mm: migrate: Account a transhuge page properly when rate limiting
[deliverable/linux.git] / include / linux / usb.h
1 #ifndef __LINUX_USB_H
2 #define __LINUX_USB_H
3
4 #include <linux/mod_devicetable.h>
5 #include <linux/usb/ch9.h>
6
7 #define USB_MAJOR 180
8 #define USB_DEVICE_MAJOR 189
9
10
11 #ifdef __KERNEL__
12
13 #include <linux/errno.h> /* for -ENODEV */
14 #include <linux/delay.h> /* for mdelay() */
15 #include <linux/interrupt.h> /* for in_interrupt() */
16 #include <linux/list.h> /* for struct list_head */
17 #include <linux/kref.h> /* for struct kref */
18 #include <linux/device.h> /* for struct device */
19 #include <linux/fs.h> /* for struct file_operations */
20 #include <linux/completion.h> /* for struct completion */
21 #include <linux/sched.h> /* for current && schedule_timeout */
22 #include <linux/mutex.h> /* for struct mutex */
23 #include <linux/pm_runtime.h> /* for runtime PM */
24
25 struct usb_device;
26 struct usb_driver;
27 struct wusb_dev;
28
29 /*-------------------------------------------------------------------------*/
30
31 /*
32 * Host-side wrappers for standard USB descriptors ... these are parsed
33 * from the data provided by devices. Parsing turns them from a flat
34 * sequence of descriptors into a hierarchy:
35 *
36 * - devices have one (usually) or more configs;
37 * - configs have one (often) or more interfaces;
38 * - interfaces have one (usually) or more settings;
39 * - each interface setting has zero or (usually) more endpoints.
40 * - a SuperSpeed endpoint has a companion descriptor
41 *
42 * And there might be other descriptors mixed in with those.
43 *
44 * Devices may also have class-specific or vendor-specific descriptors.
45 */
46
47 struct ep_device;
48
49 /**
50 * struct usb_host_endpoint - host-side endpoint descriptor and queue
51 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
52 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
53 * @urb_list: urbs queued to this endpoint; maintained by usbcore
54 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
55 * with one or more transfer descriptors (TDs) per urb
56 * @ep_dev: ep_device for sysfs info
57 * @extra: descriptors following this endpoint in the configuration
58 * @extralen: how many bytes of "extra" are valid
59 * @enabled: URBs may be submitted to this endpoint
60 *
61 * USB requests are always queued to a given endpoint, identified by a
62 * descriptor within an active interface in a given USB configuration.
63 */
64 struct usb_host_endpoint {
65 struct usb_endpoint_descriptor desc;
66 struct usb_ss_ep_comp_descriptor ss_ep_comp;
67 struct list_head urb_list;
68 void *hcpriv;
69 struct ep_device *ep_dev; /* For sysfs info */
70
71 unsigned char *extra; /* Extra descriptors */
72 int extralen;
73 int enabled;
74 };
75
76 /* host-side wrapper for one interface setting's parsed descriptors */
77 struct usb_host_interface {
78 struct usb_interface_descriptor desc;
79
80 int extralen;
81 unsigned char *extra; /* Extra descriptors */
82
83 /* array of desc.bNumEndpoint endpoints associated with this
84 * interface setting. these will be in no particular order.
85 */
86 struct usb_host_endpoint *endpoint;
87
88 char *string; /* iInterface string, if present */
89 };
90
91 enum usb_interface_condition {
92 USB_INTERFACE_UNBOUND = 0,
93 USB_INTERFACE_BINDING,
94 USB_INTERFACE_BOUND,
95 USB_INTERFACE_UNBINDING,
96 };
97
98 /**
99 * struct usb_interface - what usb device drivers talk to
100 * @altsetting: array of interface structures, one for each alternate
101 * setting that may be selected. Each one includes a set of
102 * endpoint configurations. They will be in no particular order.
103 * @cur_altsetting: the current altsetting.
104 * @num_altsetting: number of altsettings defined.
105 * @intf_assoc: interface association descriptor
106 * @minor: the minor number assigned to this interface, if this
107 * interface is bound to a driver that uses the USB major number.
108 * If this interface does not use the USB major, this field should
109 * be unused. The driver should set this value in the probe()
110 * function of the driver, after it has been assigned a minor
111 * number from the USB core by calling usb_register_dev().
112 * @condition: binding state of the interface: not bound, binding
113 * (in probe()), bound to a driver, or unbinding (in disconnect())
114 * @sysfs_files_created: sysfs attributes exist
115 * @ep_devs_created: endpoint child pseudo-devices exist
116 * @unregistering: flag set when the interface is being unregistered
117 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
118 * capability during autosuspend.
119 * @needs_altsetting0: flag set when a set-interface request for altsetting 0
120 * has been deferred.
121 * @needs_binding: flag set when the driver should be re-probed or unbound
122 * following a reset or suspend operation it doesn't support.
123 * @dev: driver model's view of this device
124 * @usb_dev: if an interface is bound to the USB major, this will point
125 * to the sysfs representation for that device.
126 * @pm_usage_cnt: PM usage counter for this interface
127 * @reset_ws: Used for scheduling resets from atomic context.
128 * @reset_running: set to 1 if the interface is currently running a
129 * queued reset so that usb_cancel_queued_reset() doesn't try to
130 * remove from the workqueue when running inside the worker
131 * thread. See __usb_queue_reset_device().
132 * @resetting_device: USB core reset the device, so use alt setting 0 as
133 * current; needs bandwidth alloc after reset.
134 *
135 * USB device drivers attach to interfaces on a physical device. Each
136 * interface encapsulates a single high level function, such as feeding
137 * an audio stream to a speaker or reporting a change in a volume control.
138 * Many USB devices only have one interface. The protocol used to talk to
139 * an interface's endpoints can be defined in a usb "class" specification,
140 * or by a product's vendor. The (default) control endpoint is part of
141 * every interface, but is never listed among the interface's descriptors.
142 *
143 * The driver that is bound to the interface can use standard driver model
144 * calls such as dev_get_drvdata() on the dev member of this structure.
145 *
146 * Each interface may have alternate settings. The initial configuration
147 * of a device sets altsetting 0, but the device driver can change
148 * that setting using usb_set_interface(). Alternate settings are often
149 * used to control the use of periodic endpoints, such as by having
150 * different endpoints use different amounts of reserved USB bandwidth.
151 * All standards-conformant USB devices that use isochronous endpoints
152 * will use them in non-default settings.
153 *
154 * The USB specification says that alternate setting numbers must run from
155 * 0 to one less than the total number of alternate settings. But some
156 * devices manage to mess this up, and the structures aren't necessarily
157 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to
158 * look up an alternate setting in the altsetting array based on its number.
159 */
160 struct usb_interface {
161 /* array of alternate settings for this interface,
162 * stored in no particular order */
163 struct usb_host_interface *altsetting;
164
165 struct usb_host_interface *cur_altsetting; /* the currently
166 * active alternate setting */
167 unsigned num_altsetting; /* number of alternate settings */
168
169 /* If there is an interface association descriptor then it will list
170 * the associated interfaces */
171 struct usb_interface_assoc_descriptor *intf_assoc;
172
173 int minor; /* minor number this interface is
174 * bound to */
175 enum usb_interface_condition condition; /* state of binding */
176 unsigned sysfs_files_created:1; /* the sysfs attributes exist */
177 unsigned ep_devs_created:1; /* endpoint "devices" exist */
178 unsigned unregistering:1; /* unregistration is in progress */
179 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
180 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */
181 unsigned needs_binding:1; /* needs delayed unbind/rebind */
182 unsigned reset_running:1;
183 unsigned resetting_device:1; /* true: bandwidth alloc after reset */
184
185 struct device dev; /* interface specific device info */
186 struct device *usb_dev;
187 atomic_t pm_usage_cnt; /* usage counter for autosuspend */
188 struct work_struct reset_ws; /* for resets in atomic context */
189 };
190 #define to_usb_interface(d) container_of(d, struct usb_interface, dev)
191
192 static inline void *usb_get_intfdata(struct usb_interface *intf)
193 {
194 return dev_get_drvdata(&intf->dev);
195 }
196
197 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
198 {
199 dev_set_drvdata(&intf->dev, data);
200 }
201
202 struct usb_interface *usb_get_intf(struct usb_interface *intf);
203 void usb_put_intf(struct usb_interface *intf);
204
205 /* this maximum is arbitrary */
206 #define USB_MAXINTERFACES 32
207 #define USB_MAXIADS (USB_MAXINTERFACES/2)
208
209 /**
210 * struct usb_interface_cache - long-term representation of a device interface
211 * @num_altsetting: number of altsettings defined.
