Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi...
[deliverable/linux.git] / include / linux / skbuff.h
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
16
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/bug.h>
22 #include <linux/cache.h>
23
24 #include <linux/atomic.h>
25 #include <asm/types.h>
26 #include <linux/spinlock.h>
27 #include <linux/net.h>
28 #include <linux/textsearch.h>
29 #include <net/checksum.h>
30 #include <linux/rcupdate.h>
31 #include <linux/dmaengine.h>
32 #include <linux/hrtimer.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/netdev_features.h>
35
36 /* Don't change this without changing skb_csum_unnecessary! */
37 #define CHECKSUM_NONE 0
38 #define CHECKSUM_UNNECESSARY 1
39 #define CHECKSUM_COMPLETE 2
40 #define CHECKSUM_PARTIAL 3
41
42 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
43 ~(SMP_CACHE_BYTES - 1))
44 #define SKB_WITH_OVERHEAD(X) \
45 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
46 #define SKB_MAX_ORDER(X, ORDER) \
47 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
48 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
49 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
50
51 /* return minimum truesize of one skb containing X bytes of data */
52 #define SKB_TRUESIZE(X) ((X) + \
53 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
54 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
55
56 /* A. Checksumming of received packets by device.
57 *
58 * NONE: device failed to checksum this packet.
59 * skb->csum is undefined.
60 *
61 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
62 * skb->csum is undefined.
63 * It is bad option, but, unfortunately, many of vendors do this.
64 * Apparently with secret goal to sell you new device, when you
65 * will add new protocol to your host. F.e. IPv6. 8)
66 *
67 * COMPLETE: the most generic way. Device supplied checksum of _all_
68 * the packet as seen by netif_rx in skb->csum.
69 * NOTE: Even if device supports only some protocols, but
70 * is able to produce some skb->csum, it MUST use COMPLETE,
71 * not UNNECESSARY.
72 *
73 * PARTIAL: identical to the case for output below. This may occur
74 * on a packet received directly from another Linux OS, e.g.,
75 * a virtualised Linux kernel on the same host. The packet can
76 * be treated in the same way as UNNECESSARY except that on
77 * output (i.e., forwarding) the checksum must be filled in
78 * by the OS or the hardware.
79 *
80 * B. Checksumming on output.
81 *
82 * NONE: skb is checksummed by protocol or csum is not required.
83 *
84 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
85 * from skb->csum_start to the end and to record the checksum
86 * at skb->csum_start + skb->csum_offset.
87 *
88 * Device must show its capabilities in dev->features, set
89 * at device setup time.
90 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
91 * everything.
92 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
93 * TCP/UDP over IPv4. Sigh. Vendors like this
94 * way by an unknown reason. Though, see comment above
95 * about CHECKSUM_UNNECESSARY. 8)
96 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
97 *
98 * UNNECESSARY: device will do per protocol specific csum. Protocol drivers
99 * that do not want net to perform the checksum calculation should use
100 * this flag in their outgoing skbs.
101 * NETIF_F_FCOE_CRC this indicates the device can do FCoE FC CRC
102 * offload. Correspondingly, the FCoE protocol driver
103 * stack should use CHECKSUM_UNNECESSARY.
104 *
105 * Any questions? No questions, good. --ANK
106 */
107
108 struct net_device;
109 struct scatterlist;
110 struct pipe_inode_info;
111
112 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
113 struct nf_conntrack {
114 atomic_t use;
115 };
116 #endif
117
118 #ifdef CONFIG_BRIDGE_NETFILTER
119 struct nf_bridge_info {
120 atomic_t use;
121 unsigned int mask;
122 struct net_device *physindev;
123 struct net_device *physoutdev;
124 unsigned long data[32 / sizeof(unsigned long)];
125 };
126 #endif
127
128 struct sk_buff_head {
129 /* These two members must be first. */
130 struct sk_buff *next;
131 struct sk_buff *prev;
132
133 __u32 qlen;
134 spinlock_t lock;
135 };
136
137 struct sk_buff;
138
139 /* To allow 64K frame to be packed as single skb without frag_list we
140 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
141 * buffers which do not start on a page boundary.
142 *
143 * Since GRO uses frags we allocate at least 16 regardless of page
144 * size.
145 */
146 #if (65536/PAGE_SIZE + 1) < 16
147 #define MAX_SKB_FRAGS 16UL
148 #else
149 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
150 #endif
151
152 typedef struct skb_frag_struct skb_frag_t;
153
154 struct skb_frag_struct {
155 struct {
156 struct page *p;
157 } page;
158 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
159 __u32 page_offset;
160 __u32 size;
161 #else
162 __u16 page_offset;
163 __u16 size;
164 #endif
165 };
166
167 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
168 {
169 return frag->size;
170 }
171
172 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
173 {
174 frag->size = size;
175 }
176
177 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
178 {
179 frag->size += delta;
180 }
181
182 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
183 {
184 frag->size -= delta;
185 }
186
187 #define HAVE_HW_TIME_STAMP
188
189 /**
190 * struct skb_shared_hwtstamps - hardware time stamps
191 * @hwtstamp: hardware time stamp transformed into duration
192 * since arbitrary point in time
193 * @syststamp: hwtstamp transformed to system time base
194 *
195 * Software time stamps generated by ktime_get_real() are stored in
196 * skb->tstamp. The relation between the different kinds of time
197 * stamps is as follows:
198 *
199 * syststamp and tstamp can be compared against each other in
200 * arbitrary combinations. The accuracy of a
201 * syststamp/tstamp/"syststamp from other device" comparison is
202 * limited by the accuracy of the transformation into system time
203 * base. This depends on the device driver and its underlying
204 * hardware.
205 *
206 * hwtstamps can only be compared against other hwtstamps from
207 * the same device.
208 *
209 * This structure is attached to packets as part of the
210 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
211 */
212 struct skb_shared_hwtstamps {
213 ktime_t hwtstamp;
214 ktime_t syststamp;
215 };
216
217 /* Definitions for tx_flags in struct skb_shared_info */
218 enum {
219 /* generate hardware time stamp */
220 SKBTX_HW_TSTAMP = 1 << 0,
221
222 /* generate software time stamp */
223 SKBTX_SW_TSTAMP = 1 << 1,
224
225 /* device driver is going to provide hardware time stamp */
226 SKBTX_IN_PROGRESS = 1 << 2,
227
228 /* ensure the originating sk reference is available on driver level */
229 SKBTX_DRV_NEEDS_SK_REF = 1 << 3,
230
231 /* device driver supports TX zero-copy buffers */
232 SKBTX_DEV_ZEROCOPY = 1 << 4,
233
234 /* generate wifi status information (where possible) */
235 SKBTX_WIFI_STATUS = 1 << 5,
236 };
237
238 /*
239 * The callback notifies userspace to release buffers when skb DMA is done in
240 * lower device, the skb last reference should be 0 when calling this.
241 * The ctx field is used to track device context.
242 * The desc field is used to track userspace buffer index.
243 */
244 struct ubuf_info {
245 void (*callback)(struct ubuf_info *);
246 void *ctx;
247 unsigned long desc;
248 };
249
250 /* This data is invariant across clones and lives at
251 * the end of the header data, ie. at skb->end.
252 */
253 struct skb_shared_info {
254 unsigned char nr_frags;
255 __u8 tx_flags;
256 unsigned short gso_size;
257 /* Warning: this field is not always filled in (UFO)! */
258 unsigned short gso_segs;
259 unsigned short gso_type;
260 struct sk_buff *frag_list;
261 struct skb_shared_hwtstamps hwtstamps;
262 __be32 ip6_frag_id;
263
264 /*
265 * Warning : all fields before dataref are cleared in __alloc_skb()
266 */
267 atomic_t dataref;
268
269 /* Intermediate layers must ensure that destructor_arg
270 * remains valid until skb destructor */
271 void * destructor_arg;
272
273 /* must be last field, see pskb_expand_head() */
274 skb_frag_t frags[MAX_SKB_FRAGS];
275 };
276
277 /* We divide dataref into two halves. The higher 16 bits hold references
278 * to the payload part of skb->data. The lower 16 bits hold references to
279 * the entire skb->data. A clone of a headerless skb holds the length of
280 * the header in skb->hdr_len.
281 *
282 * All users must obey the rule that the skb->data reference count must be
283 * greater than or equal to the payload reference count.
284 *
285 * Holding a reference to the payload part means that the user does not
286 * care about modifications to the header part of skb->data.
