Merge branch 'for-linus' of git://gitorious.org/linux-omap-dss2/linux
[deliverable/linux.git] / include / linux / usb.h
1 #ifndef __LINUX_USB_H
2 #define __LINUX_USB_H
3
4 #include <linux/mod_devicetable.h>
5 #include <linux/usb/ch9.h>
6
7 #define USB_MAJOR 180
8 #define USB_DEVICE_MAJOR 189
9
10
11 #ifdef __KERNEL__
12
13 #include <linux/errno.h> /* for -ENODEV */
14 #include <linux/delay.h> /* for mdelay() */
15 #include <linux/interrupt.h> /* for in_interrupt() */
16 #include <linux/list.h> /* for struct list_head */
17 #include <linux/kref.h> /* for struct kref */
18 #include <linux/device.h> /* for struct device */
19 #include <linux/fs.h> /* for struct file_operations */
20 #include <linux/completion.h> /* for struct completion */
21 #include <linux/sched.h> /* for current && schedule_timeout */
22 #include <linux/mutex.h> /* for struct mutex */
23
24 struct usb_device;
25 struct usb_driver;
26 struct wusb_dev;
27
28 /*-------------------------------------------------------------------------*/
29
30 /*
31 * Host-side wrappers for standard USB descriptors ... these are parsed
32 * from the data provided by devices. Parsing turns them from a flat
33 * sequence of descriptors into a hierarchy:
34 *
35 * - devices have one (usually) or more configs;
36 * - configs have one (often) or more interfaces;
37 * - interfaces have one (usually) or more settings;
38 * - each interface setting has zero or (usually) more endpoints.
39 * - a SuperSpeed endpoint has a companion descriptor
40 *
41 * And there might be other descriptors mixed in with those.
42 *
43 * Devices may also have class-specific or vendor-specific descriptors.
44 */
45
46 struct ep_device;
47
48 /* For SS devices */
49 /**
50 * struct usb_host_ss_ep_comp - Valid for SuperSpeed devices only
51 * @desc: endpoint companion descriptor, wMaxPacketSize in native byteorder
52 * @extra: descriptors following this endpoint companion descriptor
53 * @extralen: how many bytes of "extra" are valid
54 */
55 struct usb_host_ss_ep_comp {
56 struct usb_ss_ep_comp_descriptor desc;
57 unsigned char *extra; /* Extra descriptors */
58 int extralen;
59 };
60
61 /**
62 * struct usb_host_endpoint - host-side endpoint descriptor and queue
63 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
64 * @urb_list: urbs queued to this endpoint; maintained by usbcore
65 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
66 * with one or more transfer descriptors (TDs) per urb
67 * @ep_dev: ep_device for sysfs info
68 * @ss_ep_comp: companion descriptor information for this endpoint
69 * @extra: descriptors following this endpoint in the configuration
70 * @extralen: how many bytes of "extra" are valid
71 * @enabled: URBs may be submitted to this endpoint
72 *
73 * USB requests are always queued to a given endpoint, identified by a
74 * descriptor within an active interface in a given USB configuration.
75 */
76 struct usb_host_endpoint {
77 struct usb_endpoint_descriptor desc;
78 struct list_head urb_list;
79 void *hcpriv;
80 struct ep_device *ep_dev; /* For sysfs info */
81 struct usb_host_ss_ep_comp *ss_ep_comp; /* For SS devices */
82
83 unsigned char *extra; /* Extra descriptors */
84 int extralen;
85 int enabled;
86 };
87
88 /* host-side wrapper for one interface setting's parsed descriptors */
89 struct usb_host_interface {
90 struct usb_interface_descriptor desc;
91
92 /* array of desc.bNumEndpoint endpoints associated with this
93 * interface setting. these will be in no particular order.