212 * @ref: reference counter.
213 * @altsetting: variable-length array of interface structures, one for
214 * each alternate setting that may be selected. Each one includes a
215 * set of endpoint configurations. They will be in no particular order.
216 *
217 * These structures persist for the lifetime of a usb_device, unlike
218 * struct usb_interface (which persists only as long as its configuration
219 * is installed). The altsetting arrays can be accessed through these
220 * structures at any time, permitting comparison of configurations and
221 * providing support for the /proc/bus/usb/devices pseudo-file.
222 */
223 struct usb_interface_cache {
224 unsigned num_altsetting; /* number of alternate settings */
225 struct kref ref; /* reference counter */
226
227 /* variable-length array of alternate settings for this interface,
228 * stored in no particular order */
229 struct usb_host_interface altsetting[0];
230 };
231 #define ref_to_usb_interface_cache(r) \
232 container_of(r, struct usb_interface_cache, ref)
233 #define altsetting_to_usb_interface_cache(a) \
234 container_of(a, struct usb_interface_cache, altsetting[0])
235
236 /**
237 * struct usb_host_config - representation of a device's configuration
238 * @desc: the device's configuration descriptor.
239 * @string: pointer to the cached version of the iConfiguration string, if
240 * present for this configuration.
241 * @intf_assoc: list of any interface association descriptors in this config
242 * @interface: array of pointers to usb_interface structures, one for each
243 * interface in the configuration. The number of interfaces is stored
244 * in desc.bNumInterfaces. These pointers are valid only while the
245 * the configuration is active.
246 * @intf_cache: array of pointers to usb_interface_cache structures, one
247 * for each interface in the configuration. These structures exist
248 * for the entire life of the device.
249 * @extra: pointer to buffer containing all extra descriptors associated
250 * with this configuration (those preceding the first interface
251 * descriptor).
252 * @extralen: length of the extra descriptors buffer.
253 *
254 * USB devices may have multiple configurations, but only one can be active
255 * at any time. Each encapsulates a different operational environment;
256 * for example, a dual-speed device would have separate configurations for
257 * full-speed and high-speed operation. The number of configurations
258 * available is stored in the device descriptor as bNumConfigurations.
259 *
260 * A configuration can contain multiple interfaces. Each corresponds to
261 * a different function of the USB device, and all are available whenever
262 * the configuration is active. The USB standard says that interfaces
263 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
264 * of devices get this wrong. In addition, the interface array is not
265 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to
266 * look up an interface entry based on its number.
267 *
268 * Device drivers should not attempt to activate configurations. The choice
269 * of which configuration to install is a policy decision based on such
270 * considerations as available power, functionality provided, and the user's
271 * desires (expressed through userspace tools). However, drivers can call
272 * usb_reset_configuration() to reinitialize the current configuration and
273 * all its interfaces.
274 */
275 struct usb_host_config {
276 struct usb_config_descriptor desc;
277
278 char *string; /* iConfiguration string, if present */
279
280 /* List of any Interface Association Descriptors in this
281 * configuration. */
282 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
283
284 /* the interfaces associated with this configuration,
285 * stored in no particular order */
286 struct usb_interface *interface[USB_MAXINTERFACES];
287
288 /* Interface information available even when this is not the
289 * active configuration */
290 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
291
292 unsigned char *extra; /* Extra descriptors */
293 int extralen;
294 };
295
296 /* USB2.0 and USB3.0 device BOS descriptor set */
297 struct usb_host_bos {
298 struct usb_bos_descriptor *desc;
299
300 /* wireless cap descriptor is handled by wusb */
301 struct usb_ext_cap_descriptor *ext_cap;
302 struct usb_ss_cap_descriptor *ss_cap;
303 struct usb_ss_container_id_descriptor *ss_id;
304 };
305
306 int __usb_get_extra_descriptor(char *buffer, unsigned size,
307 unsigned char type, void **ptr);
308 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
309 __usb_get_extra_descriptor((ifpoint)->extra, \
310 (ifpoint)->extralen, \
311 type, (void **)ptr)
312
313 /* ----------------------------------------------------------------------- */
314
315 /* USB device number allocation bitmap */
316 struct usb_devmap {
317 unsigned long devicemap[128 / (8*sizeof(unsigned long))];
318 };
319
320 /*
321 * Allocated per bus (tree of devices) we have:
322 */
323 struct usb_bus {
324 struct device *controller; /* host/master side hardware */
325 int busnum; /* Bus number (in order of reg) */
326 const char *bus_name; /* stable id (PCI slot_name etc) */
327 u8 uses_dma; /* Does the host controller use DMA? */
328 u8 uses_pio_for_control; /*
329 * Does the host controller use PIO
330 * for control transfers?
331 */
332 u8 otg_port; /* 0, or number of OTG/HNP port */
333 unsigned is_b_host:1; /* true during some HNP roleswitches */
334 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */
335 unsigned no_stop_on_short:1; /*
336 * Quirk: some controllers don't stop
337 * the ep queue on a short transfer
338 * with the URB_SHORT_NOT_OK flag set.
339 */
340 unsigned sg_tablesize; /* 0 or largest number of sg list entries */
341
342 int devnum_next; /* Next open device number in
343 * round-robin allocation */
344
345 struct usb_devmap devmap; /* device address allocation map */
346 struct usb_device *root_hub; /* Root hub */
347 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */
348 struct list_head bus_list; /* list of busses */
349
350 int bandwidth_allocated; /* on this bus: how much of the time
351 * reserved for periodic (intr/iso)
352 * requests is used, on average?
353 * Units: microseconds/frame.
354 * Limits: Full/low speed reserve 90%,
355 * while high speed reserves 80%.
356 */
357 int bandwidth_int_reqs; /* number of Interrupt requests */
358 int bandwidth_isoc_reqs; /* number of Isoc. requests */
359
360 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
361 struct mon_bus *mon_bus; /* non-null when associated */
362 int monitored; /* non-zero when monitored */
363 #endif
364 };
365
366 /* ----------------------------------------------------------------------- */
367
368 /* This is arbitrary.
369 * From USB 2.0 spec Table 11-13, offset 7, a hub can
370 * have up to 255 ports. The most yet reported is 10.
371 *
372 * Current Wireless USB host hardware (Intel i1480 for example) allows
373 * up to 22 devices to connect. Upcoming hardware might raise that
374 * limit. Because the arrays need to add a bit for hub status data, we
375 * do 31, so plus one evens out to four bytes.
376 */
377 #define USB_MAXCHILDREN (31)
378
379 struct usb_tt;
380
381 enum usb_device_removable {
382 USB_DEVICE_REMOVABLE_UNKNOWN = 0,
383 USB_DEVICE_REMOVABLE,
384 USB_DEVICE_FIXED,
385 };
386
387 enum usb_port_connect_type {
388 USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
389 USB_PORT_CONNECT_TYPE_HOT_PLUG,
390 USB_PORT_CONNECT_TYPE_HARD_WIRED,
391 USB_PORT_NOT_USED,
392 };
393
394 /*
395 * USB 3.0 Link Power Management (LPM) parameters.
396 *
397 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
398 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
399 * All three are stored in nanoseconds.
400 */
401 struct usb3_lpm_parameters {
402 /*
403 * Maximum exit latency (MEL) for the host to send a packet to the
404 * device (either a Ping for isoc endpoints, or a data packet for
405 * interrupt endpoints), the hubs to decode the packet, and for all hubs
406 * in the path to transition the links to U0.
407 */
408 unsigned int mel;
409 /*
410 * Maximum exit latency for a device-initiated LPM transition to bring
411 * all links into U0. Abbreviated as "PEL" in section 9.4.12 of the USB
412 * 3.0 spec, with no explanation of what "P" stands for. "Path"?
413 */
414 unsigned int pel;
415
416 /*
417 * The System Exit Latency (SEL) includes PEL, and three other
418 * latencies. After a device initiates a U0 transition, it will take
419 * some time from when the device sends the ERDY to when it will finally
420 * receive the data packet. Basically, SEL should be the worse-case
421 * latency from when a device starts initiating a U0 transition to when
422 * it will get data.