287 */
288 #define SKB_DATAREF_SHIFT 16
289 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
290
291
292 enum {
293 SKB_FCLONE_UNAVAILABLE,
294 SKB_FCLONE_ORIG,
295 SKB_FCLONE_CLONE,
296 };
297
298 enum {
299 SKB_GSO_TCPV4 = 1 << 0,
300 SKB_GSO_UDP = 1 << 1,
301
302 /* This indicates the skb is from an untrusted source. */
303 SKB_GSO_DODGY = 1 << 2,
304
305 /* This indicates the tcp segment has CWR set. */
306 SKB_GSO_TCP_ECN = 1 << 3,
307
308 SKB_GSO_TCPV6 = 1 << 4,
309
310 SKB_GSO_FCOE = 1 << 5,
311 };
312
313 #if BITS_PER_LONG > 32
314 #define NET_SKBUFF_DATA_USES_OFFSET 1
315 #endif
316
317 #ifdef NET_SKBUFF_DATA_USES_OFFSET
318 typedef unsigned int sk_buff_data_t;
319 #else
320 typedef unsigned char *sk_buff_data_t;
321 #endif
322
323 #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
324 defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
325 #define NET_SKBUFF_NF_DEFRAG_NEEDED 1
326 #endif
327
328 /**
329 * struct sk_buff - socket buffer
330 * @next: Next buffer in list
331 * @prev: Previous buffer in list
332 * @tstamp: Time we arrived
333 * @sk: Socket we are owned by
334 * @dev: Device we arrived on/are leaving by
335 * @cb: Control buffer. Free for use by every layer. Put private vars here
336 * @_skb_refdst: destination entry (with norefcount bit)
337 * @sp: the security path, used for xfrm
338 * @len: Length of actual data
339 * @data_len: Data length
340 * @mac_len: Length of link layer header
341 * @hdr_len: writable header length of cloned skb
342 * @csum: Checksum (must include start/offset pair)
343 * @csum_start: Offset from skb->head where checksumming should start
344 * @csum_offset: Offset from csum_start where checksum should be stored
345 * @priority: Packet queueing priority
346 * @local_df: allow local fragmentation
347 * @cloned: Head may be cloned (check refcnt to be sure)
348 * @ip_summed: Driver fed us an IP checksum
349 * @nohdr: Payload reference only, must not modify header
350 * @nfctinfo: Relationship of this skb to the connection
351 * @pkt_type: Packet class
352 * @fclone: skbuff clone status
353 * @ipvs_property: skbuff is owned by ipvs
354 * @peeked: this packet has been seen already, so stats have been
355 * done for it, don't do them again
356 * @nf_trace: netfilter packet trace flag
357 * @protocol: Packet protocol from driver
358 * @destructor: Destruct function
359 * @nfct: Associated connection, if any
360 * @nfct_reasm: netfilter conntrack re-assembly pointer
361 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
362 * @skb_iif: ifindex of device we arrived on
363 * @tc_index: Traffic control index
364 * @tc_verd: traffic control verdict
365 * @rxhash: the packet hash computed on receive
366 * @queue_mapping: Queue mapping for multiqueue devices
367 * @ndisc_nodetype: router type (from link layer)
368 * @ooo_okay: allow the mapping of a socket to a queue to be changed
369 * @l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport
370 * ports.
371 * @wifi_acked_valid: wifi_acked was set
372 * @wifi_acked: whether frame was acked on wifi or not
373 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
374 * @dma_cookie: a cookie to one of several possible DMA operations
375 * done by skb DMA functions
376 * @secmark: security marking
377 * @mark: Generic packet mark
378 * @dropcount: total number of sk_receive_queue overflows
379 * @vlan_tci: vlan tag control information
380 * @transport_header: Transport layer header
381 * @network_header: Network layer header
382 * @mac_header: Link layer header
383 * @tail: Tail pointer
384 * @end: End pointer
385 * @head: Head of buffer
386 * @data: Data head pointer
387 * @truesize: Buffer size
388 * @users: User count - see {datagram,tcp}.c
389 */
390
391 struct sk_buff {
392 /* These two members must be first. */
393 struct sk_buff *next;
394 struct sk_buff *prev;
395
396 ktime_t tstamp;
397
398 struct sock *sk;
399 struct net_device *dev;
400
401 /*
402 * This is the control buffer. It is free to use for every
403 * layer. Please put your private variables there. If you
404 * want to keep them across layers you have to do a skb_clone()
405 * first. This is owned by whoever has the skb queued ATM.
406 */
407 char cb[48] __aligned(8);
408
409 unsigned long _skb_refdst;
410 #ifdef CONFIG_XFRM
411 struct sec_path *sp;
412 #endif
413 unsigned int len,
414 data_len;
415 __u16 mac_len,
416 hdr_len;
417 union {
418 __wsum csum;
419 struct {
420 __u16 csum_start;
421 __u16 csum_offset;
422 };
423 };
424 __u32 priority;
425 kmemcheck_bitfield_begin(flags1);
426 __u8 local_df:1,
427 cloned:1,
428 ip_summed:2,
429 nohdr:1,
430 nfctinfo:3;
431 __u8 pkt_type:3,
432 fclone:2,
433 ipvs_property:1,
434 peeked:1,
435 nf_trace:1;
436 kmemcheck_bitfield_end(flags1);
437 __be16 protocol;
438
439 void (*destructor)(struct sk_buff *skb);
440 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
441 struct nf_conntrack *nfct;
442 #endif
443 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
444 struct sk_buff *nfct_reasm;
445 #endif
446 #ifdef CONFIG_BRIDGE_NETFILTER
447 struct nf_bridge_info *nf_bridge;
448 #endif
449
450 int skb_iif;
451
452 __u32 rxhash;
453
454 __u16 vlan_tci;
455
456 #ifdef CONFIG_NET_SCHED
457 __u16 tc_index; /* traffic control index */
458 #ifdef CONFIG_NET_CLS_ACT
459 __u16 tc_verd; /* traffic control verdict */
460 #endif
461 #endif
462
463 __u16 queue_mapping;
464 kmemcheck_bitfield_begin(flags2);
465 #ifdef CONFIG_IPV6_NDISC_NODETYPE
466 __u8 ndisc_nodetype:2;
467 #endif
468 __u8 ooo_okay:1;
469 __u8 l4_rxhash:1;
470 __u8 wifi_acked_valid:1;
471 __u8 wifi_acked:1;
472 __u8 no_fcs:1;
473 __u8 head_frag:1;
474 /* 8/10 bit hole (depending on ndisc_nodetype presence) */
475 kmemcheck_bitfield_end(flags2);
476
477 #ifdef CONFIG_NET_DMA
478 dma_cookie_t dma_cookie;
479 #endif
480 #ifdef CONFIG_NETWORK_SECMARK
481 __u32 secmark;
482 #endif
483 union {
484 __u32 mark;
485 __u32 dropcount;
486 __u32 avail_size;
487 };
488
489 sk_buff_data_t transport_header;
490 sk_buff_data_t network_header;
491 sk_buff_data_t mac_header;
492 /* These elements must be at the end, see alloc_skb() for details. */
493 sk_buff_data_t tail;
494 sk_buff_data_t end;
495 unsigned char *head,
496 *data;
497 unsigned int truesize;
498 atomic_t users;
499 };
500
501 #ifdef __KERNEL__
502 /*
503 * Handling routines are only of interest to the kernel
504 */
505 #include <linux/slab.h>
506
507
508 /*
509 * skb might have a dst pointer attached, refcounted or not.
510 * _skb_refdst low order bit is set if refcount was _not_ taken
511 */
512 #define SKB_DST_NOREF 1UL
513 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
514
515 /**
516 * skb_dst - returns skb dst_entry
517 * @skb: buffer
518 *
519 * Returns skb dst_entry, regardless of reference taken or not.
520 */
521 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
522 {
523 /* If refdst was not refcounted, check we still are in a
524 * rcu_read_lock section
525 */
526 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
527 !rcu_read_lock_held() &&
528 !rcu_read_lock_bh_held());
529 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
530 }
531
532 /**
533 * skb_dst_set - sets skb dst
534 * @skb: buffer
535 * @dst: dst entry
536 *
537 * Sets skb dst, assuming a reference was taken on dst and should
538 * be released by skb_dst_drop()
539 */
540 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
541 {
542 skb->_skb_refdst = (unsigned long)dst;
543 }
544
545 extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst);
546
547 /**
548 * skb_dst_is_noref - Test if skb dst isn't refcounted
549 * @skb: buffer
550 */
551 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
552 {
553 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
554 }
555
556 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
557 {
558 return (struct rtable *)skb_dst(skb);
559 }
560
561 extern void kfree_skb(struct sk_buff *skb);
562 extern void consume_skb(struct sk_buff *skb);
563 extern void __kfree_skb(struct sk_buff *skb);
564 extern struct kmem_cache *skbuff_head_cache;
565
566 extern void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
567 extern bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
568 bool *fragstolen, int *delta_truesize);
569
570 extern struct sk_buff *__alloc_skb(unsigned int size,
571 gfp_t priority, int fclone, int node);
572 extern struct sk_buff *build_skb(void *data, unsigned int frag_size);
573 static inline struct sk_buff *alloc_skb(unsigned int size,
574 gfp_t priority)
575 {
576 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
577 }
578
579 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
580 gfp_t priority)
581 {
582 return __alloc_skb(size, priority, 1, NUMA_NO_NODE);
583 }
584
585 extern void skb_recycle(struct sk_buff *skb);
586 extern bool skb_recycle_check(struct sk_buff *skb, int skb_size);
587
588 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
589 extern int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
590 extern struct sk_buff *skb_clone(struct sk_buff *skb,
591 gfp_t priority);
592 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
593 gfp_t priority);
594 extern struct sk_buff *__pskb_copy(struct sk_buff *skb,
595 int headroom, gfp_t gfp_mask);
596
597 extern int pskb_expand_head(struct sk_buff *skb,
598 int nhead, int ntail,
599 gfp_t gfp_mask);
600 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
601 unsigned int headroom);
602 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
603 int newheadroom, int newtailroom,
604 gfp_t priority);
605 extern int skb_to_sgvec(struct sk_buff *skb,
606 struct scatterlist *sg, int offset,
607 int len);
608 extern int skb_cow_data(struct sk_buff *skb, int tailbits,
609 struct sk_buff **trailer);
610 extern int skb_pad(struct sk_buff *skb, int pad);
611 #define dev_kfree_skb(a) consume_skb(a)
612
613 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
614 int getfrag(void *from, char *to, int offset,
615 int len,int odd, struct sk_buff *skb),
616 void *from, int length);
617
618 struct skb_seq_state {
619 __u32 lower_offset;
620 __u32 upper_offset;
621 __u32 frag_idx;
622 __u32 stepped_offset;
623 struct sk_buff *root_skb;
624 struct sk_buff *cur_skb;
625 __u8 *frag_data;
626 };
627
628 extern void skb_prepare_seq_read(struct sk_buff *skb,
629 unsigned int from, unsigned int to,
630 struct skb_seq_state *st);
631 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
632 struct skb_seq_state *st);
633 extern void skb_abort_seq_read(struct skb_seq_state *st);
634
635 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
636 unsigned int to, struct ts_config *config,
637 struct ts_state *state);
638
639 extern void __skb_get_rxhash(struct sk_buff *skb);
640 static inline __u32 skb_get_rxhash(struct sk_buff *skb)
641 {
642 if (!skb->rxhash)
643 __skb_get_rxhash(skb);
644
645 return skb->rxhash;
646 }
647
648 #ifdef NET_SKBUFF_DATA_USES_OFFSET
649 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
650 {
651 return skb->head + skb->end;
652 }
653
654 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
655 {
656 return skb->end;
657 }
658 #else
659 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
660 {
661 return skb->end;
662 }
663
664 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
665 {
666 return skb->end - skb->head;
667 }
668 #endif
669
670 /* Internal */
671 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
672
673 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
674 {
675 return &skb_shinfo(skb)->hwtstamps;
676 }
677
678 /**
679 * skb_queue_empty - check if a queue is empty
680 * @list: queue head
681 *
682 * Returns true if the queue is empty, false otherwise.
