Merge branch 'timers-for-linus-migration' of git://git.kernel.org/pub/scm/linux/kerne...
[deliverable/linux.git] / include / linux / slab.h
1 /*
2 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
3 *
4 * (C) SGI 2006, Christoph Lameter
5 * Cleaned up and restructured to ease the addition of alternative
6 * implementations of SLAB allocators.
7 */
8
9 #ifndef _LINUX_SLAB_H
10 #define _LINUX_SLAB_H
11
12 #include <linux/gfp.h>
13 #include <linux/types.h>
14
15 /*
16 * Flags to pass to kmem_cache_create().
17 * The ones marked DEBUG are only valid if CONFIG_SLAB_DEBUG is set.
18 */
19 #define SLAB_DEBUG_FREE 0x00000100UL /* DEBUG: Perform (expensive) checks on free */
20 #define SLAB_RED_ZONE 0x00000400UL /* DEBUG: Red zone objs in a cache */
21 #define SLAB_POISON 0x00000800UL /* DEBUG: Poison objects */
22 #define SLAB_HWCACHE_ALIGN 0x00002000UL /* Align objs on cache lines */
23 #define SLAB_CACHE_DMA 0x00004000UL /* Use GFP_DMA memory */
24 #define SLAB_STORE_USER 0x00010000UL /* DEBUG: Store the last owner for bug hunting */
25 #define SLAB_PANIC 0x00040000UL /* Panic if kmem_cache_create() fails */
26 /*
27 * SLAB_DESTROY_BY_RCU - **WARNING** READ THIS!
28 *
29 * This delays freeing the SLAB page by a grace period, it does _NOT_
30 * delay object freeing. This means that if you do kmem_cache_free()
31 * that memory location is free to be reused at any time. Thus it may
32 * be possible to see another object there in the same RCU grace period.
33 *
34 * This feature only ensures the memory location backing the object
35 * stays valid, the trick to using this is relying on an independent
36 * object validation pass. Something like:
37 *
38 * rcu_read_lock()
39 * again:
40 * obj = lockless_lookup(key);
41 * if (obj) {
42 * if (!try_get_ref(obj)) // might fail for free objects
43 * goto again;
44 *
45 * if (obj->key != key) { // not the object we expected
46 * put_ref(obj);
47 * goto again;
48 * }
49 * }
50 * rcu_read_unlock();
51 *
52 * See also the comment on struct slab_rcu in mm/slab.c.
53 */
54 #define SLAB_DESTROY_BY_RCU 0x00080000UL /* Defer freeing slabs to RCU */
55 #define SLAB_MEM_SPREAD 0x00100000UL /* Spread some memory over cpuset */
56 #define SLAB_TRACE 0x00200000UL /* Trace allocations and frees */
57
58 /* Flag to prevent checks on free */
59 #ifdef CONFIG_DEBUG_OBJECTS
60 # define SLAB_DEBUG_OBJECTS 0x00400000UL
61 #else
62 # define SLAB_DEBUG_OBJECTS 0x00000000UL
63 #endif
64
65 #define SLAB_NOLEAKTRACE 0x00800000UL /* Avoid kmemleak tracing */
66
67 /* The following flags affect the page allocator grouping pages by mobility */
68 #define SLAB_RECLAIM_ACCOUNT 0x00020000UL /* Objects are reclaimable */
69 #define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */
70 /*
71 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
72 *
73 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
74 *
75 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
76 * Both make kfree a no-op.
77 */
78 #define ZERO_SIZE_PTR ((void *)16)
79
80 #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
81 (unsigned long)ZERO_SIZE_PTR)
82
83 /*
84 * struct kmem_cache related prototypes
85 */
86 void __init kmem_cache_init(void);
87 int slab_is_available(void);
88
89 struct kmem_cache *kmem_cache_create(const char *, size_t, size_t,
90 unsigned long,
91 void (*)(void *));
92 void kmem_cache_destroy(struct kmem_cache *);
93 int kmem_cache_shrink(struct kmem_cache *);
94 void kmem_cache_free(struct kmem_cache *, void *);
95 unsigned int kmem_cache_size(struct kmem_cache *);
96 const char *kmem_cache_name(struct kmem_cache *);
97 int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr);
98
99 /*
100 * Please use this macro to create slab caches. Simply specify the
101 * name of the structure and maybe some flags that are listed above.
