page_offset + frag->size;
1265 }
1266 return 0;
1267 }
1268
1269 static inline int __skb_linearize(struct sk_buff *skb)
1270 {
1271 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1272 }
1273
1274 /**
1275 * skb_linearize - convert paged skb to linear one
1276 * @skb: buffer to linarize
1277 *
1278 * If there is no free memory -ENOMEM is returned, otherwise zero
1279 * is returned and the old skb data released.
1280 */
1281 static inline int skb_linearize(struct sk_buff *skb)
1282 {
1283 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1284 }
1285
1286 /**
1287 * skb_linearize_cow - make sure skb is linear and writable
1288 * @skb: buffer to process
1289 *
1290 * If there is no free memory -ENOMEM is returned, otherwise zero
1291 * is returned and the old skb data released.
1292 */
1293 static inline int skb_linearize_cow(struct sk_buff *skb)
1294 {
1295 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1296 __skb_linearize(skb) : 0;
1297 }
1298
1299 /**
1300 * skb_postpull_rcsum - update checksum for received skb after pull
1301 * @skb: buffer to update
1302 * @start: start of data before pull
1303 * @len: length of data pulled
1304 *
1305 * After doing a pull on a received packet, you need to call this to
1306 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1307 * CHECKSUM_NONE so that it can be recomputed from scratch.
1308 */
1309
1310 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1311 const void *start, unsigned int len)
1312 {
1313 if (skb->ip_summed == CHECKSUM_COMPLETE)
1314 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1315 }
1316
1317 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1318
1319 /**
1320 * pskb_trim_rcsum - trim received skb and update checksum
1321 * @skb: buffer to trim
1322 * @len: new length
1323 *
1324 * This is exactly the same as pskb_trim except that it ensures the
1325 * checksum of received packets are still valid after the operation.
1326 */
1327
1328 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1329 {
1330 if (likely(len >= skb->len))
1331 return 0;
1332 if (skb->ip_summed == CHECKSUM_COMPLETE)
1333 skb->ip_summed = CHECKSUM_NONE;
1334 return __pskb_trim(skb, len);
1335 }
1336
1337 #define skb_queue_walk(queue, skb) \
1338 for (skb = (queue)->next; \
1339 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1340 skb = skb->next)
1341
1342 #define skb_queue_reverse_walk(queue, skb) \
1343 for (skb = (queue)->prev; \
1344 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1345 skb = skb->prev)
1346
1347
1348 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1349 int noblock, int *err);
1350 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1351 struct poll_table_struct *wait);
1352 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1353 int offset, struct iovec *to,
1354 int size);
1355 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1356 int hlen,
1357 struct iovec *iov);
1358 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1359 extern void skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1360 unsigned int flags);
1361 extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
1362 int len, __wsum csum);
1363 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1364 void *to, int len);
1365 extern int skb_store_bits(const struct sk_buff *skb, int offset,
1366 void *from, int len);
1367 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
1368 int offset, u8 *to, int len,
1369 __wsum csum);
1370 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1371 extern void skb_split(struct sk_buff *skb,
1372 struct sk_buff *skb1, const u32 len);
1373
1374 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1375
1376 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1377 int len, void *buffer)
1378 {
1379 int hlen = skb_headlen(skb);
1380
1381 if (hlen - offset >= len)
1382 return skb->data + offset;
1383
1384 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1385 return NULL;
1386
1387 return buffer;
1388 }
1389
1390 extern void skb_init(void);
1391 extern void skb_add_mtu(int mtu);
1392
1393 /**
1394 * skb_get_timestamp - get timestamp from a skb
1395 * @skb: skb to get stamp from
1396 * @stamp: pointer to struct timeval to store stamp in
1397 *
1398 * Timestamps are stored in the skb as offsets to a base timestamp.
1399 * This function converts the offset back to a struct timeval and stores
1400 * it in stamp.
1401 */
1402 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1403 {
1404 *stamp = ktime_to_timeval(skb->tstamp);
1405 }
1406
1407 static inline void __net_timestamp(struct sk_buff *skb)
1408 {
1409 skb->tstamp = ktime_get_real();
1410 }
1411
1412
1413 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1414 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1415
1416 /**
1417 * skb_checksum_complete - Calculate checksum of an entire packet
1418 * @skb: packet to process
1419 *
1420 * This function calculates the checksum over the entire packet plus
1421 * the value of skb->csum. The latter can be used to supply the
1422 * checksum of a pseudo header as used by TCP/UDP. It returns the
1423 * checksum.
1424 *
1425 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
1426 * this function can be used to verify that checksum on received
1427 * packets. In that case the function should return zero if the
1428 * checksum is correct. In particular, this function will return zero
1429 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1430 * hardware has already verified the correctness of the checksum.
1431 */
1432 static inline unsigned int skb_checksum_complete(struct sk_buff *skb)
1433 {
1434 return skb->ip_summed != CHECKSUM_UNNECESSARY &&
1435 __skb_checksum_complete(skb);
1436 }
1437
1438 #ifdef CONFIG_NETFILTER
1439 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1440 {
1441 if (nfct && atomic_dec_and_test(&nfct->use))
1442 nfct->destroy(nfct);
1443 }
1444 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1445 {
1446 if (nfct)
1447 atomic_inc(&nfct->use);
1448 }
1449 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1450 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1451 {
1452 if (skb)
1453 atomic_inc(&skb->users);
1454 }
1455 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1456 {
1457 if (skb)
1458 kfree_skb(skb);
1459 }
1460 #endif
1461 #ifdef CONFIG_BRIDGE_NETFILTER
1462 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1463 {
1464 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1465 kfree(nf_bridge);
1466 }
1467 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1468 {
1469 if (nf_bridge)
1470 atomic_inc(&nf_bridge->use);
1471 }
1472 #endif /* CONFIG_BRIDGE_NETFILTER */
1473 static inline void nf_reset(struct sk_buff *skb)
1474 {
1475 nf_conntrack_put(skb->nfct);
1476 skb->nfct = NULL;
1477 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1478 nf_conntrack_put_reasm(skb->nfct_reasm);
1479 skb->nfct_reasm = NULL;
1480 #endif
1481 #ifdef CONFIG_BRIDGE_NETFILTER
1482 nf_bridge_put(skb->nf_bridge);
1483 skb->nf_bridge = NULL;
1484 #endif
1485 }
1486
1487 #else /* CONFIG_NETFILTER */
1488 static inline void nf_reset(struct sk_buff *skb) {}
1489 #endif /* CONFIG_NETFILTER */
1490
1491 #ifdef CONFIG_NETWORK_SECMARK
1492 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1493 {
1494 to->secmark = from->secmark;
1495 }
1496
1497 static inline void skb_init_secmark(struct sk_buff *skb)
1498 {
1499 skb->secmark = 0;
1500 }
1501 #else
1502 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1503 { }
1504
1505 static inline void skb_init_secmark(struct sk_buff *skb)
1506 { }
1507 #endif
1508
1509 static inline int skb_is_gso(const struct sk_buff *skb)
1510 {
1511 return skb_shinfo(skb)->gso_size;
1512 }
1513
1514 #endif /* __KERNEL__ */
1515 #endif /* _LINUX_SKBUFF_H */
This page took 0.062973 seconds and 6 git commands to generate.