683 */
684 static inline int skb_queue_empty(const struct sk_buff_head *list)
685 {
686 return list->next == (struct sk_buff *)list;
687 }
688
689 /**
690 * skb_queue_is_last - check if skb is the last entry in the queue
691 * @list: queue head
692 * @skb: buffer
693 *
694 * Returns true if @skb is the last buffer on the list.
695 */
696 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
697 const struct sk_buff *skb)
698 {
699 return skb->next == (struct sk_buff *)list;
700 }
701
702 /**
703 * skb_queue_is_first - check if skb is the first entry in the queue
704 * @list: queue head
705 * @skb: buffer
706 *
707 * Returns true if @skb is the first buffer on the list.
708 */
709 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
710 const struct sk_buff *skb)
711 {
712 return skb->prev == (struct sk_buff *)list;
713 }
714
715 /**
716 * skb_queue_next - return the next packet in the queue
717 * @list: queue head
718 * @skb: current buffer
719 *
720 * Return the next packet in @list after @skb. It is only valid to
721 * call this if skb_queue_is_last() evaluates to false.
722 */
723 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
724 const struct sk_buff *skb)
725 {
726 /* This BUG_ON may seem severe, but if we just return then we
727 * are going to dereference garbage.
728 */
729 BUG_ON(skb_queue_is_last(list, skb));
730 return skb->next;
731 }
732
733 /**
734 * skb_queue_prev - return the prev packet in the queue
735 * @list: queue head
736 * @skb: current buffer
737 *
738 * Return the prev packet in @list before @skb. It is only valid to
739 * call this if skb_queue_is_first() evaluates to false.
740 */
741 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
742 const struct sk_buff *skb)
743 {
744 /* This BUG_ON may seem severe, but if we just return then we
745 * are going to dereference garbage.
746 */
747 BUG_ON(skb_queue_is_first(list, skb));
748 return skb->prev;
749 }
750
751 /**
752 * skb_get - reference buffer
753 * @skb: buffer to reference
754 *
755 * Makes another reference to a socket buffer and returns a pointer
756 * to the buffer.
757 */
758 static inline struct sk_buff *skb_get(struct sk_buff *skb)
759 {
760 atomic_inc(&skb->users);
761 return skb;
762 }
763
764 /*
765 * If users == 1, we are the only owner and are can avoid redundant
766 * atomic change.
767 */
768
769 /**
770 * skb_cloned - is the buffer a clone
771 * @skb: buffer to check
772 *
773 * Returns true if the buffer was generated with skb_clone() and is
774 * one of multiple shared copies of the buffer. Cloned buffers are
775 * shared data so must not be written to under normal circumstances.
776 */
777 static inline int skb_cloned(const struct sk_buff *skb)
778 {
779 return skb->cloned &&
780 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
781 }
782
783 /**
784 * skb_header_cloned - is the header a clone
785 * @skb: buffer to check
786 *
787 * Returns true if modifying the header part of the buffer requires
788 * the data to be copied.
789 */
790 static inline int skb_header_cloned(const struct sk_buff *skb)
791 {
792 int dataref;
793
794 if (!skb->cloned)
795 return 0;
796
797 dataref = atomic_read(&skb_shinfo(skb)->dataref);
798 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
799 return dataref != 1;
800 }
801
802 /**
803 * skb_header_release - release reference to header
804 * @skb: buffer to operate on
805 *
806 * Drop a reference to the header part of the buffer. This is done
807 * by acquiring a payload reference. You must not read from the header
808 * part of skb->data after this.
809 */
810 static inline void skb_header_release(struct sk_buff *skb)
811 {
812 BUG_ON(skb->nohdr);
813 skb->nohdr = 1;
814 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
815 }
816
817 /**
818 * skb_shared - is the buffer shared
819 * @skb: buffer to check
820 *
821 * Returns true if more than one person has a reference to this
822 * buffer.
823 */
824 static inline int skb_shared(const struct sk_buff *skb)
825 {
826 return atomic_read(&skb->users) != 1;
827 }
828
829 /**
830 * skb_share_check - check if buffer is shared and if so clone it
831 * @skb: buffer to check
832 * @pri: priority for memory allocation
833 *
834 * If the buffer is shared the buffer is cloned and the old copy
835 * drops a reference. A new clone with a single reference is returned.
836 * If the buffer is not shared the original buffer is returned. When
837 * being called from interrupt status or with spinlocks held pri must
838 * be GFP_ATOMIC.
839 *
840 * NULL is returned on a memory allocation failure.
841 */
842 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
843 gfp_t pri)
844 {
845 might_sleep_if(pri & __GFP_WAIT);
846 if (skb_shared(skb)) {
847 struct sk_buff *nskb = skb_clone(skb, pri);
848 kfree_skb(skb);
849 skb = nskb;
850 }
851 return skb;
852 }
853
854 /*
855 * Copy shared buffers into a new sk_buff. We effectively do COW on
856 * packets to handle cases where we have a local reader and forward
857 * and a couple of other messy ones. The normal one is tcpdumping
858 * a packet thats being forwarded.
859 */
860
861 /**
862 * skb_unshare - make a copy of a shared buffer
863 * @skb: buffer to check
864 * @pri: priority for memory allocation
865 *
866 * If the socket buffer is a clone then this function creates a new
867 * copy of the data, drops a reference count on the old copy and returns
868 * the new copy with the reference count at 1. If the buffer is not a clone
869 * the original buffer is returned. When called with a spinlock held or
870 * from interrupt state @pri must be %GFP_ATOMIC
871 *
872 * %NULL is returned on a memory allocation failure.
873 */
874 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
875 gfp_t pri)
876 {
877 might_sleep_if(pri & __GFP_WAIT);
878 if (skb_cloned(skb)) {
879 struct sk_buff *nskb = skb_copy(skb, pri);
880 kfree_skb(skb); /* Free our shared copy */
881 skb = nskb;
882 }
883 return skb;
884 }
885
886 /**
887 * skb_peek - peek at the head of an &sk_buff_head
888 * @list_: list to peek at
889 *
890 * Peek an &sk_buff. Unlike most other operations you _MUST_
891 * be careful with this one. A peek leaves the buffer on the
892 * list and someone else may run off with it. You must hold
893 * the appropriate locks or have a private queue to do this.
894 *
895 * Returns %NULL for an empty list or a pointer to the head element.
896 * The reference count is not incremented and the reference is therefore
897 * volatile. Use with caution.
898 */
899 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
900 {
901 struct sk_buff *skb = list_->next;
902
903 if (skb == (struct sk_buff *)list_)
904 skb = NULL;
905 return skb;
906 }
907
908 /**
909 * skb_peek_next - peek skb following the given one from a queue
910 * @skb: skb to start from
911 * @list_: list to peek at
912 *
913 * Returns %NULL when the end of the list is met or a pointer to the
914 * next element. The reference count is not incremented and the
915 * reference is therefore volatile. Use with caution.
