slab: Common Kmalloc cache determination
[deliverable/linux.git] / include / linux / slub_def.h
1 #ifndef _LINUX_SLUB_DEF_H
2 #define _LINUX_SLUB_DEF_H
3
4 /*
5 * SLUB : A Slab allocator without object queues.
6 *
7 * (C) 2007 SGI, Christoph Lameter
8 */
9 #include <linux/types.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/workqueue.h>
13 #include <linux/kobject.h>
14
15 #include <linux/kmemleak.h>
16
17 enum stat_item {
18 ALLOC_FASTPATH, /* Allocation from cpu slab */
19 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
20 FREE_FASTPATH, /* Free to cpu slub */
21 FREE_SLOWPATH, /* Freeing not to cpu slab */
22 FREE_FROZEN, /* Freeing to frozen slab */
23 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
24 FREE_REMOVE_PARTIAL, /* Freeing removes last object */
25 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */
26 ALLOC_SLAB, /* Cpu slab acquired from page allocator */
27 ALLOC_REFILL, /* Refill cpu slab from slab freelist */
28 ALLOC_NODE_MISMATCH, /* Switching cpu slab */
29 FREE_SLAB, /* Slab freed to the page allocator */
30 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
31 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
32 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
33 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
34 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
35 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
36 DEACTIVATE_BYPASS, /* Implicit deactivation */
37 ORDER_FALLBACK, /* Number of times fallback was necessary */
38 CMPXCHG_DOUBLE_CPU_FAIL,/* Failure of this_cpu_cmpxchg_double */
39 CMPXCHG_DOUBLE_FAIL, /* Number of times that cmpxchg double did not match */
40 CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */
41 CPU_PARTIAL_FREE, /* Refill cpu partial on free */
42 CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */
43 CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */
44 NR_SLUB_STAT_ITEMS };
45
46 struct kmem_cache_cpu {
47 void **freelist; /* Pointer to next available object */
48 unsigned long tid; /* Globally unique transaction id */
49 struct page *page; /* The slab from which we are allocating */
50 struct page *partial; /* Partially allocated frozen slabs */
51 #ifdef CONFIG_SLUB_STATS
52 unsigned stat[NR_SLUB_STAT_ITEMS];
53 #endif
54 };
55
56 struct kmem_cache_node {
57 spinlock_t list_lock; /* Protect partial list and nr_partial */
58 unsigned long nr_partial;
59 struct list_head partial;
60 #ifdef CONFIG_SLUB_DEBUG
61 atomic_long_t nr_slabs;
62 atomic_long_t total_objects;
63 struct list_head full;
64 #endif
65 };
66
67 /*
68 * Word size structure that can be atomically updated or read and that
69 * contains both the order and the number of objects that a slab of the
70 * given order would contain.
71 */
72 struct kmem_cache_order_objects {
73 unsigned long x;
74 };
75
76 /*
77 * Slab cache management.
78 */
79 struct kmem_cache {
80 struct kmem_cache_cpu __percpu *cpu_slab;
81 /* Used for retriving partial slabs etc */
82 unsigned long flags;
83 unsigned long min_partial;
84 int size; /* The size of an object including meta data */
85 int object_size; /* The size of an object without meta data */
86 int offset; /* Free pointer offset. */
87 int cpu_partial; /* Number of per cpu partial objects to keep around */
88 struct kmem_cache_order_objects oo;
89
90 /* Allocation and freeing of slabs */
91 struct kmem_cache_order_objects max;
92 struct kmem_cache_order_objects min;
93 gfp_t allocflags; /* gfp flags to use on each alloc */
94 int refcount; /* Refcount for slab cache destroy */
95 void (*ctor)(void *);
96 int inuse; /* Offset to metadata */
97 int align; /* Alignment */
98 int reserved; /* Reserved bytes at the end of slabs */
99 const char *name; /* Name (only for display!) */
100 struct list_head list; /* List of slab caches */
101 #ifdef CONFIG_SYSFS
102 struct kobject kobj; /* For sysfs */
103 #endif
104 #ifdef CONFIG_MEMCG_KMEM
105 struct memcg_cache_params *memcg_params;
106 int max_attr_size; /* for propagation, maximum size of a stored attr */
107 #endif
108
109 #ifdef CONFIG_NUMA
110 /*
111 * Defragmentation by allocating from a remote node.
112 */
113 int remote_node_defrag_ratio;
114 #endif
115 struct kmem_cache_node *node[MAX_NUMNODES];
116 };
117
118 void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
119 void *__kmalloc(size_t size, gfp_t flags);
120
121 static __always_inline void *
122 kmalloc_order(size_t size, gfp_t flags, unsigned int order)
123 {
124 void *ret;
125
126 flags |= (__GFP_COMP | __GFP_KMEMCG);
127 ret = (void *) __get_free_pages(flags, order);
128 kmemleak_alloc(ret, size, 1, flags);
129 return ret;
130 }
131
132 /**
133 * Calling this on allocated memory will check that the memory
134 * is expected to be in use, and print warnings if not.
135 */
136 #ifdef CONFIG_SLUB_DEBUG
137 extern bool verify_mem_not_deleted(const void *x);
138 #else
139 static inline bool verify_mem_not_deleted(const void *x)
140 {
141 return true;
142 }
143 #endif
144
145 #ifdef CONFIG_TRACING
146 extern void *
147 kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size);
148 extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order);
149 #else
150 static __always_inline void *
151 kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
152 {
153 return kmem_cache_alloc(s, gfpflags);
154 }
155
156 static __always_inline void *
157 kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
158 {
159 return kmalloc_order(size, flags, order);
160 }
161 #endif
162
163 static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
164 {
165 unsigned int order = get_order(size);
166 return kmalloc_order_trace(size, flags, order);
167 }
168
169 static __always_inline void *kmalloc(size_t size, gfp_t flags)
170 {
171 if (__builtin_constant_p(size)) {
172 if (size > KMALLOC_MAX_CACHE_SIZE)
173 return kmalloc_large(size, flags);
174
175 if (!(flags & GFP_DMA)) {
176 int index = kmalloc_index(size);
177
178 if (!index)
179 return ZERO_SIZE_PTR;
180
181 return kmem_cache_alloc_trace(kmalloc_caches[index],
182 flags, size);
183 }
184 }
185 return __kmalloc(size, flags);
186 }
187
188 #ifdef CONFIG_NUMA
189 void *__kmalloc_node(size_t size, gfp_t flags, int node);
190 void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
191
192 #ifdef CONFIG_TRACING
193 extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
194 gfp_t gfpflags,
195 int node, size_t size);
196 #else
197 static __always_inline void *
198 kmem_cache_alloc_node_trace(struct kmem_cache *s,
199 gfp_t gfpflags,
200 int node, size_t size)
201 {
202 return kmem_cache_alloc_node(s, gfpflags, node);
203 }
204 #endif
205
206 static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
207 {
208 if (__builtin_constant_p(size) &&
209 size <= KMALLOC_MAX_CACHE_SIZE && !(flags & GFP_DMA)) {
210 int index = kmalloc_index(size);
211
212 if (!index)
213 return ZERO_SIZE_PTR;
214
215 return kmem_cache_alloc_node_trace(kmalloc_caches[index],
216 flags, node, size);
217 }
218 return __kmalloc_node(size, flags, node);
219 }
220 #endif
221
222 #endif /* _LINUX_SLUB_DEF_H */
This page took 0.046147 seconds and 5 git commands to generate.