94 */
95 struct usb_host_endpoint *endpoint;
96
97 char *string; /* iInterface string, if present */
98 unsigned char *extra; /* Extra descriptors */
99 int extralen;
100 };
101
102 enum usb_interface_condition {
103 USB_INTERFACE_UNBOUND = 0,
104 USB_INTERFACE_BINDING,
105 USB_INTERFACE_BOUND,
106 USB_INTERFACE_UNBINDING,
107 };
108
109 /**
110 * struct usb_interface - what usb device drivers talk to
111 * @altsetting: array of interface structures, one for each alternate
112 * setting that may be selected. Each one includes a set of
113 * endpoint configurations. They will be in no particular order.
114 * @cur_altsetting: the current altsetting.
115 * @num_altsetting: number of altsettings defined.
116 * @intf_assoc: interface association descriptor
117 * @minor: the minor number assigned to this interface, if this
118 * interface is bound to a driver that uses the USB major number.
119 * If this interface does not use the USB major, this field should
120 * be unused. The driver should set this value in the probe()
121 * function of the driver, after it has been assigned a minor
122 * number from the USB core by calling usb_register_dev().
123 * @condition: binding state of the interface: not bound, binding
124 * (in probe()), bound to a driver, or unbinding (in disconnect())
125 * @is_active: flag set when the interface is bound and not suspended.
126 * @sysfs_files_created: sysfs attributes exist
127 * @ep_devs_created: endpoint child pseudo-devices exist
128 * @unregistering: flag set when the interface is being unregistered
129 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
130 * capability during autosuspend.
131 * @needs_altsetting0: flag set when a set-interface request for altsetting 0
132 * has been deferred.
133 * @needs_binding: flag set when the driver should be re-probed or unbound
134 * following a reset or suspend operation it doesn't support.
135 * @dev: driver model's view of this device
136 * @usb_dev: if an interface is bound to the USB major, this will point
137 * to the sysfs representation for that device.
138 * @pm_usage_cnt: PM usage counter for this interface; autosuspend is not
139 * allowed unless the counter is 0.
140 * @reset_ws: Used for scheduling resets from atomic context.
141 * @reset_running: set to 1 if the interface is currently running a
142 * queued reset so that usb_cancel_queued_reset() doesn't try to
143 * remove from the workqueue when running inside the worker
144 * thread. See __usb_queue_reset_device().
145 *
146 * USB device drivers attach to interfaces on a physical device. Each
147 * interface encapsulates a single high level function, such as feeding
148 * an audio stream to a speaker or reporting a change in a volume control.
149 * Many USB devices only have one interface. The protocol used to talk to
150 * an interface's endpoints can be defined in a usb "class" specification,
151 * or by a product's vendor. The (default) control endpoint is part of
152 * every interface, but is never listed among the interface's descriptors.
153 *
154 * The driver that is bound to the interface can use standard driver model
155 * calls such as dev_get_drvdata() on the dev member of this structure.
156 *
157 * Each interface may have alternate settings. The initial configuration
158 * of a device sets altsetting 0, but the device driver can change
159 * that setting using usb_set_interface(). Alternate settings are often
160 * used to control the use of periodic endpoints, such as by having
161 * different endpoints use different amounts of reserved USB bandwidth.
162 * All standards-conformant USB devices that use isochronous endpoints
163 * will use them in non-default settings.
164 *
165 * The USB specification says that alternate setting numbers must run from
166 * 0 to one less than the total number of alternate settings. But some
167 * devices manage to mess this up, and the structures aren't necessarily
168 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to
169 * look up an alternate setting in the altsetting array based on its number.