916 */
917 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
918 const struct sk_buff_head *list_)
919 {
920 struct sk_buff *next = skb->next;
921
922 if (next == (struct sk_buff *)list_)
923 next = NULL;
924 return next;
925 }
926
927 /**
928 * skb_peek_tail - peek at the tail of an &sk_buff_head
929 * @list_: list to peek at
930 *
931 * Peek an &sk_buff. Unlike most other operations you _MUST_
932 * be careful with this one. A peek leaves the buffer on the
933 * list and someone else may run off with it. You must hold
934 * the appropriate locks or have a private queue to do this.
935 *
936 * Returns %NULL for an empty list or a pointer to the tail element.
937 * The reference count is not incremented and the reference is therefore
938 * volatile. Use with caution.
939 */
940 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
941 {
942 struct sk_buff *skb = list_->prev;
943
944 if (skb == (struct sk_buff *)list_)
945 skb = NULL;
946 return skb;
947
948 }
949
950 /**
951 * skb_queue_len - get queue length
952 * @list_: list to measure
953 *
954 * Return the length of an &sk_buff queue.
955 */
956 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
957 {
958 return list_->qlen;
959 }
960
961 /**
962 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
963 * @list: queue to initialize
964 *
965 * This initializes only the list and queue length aspects of
966 * an sk_buff_head object. This allows to initialize the list
967 * aspects of an sk_buff_head without reinitializing things like
968 * the spinlock. It can also be used for on-stack sk_buff_head
969 * objects where the spinlock is known to not be used.
970 */
971 static inline void __skb_queue_head_init(struct sk_buff_head *list)
972 {
973 list->prev = list->next = (struct sk_buff *)list;
974 list->qlen = 0;
975 }
976
977 /*
978 * This function creates a split out lock class for each invocation;
979 * this is needed for now since a whole lot of users of the skb-queue
980 * infrastructure in drivers have different locking usage (in hardirq)
981 * than the networking core (in softirq only). In the long run either the
982 * network layer or drivers should need annotation to consolidate the
983 * main types of usage into 3 classes.
984 */
985 static inline void skb_queue_head_init(struct sk_buff_head *list)
986 {
987 spin_lock_init(&list->lock);
988 __skb_queue_head_init(list);
989 }
990
991 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
992 struct lock_class_key *class)
993 {
994 skb_queue_head_init(list);
995 lockdep_set_class(&list->lock, class);
996 }
997
998 /*
999 * Insert an sk_buff on a list.
1000 *
1001 * The "__skb_xxxx()" functions are the non-atomic ones that
1002 * can only be called with interrupts disabled.
1003 */
1004 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
1005 static inline void __skb_insert(struct sk_buff *newsk,
1006 struct sk_buff *prev, struct sk_buff *next,
1007 struct sk_buff_head *list)
1008 {
1009 newsk->next = next;
1010 newsk->prev = prev;
1011 next->prev = prev->next = newsk;
1012 list->qlen++;
1013 }
1014
1015 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1016 struct sk_buff *prev,
1017 struct sk_buff *next)
1018 {
1019 struct sk_buff *first = list->next;
1020 struct sk_buff *last = list->prev;
1021
1022 first->prev = prev;
1023 prev->next = first;
1024
1025 last->next = next;
1026 next->prev = last;
1027 }
1028
1029 /**
1030 * skb_queue_splice - join two skb lists, this is designed for stacks
1031 * @list: the new list to add
1032 * @head: the place to add it in the first list
1033 */
1034 static inline void skb_queue_splice(const struct sk_buff_head *list,
1035 struct sk_buff_head *head)
1036 {
1037 if (!skb_queue_empty(list)) {
1038 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1039 head->qlen += list->qlen;
1040 }
1041 }
1042
1043 /**
1044 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1045 * @list: the new list to add
1046 * @head: the place to add it in the first list
1047 *
1048 * The list at @list is reinitialised
1049 */
1050 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1051 struct sk_buff_head *head)
1052 {
1053 if (!skb_queue_empty(list)) {
1054 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1055 head->qlen += list->qlen;
1056 __skb_queue_head_init(list);
1057 }
1058 }
1059
1060 /**
1061 * skb_queue_splice_tail - join two skb lists, each list being a queue
1062 * @list: the new list to add
1063 * @head: the place to add it in the first list
1064 */
1065 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1066 struct sk_buff_head *head)
1067 {
1068 if (!skb_queue_empty(list)) {
1069 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1070 head->qlen += list->qlen;
1071 }
1072 }
1073
1074 /**
1075 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1076 * @list: the new list to add
1077 * @head: the place to add it in the first list
1078 *
1079 * Each of the lists is a queue.
1080 * The list at @list is reinitialised
1081 */
1082 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1083 struct sk_buff_head *head)
1084 {
1085 if (!skb_queue_empty(list)) {
1086 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1087 head->qlen += list->qlen;
1088 __skb_queue_head_init(list);
1089 }
1090 }
1091
1092 /**
1093 * __skb_queue_after - queue a buffer at the list head
1094 * @list: list to use
1095 * @prev: place after this buffer
1096 * @newsk: buffer to queue
1097 *
1098 * Queue a buffer int the middle of a list. This function takes no locks
1099 * and you must therefore hold required locks before calling it.
1100 *
1101 * A buffer cannot be placed on two lists at the same time.
1102 */
1103 static inline void __skb_queue_after(struct sk_buff_head *list,
1104 struct sk_buff *prev,
1105 struct sk_buff *newsk)
1106 {
1107 __skb_insert(newsk, prev, prev->next, list);
1108 }
1109
1110 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1111 struct sk_buff_head *list);
1112
1113 static inline void __skb_queue_before(struct sk_buff_head *list,
1114 struct sk_buff *next,
1115 struct sk_buff *newsk)
1116 {
1117 __skb_insert(newsk, next->prev, next, list);
1118 }
1119
1120 /**
1121 * __skb_queue_head - queue a buffer at the list head
1122 * @list: list to use
1123 * @newsk: buffer to queue
1124 *
1125 * Queue a buffer at the start of a list. This function takes no locks
1126 * and you must therefore hold required locks before calling it.
1127 *
1128 * A buffer cannot be placed on two lists at the same time.
1129 */
1130 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1131 static inline void __skb_queue_head(struct sk_buff_head *list,
1132 struct sk_buff *newsk)
1133 {
1134 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1135 }
1136
1137 /**
1138 * __skb_queue_tail - queue a buffer at the list tail
1139 * @list: list to use
1140 * @newsk: buffer to queue
1141 *
1142 * Queue a buffer at the end of a list. This function takes no locks
1143 * and you must therefore hold required locks before calling it.
1144 *
1145 * A buffer cannot be placed on two lists at the same time.
1146 */
1147 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1148 static inline void __skb_queue_tail(struct sk_buff_head *list,
1149 struct sk_buff *newsk)
1150 {
1151 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1152 }
1153
1154 /*
1155 * remove sk_buff from list. _Must_ be called atomically, and with
1156 * the list known..
1157 */
1158 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1159 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1160 {
1161 struct sk_buff *next, *prev;
1162
1163 list->qlen--;
1164 next = skb->next;
1165 prev = skb->prev;
1166 skb->next = skb->prev = NULL;
1167 next->prev = prev;
1168 prev->next = next;
1169 }
1170
1171 /**
1172 * __skb_dequeue - remove from the head of the queue
1173 * @list: list to dequeue from
1174 *
1175 * Remove the head of the list. This function does not take any locks
1176 * so must be used with appropriate locks held only. The head item is
1177 * returned or %NULL if the list is empty.
1178 */
1179 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1180 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1181 {
1182 struct sk_buff *skb = skb_peek(list);
1183 if (skb)
1184 __skb_unlink(skb, list);
1185 return skb;
1186 }
1187
1188 /**
1189 * __skb_dequeue_tail - remove from the tail of the queue
1190 * @list: list to dequeue from
1191 *
1192 * Remove the tail of the list. This function does not take any locks
1193 * so must be used with appropriate locks held only. The tail item is
1194 * returned or %NULL if the list is empty.
1195 */
1196 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1197 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1198 {
1199 struct sk_buff *skb = skb_peek_tail(list);
1200 if (skb)
1201 __skb_unlink(skb, list);
1202 return skb;
1203 }
1204
1205
1206 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1207 {
1208 return skb->data_len;
1209 }
1210
1211 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1212 {
1213 return skb->len - skb->data_len;
1214 }
1215
1216 static inline int skb_pagelen(const struct sk_buff *skb)
1217 {
1218 int i, len = 0;
1219
1220 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1221 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1222 return len + skb_headlen(skb);
1223 }
1224
1225 /**
1226 * __skb_fill_page_desc - initialise a paged fragment in an skb
1227 * @skb: buffer containing fragment to be initialised
1228 * @i: paged fragment index to initialise
1229 * @page: the page to use for this fragment
1230 * @off: the offset to the data with @page
1231 * @size: the length of the data
1232 *
1233 * Initialises the @i'th fragment of @skb to point to &size bytes at
1234 * offset @off within @page.
1235 *
1236 * Does not take any additional reference on the fragment.