423 */
424 unsigned int sel;
425 /*
426 * The idle timeout value that is currently programmed into the parent
427 * hub for this device. When the timer counts to zero, the parent hub
428 * will initiate an LPM transition to either U1 or U2.
429 */
430 int timeout;
431 };
432
433 /**
434 * struct usb_device - kernel's representation of a USB device
435 * @devnum: device number; address on a USB bus
436 * @devpath: device ID string for use in messages (e.g., /port/...)
437 * @route: tree topology hex string for use with xHCI
438 * @state: device state: configured, not attached, etc.
439 * @speed: device speed: high/full/low (or error)
440 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
441 * @ttport: device port on that tt hub
442 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
443 * @parent: our hub, unless we're the root
444 * @bus: bus we're part of
445 * @ep0: endpoint 0 data (default control pipe)
446 * @dev: generic device interface
447 * @descriptor: USB device descriptor
448 * @bos: USB device BOS descriptor set
449 * @config: all of the device's configs
450 * @actconfig: the active configuration
451 * @ep_in: array of IN endpoints
452 * @ep_out: array of OUT endpoints
453 * @rawdescriptors: raw descriptors for each config
454 * @bus_mA: Current available from the bus
455 * @portnum: parent port number (origin 1)
456 * @level: number of USB hub ancestors
457 * @can_submit: URBs may be submitted
458 * @persist_enabled: USB_PERSIST enabled for this device
459 * @have_langid: whether string_langid is valid
460 * @authorized: policy has said we can use it;
461 * (user space) policy determines if we authorize this device to be
462 * used or not. By default, wired USB devices are authorized.
463 * WUSB devices are not, until we authorize them from user space.
464 * FIXME -- complete doc
465 * @authenticated: Crypto authentication passed
466 * @wusb: device is Wireless USB
467 * @lpm_capable: device supports LPM
468 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
469 * @usb2_hw_lpm_enabled: USB2 hardware LPM enabled
470 * @string_langid: language ID for strings
471 * @product: iProduct string, if present (static)
472 * @manufacturer: iManufacturer string, if present (static)
473 * @serial: iSerialNumber string, if present (static)
474 * @filelist: usbfs files that are open to this device
475 * @usb_classdev: USB class device that was created for usbfs device
476 * access from userspace
477 * @usbfs_dentry: usbfs dentry entry for the device
478 * @maxchild: number of ports if hub
479 * @quirks: quirks of the whole device
480 * @urbnum: number of URBs submitted for the whole device
481 * @active_duration: total time device is not suspended
482 * @connect_time: time device was first connected
483 * @do_remote_wakeup: remote wakeup should be enabled
484 * @reset_resume: needs reset instead of resume
485 * @wusb_dev: if this is a Wireless USB device, link to the WUSB
486 * specific data for the device.
487 * @slot_id: Slot ID assigned by xHCI
488 * @removable: Device can be physically removed from this port
489 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
490 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
491 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
492 * to keep track of the number of functions that require USB 3.0 Link Power
493 * Management to be disabled for this usb_device. This count should only
494 * be manipulated by those functions, with the bandwidth_mutex is held.
495 *
496 * Notes:
497 * Usbcore drivers should not set usbdev->state directly. Instead use
498 * usb_set_device_state().
499 */
500 struct usb_device {
501 int devnum;
502 char devpath[16];
503 u32 route;
504 enum usb_device_state state;
505 enum usb_device_speed speed;
506
507 struct usb_tt *tt;
508 int ttport;
509
510 unsigned int toggle[2];
511
512 struct usb_device *parent;
513 struct usb_bus *bus;
514 struct usb_host_endpoint ep0;
515
516 struct device dev;
517
518 struct usb_device_descriptor descriptor;
519 struct usb_host_bos *bos;
520 struct usb_host_config *config;
521
522 struct usb_host_config *actconfig;
523 struct usb_host_endpoint *ep_in[16];
524 struct usb_host_endpoint *ep_out[16];
525
526 char **rawdescriptors;
527
528 unsigned short bus_mA;
529 u8 portnum;
530 u8 level;
531
532 unsigned can_submit:1;
533 unsigned persist_enabled:1;
534 unsigned have_langid:1;
535 unsigned authorized:1;
536 unsigned authenticated:1;
537 unsigned wusb:1;
538 unsigned lpm_capable:1;
539 unsigned usb2_hw_lpm_capable:1;
540 unsigned usb2_hw_lpm_enabled:1;
541 unsigned usb3_lpm_enabled:1;
542 int string_langid;
543
544 /* static strings from the device */
545 char *product;
546 char *manufacturer;
547 char *serial;
548
549 struct list_head filelist;
550
551 int maxchild;
552
553 u32 quirks;
554 atomic_t urbnum;
555
556 unsigned long active_duration;
557
558 #ifdef CONFIG_PM
559 unsigned long connect_time;
560
561 unsigned do_remote_wakeup:1;
562 unsigned reset_resume:1;
563 #endif
564 struct wusb_dev *wusb_dev;
565 int slot_id;
566 enum usb_device_removable removable;
567 struct usb3_lpm_parameters u1_params;
568 struct usb3_lpm_parameters u2_params;
569 unsigned lpm_disable_count;
570 };
571 #define to_usb_device(d) container_of(d, struct usb_device, dev)
572
573 static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
574 {
575 return to_usb_device(intf->dev.parent);
576 }
577
578 extern struct usb_device *usb_get_dev(struct usb_device *dev);
579 extern void usb_put_dev(struct usb_device *dev);
580 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
581 int port1);
582
583 /**
584 * usb_hub_for_each_child - iterate over all child devices on the hub
585 * @hdev: USB device belonging to the usb hub
586 * @port1: portnum associated with child device
587 * @child: child device pointer
588 */
589 #define usb_hub_for_each_child(hdev, port1, child) \
590 for (port1 = 1, child = usb_hub_find_child(hdev, port1); \
591 port1 <= hdev->maxchild; \
592 child = usb_hub_find_child(hdev, ++port1))
593
594 /* USB device locking */
595 #define usb_lock_device(udev) device_lock(&(udev)->dev)
596 #define usb_unlock_device(udev) device_unlock(&(udev)->dev)
597 #define usb_trylock_device(udev) device_trylock(&(udev)->dev)
598 extern int usb_lock_device_for_reset(struct usb_device *udev,
599 const struct usb_interface *iface);
600
601 /* USB port reset for device reinitialization */
602 extern int usb_reset_device(struct usb_device *dev);
603 extern void usb_queue_reset_device(struct usb_interface *dev);
604
605 #ifdef CONFIG_ACPI
606 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
607 bool enable);
608 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
609 #else
610 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
611 bool enable) { return 0; }
612 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
613 { return true; }
614 #endif
615
616 /* USB autosuspend and autoresume */
617 #ifdef CONFIG_USB_SUSPEND
618 extern void usb_enable_autosuspend(struct usb_device *udev);
619 extern void usb_disable_autosuspend(struct usb_device *udev);
620
621 extern int usb_autopm_get_interface(struct usb_interface *intf);
622 extern void usb_autopm_put_interface(struct usb_interface *intf);
623 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
624 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
625 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
626 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
627
628 static inline void usb_mark_last_busy(struct usb_device *udev)
629 {
630 pm_runtime_mark_last_busy(&udev->dev);
631 }
632
633 #else
634
635 static inline int usb_enable_autosuspend(struct usb_device *udev)
636 { return 0; }
637 static inline int usb_disable_autosuspend(struct usb_device *udev)
638 { return 0; }
639
640 static inline int usb_autopm_get_interface(struct usb_interface *intf)
641 { return 0; }
642 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
643 { return 0; }
644
645 static inline void usb_autopm_put_interface(struct usb_interface *intf)
646 { }
647 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
648 { }
649 static inline void usb_autopm_get_interface_no_resume(
650 struct usb_interface *intf)
651 { }
652 static inline void usb_autopm_put_interface_no_suspend(
653 struct usb_interface *intf)
654 { }
655 static inline void usb_mark_last_busy(struct usb_device *udev)
656 { }
657 #endif
658
659 extern int usb_disable_lpm(struct usb_device *udev);
660 extern void usb_enable_lpm(struct usb_device *udev);
661 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */
662 extern int usb_unlocked_disable_lpm(struct usb_device *udev);
663 extern void usb_unlocked_enable_lpm(struct usb_device *udev);
664
665 extern int usb_disable_ltm(struct usb_device *udev);
666 extern void usb_enable_ltm(struct usb_device *udev);
667
668 static inline bool usb_device_supports_ltm(struct usb_device *udev)
669 {
670 if (udev->speed != USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
671 return false;
672 return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
673 }
674
675
676 /*-------------------------------------------------------------------------*/
677
678 /* for drivers using iso endpoints */
679 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
680
681 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
682 extern int usb_alloc_streams(struct usb_interface *interface,
683 struct usb_host_endpoint **eps, unsigned int num_eps,
684 unsigned int num_streams, gfp_t mem_flags);
685
686 /* Reverts a group of bulk endpoints back to not using stream IDs. */
687 extern void usb_free_streams(struct usb_interface *interface,
688 struct usb_host_endpoint **eps, unsigned int num_eps,
689 gfp_t mem_flags);
690
691 /* used these for multi-interface device registration */
692 extern int usb_driver_claim_interface(struct usb_driver *driver,
693 struct usb_interface *iface, void *priv);
694
695 /**
696 * usb_interface_claimed - returns true iff an interface is claimed
697 * @iface: the interface being checked
698 *
699 * Returns true (nonzero) iff the interface is claimed, else false (zero).