170 */
171 struct usb_interface {
172 /* array of alternate settings for this interface,
173 * stored in no particular order */
174 struct usb_host_interface *altsetting;
175
176 struct usb_host_interface *cur_altsetting; /* the currently
177 * active alternate setting */
178 unsigned num_altsetting; /* number of alternate settings */
179
180 /* If there is an interface association descriptor then it will list
181 * the associated interfaces */
182 struct usb_interface_assoc_descriptor *intf_assoc;
183
184 int minor; /* minor number this interface is
185 * bound to */
186 enum usb_interface_condition condition; /* state of binding */
187 unsigned is_active:1; /* the interface is not suspended */
188 unsigned sysfs_files_created:1; /* the sysfs attributes exist */
189 unsigned ep_devs_created:1; /* endpoint "devices" exist */
190 unsigned unregistering:1; /* unregistration is in progress */
191 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
192 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */
193 unsigned needs_binding:1; /* needs delayed unbind/rebind */
194 unsigned reset_running:1;
195 unsigned resetting_device:1; /* true: bandwidth alloc after reset */
196
197 struct device dev; /* interface specific device info */
198 struct device *usb_dev;
199 atomic_t pm_usage_cnt; /* usage counter for autosuspend */
200 struct work_struct reset_ws; /* for resets in atomic context */
201 };
202 #define to_usb_interface(d) container_of(d, struct usb_interface, dev)
203 #define interface_to_usbdev(intf) \
204 container_of(intf->dev.parent, struct usb_device, dev)
205
206 static inline void *usb_get_intfdata(struct usb_interface *intf)
207 {
208 return dev_get_drvdata(&intf->dev);
209 }
210
211 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
212 {
213 dev_set_drvdata(&intf->dev, data);
214 }
215
216 struct usb_interface *usb_get_intf(struct usb_interface *intf);
217 void usb_put_intf(struct usb_interface *intf);
218
219 /* this maximum is arbitrary */
220 #define USB_MAXINTERFACES 32
221 #define USB_MAXIADS USB_MAXINTERFACES/2
222
223 /**
224 * struct usb_interface_cache - long-term representation of a device interface
225 * @num_altsetting: number of altsettings defined.
226 * @ref: reference counter.
227 * @altsetting: variable-length array of interface structures, one for
228 * each alternate setting that may be selected. Each one includes a
229 * set of endpoint configurations. They will be in no particular order.
230 *
231 * These structures persist for the lifetime of a usb_device, unlike
232 * struct usb_interface (which persists only as long as its configuration
233 * is installed). The altsetting arrays can be accessed through these
234 * structures at any time, permitting comparison of configurations and
235 * providing support for the /proc/bus/usb/devices pseudo-file.
236 */
237 struct usb_interface_cache {
238 unsigned num_altsetting; /* number of alternate settings */
239 struct kref ref; /* reference counter */
240
241 /* variable-length array of alternate settings for this interface,
242 * stored in no particular order */
243 struct usb_host_interface altsetting[0];
244 };
245 #define ref_to_usb_interface_cache(r) \
246 container_of(r, struct usb_interface_cache, ref)
247 #define altsetting_to_usb_interface_cache(a) \
248 container_of(a, struct usb_interface_cache, altsetting[0])
249
250 /**
251 * struct usb_host_config - representation of a device's configuration
252 * @desc: the device's configuration descriptor.
253 * @string: pointer to the cached version of the iConfiguration string, if
254 * present for this configuration.
255 * @intf_assoc: list of any interface association descriptors in this config
256 * @interface: array of pointers to usb_interface structures, one for each
257 * interface in the configuration. The number of interfaces is stored
258 * in desc.bNumInterfaces. These pointers are valid only while the
259 * the configuration is active.
260 * @intf_cache: array of pointers to usb_interface_cache structures, one
261 * for each interface in the configuration. These structures exist
262 * for the entire life of the device.
263 * @extra: pointer to buffer containing all extra descriptors associated
264 * with this configuration (those preceding the first interface
265 * descriptor).
266 * @extralen: length of the extra descriptors buffer.
267 *
268 * USB devices may have multiple configurations, but only one can be active
269 * at any time. Each encapsulates a different operational environment;
270 * for example, a dual-speed device would have separate configurations for
271 * full-speed and high-speed operation. The number of configurations
272 * available is stored in the device descriptor as bNumConfigurations.
273 *
274 * A configuration can contain multiple interfaces. Each corresponds to
275 * a different function of the USB device, and all are available whenever
276 * the configuration is active. The USB standard says that interfaces
277 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
278 * of devices get this wrong. In addition, the interface array is not
279 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to
280 * look up an interface entry based on its number.