102 *
103 * The alignment of the struct determines object alignment. If you
104 * f.e. add ____cacheline_aligned_in_smp to the struct declaration
105 * then the objects will be properly aligned in SMP configurations.
106 */
107 #define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
108 sizeof(struct __struct), __alignof__(struct __struct),\
109 (__flags), NULL)
110
111 /*
112 * The largest kmalloc size supported by the slab allocators is
113 * 32 megabyte (2^25) or the maximum allocatable page order if that is
114 * less than 32 MB.
115 *
116 * WARNING: Its not easy to increase this value since the allocators have
117 * to do various tricks to work around compiler limitations in order to
118 * ensure proper constant folding.
119 */
120 #define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
121 (MAX_ORDER + PAGE_SHIFT - 1) : 25)
122
123 #define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_HIGH)
124 #define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_HIGH - PAGE_SHIFT)
125
126 /*
127 * Common kmalloc functions provided by all allocators
128 */
129 void * __must_check __krealloc(const void *, size_t, gfp_t);
130 void * __must_check krealloc(const void *, size_t, gfp_t);
131 void kfree(const void *);
132 void kzfree(const void *);
133 size_t ksize(const void *);
134
135 /*
136 * Allocator specific definitions. These are mainly used to establish optimized
137 * ways to convert kmalloc() calls to kmem_cache_alloc() invocations by
138 * selecting the appropriate general cache at compile time.
139 *
140 * Allocators must define at least:
141 *
142 * kmem_cache_alloc()
143 * __kmalloc()
144 * kmalloc()
145 *
146 * Those wishing to support NUMA must also define:
147 *
148 * kmem_cache_alloc_node()
149 * kmalloc_node()
150 *
151 * See each allocator definition file for additional comments and
152 * implementation notes.
153 */
154 #ifdef CONFIG_SLUB
155 #include <linux/slub_def.h>
156 #elif defined(CONFIG_SLOB)
157 #include <linux/slob_def.h>
158 #else
159 #include <linux/slab_def.h>
160 #endif
161
162 /**
163 * kcalloc - allocate memory for an array. The memory is set to zero.
164 * @n: number of elements.
165 * @size: element size.
166 * @flags: the type of memory to allocate.
167 *
168 * The @flags argument may be one of:
169 *
170 * %GFP_USER - Allocate memory on behalf of user. May sleep.
171 *
172 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
173 *
174 * %GFP_ATOMIC - Allocation will not sleep. May use emergency pools.
175 * For example, use this inside interrupt handlers.
176 *
177 * %GFP_HIGHUSER - Allocate pages from high memory.
178 *
179 * %GFP_NOIO - Do not do any I/O at all while trying to get memory.
180 *
181 * %GFP_NOFS - Do not make any fs calls while trying to get memory.
182 *
183 * %GFP_NOWAIT - Allocation will not sleep.
184 *
185 * %GFP_THISNODE - Allocate node-local memory only.
186 *
187 * %GFP_DMA - Allocation suitable for DMA.
188 * Should only be used for kmalloc() caches. Otherwise, use a
189 * slab created with SLAB_DMA.
190 *
191 * Also it is possible to set different flags by OR'ing
192 * in one or more of the following additional @flags:
193 *
194 * %__GFP_COLD - Request cache-cold pages instead of
195 * trying to return cache-warm pages.
196 *
197 * %__GFP_HIGH - This allocation has high priority and may use emergency pools.
198 *
199 * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail
200 * (think twice before using).
201 *
202 * %__GFP_NORETRY - If memory is not immediately available,
203 * then give up at once.
204 *
205 * %__GFP_NOWARN - If allocation fails, don't issue any warnings.
206 *
207 * %__GFP_REPEAT - If allocation fails initially, try once more before failing.