700 * Callers must own the driver model's usb bus readlock. So driver
701 * probe() entries don't need extra locking, but other call contexts
702 * may need to explicitly claim that lock.
703 *
704 */
705 static inline int usb_interface_claimed(struct usb_interface *iface)
706 {
707 return (iface->dev.driver != NULL);
708 }
709
710 extern void usb_driver_release_interface(struct usb_driver *driver,
711 struct usb_interface *iface);
712 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
713 const struct usb_device_id *id);
714 extern int usb_match_one_id(struct usb_interface *interface,
715 const struct usb_device_id *id);
716
717 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
718 int minor);
719 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
720 unsigned ifnum);
721 extern struct usb_host_interface *usb_altnum_to_altsetting(
722 const struct usb_interface *intf, unsigned int altnum);
723 extern struct usb_host_interface *usb_find_alt_setting(
724 struct usb_host_config *config,
725 unsigned int iface_num,
726 unsigned int alt_num);
727
728
729 /**
730 * usb_make_path - returns stable device path in the usb tree
731 * @dev: the device whose path is being constructed
732 * @buf: where to put the string
733 * @size: how big is "buf"?
734 *
735 * Returns length of the string (> 0) or negative if size was too small.
736 *
737 * This identifier is intended to be "stable", reflecting physical paths in
738 * hardware such as physical bus addresses for host controllers or ports on
739 * USB hubs. That makes it stay the same until systems are physically
740 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
741 * controllers. Adding and removing devices, including virtual root hubs
742 * in host controller driver modules, does not change these path identifiers;
743 * neither does rebooting or re-enumerating. These are more useful identifiers
744 * than changeable ("unstable") ones like bus numbers or device addresses.
745 *
746 * With a partial exception for devices connected to USB 2.0 root hubs, these
747 * identifiers are also predictable. So long as the device tree isn't changed,
748 * plugging any USB device into a given hub port always gives it the same path.
749 * Because of the use of "companion" controllers, devices connected to ports on
750 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
751 * high speed, and a different one if they are full or low speed.
752 */
753 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
754 {
755 int actual;
756 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
757 dev->devpath);
758 return (actual >= (int)size) ? -1 : actual;
759 }
760
761 /*-------------------------------------------------------------------------*/
762
763 #define USB_DEVICE_ID_MATCH_DEVICE \
764 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
765 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
766 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
767 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
768 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
769 #define USB_DEVICE_ID_MATCH_DEV_INFO \
770 (USB_DEVICE_ID_MATCH_DEV_CLASS | \
771 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
772 USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
773 #define USB_DEVICE_ID_MATCH_INT_INFO \
774 (USB_DEVICE_ID_MATCH_INT_CLASS | \
775 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
776 USB_DEVICE_ID_MATCH_INT_PROTOCOL)
777
778 /**
779 * USB_DEVICE - macro used to describe a specific usb device
780 * @vend: the 16 bit USB Vendor ID
781 * @prod: the 16 bit USB Product ID
782 *
783 * This macro is used to create a struct usb_device_id that matches a
784 * specific device.
785 */
786 #define USB_DEVICE(vend, prod) \
787 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
788 .idVendor = (vend), \
789 .idProduct = (prod)
790 /**
791 * USB_DEVICE_VER - describe a specific usb device with a version range
792 * @vend: the 16 bit USB Vendor ID
793 * @prod: the 16 bit USB Product ID
794 * @lo: the bcdDevice_lo value
795 * @hi: the bcdDevice_hi value
796 *
797 * This macro is used to create a struct usb_device_id that matches a
798 * specific device, with a version range.
799 */
800 #define USB_DEVICE_VER(vend, prod, lo, hi) \
801 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
802 .idVendor = (vend), \
803 .idProduct = (prod), \
804 .bcdDevice_lo = (lo), \
805 .bcdDevice_hi = (hi)
806
807 /**
808 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
809 * @vend: the 16 bit USB Vendor ID
810 * @prod: the 16 bit USB Product ID
811 * @pr: bInterfaceProtocol value
812 *
813 * This macro is used to create a struct usb_device_id that matches a
814 * specific interface protocol of devices.
815 */
816 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
817 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
818 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
819 .idVendor = (vend), \
820 .idProduct = (prod), \
821 .bInterfaceProtocol = (pr)
822
823 /**
824 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
825 * @vend: the 16 bit USB Vendor ID
826 * @prod: the 16 bit USB Product ID
827 * @num: bInterfaceNumber value
828 *
829 * This macro is used to create a struct usb_device_id that matches a
830 * specific interface number of devices.
831 */
832 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
833 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
834 USB_DEVICE_ID_MATCH_INT_NUMBER, \
835 .idVendor = (vend), \
836 .idProduct = (prod), \
837 .bInterfaceNumber = (num)
838
839 /**
840 * USB_DEVICE_INFO - macro used to describe a class of usb devices
841 * @cl: bDeviceClass value
842 * @sc: bDeviceSubClass value
843 * @pr: bDeviceProtocol value
844 *
845 * This macro is used to create a struct usb_device_id that matches a
846 * specific class of devices.
847 */
848 #define USB_DEVICE_INFO(cl, sc, pr) \
849 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
850 .bDeviceClass = (cl), \
851 .bDeviceSubClass = (sc), \
852 .bDeviceProtocol = (pr)
853
854 /**
855 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
856 * @cl: bInterfaceClass value
857 * @sc: bInterfaceSubClass value
858 * @pr: bInterfaceProtocol value
859 *
860 * This macro is used to create a struct usb_device_id that matches a
861 * specific class of interfaces.
862 */
863 #define USB_INTERFACE_INFO(cl, sc, pr) \
864 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
865 .bInterfaceClass = (cl), \
866 .bInterfaceSubClass = (sc), \
867 .bInterfaceProtocol = (pr)
868
869 /**
870 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
871 * @vend: the 16 bit USB Vendor ID
872 * @prod: the 16 bit USB Product ID
873 * @cl: bInterfaceClass value
874 * @sc: bInterfaceSubClass value
875 * @pr: bInterfaceProtocol value
876 *
877 * This macro is used to create a struct usb_device_id that matches a
878 * specific device with a specific class of interfaces.
879 *
880 * This is especially useful when explicitly matching devices that have
881 * vendor specific bDeviceClass values, but standards-compliant interfaces.
882 */
883 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
884 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
885 | USB_DEVICE_ID_MATCH_DEVICE, \
886 .idVendor = (vend), \
887 .idProduct = (prod), \
888 .bInterfaceClass = (cl), \
889 .bInterfaceSubClass = (sc), \
890 .bInterfaceProtocol = (pr)
891
892 /**
893 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
894 * @vend: the 16 bit USB Vendor ID
895 * @cl: bInterfaceClass value
896 * @sc: bInterfaceSubClass value
897 * @pr: bInterfaceProtocol value
898 *
899 * This macro is used to create a struct usb_device_id that matches a
900 * specific vendor with a specific class of interfaces.
901 *
902 * This is especially useful when explicitly matching devices that have
903 * vendor specific bDeviceClass values, but standards-compliant interfaces.