281 *
282 * Device drivers should not attempt to activate configurations. The choice
283 * of which configuration to install is a policy decision based on such
284 * considerations as available power, functionality provided, and the user's
285 * desires (expressed through userspace tools). However, drivers can call
286 * usb_reset_configuration() to reinitialize the current configuration and
287 * all its interfaces.
288 */
289 struct usb_host_config {
290 struct usb_config_descriptor desc;
291
292 char *string; /* iConfiguration string, if present */
293
294 /* List of any Interface Association Descriptors in this
295 * configuration. */
296 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
297
298 /* the interfaces associated with this configuration,
299 * stored in no particular order */
300 struct usb_interface *interface[USB_MAXINTERFACES];
301
302 /* Interface information available even when this is not the
303 * active configuration */
304 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
305
306 unsigned char *extra; /* Extra descriptors */
307 int extralen;
308 };
309
310 int __usb_get_extra_descriptor(char *buffer, unsigned size,
311 unsigned char type, void **ptr);
312 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
313 __usb_get_extra_descriptor((ifpoint)->extra, \
314 (ifpoint)->extralen, \
315 type, (void **)ptr)
316
317 /* ----------------------------------------------------------------------- */
318
319 /* USB device number allocation bitmap */
320 struct usb_devmap {
321 unsigned long devicemap[128 / (8*sizeof(unsigned long))];
322 };
323
324 /*
325 * Allocated per bus (tree of devices) we have:
326 */
327 struct usb_bus {
328 struct device *controller; /* host/master side hardware */
329 int busnum; /* Bus number (in order of reg) */
330 const char *bus_name; /* stable id (PCI slot_name etc) */
331 u8 uses_dma; /* Does the host controller use DMA? */
332 u8 otg_port; /* 0, or number of OTG/HNP port */
333 unsigned is_b_host:1; /* true during some HNP roleswitches */
334 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */
335 unsigned sg_tablesize; /* 0 or largest number of sg list entries */
336
337 int devnum_next; /* Next open device number in
338 * round-robin allocation */
339
340 struct usb_devmap devmap; /* device address allocation map */
341 struct usb_device *root_hub; /* Root hub */
342 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */
343 struct list_head bus_list; /* list of busses */
344
345 int bandwidth_allocated; /* on this bus: how much of the time
346 * reserved for periodic (intr/iso)
347 * requests is used, on average?
348 * Units: microseconds/frame.
349 * Limits: Full/low speed reserve 90%,
350 * while high speed reserves 80%.
351 */
352 int bandwidth_int_reqs; /* number of Interrupt requests */
353 int bandwidth_isoc_reqs; /* number of Isoc. requests */
354
355 #ifdef CONFIG_USB_DEVICEFS
356 struct dentry *usbfs_dentry; /* usbfs dentry entry for the bus */
357 #endif
358
359 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
360 struct mon_bus *mon_bus; /* non-null when associated */
361 int monitored; /* non-zero when monitored */
362 #endif
363 };
364
365 /* ----------------------------------------------------------------------- */
366
367 /* This is arbitrary.
368 * From USB 2.0 spec Table 11-13, offset 7, a hub can
369 * have up to 255 ports. The most yet reported is 10.
370 *
371 * Current Wireless USB host hardware (Intel i1480 for example) allows
372 * up to 22 devices to connect. Upcoming hardware might raise that
373 * limit. Because the arrays need to add a bit for hub status data, we
374 * do 31, so plus one evens out to four bytes.
375 */
376 #define USB_MAXCHILDREN (31)
377
378 struct usb_tt;
379
380 /**
381 * struct usb_device - kernel's representation of a USB device
382 * @devnum: device number; address on a USB bus
383 * @devpath: device ID string for use in messages (e.g., /port/...)
384 * @route: tree topology hex string for use with xHCI
385 * @state: device state: configured, not attached, etc.