1237 */
1238 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1239 struct page *page, int off, int size)
1240 {
1241 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1242
1243 frag->page.p = page;
1244 frag->page_offset = off;
1245 skb_frag_size_set(frag, size);
1246 }
1247
1248 /**
1249 * skb_fill_page_desc - initialise a paged fragment in an skb
1250 * @skb: buffer containing fragment to be initialised
1251 * @i: paged fragment index to initialise
1252 * @page: the page to use for this fragment
1253 * @off: the offset to the data with @page
1254 * @size: the length of the data
1255 *
1256 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1257 * @skb to point to &size bytes at offset @off within @page. In
1258 * addition updates @skb such that @i is the last fragment.
1259 *
1260 * Does not take any additional reference on the fragment.
1261 */
1262 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1263 struct page *page, int off, int size)
1264 {
1265 __skb_fill_page_desc(skb, i, page, off, size);
1266 skb_shinfo(skb)->nr_frags = i + 1;
1267 }
1268
1269 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1270 int off, int size, unsigned int truesize);
1271
1272 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1273 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1274 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1275
1276 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1277 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1278 {
1279 return skb->head + skb->tail;
1280 }
1281
1282 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1283 {
1284 skb->tail = skb->data - skb->head;
1285 }
1286
1287 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1288 {
1289 skb_reset_tail_pointer(skb);
1290 skb->tail += offset;
1291 }
1292 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1293 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1294 {
1295 return skb->tail;
1296 }
1297
1298 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1299 {
1300 skb->tail = skb->data;
1301 }
1302
1303 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1304 {
1305 skb->tail = skb->data + offset;
1306 }
1307
1308 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1309
1310 /*
1311 * Add data to an sk_buff
1312 */
1313 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1314 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1315 {
1316 unsigned char *tmp = skb_tail_pointer(skb);
1317 SKB_LINEAR_ASSERT(skb);
1318 skb->tail += len;
1319 skb->len += len;
1320 return tmp;
1321 }
1322
1323 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1324 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1325 {
1326 skb->data -= len;
1327 skb->len += len;
1328 return skb->data;
1329 }
1330
1331 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1332 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1333 {
1334 skb->len -= len;
1335 BUG_ON(skb->len < skb->data_len);
1336 return skb->data += len;
1337 }
1338
1339 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1340 {
1341 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1342 }
1343
1344 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1345
1346 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1347 {
1348 if (len > skb_headlen(skb) &&
1349 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1350 return NULL;
1351 skb->len -= len;
1352 return skb->data += len;
1353 }
1354
1355 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1356 {
1357 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1358 }
1359
1360 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1361 {
1362 if (likely(len <= skb_headlen(skb)))
1363 return 1;
1364 if (unlikely(len > skb->len))
1365 return 0;
1366 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1367 }
1368
1369 /**
1370 * skb_headroom - bytes at buffer head
1371 * @skb: buffer to check
1372 *
1373 * Return the number of bytes of free space at the head of an &sk_buff.
1374 */
1375 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1376 {
1377 return skb->data - skb->head;
1378 }
1379
1380 /**
1381 * skb_tailroom - bytes at buffer end
1382 * @skb: buffer to check
1383 *
1384 * Return the number of bytes of free space at the tail of an sk_buff
1385 */
1386 static inline int skb_tailroom(const struct sk_buff *skb)
1387 {
1388 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1389 }
1390
1391 /**
1392 * skb_availroom - bytes at buffer end
1393 * @skb: buffer to check
1394 *
1395 * Return the number of bytes of free space at the tail of an sk_buff
1396 * allocated by sk_stream_alloc()
1397 */
1398 static inline int skb_availroom(const struct sk_buff *skb)
1399 {
1400 return skb_is_nonlinear(skb) ? 0 : skb->avail_size - skb->len;
1401 }
1402
1403 /**
1404 * skb_reserve - adjust headroom
1405 * @skb: buffer to alter
1406 * @len: bytes to move
1407 *
1408 * Increase the headroom of an empty &sk_buff by reducing the tail
1409 * room. This is only allowed for an empty buffer.
1410 */
1411 static inline void skb_reserve(struct sk_buff *skb, int len)
1412 {
1413 skb->data += len;
1414 skb->tail += len;
1415 }
1416
1417 static inline void skb_reset_mac_len(struct sk_buff *skb)
1418 {
1419 skb->mac_len = skb->network_header - skb->mac_header;
1420 }
1421
1422 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1423 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1424 {
1425 return skb->head + skb->transport_header;
1426 }
1427
1428 static inline void skb_reset_transport_header(struct sk_buff *skb)
1429 {
1430 skb->transport_header = skb->data - skb->head;
1431 }
1432
1433 static inline void skb_set_transport_header(struct sk_buff *skb,
1434 const int offset)
1435 {
1436 skb_reset_transport_header(skb);
1437 skb->transport_header += offset;
1438 }
1439
1440 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1441 {
1442 return skb->head + skb->network_header;
1443 }
1444
1445 static inline void skb_reset_network_header(struct sk_buff *skb)
1446 {
1447 skb->network_header = skb->data - skb->head;
1448 }
1449
1450 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1451 {
1452 skb_reset_network_header(skb);
1453 skb->network_header += offset;
1454 }
1455
1456 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1457 {
1458 return skb->head + skb->mac_header;
1459 }
1460
1461 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1462 {
1463 return skb->mac_header != ~0U;
1464 }
1465
1466 static inline void skb_reset_mac_header(struct sk_buff *skb)
1467 {
1468 skb->mac_header = skb->data - skb->head;
1469 }
1470
1471 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1472 {
1473 skb_reset_mac_header(skb);
1474 skb->mac_header += offset;
1475 }
1476
1477 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1478
1479 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1480 {
1481 return skb->transport_header;
1482 }
1483
1484 static inline void skb_reset_transport_header(struct sk_buff *skb)
1485 {
1486 skb->transport_header = skb->data;
1487 }
1488
1489 static inline void skb_set_transport_header(struct sk_buff *skb,
1490 const int offset)
1491 {
1492 skb->transport_header = skb->data + offset;
1493 }
1494
1495 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1496 {
1497 return skb->network_header;
1498 }
1499
1500 static inline void skb_reset_network_header(struct sk_buff *skb)
1501 {
1502 skb->network_header = skb->data;
1503 }
1504
1505 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1506 {
1507 skb->network_header = skb->data + offset;
1508 }
1509
1510 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1511 {
1512 return skb->mac_header;
1513 }
1514
1515 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1516 {
1517 return skb->mac_header != NULL;
1518 }
1519
1520 static inline void skb_reset_mac_header(struct sk_buff *skb)
1521 {
1522 skb->mac_header = skb->data;
1523 }
1524
1525 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1526 {
1527 skb->mac_header = skb->data + offset;
1528 }
1529 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1530
1531 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
1532 {
1533 if (skb_mac_header_was_set(skb)) {
1534 const unsigned char *old_mac = skb_mac_header(skb);
1535
1536 skb_set_mac_header(skb, -skb->mac_len);
1537 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
1538 }
1539 }
1540
1541 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1542 {
1543 return skb->csum_start - skb_headroom(skb);
1544 }
1545
1546 static inline int skb_transport_offset(const struct sk_buff *skb)
1547 {
1548 return skb_transport_header(skb) - skb->data;
1549 }
1550
1551 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1552 {
1553 return skb->transport_header - skb->network_header;
1554 }
1555
1556 static inline int skb_network_offset(const struct sk_buff *skb)
1557 {
1558 return skb_network_header(skb) - skb->data;
1559 }
1560
1561 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1562 {
1563 return pskb_may_pull(skb, skb_network_offset(skb) + len);
1564 }
1565
1566 /*
1567 * CPUs often take a performance hit when accessing unaligned memory
1568 * locations. The actual performance hit varies, it can be small if the
1569 * hardware handles it or large if we have to take an exception and fix it
1570 * in software.
1571 *
1572 * Since an ethernet header is 14 bytes network drivers often end up with
1573 * the IP header at an unaligned offset. The IP header can be aligned by
1574 * shifting the start of the packet by 2 bytes. Drivers should do this
1575 * with:
1576 *
1577 * skb_reserve(skb, NET_IP_ALIGN);
1578 *
1579 * The downside to this alignment of the IP header is that the DMA is now
1580 * unaligned. On some architectures the cost of an unaligned DMA is high
1581 * and this cost outweighs the gains made by aligning the IP header.
1582 *
1583 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1584 * to be overridden.
1585 */
1586 #ifndef NET_IP_ALIGN
1587 #define NET_IP_ALIGN 2
1588 #endif
1589
1590 /*
1591 * The networking layer reserves some headroom in skb data (via
1592 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1593 * the header has to grow. In the default case, if the header has to grow
1594 * 32 bytes or less we avoid the reallocation.
1595 *
1596 * Unfortunately this headroom changes the DMA alignment of the resulting
1597 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1598 * on some architectures. An architecture can override this value,
1599 * perhaps setting it to a cacheline in size (since that will maintain
1600 * cacheline alignment of the DMA). It must be a power of 2.
1601 *
1602 * Various parts of the networking layer expect at least 32 bytes of
1603 * headroom, you should not reduce this.
1604 *
1605 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
1606 * to reduce average number of cache lines per packet.