208 *
209 * There are other flags available as well, but these are not intended
210 * for general use, and so are not documented here. For a full list of
211 * potential flags, always refer to linux/gfp.h.
212 */
213 static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
214 {
215 if (size != 0 && n > ULONG_MAX / size)
216 return NULL;
217 return __kmalloc(n * size, flags | __GFP_ZERO);
218 }
219
220 #if !defined(CONFIG_NUMA) && !defined(CONFIG_SLOB)
221 /**
222 * kmalloc_node - allocate memory from a specific node
223 * @size: how many bytes of memory are required.
224 * @flags: the type of memory to allocate (see kcalloc).
225 * @node: node to allocate from.
226 *
227 * kmalloc() for non-local nodes, used to allocate from a specific node
228 * if available. Equivalent to kmalloc() in the non-NUMA single-node
229 * case.
230 */
231 static inline void *kmalloc_node(size_t size, gfp_t flags, int node)
232 {
233 return kmalloc(size, flags);
234 }
235
236 static inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
237 {
238 return __kmalloc(size, flags);
239 }
240
241 void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
242
243 static inline void *kmem_cache_alloc_node(struct kmem_cache *cachep,
244 gfp_t flags, int node)
245 {
246 return kmem_cache_alloc(cachep, flags);
247 }
248 #endif /* !CONFIG_NUMA && !CONFIG_SLOB */
249
250 /*
251 * kmalloc_track_caller is a special version of kmalloc that records the
252 * calling function of the routine calling it for slab leak tracking instead
253 * of just the calling function (confusing, eh?).
254 * It's useful when the call to kmalloc comes from a widely-used standard
255 * allocator where we care about the real place the memory allocation
256 * request comes from.
257 */
258 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB)
259 extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long);
260 #define kmalloc_track_caller(size, flags) \
261 __kmalloc_track_caller(size, flags, _RET_IP_)
262 #else
263 #define kmalloc_track_caller(size, flags) \
264 __kmalloc(size, flags)
265 #endif /* DEBUG_SLAB */
266
267 #ifdef CONFIG_NUMA
268 /*
269 * kmalloc_node_track_caller is a special version of kmalloc_node that
270 * records the calling function of the routine calling it for slab leak
271 * tracking instead of just the calling function (confusing, eh?).
272 * It's useful when the call to kmalloc_node comes from a widely-used
273 * standard allocator where we care about the real place the memory
274 * allocation request comes from.
275 */
276 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB)
277 extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long);
278 #define kmalloc_node_track_caller(size, flags, node) \
279 __kmalloc_node_track_caller(size, flags, node, \
280 _RET_IP_)
281 #else
282 #define kmalloc_node_track_caller(size, flags, node) \
283 __kmalloc_node(size, flags, node)
284 #endif
285
286 #else /* CONFIG_NUMA */
287
288 #define kmalloc_node_track_caller(size, flags, node) \
289 kmalloc_track_caller(size, flags)
290
291 #endif /* CONFIG_NUMA */
292
293 /*
294 * Shortcuts
295 */
296 static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
297 {
298 return kmem_cache_alloc(k, flags | __GFP_ZERO);
299 }
300
301 /**
302 * kzalloc - allocate memory. The memory is set to zero.
303 * @size: how many bytes of memory are required.
304 * @flags: the type of memory to allocate (see kmalloc).
305 */
306 static inline void *kzalloc(size_t size, gfp_t flags)
307 {
308 return kmalloc(size, flags | __GFP_ZERO);
309 }
310
311 /**
312 * kzalloc_node - allocate zeroed memory from a particular memory node.
313 * @size: how many bytes of memory are required.
314 * @flags: the type of memory to allocate (see kmalloc).
315 * @node: memory node from which to allocate
316 */
317 static inline void *kzalloc_node(size_t size, gfp_t flags, int node)
318 {
319 return kmalloc_node(size, flags | __GFP_ZERO, node);
320 }
321
322 void __init kmem_cache_init_late(void);
323
324 #endif /* _LINUX_SLAB_H */
This page took 0.037647 seconds and 5 git commands to generate.