386 * @speed: device speed: high/full/low (or error)
387 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
388 * @ttport: device port on that tt hub
389 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
390 * @parent: our hub, unless we're the root
391 * @bus: bus we're part of
392 * @ep0: endpoint 0 data (default control pipe)
393 * @dev: generic device interface
394 * @descriptor: USB device descriptor
395 * @config: all of the device's configs
396 * @actconfig: the active configuration
397 * @ep_in: array of IN endpoints
398 * @ep_out: array of OUT endpoints
399 * @rawdescriptors: raw descriptors for each config
400 * @bus_mA: Current available from the bus
401 * @portnum: parent port number (origin 1)
402 * @level: number of USB hub ancestors
403 * @can_submit: URBs may be submitted
404 * @discon_suspended: disconnected while suspended
405 * @persist_enabled: USB_PERSIST enabled for this device
406 * @have_langid: whether string_langid is valid
407 * @authorized: policy has said we can use it;
408 * (user space) policy determines if we authorize this device to be
409 * used or not. By default, wired USB devices are authorized.
410 * WUSB devices are not, until we authorize them from user space.
411 * FIXME -- complete doc
412 * @authenticated: Crypto authentication passed
413 * @wusb: device is Wireless USB
414 * @string_langid: language ID for strings
415 * @product: iProduct string, if present (static)
416 * @manufacturer: iManufacturer string, if present (static)
417 * @serial: iSerialNumber string, if present (static)
418 * @filelist: usbfs files that are open to this device
419 * @usb_classdev: USB class device that was created for usbfs device
420 * access from userspace
421 * @usbfs_dentry: usbfs dentry entry for the device
422 * @maxchild: number of ports if hub
423 * @children: child devices - USB devices that are attached to this hub
424 * @pm_usage_cnt: usage counter for autosuspend
425 * @quirks: quirks of the whole device
426 * @urbnum: number of URBs submitted for the whole device
427 * @active_duration: total time device is not suspended
428 * @autosuspend: for delayed autosuspends
429 * @autoresume: for autoresumes requested while in_interrupt
430 * @pm_mutex: protects PM operations
431 * @last_busy: time of last use
432 * @autosuspend_delay: in jiffies
433 * @connect_time: time device was first connected
434 * @do_remote_wakeup: remote wakeup should be enabled
435 * @reset_resume: needs reset instead of resume
436 * @autosuspend_disabled: autosuspend disabled by the user
437 * @skip_sys_resume: skip the next system resume
438 * @wusb_dev: if this is a Wireless USB device, link to the WUSB
439 * specific data for the device.
440 * @slot_id: Slot ID assigned by xHCI
441 *
442 * Notes:
443 * Usbcore drivers should not set usbdev->state directly. Instead use
444 * usb_set_device_state().
445 */
446 struct usb_device {
447 int devnum;
448 char devpath [16];
449 u32 route;
450 enum usb_device_state state;
451 enum usb_device_speed speed;
452
453 struct usb_tt *tt;
454 int ttport;
455
456 unsigned int toggle[2];
457
458 struct usb_device *parent;
459 struct usb_bus *bus;
460 struct usb_host_endpoint ep0;
461
462 struct device dev;
463
464 struct usb_device_descriptor descriptor;
465 struct usb_host_config *config;
466
467 struct usb_host_config *actconfig;
468 struct usb_host_endpoint *ep_in[16];
469 struct usb_host_endpoint *ep_out[16];
470
471 char **rawdescriptors;
472
473 unsigned short bus_mA;
474 u8 portnum;
475 u8 level;
476
477 unsigned can_submit:1;
478 unsigned discon_suspended:1;
479 unsigned persist_enabled:1;
480 unsigned have_langid:1;
481 unsigned authorized:1;
482 unsigned authenticated:1;
483 unsigned wusb:1;
484 int string_langid;
485
486 /* static strings from the device */
487 char *product;
488 char *manufacturer;
489 char *serial;
490
491 struct list_head filelist;
492 #ifdef CONFIG_USB_DEVICE_CLASS
493 struct device *usb_classdev;
494 #endif
495 #ifdef CONFIG_USB_DEVICEFS
496 struct dentry *usbfs_dentry;
497 #endif
498
499 int maxchild;
500 struct usb_device *children[USB_MAXCHILDREN];
501
502 int pm_usage_cnt;
503 u32 quirks;
504 atomic_t urbnum;
505
506 unsigned long active_duration;
507
508 #ifdef CONFIG_PM
509 struct delayed_work autosuspend;
510 struct work_struct autoresume;