904 */
905 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
906 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
907 | USB_DEVICE_ID_MATCH_VENDOR, \
908 .idVendor = (vend), \
909 .bInterfaceClass = (cl), \
910 .bInterfaceSubClass = (sc), \
911 .bInterfaceProtocol = (pr)
912
913 /* ----------------------------------------------------------------------- */
914
915 /* Stuff for dynamic usb ids */
916 struct usb_dynids {
917 spinlock_t lock;
918 struct list_head list;
919 };
920
921 struct usb_dynid {
922 struct list_head node;
923 struct usb_device_id id;
924 };
925
926 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
927 struct device_driver *driver,
928 const char *buf, size_t count);
929
930 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
931
932 /**
933 * struct usbdrv_wrap - wrapper for driver-model structure
934 * @driver: The driver-model core driver structure.
935 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
936 */
937 struct usbdrv_wrap {
938 struct device_driver driver;
939 int for_devices;
940 };
941
942 /**
943 * struct usb_driver - identifies USB interface driver to usbcore
944 * @name: The driver name should be unique among USB drivers,
945 * and should normally be the same as the module name.
946 * @probe: Called to see if the driver is willing to manage a particular
947 * interface on a device. If it is, probe returns zero and uses
948 * usb_set_intfdata() to associate driver-specific data with the
949 * interface. It may also use usb_set_interface() to specify the
950 * appropriate altsetting. If unwilling to manage the interface,
951 * return -ENODEV, if genuine IO errors occurred, an appropriate
952 * negative errno value.
953 * @disconnect: Called when the interface is no longer accessible, usually
954 * because its device has been (or is being) disconnected or the
955 * driver module is being unloaded.
956 * @unlocked_ioctl: Used for drivers that want to talk to userspace through
957 * the "usbfs" filesystem. This lets devices provide ways to
958 * expose information to user space regardless of where they
959 * do (or don't) show up otherwise in the filesystem.
960 * @suspend: Called when the device is going to be suspended by the system.
961 * @resume: Called when the device is being resumed by the system.
962 * @reset_resume: Called when the suspended device has been reset instead
963 * of being resumed.
964 * @pre_reset: Called by usb_reset_device() when the device is about to be
965 * reset. This routine must not return until the driver has no active
966 * URBs for the device, and no more URBs may be submitted until the
967 * post_reset method is called.
968 * @post_reset: Called by usb_reset_device() after the device
969 * has been reset
970 * @id_table: USB drivers use ID table to support hotplugging.
971 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set
972 * or your driver's probe function will never get called.
973 * @dynids: used internally to hold the list of dynamically added device
974 * ids for this driver.
975 * @drvwrap: Driver-model core structure wrapper.
976 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
977 * added to this driver by preventing the sysfs file from being created.
978 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
979 * for interfaces bound to this driver.
980 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
981 * endpoints before calling the driver's disconnect method.
982 * @disable_hub_initiated_lpm: if set to 0, the USB core will not allow hubs
983 * to initiate lower power link state transitions when an idle timeout
984 * occurs. Device-initiated USB 3.0 link PM will still be allowed.
985 *
986 * USB interface drivers must provide a name, probe() and disconnect()
987 * methods, and an id_table. Other driver fields are optional.
988 *
989 * The id_table is used in hotplugging. It holds a set of descriptors,
990 * and specialized data may be associated with each entry. That table
991 * is used by both user and kernel mode hotplugging support.
992 *
993 * The probe() and disconnect() methods are called in a context where
994 * they can sleep, but they should avoid abusing the privilege. Most
995 * work to connect to a device should be done when the device is opened,
996 * and undone at the last close. The disconnect code needs to address
997 * concurrency issues with respect to open() and close() methods, as
998 * well as forcing all pending I/O requests to complete (by unlinking
999 * them as necessary, and blocking until the unlinks complete).
1000 */
1001 struct usb_driver {
1002 const char *name;
1003
1004 int (*probe) (struct usb_interface *intf,
1005 const struct usb_device_id *id);
1006
1007 void (*disconnect) (struct usb_interface *intf);
1008
1009 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1010 void *buf);
1011
1012 int (*suspend) (struct usb_interface *intf, pm_message_t message);
1013 int (*resume) (struct usb_interface *intf);
1014 int (*reset_resume)(struct usb_interface *intf);
1015
1016 int (*pre_reset)(struct usb_interface *intf);
1017 int (*post_reset)(struct usb_interface *intf);
1018
1019 const struct usb_device_id *id_table;
1020
1021 struct usb_dynids dynids;
1022 struct usbdrv_wrap drvwrap;
1023 unsigned int no_dynamic_id:1;
1024 unsigned int supports_autosuspend:1;
1025 unsigned int disable_hub_initiated_lpm:1;
1026 unsigned int soft_unbind:1;
1027 };
1028 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1029
1030 /**
1031 * struct usb_device_driver - identifies USB device driver to usbcore
1032 * @name: The driver name should be unique among USB drivers,
1033 * and should normally be the same as the module name.
1034 * @probe: Called to see if the driver is willing to manage a particular
1035 * device. If it is, probe returns zero and uses dev_set_drvdata()
1036 * to associate driver-specific data with the device. If unwilling
1037 * to manage the device, return a negative errno value.
1038 * @disconnect: Called when the device is no longer accessible, usually
1039 * because it has been (or is being) disconnected or the driver's
1040 * module is being unloaded.
1041 * @suspend: Called when the device is going to be suspended by the system.
1042 * @resume: Called when the device is being resumed by the system.
1043 * @drvwrap: Driver-model core structure wrapper.
1044 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1045 * for devices bound to this driver.
1046 *
1047 * USB drivers must provide all the fields listed above except drvwrap.
1048 */
1049 struct usb_device_driver {
1050 const char *name;
1051
1052 int (*probe) (struct usb_device *udev);
1053 void (*disconnect) (struct usb_device *udev);
1054
1055 int (*suspend) (struct usb_device *udev, pm_message_t message);
1056 int (*resume) (struct usb_device *udev, pm_message_t message);
1057 struct usbdrv_wrap drvwrap;
1058 unsigned int supports_autosuspend:1;
1059 };
1060 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1061 drvwrap.driver)
1062
1063 extern struct bus_type usb_bus_type;
1064
1065 /**
1066 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1067 * @name: the usb class device name for this driver. Will show up in sysfs.
1068 * @devnode: Callback to provide a naming hint for a possible
1069 * device node to create.
1070 * @fops: pointer to the struct file_operations of this driver.
1071 * @minor_base: the start of the minor range for this driver.
1072 *
1073 * This structure is used for the usb_register_dev() and
1074 * usb_unregister_dev() functions, to consolidate a number of the
1075 * parameters used for them.
1076 */
1077 struct usb_class_driver {
1078 char *name;
1079 char *(*devnode)(struct device *dev, umode_t *mode);
1080 const struct file_operations *fops;
1081 int minor_base;
1082 };
1083
1084 /*
1085 * use these in module_init()/module_exit()
1086 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1087 */
1088 extern int usb_register_driver(struct usb_driver *, struct module *,
1089 const char *);
1090
1091 /* use a define to avoid include chaining to get THIS_MODULE & friends */
1092 #define usb_register(driver) \
1093 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1094
1095 extern void usb_deregister(struct usb_driver *);
1096
1097 /**
1098 * module_usb_driver() - Helper macro for registering a USB driver
1099 * @__usb_driver: usb_driver struct
1100 *
1101 * Helper macro for USB drivers which do not do anything special in module
1102 * init/exit. This eliminates a lot of boilerplate. Each module may only
1103 * use this macro once, and calling it replaces module_init() and module_exit()
1104 */
1105 #define module_usb_driver(__usb_driver) \
1106 module_driver(__usb_driver, usb_register, \
1107 usb_deregister)
1108
1109 extern int usb_register_device_driver(struct usb_device_driver *,
1110 struct module *);
1111 extern void usb_deregister_device_driver(struct usb_device_driver *);
1112
1113 extern int usb_register_dev(struct usb_interface *intf,
1114 struct usb_class_driver *class_driver);
1115 extern void usb_deregister_dev(struct usb_interface *intf,
1116 struct usb_class_driver *class_driver);
1117
1118 extern int usb_disabled(void);
1119
1120 /* ----------------------------------------------------------------------- */
1121
1122 /*
1123 * URB support, for asynchronous request completions
1124 */
1125
1126 /*
1127 * urb->transfer_flags:
1128 *
1129 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1130 */
1131 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */
1132 #define URB_ISO_ASAP 0x0002 /* iso-only, urb->start_frame
1133 * ignored */
1134 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */
1135 #define URB_NO_FSBR 0x0020 /* UHCI-specific */
1136 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */
1137 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt
1138 * needed */
1139 #define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */
1140
1141 /* The following flags are used internally by usbcore and HCDs */
1142 #define URB_DIR_IN 0x0200 /* Transfer from device to host */
1143 #define URB_DIR_OUT 0
1144 #define URB_DIR_MASK URB_DIR_IN
1145
1146 #define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */
1147 #define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */
1148 #define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */
1149 #define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */
1150 #define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */
1151 #define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */
1152 #define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */
1153 #define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */
1154
1155 struct usb_iso_packet_descriptor {
1156 unsigned int offset;
1157 unsigned int length; /* expected length */
1158 unsigned int actual_length;
1159 int status;
1160 };
1161
1162 struct urb;
1163
1164 struct usb_anchor {
1165 struct list_head urb_list;
1166 wait_queue_head_t wait;
1167 spinlock_t lock;
1168 unsigned int poisoned:1;
1169 };
1170
1171 static inline void init_usb_anchor(struct usb_anchor *anchor)
1172 {
1173 INIT_LIST_HEAD(&anchor->urb_list);
1174 init_waitqueue_head(&anchor->wait);
1175 spin_lock_init(&anchor->lock);
1176 }
1177
1178 typedef void (*usb_complete_t)(struct urb *);
1179
1180 /**
1181 * struct urb - USB Request Block
1182 * @urb_list: For use by current owner of the URB.