1607 * get_rps_cpus() for example only access one 64 bytes aligned block :
1608 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
1609 */
1610 #ifndef NET_SKB_PAD
1611 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
1612 #endif
1613
1614 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1615
1616 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1617 {
1618 if (unlikely(skb_is_nonlinear(skb))) {
1619 WARN_ON(1);
1620 return;
1621 }
1622 skb->len = len;
1623 skb_set_tail_pointer(skb, len);
1624 }
1625
1626 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1627
1628 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1629 {
1630 if (skb->data_len)
1631 return ___pskb_trim(skb, len);
1632 __skb_trim(skb, len);
1633 return 0;
1634 }
1635
1636 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1637 {
1638 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1639 }
1640
1641 /**
1642 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1643 * @skb: buffer to alter
1644 * @len: new length
1645 *
1646 * This is identical to pskb_trim except that the caller knows that
1647 * the skb is not cloned so we should never get an error due to out-
1648 * of-memory.
1649 */
1650 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1651 {
1652 int err = pskb_trim(skb, len);
1653 BUG_ON(err);
1654 }
1655
1656 /**
1657 * skb_orphan - orphan a buffer
1658 * @skb: buffer to orphan
1659 *
1660 * If a buffer currently has an owner then we call the owner's
1661 * destructor function and make the @skb unowned. The buffer continues
1662 * to exist but is no longer charged to its former owner.
1663 */
1664 static inline void skb_orphan(struct sk_buff *skb)
1665 {
1666 if (skb->destructor)
1667 skb->destructor(skb);
1668 skb->destructor = NULL;
1669 skb->sk = NULL;
1670 }
1671
1672 /**
1673 * __skb_queue_purge - empty a list
1674 * @list: list to empty
1675 *
1676 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1677 * the list and one reference dropped. This function does not take the
1678 * list lock and the caller must hold the relevant locks to use it.
1679 */
1680 extern void skb_queue_purge(struct sk_buff_head *list);
1681 static inline void __skb_queue_purge(struct sk_buff_head *list)
1682 {
1683 struct sk_buff *skb;
1684 while ((skb = __skb_dequeue(list)) != NULL)
1685 kfree_skb(skb);
1686 }
1687
1688 extern void *netdev_alloc_frag(unsigned int fragsz);
1689
1690 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1691 unsigned int length,
1692 gfp_t gfp_mask);
1693
1694 /**
1695 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1696 * @dev: network device to receive on
1697 * @length: length to allocate
1698 *
1699 * Allocate a new &sk_buff and assign it a usage count of one. The
1700 * buffer has unspecified headroom built in. Users should allocate
1701 * the headroom they think they need without accounting for the
1702 * built in space. The built in space is used for optimisations.
1703 *
1704 * %NULL is returned if there is no free memory. Although this function
1705 * allocates memory it can be called from an interrupt.
1706 */
1707 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1708 unsigned int length)
1709 {
1710 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1711 }
1712
1713 /* legacy helper around __netdev_alloc_skb() */
1714 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1715 gfp_t gfp_mask)
1716 {
1717 return __netdev_alloc_skb(NULL, length, gfp_mask);
1718 }
1719
1720 /* legacy helper around netdev_alloc_skb() */
1721 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1722 {
1723 return netdev_alloc_skb(NULL, length);
1724 }
1725
1726
1727 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
1728 unsigned int length, gfp_t gfp)
1729 {
1730 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
1731
1732 if (NET_IP_ALIGN && skb)
1733 skb_reserve(skb, NET_IP_ALIGN);
1734 return skb;
1735 }
1736
1737 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
1738 unsigned int length)
1739 {
1740 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
1741 }
1742
1743 /**
1744 * skb_frag_page - retrieve the page refered to by a paged fragment
1745 * @frag: the paged fragment
1746 *
1747 * Returns the &struct page associated with @frag.
1748 */
1749 static inline struct page *skb_frag_page(const skb_frag_t *frag)
1750 {
1751 return frag->page.p;
1752 }
1753
1754 /**
1755 * __skb_frag_ref - take an addition reference on a paged fragment.
1756 * @frag: the paged fragment
1757 *
1758 * Takes an additional reference on the paged fragment @frag.
1759 */
1760 static inline void __skb_frag_ref(skb_frag_t *frag)
1761 {
1762 get_page(skb_frag_page(frag));
1763 }
1764
1765 /**
1766 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
1767 * @skb: the buffer
1768 * @f: the fragment offset.
1769 *
1770 * Takes an additional reference on the @f'th paged fragment of @skb.
1771 */
1772 static inline void skb_frag_ref(struct sk_buff *skb, int f)
1773 {
1774 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
1775 }
1776
1777 /**
1778 * __skb_frag_unref - release a reference on a paged fragment.
1779 * @frag: the paged fragment
1780 *
1781 * Releases a reference on the paged fragment @frag.
1782 */
1783 static inline void __skb_frag_unref(skb_frag_t *frag)
1784 {
1785 put_page(skb_frag_page(frag));
1786 }
1787
1788 /**
1789 * skb_frag_unref - release a reference on a paged fragment of an skb.
1790 * @skb: the buffer
1791 * @f: the fragment offset
1792 *
1793 * Releases a reference on the @f'th paged fragment of @skb.
1794 */
1795 static inline void skb_frag_unref(struct sk_buff *skb, int f)
1796 {
1797 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
1798 }
1799
1800 /**
1801 * skb_frag_address - gets the address of the data contained in a paged fragment
1802 * @frag: the paged fragment buffer
1803 *
1804 * Returns the address of the data within @frag. The page must already
1805 * be mapped.
1806 */
1807 static inline void *skb_frag_address(const skb_frag_t *frag)
1808 {
1809 return page_address(skb_frag_page(frag)) + frag->page_offset;
1810 }
1811
1812 /**
1813 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
1814 * @frag: the paged fragment buffer
1815 *
1816 * Returns the address of the data within @frag. Checks that the page
1817 * is mapped and returns %NULL otherwise.
1818 */
1819 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
1820 {
1821 void *ptr = page_address(skb_frag_page(frag));
1822 if (unlikely(!ptr))
1823 return NULL;
1824
1825 return ptr + frag->page_offset;
1826 }
1827
1828 /**
1829 * __skb_frag_set_page - sets the page contained in a paged fragment
1830 * @frag: the paged fragment
1831 * @page: the page to set
1832 *
1833 * Sets the fragment @frag to contain @page.
1834 */
1835 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
1836 {
1837 frag->page.p = page;
1838 }
1839
1840 /**
1841 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
1842 * @skb: the buffer
1843 * @f: the fragment offset
1844 * @page: the page to set
1845 *
1846 * Sets the @f'th fragment of @skb to contain @page.
1847 */
1848 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
1849 struct page *page)
1850 {
1851 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
1852 }
1853
1854 /**
1855 * skb_frag_dma_map - maps a paged fragment via the DMA API
1856 * @dev: the device to map the fragment to
1857 * @frag: the paged fragment to map
1858 * @offset: the offset within the fragment (starting at the
1859 * fragment's own offset)
1860 * @size: the number of bytes to map
1861 * @dir: the direction of the mapping (%PCI_DMA_*)
1862 *
1863 * Maps the page associated with @frag to @device.
1864 */
1865 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
1866 const skb_frag_t *frag,
1867 size_t offset, size_t size,
1868 enum dma_data_direction dir)
1869 {
1870 return dma_map_page(dev, skb_frag_page(frag),
1871 frag->page_offset + offset, size, dir);
1872 }
1873
1874 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
1875 gfp_t gfp_mask)
1876 {
1877 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
1878 }
1879
1880 /**
1881 * skb_clone_writable - is the header of a clone writable
1882 * @skb: buffer to check
1883 * @len: length up to which to write
1884 *
1885 * Returns true if modifying the header part of the cloned buffer
1886 * does not requires the data to be copied.
1887 */
1888 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
1889 {
1890 return !skb_header_cloned(skb) &&
1891 skb_headroom(skb) + len <= skb->hdr_len;
1892 }
1893
1894 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1895 int cloned)
1896 {
1897 int delta = 0;
1898
1899 if (headroom > skb_headroom(skb))
1900 delta = headroom - skb_headroom(skb);
1901
1902 if (delta || cloned)
1903 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1904 GFP_ATOMIC);
1905 return 0;
1906 }
1907
1908 /**
1909 * skb_cow - copy header of skb when it is required
1910 * @skb: buffer to cow
1911 * @headroom: needed headroom
1912 *
1913 * If the skb passed lacks sufficient headroom or its data part
1914 * is shared, data is reallocated. If reallocation fails, an error
1915 * is returned and original skb is not changed.
1916 *
1917 * The result is skb with writable area skb->head...skb->tail
1918 * and at least @headroom of space at head.
1919 */
1920 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1921 {
1922 return __skb_cow(skb, headroom, skb_cloned(skb));
1923 }
1924
1925 /**
1926 * skb_cow_head - skb_cow but only making the head writable
1927 * @skb: buffer to cow
1928 * @headroom: needed headroom
1929 *
1930 * This function is identical to skb_cow except that we replace the
1931 * skb_cloned check by skb_header_cloned. It should be used when
1932 * you only need to push on some header and do not need to modify
1933 * the data.
1934 */
1935 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1936 {
1937 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1938 }
1939
1940 /**
1941 * skb_padto - pad an skbuff up to a minimal size
1942 * @skb: buffer to pad
1943 * @len: minimal length
1944 *
1945 * Pads up a buffer to ensure the trailing bytes exist and are
1946 * blanked. If the buffer already contains sufficient data it
1947 * is untouched. Otherwise it is extended. Returns zero on
1948 * success. The skb is freed on error.