511 struct mutex pm_mutex;
512
513 unsigned long last_busy;
514 int autosuspend_delay;
515 unsigned long connect_time;
516
517 unsigned do_remote_wakeup:1;
518 unsigned reset_resume:1;
519 unsigned autosuspend_disabled:1;
520 unsigned skip_sys_resume:1;
521 #endif
522 struct wusb_dev *wusb_dev;
523 int slot_id;
524 };
525 #define to_usb_device(d) container_of(d, struct usb_device, dev)
526
527 extern struct usb_device *usb_get_dev(struct usb_device *dev);
528 extern void usb_put_dev(struct usb_device *dev);
529
530 /* USB device locking */
531 #define usb_lock_device(udev) down(&(udev)->dev.sem)
532 #define usb_unlock_device(udev) up(&(udev)->dev.sem)
533 #define usb_trylock_device(udev) down_trylock(&(udev)->dev.sem)
534 extern int usb_lock_device_for_reset(struct usb_device *udev,
535 const struct usb_interface *iface);
536
537 /* USB port reset for device reinitialization */
538 extern int usb_reset_device(struct usb_device *dev);
539 extern void usb_queue_reset_device(struct usb_interface *dev);
540
541 extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id);
542
543 /* USB autosuspend and autoresume */
544 #ifdef CONFIG_USB_SUSPEND
545 extern int usb_autopm_get_interface(struct usb_interface *intf);
546 extern void usb_autopm_put_interface(struct usb_interface *intf);
547 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
548 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
549
550 static inline void usb_autopm_get_interface_no_resume(
551 struct usb_interface *intf)
552 {
553 atomic_inc(&intf->pm_usage_cnt);
554 }
555 static inline void usb_autopm_put_interface_no_suspend(
556 struct usb_interface *intf)
557 {
558 atomic_dec(&intf->pm_usage_cnt);
559 }
560
561 static inline void usb_mark_last_busy(struct usb_device *udev)
562 {
563 udev->last_busy = jiffies;
564 }
565
566 #else
567
568 static inline int usb_autopm_get_interface(struct usb_interface *intf)
569 { return 0; }
570 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
571 { return 0; }
572
573 static inline void usb_autopm_put_interface(struct usb_interface *intf)
574 { }
575 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
576 { }
577 static inline void usb_autopm_get_interface_no_resume(
578 struct usb_interface *intf)
579 { }
580 static inline void usb_autopm_put_interface_no_suspend(
581 struct usb_interface *intf)
582 { }
583 static inline void usb_mark_last_busy(struct usb_device *udev)
584 { }
585 #endif
586
587 /*-------------------------------------------------------------------------*/
588
589 /* for drivers using iso endpoints */
590 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
591
592 /* used these for multi-interface device registration */
593 extern int usb_driver_claim_interface(struct usb_driver *driver,
594 struct usb_interface *iface, void *priv);
595
596 /**
597 * usb_interface_claimed - returns true iff an interface is claimed
598 * @iface: the interface being checked
599 *
600 * Returns true (nonzero) iff the interface is claimed, else false (zero).
601 * Callers must own the driver model's usb bus readlock. So driver
602 * probe() entries don't need extra locking, but other call contexts
603 * may need to explicitly claim that lock.
604 *
605 */
606 static inline int usb_interface_claimed(struct usb_interface *iface)
607 {
608 return (iface->dev.driver != NULL);
609 }
610
611 extern void usb_driver_release_interface(struct usb_driver *driver,
612 struct usb_interface *iface);
613 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
614 const struct usb_device_id *id);
615 extern int usb_match_one_id(struct usb_interface *interface,
616 const struct usb_device_id *id);
617
618 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
619 int minor);
620 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
621 unsigned ifnum);
622 extern struct usb_host_interface *usb_altnum_to_altsetting(
623 const struct usb_interface *intf, unsigned int altnum);
624 extern struct usb_host_interface *usb_find_alt_setting(
625 struct usb_host_config *config,
626 unsigned int iface_num,
627 unsigned int alt_num);
628
629
630 /**
631 * usb_make_path - returns stable device path in the usb tree
632 * @dev: the device whose path is being constructed
633 * @buf: where to put the string
634 * @size: how big is "buf"?