1183 * @anchor_list: membership in the list of an anchor
1184 * @anchor: to anchor URBs to a common mooring
1185 * @ep: Points to the endpoint's data structure. Will eventually
1186 * replace @pipe.
1187 * @pipe: Holds endpoint number, direction, type, and more.
1188 * Create these values with the eight macros available;
1189 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1190 * (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1191 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint
1192 * numbers range from zero to fifteen. Note that "in" endpoint two
1193 * is a different endpoint (and pipe) from "out" endpoint two.
1194 * The current configuration controls the existence, type, and
1195 * maximum packet size of any given endpoint.
1196 * @stream_id: the endpoint's stream ID for bulk streams
1197 * @dev: Identifies the USB device to perform the request.
1198 * @status: This is read in non-iso completion functions to get the
1199 * status of the particular request. ISO requests only use it
1200 * to tell whether the URB was unlinked; detailed status for
1201 * each frame is in the fields of the iso_frame-desc.
1202 * @transfer_flags: A variety of flags may be used to affect how URB
1203 * submission, unlinking, or operation are handled. Different
1204 * kinds of URB can use different flags.
1205 * @transfer_buffer: This identifies the buffer to (or from) which the I/O
1206 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1207 * (however, do not leave garbage in transfer_buffer even then).
1208 * This buffer must be suitable for DMA; allocate it with
1209 * kmalloc() or equivalent. For transfers to "in" endpoints, contents
1210 * of this buffer will be modified. This buffer is used for the data
1211 * stage of control transfers.
1212 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1213 * the device driver is saying that it provided this DMA address,
1214 * which the host controller driver should use in preference to the
1215 * transfer_buffer.
1216 * @sg: scatter gather buffer list
1217 * @num_mapped_sgs: (internal) number of mapped sg entries
1218 * @num_sgs: number of entries in the sg list
1219 * @transfer_buffer_length: How big is transfer_buffer. The transfer may
1220 * be broken up into chunks according to the current maximum packet
1221 * size for the endpoint, which is a function of the configuration
1222 * and is encoded in the pipe. When the length is zero, neither
1223 * transfer_buffer nor transfer_dma is used.
1224 * @actual_length: This is read in non-iso completion functions, and
1225 * it tells how many bytes (out of transfer_buffer_length) were
1226 * transferred. It will normally be the same as requested, unless
1227 * either an error was reported or a short read was performed.
1228 * The URB_SHORT_NOT_OK transfer flag may be used to make such
1229 * short reads be reported as errors.
1230 * @setup_packet: Only used for control transfers, this points to eight bytes
1231 * of setup data. Control transfers always start by sending this data
1232 * to the device. Then transfer_buffer is read or written, if needed.
1233 * @setup_dma: DMA pointer for the setup packet. The caller must not use
1234 * this field; setup_packet must point to a valid buffer.
1235 * @start_frame: Returns the initial frame for isochronous transfers.
1236 * @number_of_packets: Lists the number of ISO transfer buffers.
1237 * @interval: Specifies the polling interval for interrupt or isochronous
1238 * transfers. The units are frames (milliseconds) for full and low
1239 * speed devices, and microframes (1/8 millisecond) for highspeed
1240 * and SuperSpeed devices.
1241 * @error_count: Returns the number of ISO transfers that reported errors.
1242 * @context: For use in completion functions. This normally points to
1243 * request-specific driver context.
1244 * @complete: Completion handler. This URB is passed as the parameter to the
1245 * completion function. The completion function may then do what
1246 * it likes with the URB, including resubmitting or freeing it.
1247 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1248 * collect the transfer status for each buffer.
1249 *
1250 * This structure identifies USB transfer requests. URBs must be allocated by
1251 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1252 * Initialization may be done using various usb_fill_*_urb() functions. URBs
1253 * are submitted using usb_submit_urb(), and pending requests may be canceled
1254 * using usb_unlink_urb() or usb_kill_urb().
1255 *
1256 * Data Transfer Buffers:
1257 *
1258 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1259 * taken from the general page pool. That is provided by transfer_buffer
1260 * (control requests also use setup_packet), and host controller drivers
1261 * perform a dma mapping (and unmapping) for each buffer transferred. Those
1262 * mapping operations can be expensive on some platforms (perhaps using a dma
1263 * bounce buffer or talking to an IOMMU),
1264 * although they're cheap on commodity x86 and ppc hardware.
1265 *
1266 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1267 * which tells the host controller driver that no such mapping is needed for
1268 * the transfer_buffer since
1269 * the device driver is DMA-aware. For example, a device driver might
1270 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1271 * When this transfer flag is provided, host controller drivers will
1272 * attempt to use the dma address found in the transfer_dma
1273 * field rather than determining a dma address themselves.
1274 *
1275 * Note that transfer_buffer must still be set if the controller
1276 * does not support DMA (as indicated by bus.uses_dma) and when talking
1277 * to root hub. If you have to trasfer between highmem zone and the device
1278 * on such controller, create a bounce buffer or bail out with an error.
1279 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1280 * capable, assign NULL to it, so that usbmon knows not to use the value.
1281 * The setup_packet must always be set, so it cannot be located in highmem.
1282 *
1283 * Initialization:
1284 *
1285 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1286 * zero), and complete fields. All URBs must also initialize
1287 * transfer_buffer and transfer_buffer_length. They may provide the
1288 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1289 * to be treated as errors; that flag is invalid for write requests.
1290 *
1291 * Bulk URBs may
1292 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1293 * should always terminate with a short packet, even if it means adding an
1294 * extra zero length packet.
1295 *
1296 * Control URBs must provide a valid pointer in the setup_packet field.
1297 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1298 * beforehand.
1299 *
1300 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1301 * or, for highspeed devices, 125 microsecond units)
1302 * to poll for transfers. After the URB has been submitted, the interval
1303 * field reflects how the transfer was actually scheduled.
1304 * The polling interval may be more frequent than requested.
1305 * For example, some controllers have a maximum interval of 32 milliseconds,
1306 * while others support intervals of up to 1024 milliseconds.
1307 * Isochronous URBs also have transfer intervals. (Note that for isochronous
1308 * endpoints, as well as high speed interrupt endpoints, the encoding of
1309 * the transfer interval in the endpoint descriptor is logarithmic.
1310 * Device drivers must convert that value to linear units themselves.)
1311 *
1312 * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling
1313 * the host controller to schedule the transfer as soon as bandwidth
1314 * utilization allows, and then set start_frame to reflect the actual frame
1315 * selected during submission. Otherwise drivers must specify the start_frame
1316 * and handle the case where the transfer can't begin then. However, drivers
1317 * won't know how bandwidth is currently allocated, and while they can
1318 * find the current frame using usb_get_current_frame_number () they can't
1319 * know the range for that frame number. (Ranges for frame counter values
1320 * are HC-specific, and can go from 256 to 65536 frames from "now".)