1949 */
1950
1951 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1952 {
1953 unsigned int size = skb->len;
1954 if (likely(size >= len))
1955 return 0;
1956 return skb_pad(skb, len - size);
1957 }
1958
1959 static inline int skb_add_data(struct sk_buff *skb,
1960 char __user *from, int copy)
1961 {
1962 const int off = skb->len;
1963
1964 if (skb->ip_summed == CHECKSUM_NONE) {
1965 int err = 0;
1966 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1967 copy, 0, &err);
1968 if (!err) {
1969 skb->csum = csum_block_add(skb->csum, csum, off);
1970 return 0;
1971 }
1972 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1973 return 0;
1974
1975 __skb_trim(skb, off);
1976 return -EFAULT;
1977 }
1978
1979 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
1980 const struct page *page, int off)
1981 {
1982 if (i) {
1983 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1984
1985 return page == skb_frag_page(frag) &&
1986 off == frag->page_offset + skb_frag_size(frag);
1987 }
1988 return false;
1989 }
1990
1991 static inline int __skb_linearize(struct sk_buff *skb)
1992 {
1993 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1994 }
1995
1996 /**
1997 * skb_linearize - convert paged skb to linear one
1998 * @skb: buffer to linarize
1999 *
2000 * If there is no free memory -ENOMEM is returned, otherwise zero
2001 * is returned and the old skb data released.
2002 */
2003 static inline int skb_linearize(struct sk_buff *skb)
2004 {
2005 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2006 }
2007
2008 /**
2009 * skb_linearize_cow - make sure skb is linear and writable
2010 * @skb: buffer to process
2011 *
2012 * If there is no free memory -ENOMEM is returned, otherwise zero
2013 * is returned and the old skb data released.
2014 */
2015 static inline int skb_linearize_cow(struct sk_buff *skb)
2016 {
2017 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2018 __skb_linearize(skb) : 0;
2019 }
2020
2021 /**
2022 * skb_postpull_rcsum - update checksum for received skb after pull
2023 * @skb: buffer to update
2024 * @start: start of data before pull
2025 * @len: length of data pulled
2026 *
2027 * After doing a pull on a received packet, you need to call this to
2028 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2029 * CHECKSUM_NONE so that it can be recomputed from scratch.
2030 */
2031
2032 static inline void skb_postpull_rcsum(struct sk_buff *skb,
2033 const void *start, unsigned int len)
2034 {
2035 if (skb->ip_summed == CHECKSUM_COMPLETE)
2036 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2037 }
2038
2039 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2040
2041 /**
2042 * pskb_trim_rcsum - trim received skb and update checksum
2043 * @skb: buffer to trim
2044 * @len: new length
2045 *
2046 * This is exactly the same as pskb_trim except that it ensures the
2047 * checksum of received packets are still valid after the operation.
2048 */
2049
2050 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2051 {
2052 if (likely(len >= skb->len))
2053 return 0;
2054 if (skb->ip_summed == CHECKSUM_COMPLETE)
2055 skb->ip_summed = CHECKSUM_NONE;
2056 return __pskb_trim(skb, len);
2057 }
2058
2059 #define skb_queue_walk(queue, skb) \
2060 for (skb = (queue)->next; \
2061 skb != (struct sk_buff *)(queue); \
2062 skb = skb->next)
2063
2064 #define skb_queue_walk_safe(queue, skb, tmp) \
2065 for (skb = (queue)->next, tmp = skb->next; \
2066 skb != (struct sk_buff *)(queue); \
2067 skb = tmp, tmp = skb->next)
2068
2069 #define skb_queue_walk_from(queue, skb) \
2070 for (; skb != (struct sk_buff *)(queue); \
2071 skb = skb->next)
2072
2073 #define skb_queue_walk_from_safe(queue, skb, tmp) \
2074 for (tmp = skb->next; \
2075 skb != (struct sk_buff *)(queue); \
2076 skb = tmp, tmp = skb->next)
2077
2078 #define skb_queue_reverse_walk(queue, skb) \
2079 for (skb = (queue)->prev; \
2080 skb != (struct sk_buff *)(queue); \
2081 skb = skb->prev)
2082
2083 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
2084 for (skb = (queue)->prev, tmp = skb->prev; \
2085 skb != (struct sk_buff *)(queue); \
2086 skb = tmp, tmp = skb->prev)
2087
2088 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
2089 for (tmp = skb->prev; \
2090 skb != (struct sk_buff *)(queue); \
2091 skb = tmp, tmp = skb->prev)
2092
2093 static inline bool skb_has_frag_list(const struct sk_buff *skb)
2094 {
2095 return skb_shinfo(skb)->frag_list != NULL;
2096 }
2097
2098 static inline void skb_frag_list_init(struct sk_buff *skb)
2099 {
2100 skb_shinfo(skb)->frag_list = NULL;
2101 }
2102
2103 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
2104 {
2105 frag->next = skb_shinfo(skb)->frag_list;
2106 skb_shinfo(skb)->frag_list = frag;
2107 }
2108
2109 #define skb_walk_frags(skb, iter) \
2110 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2111
2112 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2113 int *peeked, int *off, int *err);
2114 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
2115 int noblock, int *err);
2116 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
2117 struct poll_table_struct *wait);
2118 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
2119 int offset, struct iovec *to,
2120 int size);
2121 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
2122 int hlen,
2123 struct iovec *iov);
2124 extern int skb_copy_datagram_from_iovec(struct sk_buff *skb,
2125 int offset,
2126 const struct iovec *from,
2127 int from_offset,
2128 int len);
2129 extern int skb_copy_datagram_const_iovec(const struct sk_buff *from,
2130 int offset,
2131 const struct iovec *to,
2132 int to_offset,
2133 int size);
2134 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2135 extern void skb_free_datagram_locked(struct sock *sk,
2136 struct sk_buff *skb);
2137 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
2138 unsigned int flags);
2139 extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
2140 int len, __wsum csum);
2141 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
2142 void *to, int len);
2143 extern int skb_store_bits(struct sk_buff *skb, int offset,
2144 const void *from, int len);
2145 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
2146 int offset, u8 *to, int len,
2147 __wsum csum);
2148 extern int skb_splice_bits(struct sk_buff *skb,
2149 unsigned int offset,
2150 struct pipe_inode_info *pipe,
2151 unsigned int len,
2152 unsigned int flags);
2153 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2154 extern void skb_split(struct sk_buff *skb,
2155 struct sk_buff *skb1, const u32 len);
2156 extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
2157 int shiftlen);
2158
2159 extern struct sk_buff *skb_segment(struct sk_buff *skb,
2160 netdev_features_t features);
2161
2162 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
2163 int len, void *buffer)
2164 {
2165 int hlen = skb_headlen(skb);
2166
2167 if (hlen - offset >= len)
2168 return skb->data + offset;
2169
2170 if (skb_copy_bits(skb, offset, buffer, len) < 0)
2171 return NULL;
2172
2173 return buffer;
2174 }
2175
2176 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2177 void *to,
2178 const unsigned int len)
2179 {
2180 memcpy(to, skb->data, len);
2181 }
2182
2183 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2184 const int offset, void *to,
2185 const unsigned int len)
2186 {
2187 memcpy(to, skb->data + offset, len);
2188 }
2189
2190 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2191 const void *from,
2192 const unsigned int len)
2193 {
2194 memcpy(skb->data, from, len);
2195 }
2196
2197 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2198 const int offset,
2199 const void *from,
2200 const unsigned int len)
2201 {
2202 memcpy(skb->data + offset, from, len);
2203 }
2204
2205 extern void skb_init(void);
2206
2207 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2208 {
2209 return skb->tstamp;
2210 }
2211
2212 /**
2213 * skb_get_timestamp - get timestamp from a skb
2214 * @skb: skb to get stamp from
2215 * @stamp: pointer to struct timeval to store stamp in
2216 *
2217 * Timestamps are stored in the skb as offsets to a base timestamp.
2218 * This function converts the offset back to a struct timeval and stores
2219 * it in stamp.
2220 */
2221 static inline void skb_get_timestamp(const struct sk_buff *skb,
2222 struct timeval *stamp)
2223 {
2224 *stamp = ktime_to_timeval(skb->tstamp);
2225 }
2226
2227 static inline void skb_get_timestampns(const struct sk_buff *skb,
2228 struct timespec *stamp)
2229 {
2230 *stamp = ktime_to_timespec(skb->tstamp);
2231 }
2232
2233 static inline void __net_timestamp(struct sk_buff *skb)
2234 {
2235 skb->tstamp = ktime_get_real();
2236 }
2237
2238 static inline ktime_t net_timedelta(ktime_t t)
2239 {
2240 return ktime_sub(ktime_get_real(), t);
2241 }
2242
2243 static inline ktime_t net_invalid_timestamp(void)
2244 {
2245 return ktime_set(0, 0);
2246 }
2247
2248 extern void skb_timestamping_init(void);
2249
2250 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2251
2252 extern void skb_clone_tx_timestamp(struct sk_buff *skb);
2253 extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
2254
2255 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2256
2257 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2258 {
2259 }
2260
2261 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2262 {
2263 return false;
2264 }
2265
2266 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2267
2268 /**
2269 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2270 *
2271 * PHY drivers may accept clones of transmitted packets for
2272 * timestamping via their phy_driver.txtstamp method. These drivers
2273 * must call this function to return the skb back to the stack, with
2274 * or without a timestamp.