635 *
636 * Returns length of the string (> 0) or negative if size was too small.
637 *
638 * This identifier is intended to be "stable", reflecting physical paths in
639 * hardware such as physical bus addresses for host controllers or ports on
640 * USB hubs. That makes it stay the same until systems are physically
641 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
642 * controllers. Adding and removing devices, including virtual root hubs
643 * in host controller driver modules, does not change these path identifers;
644 * neither does rebooting or re-enumerating. These are more useful identifiers
645 * than changeable ("unstable") ones like bus numbers or device addresses.
646 *
647 * With a partial exception for devices connected to USB 2.0 root hubs, these
648 * identifiers are also predictable. So long as the device tree isn't changed,
649 * plugging any USB device into a given hub port always gives it the same path.
650 * Because of the use of "companion" controllers, devices connected to ports on
651 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
652 * high speed, and a different one if they are full or low speed.
653 */
654 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
655 {
656 int actual;
657 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
658 dev->devpath);
659 return (actual >= (int)size) ? -1 : actual;
660 }
661
662 /*-------------------------------------------------------------------------*/
663
664 #define USB_DEVICE_ID_MATCH_DEVICE \
665 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
666 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
667 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
668 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
669 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
670 #define USB_DEVICE_ID_MATCH_DEV_INFO \
671 (USB_DEVICE_ID_MATCH_DEV_CLASS | \
672 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
673 USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
674 #define USB_DEVICE_ID_MATCH_INT_INFO \
675 (USB_DEVICE_ID_MATCH_INT_CLASS | \
676 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
677 USB_DEVICE_ID_MATCH_INT_PROTOCOL)
678
679 /**
680 * USB_DEVICE - macro used to describe a specific usb device
681 * @vend: the 16 bit USB Vendor ID
682 * @prod: the 16 bit USB Product ID
683 *
684 * This macro is used to create a struct usb_device_id that matches a
685 * specific device.
686 */
687 #define USB_DEVICE(vend,prod) \
688 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
689 .idVendor = (vend), \
690 .idProduct = (prod)
691 /**
692 * USB_DEVICE_VER - describe a specific usb device with a version range
693 * @vend: the 16 bit USB Vendor ID
694 * @prod: the 16 bit USB Product ID
695 * @lo: the bcdDevice_lo value
696 * @hi: the bcdDevice_hi value
697 *
698 * This macro is used to create a struct usb_device_id that matches a
699 * specific device, with a version range.
700 */
701 #define USB_DEVICE_VER(vend, prod, lo, hi) \
702 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
703 .idVendor = (vend), \
704 .idProduct = (prod), \
705 .bcdDevice_lo = (lo), \
706 .bcdDevice_hi = (hi)
707
708 /**
709 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
710 * @vend: the 16 bit USB Vendor ID
711 * @prod: the 16 bit USB Product ID
712 * @pr: bInterfaceProtocol value
713 *
714 * This macro is used to create a struct usb_device_id that matches a
715 * specific interface protocol of devices.
716 */
717 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
718 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
719 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
720 .idVendor = (vend), \
721 .idProduct = (prod), \
722 .bInterfaceProtocol = (pr)
723
724 /**
725 * USB_DEVICE_INFO - macro used to describe a class of usb devices
726 * @cl: bDeviceClass value
727 * @sc: bDeviceSubClass value
728 * @pr: bDeviceProtocol value
729 *
730 * This macro is used to create a struct usb_device_id that matches a
731 * specific class of devices.
732 */
733 #define USB_DEVICE_INFO(cl, sc, pr) \
734 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
735 .bDeviceClass = (cl), \
736 .bDeviceSubClass = (sc), \
737 .bDeviceProtocol = (pr)
738
739 /**
740 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
741 * @cl: bInterfaceClass value
742 * @sc: bInterfaceSubClass value
743 * @pr: bInterfaceProtocol value
744 *
745 * This macro is used to create a struct usb_device_id that matches a
746 * specific class of interfaces.