1321 *
1322 * Isochronous URBs have a different data transfer model, in part because
1323 * the quality of service is only "best effort". Callers provide specially
1324 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1325 * at the end. Each such packet is an individual ISO transfer. Isochronous
1326 * URBs are normally queued, submitted by drivers to arrange that
1327 * transfers are at least double buffered, and then explicitly resubmitted
1328 * in completion handlers, so
1329 * that data (such as audio or video) streams at as constant a rate as the
1330 * host controller scheduler can support.
1331 *
1332 * Completion Callbacks:
1333 *
1334 * The completion callback is made in_interrupt(), and one of the first
1335 * things that a completion handler should do is check the status field.
1336 * The status field is provided for all URBs. It is used to report
1337 * unlinked URBs, and status for all non-ISO transfers. It should not
1338 * be examined before the URB is returned to the completion handler.
1339 *
1340 * The context field is normally used to link URBs back to the relevant
1341 * driver or request state.
1342 *
1343 * When the completion callback is invoked for non-isochronous URBs, the
1344 * actual_length field tells how many bytes were transferred. This field
1345 * is updated even when the URB terminated with an error or was unlinked.
1346 *
1347 * ISO transfer status is reported in the status and actual_length fields
1348 * of the iso_frame_desc array, and the number of errors is reported in
1349 * error_count. Completion callbacks for ISO transfers will normally
1350 * (re)submit URBs to ensure a constant transfer rate.
1351 *
1352 * Note that even fields marked "public" should not be touched by the driver
1353 * when the urb is owned by the hcd, that is, since the call to
1354 * usb_submit_urb() till the entry into the completion routine.
1355 */
1356 struct urb {
1357 /* private: usb core and host controller only fields in the urb */
1358 struct kref kref; /* reference count of the URB */
1359 void *hcpriv; /* private data for host controller */
1360 atomic_t use_count; /* concurrent submissions counter */
1361 atomic_t reject; /* submissions will fail */
1362 int unlinked; /* unlink error code */
1363
1364 /* public: documented fields in the urb that can be used by drivers */
1365 struct list_head urb_list; /* list head for use by the urb's
1366 * current owner */
1367 struct list_head anchor_list; /* the URB may be anchored */
1368 struct usb_anchor *anchor;
1369 struct usb_device *dev; /* (in) pointer to associated device */
1370 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */
1371 unsigned int pipe; /* (in) pipe information */
1372 unsigned int stream_id; /* (in) stream ID */
1373 int status; /* (return) non-ISO status */
1374 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
1375 void *transfer_buffer; /* (in) associated data buffer */
1376 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */
1377 struct scatterlist *sg; /* (in) scatter gather buffer list */
1378 int num_mapped_sgs; /* (internal) mapped sg entries */
1379 int num_sgs; /* (in) number of entries in the sg list */
1380 u32 transfer_buffer_length; /* (in) data buffer length */
1381 u32 actual_length; /* (return) actual transfer length */
1382 unsigned char *setup_packet; /* (in) setup packet (control only) */
1383 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */
1384 int start_frame; /* (modify) start frame (ISO) */
1385 int number_of_packets; /* (in) number of ISO packets */
1386 int interval; /* (modify) transfer interval
1387 * (INT/ISO) */
1388 int error_count; /* (return) number of ISO errors */
1389 void *context; /* (in) context for completion */
1390 usb_complete_t complete; /* (in) completion routine */
1391 struct usb_iso_packet_descriptor iso_frame_desc[0];
1392 /* (in) ISO ONLY */
1393 };
1394
1395 /* ----------------------------------------------------------------------- */
1396
1397 /**
1398 * usb_fill_control_urb - initializes a control urb
1399 * @urb: pointer to the urb to initialize.
1400 * @dev: pointer to the struct usb_device for this urb.
1401 * @pipe: the endpoint pipe
1402 * @setup_packet: pointer to the setup_packet buffer
1403 * @transfer_buffer: pointer to the transfer buffer
1404 * @buffer_length: length of the transfer buffer
1405 * @complete_fn: pointer to the usb_complete_t function
1406 * @context: what to set the urb context to.
1407 *
1408 * Initializes a control urb with the proper information needed to submit
1409 * it to a device.
1410 */
1411 static inline void usb_fill_control_urb(struct urb *urb,
1412 struct usb_device *dev,
1413 unsigned int pipe,
1414 unsigned char *setup_packet,
1415 void *transfer_buffer,
1416 int buffer_length,
1417 usb_complete_t complete_fn,
1418 void *context)
1419 {
1420 urb->dev = dev;
1421 urb->pipe = pipe;
1422 urb->setup_packet = setup_packet;
1423 urb->transfer_buffer = transfer_buffer;
1424 urb->transfer_buffer_length = buffer_length;
1425 urb->complete = complete_fn;
1426 urb->context = context;
1427 }
1428
1429 /**
1430 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1431 * @urb: pointer to the urb to initialize.
1432 * @dev: pointer to the struct usb_device for this urb.
1433 * @pipe: the endpoint pipe
1434 * @transfer_buffer: pointer to the transfer buffer
1435 * @buffer_length: length of the transfer buffer
1436 * @complete_fn: pointer to the usb_complete_t function
1437 * @context: what to set the urb context to.
1438 *
1439 * Initializes a bulk urb with the proper information needed to submit it
1440 * to a device.
1441 */
1442 static inline void usb_fill_bulk_urb(struct urb *urb,
1443 struct usb_device *dev,
1444 unsigned int pipe,
1445 void *transfer_buffer,
1446 int buffer_length,
1447 usb_complete_t complete_fn,
1448 void *context)
1449 {
1450 urb->dev = dev;
1451 urb->pipe = pipe;
1452 urb->transfer_buffer = transfer_buffer;
1453 urb->transfer_buffer_length = buffer_length;
1454 urb->complete = complete_fn;
1455 urb->context = context;
1456 }
1457
1458 /**
1459 * usb_fill_int_urb - macro to help initialize a interrupt urb
1460 * @urb: pointer to the urb to initialize.
1461 * @dev: pointer to the struct usb_device for this urb.
1462 * @pipe: the endpoint pipe
1463 * @transfer_buffer: pointer to the transfer buffer
1464 * @buffer_length: length of the transfer buffer
1465 * @complete_fn: pointer to the usb_complete_t function
1466 * @context: what to set the urb context to.
1467 * @interval: what to set the urb interval to, encoded like
1468 * the endpoint descriptor's bInterval value.
1469 *
1470 * Initializes a interrupt urb with the proper information needed to submit
1471 * it to a device.
1472 *
1473 * Note that High Speed and SuperSpeed interrupt endpoints use a logarithmic
1474 * encoding of the endpoint interval, and express polling intervals in
1475 * microframes (eight per millisecond) rather than in frames (one per
1476 * millisecond).
1477 *
1478 * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1479 * 128us instead of 125us. For Wireless USB devices, the interval is passed
1480 * through to the host controller, rather than being translated into microframe
1481 * units.
1482 */
1483 static inline void usb_fill_int_urb(struct urb *urb,
1484 struct usb_device *dev,
1485 unsigned int pipe,
1486 void *transfer_buffer,
1487 int buffer_length,
1488 usb_complete_t complete_fn,
1489 void *context,
1490 int interval)
1491 {
1492 urb->dev = dev;
1493 urb->pipe = pipe;
1494 urb->transfer_buffer = transfer_buffer;
1495 urb->transfer_buffer_length = buffer_length;
1496 urb->complete = complete_fn;
1497 urb->context = context;
1498 if (dev->speed == USB_SPEED_HIGH || dev->speed == USB_SPEED_SUPER)
1499 urb->interval = 1 << (interval - 1);
1500 else
1501 urb->interval = interval;
1502 urb->start_frame = -1;
1503 }
1504
1505 extern void usb_init_urb(struct urb *urb);
1506 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1507 extern void usb_free_urb(struct urb *urb);
1508 #define usb_put_urb usb_free_urb
1509 extern struct urb *usb_get_urb(struct urb *urb);
1510 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1511 extern int usb_unlink_urb(struct urb *urb);
1512 extern void usb_kill_urb(struct urb *urb);
1513 extern void usb_poison_urb(struct urb *urb);
1514 extern void usb_unpoison_urb(struct urb *urb);
1515 extern void usb_block_urb(struct urb *urb);
1516 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1517 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1518 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1519 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1520 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1521 extern void usb_unanchor_urb(struct urb *urb);
1522 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1523 unsigned int timeout);
1524 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1525 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1526 extern int usb_anchor_empty(struct usb_anchor *anchor);
1527
1528 #define usb_unblock_urb usb_unpoison_urb
1529
1530 /**
1531 * usb_urb_dir_in - check if an URB describes an IN transfer
1532 * @urb: URB to be checked
1533 *
1534 * Returns 1 if @urb describes an IN transfer (device-to-host),
1535 * otherwise 0.