2275 *
2276 * @skb: clone of the the original outgoing packet
2277 * @hwtstamps: hardware time stamps, may be NULL if not available
2278 *
2279 */
2280 void skb_complete_tx_timestamp(struct sk_buff *skb,
2281 struct skb_shared_hwtstamps *hwtstamps);
2282
2283 /**
2284 * skb_tstamp_tx - queue clone of skb with send time stamps
2285 * @orig_skb: the original outgoing packet
2286 * @hwtstamps: hardware time stamps, may be NULL if not available
2287 *
2288 * If the skb has a socket associated, then this function clones the
2289 * skb (thus sharing the actual data and optional structures), stores
2290 * the optional hardware time stamping information (if non NULL) or
2291 * generates a software time stamp (otherwise), then queues the clone
2292 * to the error queue of the socket. Errors are silently ignored.
2293 */
2294 extern void skb_tstamp_tx(struct sk_buff *orig_skb,
2295 struct skb_shared_hwtstamps *hwtstamps);
2296
2297 static inline void sw_tx_timestamp(struct sk_buff *skb)
2298 {
2299 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2300 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2301 skb_tstamp_tx(skb, NULL);
2302 }
2303
2304 /**
2305 * skb_tx_timestamp() - Driver hook for transmit timestamping
2306 *
2307 * Ethernet MAC Drivers should call this function in their hard_xmit()
2308 * function immediately before giving the sk_buff to the MAC hardware.
2309 *
2310 * @skb: A socket buffer.
2311 */
2312 static inline void skb_tx_timestamp(struct sk_buff *skb)
2313 {
2314 skb_clone_tx_timestamp(skb);
2315 sw_tx_timestamp(skb);
2316 }
2317
2318 /**
2319 * skb_complete_wifi_ack - deliver skb with wifi status
2320 *
2321 * @skb: the original outgoing packet
2322 * @acked: ack status
2323 *
2324 */
2325 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
2326
2327 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2328 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
2329
2330 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2331 {
2332 return skb->ip_summed & CHECKSUM_UNNECESSARY;
2333 }
2334
2335 /**
2336 * skb_checksum_complete - Calculate checksum of an entire packet
2337 * @skb: packet to process
2338 *
2339 * This function calculates the checksum over the entire packet plus
2340 * the value of skb->csum. The latter can be used to supply the
2341 * checksum of a pseudo header as used by TCP/UDP. It returns the
2342 * checksum.
2343 *
2344 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
2345 * this function can be used to verify that checksum on received
2346 * packets. In that case the function should return zero if the
2347 * checksum is correct. In particular, this function will return zero
2348 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2349 * hardware has already verified the correctness of the checksum.
2350 */
2351 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2352 {
2353 return skb_csum_unnecessary(skb) ?
2354 0 : __skb_checksum_complete(skb);
2355 }
2356
2357 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2358 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
2359 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
2360 {
2361 if (nfct && atomic_dec_and_test(&nfct->use))
2362 nf_conntrack_destroy(nfct);
2363 }
2364 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
2365 {
2366 if (nfct)
2367 atomic_inc(&nfct->use);
2368 }
2369 #endif
2370 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2371 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
2372 {
2373 if (skb)
2374 atomic_inc(&skb->users);
2375 }
2376 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
2377 {
2378 if (skb)
2379 kfree_skb(skb);
2380 }
2381 #endif
2382 #ifdef CONFIG_BRIDGE_NETFILTER
2383 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
2384 {
2385 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
2386 kfree(nf_bridge);
2387 }
2388 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
2389 {
2390 if (nf_bridge)
2391 atomic_inc(&nf_bridge->use);
2392 }
2393 #endif /* CONFIG_BRIDGE_NETFILTER */
2394 static inline void nf_reset(struct sk_buff *skb)
2395 {
2396 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2397 nf_conntrack_put(skb->nfct);
2398 skb->nfct = NULL;
2399 #endif
2400 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2401 nf_conntrack_put_reasm(skb->nfct_reasm);
2402 skb->nfct_reasm = NULL;
2403 #endif
2404 #ifdef CONFIG_BRIDGE_NETFILTER
2405 nf_bridge_put(skb->nf_bridge);
2406 skb->nf_bridge = NULL;
2407 #endif
2408 }
2409
2410 /* Note: This doesn't put any conntrack and bridge info in dst. */
2411 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2412 {
2413 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2414 dst->nfct = src->nfct;
2415 nf_conntrack_get(src->nfct);
2416 dst->nfctinfo = src->nfctinfo;
2417 #endif
2418 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2419 dst->nfct_reasm = src->nfct_reasm;
2420 nf_conntrack_get_reasm(src->nfct_reasm);
2421 #endif
2422 #ifdef CONFIG_BRIDGE_NETFILTER
2423 dst->nf_bridge = src->nf_bridge;
2424 nf_bridge_get(src->nf_bridge);
2425 #endif
2426 }
2427
2428 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2429 {
2430 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2431 nf_conntrack_put(dst->nfct);
2432 #endif
2433 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2434 nf_conntrack_put_reasm(dst->nfct_reasm);
2435 #endif
2436 #ifdef CONFIG_BRIDGE_NETFILTER
2437 nf_bridge_put(dst->nf_bridge);
2438 #endif
2439 __nf_copy(dst, src);
2440 }
2441
2442 #ifdef CONFIG_NETWORK_SECMARK
2443 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2444 {
2445 to->secmark = from->secmark;
2446 }
2447
2448 static inline void skb_init_secmark(struct sk_buff *skb)
2449 {
2450 skb->secmark = 0;
2451 }
2452 #else
2453 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2454 { }
2455
2456 static inline void skb_init_secmark(struct sk_buff *skb)
2457 { }
2458 #endif
2459
2460 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2461 {
2462 skb->queue_mapping = queue_mapping;
2463 }
2464
2465 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2466 {
2467 return skb->queue_mapping;
2468 }
2469
2470 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2471 {
2472 to->queue_mapping = from->queue_mapping;
2473 }
2474
2475 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2476 {
2477 skb->queue_mapping = rx_queue + 1;
2478 }
2479
2480 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2481 {
2482 return skb->queue_mapping - 1;
2483 }
2484
2485 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2486 {
2487 return skb->queue_mapping != 0;
2488 }
2489
2490 extern u16 __skb_tx_hash(const struct net_device *dev,
2491 const struct sk_buff *skb,
2492 unsigned int num_tx_queues);
2493
2494 #ifdef CONFIG_XFRM
2495 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2496 {
2497 return skb->sp;
2498 }
2499 #else
2500 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2501 {
2502 return NULL;
2503 }
2504 #endif
2505
2506 static inline bool skb_is_gso(const struct sk_buff *skb)
2507 {
2508 return skb_shinfo(skb)->gso_size;
2509 }
2510
2511 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
2512 {
2513 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2514 }
2515
2516 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2517
2518 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2519 {
2520 /* LRO sets gso_size but not gso_type, whereas if GSO is really
2521 * wanted then gso_type will be set. */
2522 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2523
2524 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
2525 unlikely(shinfo->gso_type == 0)) {
2526 __skb_warn_lro_forwarding(skb);
2527 return true;
2528 }
2529 return false;
2530 }
2531
2532 static inline void skb_forward_csum(struct sk_buff *skb)
2533 {
2534 /* Unfortunately we don't support this one. Any brave souls? */
2535 if (skb->ip_summed == CHECKSUM_COMPLETE)
2536 skb->ip_summed = CHECKSUM_NONE;
2537 }
2538
2539 /**
2540 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
2541 * @skb: skb to check
2542 *
2543 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
2544 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
2545 * use this helper, to document places where we make this assertion.
2546 */
2547 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
2548 {
2549 #ifdef DEBUG
2550 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
2551 #endif
2552 }
2553
2554 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2555
2556 static inline bool skb_is_recycleable(const struct sk_buff *skb, int skb_size)
2557 {
2558 if (irqs_disabled())
2559 return false;
2560
2561 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)
2562 return false;
2563
2564 if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
2565 return false;
2566
2567 skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
2568 if (skb_end_offset(skb) < skb_size)
2569 return false;
2570
2571 if (skb_shared(skb) || skb_cloned(skb))
2572 return false;
2573
2574 return true;
2575 }
2576
2577 /**
2578 * skb_head_is_locked - Determine if the skb->head is locked down
2579 * @skb: skb to check
2580 *
2581 * The head on skbs build around a head frag can be removed if they are
2582 * not cloned. This function returns true if the skb head is locked down
2583 * due to either being allocated via kmalloc, or by being a clone with
2584 * multiple references to the head.
2585 */
2586 static inline bool skb_head_is_locked(const struct sk_buff *skb)
2587 {
2588 return !skb->head_frag || skb_cloned(skb);
2589 }
2590 #endif /* __KERNEL__ */
2591 #endif /* _LINUX_SKBUFF_H */
This page took 0.083834 seconds and 6 git commands to generate.