1536 */
1537 static inline int usb_urb_dir_in(struct urb *urb)
1538 {
1539 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1540 }
1541
1542 /**
1543 * usb_urb_dir_out - check if an URB describes an OUT transfer
1544 * @urb: URB to be checked
1545 *
1546 * Returns 1 if @urb describes an OUT transfer (host-to-device),
1547 * otherwise 0.
1548 */
1549 static inline int usb_urb_dir_out(struct urb *urb)
1550 {
1551 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1552 }
1553
1554 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1555 gfp_t mem_flags, dma_addr_t *dma);
1556 void usb_free_coherent(struct usb_device *dev, size_t size,
1557 void *addr, dma_addr_t dma);
1558
1559 #if 0
1560 struct urb *usb_buffer_map(struct urb *urb);
1561 void usb_buffer_dmasync(struct urb *urb);
1562 void usb_buffer_unmap(struct urb *urb);
1563 #endif
1564
1565 struct scatterlist;
1566 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1567 struct scatterlist *sg, int nents);
1568 #if 0
1569 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1570 struct scatterlist *sg, int n_hw_ents);
1571 #endif
1572 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1573 struct scatterlist *sg, int n_hw_ents);
1574
1575 /*-------------------------------------------------------------------*
1576 * SYNCHRONOUS CALL SUPPORT *
1577 *-------------------------------------------------------------------*/
1578
1579 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1580 __u8 request, __u8 requesttype, __u16 value, __u16 index,
1581 void *data, __u16 size, int timeout);
1582 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1583 void *data, int len, int *actual_length, int timeout);
1584 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1585 void *data, int len, int *actual_length,
1586 int timeout);
1587
1588 /* wrappers around usb_control_msg() for the most common standard requests */
1589 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1590 unsigned char descindex, void *buf, int size);
1591 extern int usb_get_status(struct usb_device *dev,
1592 int type, int target, void *data);
1593 extern int usb_string(struct usb_device *dev, int index,
1594 char *buf, size_t size);
1595
1596 /* wrappers that also update important state inside usbcore */
1597 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1598 extern int usb_reset_configuration(struct usb_device *dev);
1599 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1600 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1601
1602 /* this request isn't really synchronous, but it belongs with the others */
1603 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1604
1605 /*
1606 * timeouts, in milliseconds, used for sending/receiving control messages
1607 * they typically complete within a few frames (msec) after they're issued
1608 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1609 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1610 */
1611 #define USB_CTRL_GET_TIMEOUT 5000
1612 #define USB_CTRL_SET_TIMEOUT 5000
1613
1614
1615 /**
1616 * struct usb_sg_request - support for scatter/gather I/O
1617 * @status: zero indicates success, else negative errno
1618 * @bytes: counts bytes transferred.
1619 *
1620 * These requests are initialized using usb_sg_init(), and then are used
1621 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most
1622 * members of the request object aren't for driver access.
1623 *
1624 * The status and bytecount values are valid only after usb_sg_wait()
1625 * returns. If the status is zero, then the bytecount matches the total
1626 * from the request.
1627 *
1628 * After an error completion, drivers may need to clear a halt condition
1629 * on the endpoint.
1630 */
1631 struct usb_sg_request {
1632 int status;
1633 size_t bytes;
1634
1635 /* private:
1636 * members below are private to usbcore,
1637 * and are not provided for driver access!
1638 */
1639 spinlock_t lock;
1640
1641 struct usb_device *dev;
1642 int pipe;
1643
1644 int entries;
1645 struct urb **urbs;
1646
1647 int count;
1648 struct completion complete;
1649 };
1650
1651 int usb_sg_init(
1652 struct usb_sg_request *io,
1653 struct usb_device *dev,
1654 unsigned pipe,
1655 unsigned period,
1656 struct scatterlist *sg,
1657 int nents,
1658 size_t length,
1659 gfp_t mem_flags
1660 );
1661 void usb_sg_cancel(struct usb_sg_request *io);
1662 void usb_sg_wait(struct usb_sg_request *io);
1663
1664
1665 /* ----------------------------------------------------------------------- */
1666
1667 /*
1668 * For various legacy reasons, Linux has a small cookie that's paired with
1669 * a struct usb_device to identify an endpoint queue. Queue characteristics
1670 * are defined by the endpoint's descriptor. This cookie is called a "pipe",
1671 * an unsigned int encoded as:
1672 *
1673 * - direction: bit 7 (0 = Host-to-Device [Out],
1674 * 1 = Device-to-Host [In] ...
1675 * like endpoint bEndpointAddress)
1676 * - device address: bits 8-14 ... bit positions known to uhci-hcd
1677 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd
1678 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt,
1679 * 10 = control, 11 = bulk)
1680 *
1681 * Given the device address and endpoint descriptor, pipes are redundant.
1682 */
1683
1684 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */
1685 /* (yet ... they're the values used by usbfs) */
1686 #define PIPE_ISOCHRONOUS 0
1687 #define PIPE_INTERRUPT 1
1688 #define PIPE_CONTROL 2
1689 #define PIPE_BULK 3
1690
1691 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN)
1692 #define usb_pipeout(pipe) (!usb_pipein(pipe))
1693
1694 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f)
1695 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf)
1696
1697 #define usb_pipetype(pipe) (((pipe) >> 30) & 3)
1698 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1699 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1700 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL)
1701 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK)
1702
1703 static inline unsigned int __create_pipe(struct usb_device *dev,
1704 unsigned int endpoint)
1705 {
1706 return (dev->devnum << 8) | (endpoint << 15);
1707 }
1708
1709 /* Create various pipes... */
1710 #define usb_sndctrlpipe(dev, endpoint) \
1711 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1712 #define usb_rcvctrlpipe(dev, endpoint) \
1713 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1714 #define usb_sndisocpipe(dev, endpoint) \
1715 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1716 #define usb_rcvisocpipe(dev, endpoint) \
1717 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1718 #define usb_sndbulkpipe(dev, endpoint) \
1719 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1720 #define usb_rcvbulkpipe(dev, endpoint) \
1721 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1722 #define usb_sndintpipe(dev, endpoint) \
1723 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1724 #define usb_rcvintpipe(dev, endpoint) \
1725 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1726
1727 static inline struct usb_host_endpoint *
1728 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1729 {
1730 struct usb_host_endpoint **eps;
1731 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1732 return eps[usb_pipeendpoint(pipe)];
1733 }
1734
1735 /*-------------------------------------------------------------------------*/
1736
1737 static inline __u16
1738 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1739 {
1740 struct usb_host_endpoint *ep;
1741 unsigned epnum = usb_pipeendpoint(pipe);
1742
1743 if (is_out) {
1744 WARN_ON(usb_pipein(pipe));
1745 ep = udev->ep_out[epnum];
1746 } else {
1747 WARN_ON(usb_pipeout(pipe));
1748 ep = udev->ep_in[epnum];
1749 }
1750 if (!ep)
1751 return 0;
1752
1753 /* NOTE: only 0x07ff bits are for packet size... */
1754 return usb_endpoint_maxp(&ep->desc);
1755 }
1756
1757 /* ----------------------------------------------------------------------- */
1758
1759 /* translate USB error codes to codes user space understands */
1760 static inline int usb_translate_errors(int error_code)
1761 {
1762 switch (error_code) {
1763 case 0:
1764 case -ENOMEM:
1765 case -ENODEV:
1766 case -EOPNOTSUPP:
1767 return error_code;
1768 default:
1769 return -EIO;
1770 }
1771 }
1772
1773 /* Events from the usb core */
1774 #define USB_DEVICE_ADD 0x0001
1775 #define USB_DEVICE_REMOVE 0x0002
1776 #define USB_BUS_ADD 0x0003
1777 #define USB_BUS_REMOVE 0x0004
1778 extern void usb_register_notify(struct notifier_block *nb);
1779 extern void usb_unregister_notify(struct notifier_block *nb);
1780
1781 /* debugfs stuff */
1782 extern struct dentry *usb_debug_root;
1783
1784 #endif /* __KERNEL__ */
1785
1786 #endif
This page took 0.066981 seconds and 5 git commands to generate.