747 */
748 #define USB_INTERFACE_INFO(cl, sc, pr) \
749 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
750 .bInterfaceClass = (cl), \
751 .bInterfaceSubClass = (sc), \
752 .bInterfaceProtocol = (pr)
753
754 /**
755 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
756 * @vend: the 16 bit USB Vendor ID
757 * @prod: the 16 bit USB Product ID
758 * @cl: bInterfaceClass value
759 * @sc: bInterfaceSubClass value
760 * @pr: bInterfaceProtocol value
761 *
762 * This macro is used to create a struct usb_device_id that matches a
763 * specific device with a specific class of interfaces.
764 *
765 * This is especially useful when explicitly matching devices that have
766 * vendor specific bDeviceClass values, but standards-compliant interfaces.
767 */
768 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
769 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
770 | USB_DEVICE_ID_MATCH_DEVICE, \
771 .idVendor = (vend), \
772 .idProduct = (prod), \
773 .bInterfaceClass = (cl), \
774 .bInterfaceSubClass = (sc), \
775 .bInterfaceProtocol = (pr)
776
777 /* ----------------------------------------------------------------------- */
778
779 /* Stuff for dynamic usb ids */
780 struct usb_dynids {
781 spinlock_t lock;
782 struct list_head list;
783 };
784
785 struct usb_dynid {
786 struct list_head node;
787 struct usb_device_id id;
788 };
789
790 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
791 struct device_driver *driver,
792 const char *buf, size_t count);
793
794 /**
795 * struct usbdrv_wrap - wrapper for driver-model structure
796 * @driver: The driver-model core driver structure.
797 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
798 */
799 struct usbdrv_wrap {
800 struct device_driver driver;
801 int for_devices;
802 };
803
804 /**
805 * struct usb_driver - identifies USB interface driver to usbcore
806 * @name: The driver name should be unique among USB drivers,
807 * and should normally be the same as the module name.
808 * @probe: Called to see if the driver is willing to manage a particular
809 * interface on a device. If it is, probe returns zero and uses
810 * usb_set_intfdata() to associate driver-specific data with the
811 * interface. It may also use usb_set_interface() to specify the
812 * appropriate altsetting. If unwilling to manage the interface,
813 * return -ENODEV, if genuine IO errors occured, an appropriate
814 * negative errno value.
815 * @disconnect: Called when the interface is no longer accessible, usually
816 * because its device has been (or is being) disconnected or the
817 * driver module is being unloaded.
818 * @ioctl: Used for drivers that want to talk to userspace through
819 * the "usbfs" filesystem. This lets devices provide ways to
820 * expose information to user space regardless of where they
821 * do (or don't) show up otherwise in the filesystem.
822 * @suspend: Called when the device is going to be suspended by the system.
823 * @resume: Called when the device is being resumed by the system.
824 * @reset_resume: Called when the suspended device has been reset instead
825 * of being resumed.
826 * @pre_reset: Called by usb_reset_device() when the device
827 * is about to be reset.
828 * @post_reset: Called by usb_reset_device() after the device
829 * has been reset
830 * @id_table: USB drivers use ID table to support hotplugging.
831 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set
832 * or your driver's probe function will never get called.
833 * @dynids: used internally to hold the list of dynamically added device
834 * ids for this driver.
835 * @drvwrap: Driver-model core structure wrapper.
836 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
837 * added to this driver by preventing the sysfs file from being created.
838 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
839 * for interfaces bound to this driver.
840 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
841 * endpoints before calling the driver's disconnect method.
842 *
843 * USB interface drivers must provide a name, probe() and disconnect()
844 * methods, and an id_table. Other driver fields are optional.
845 *
846 * The id_table is used in hotplugging. It holds a set of descriptors,
847 * and specialized data may be associated with each entry. That table
848 * is used by both user and kernel mode hotplugging support.
849 *
850 * The probe() and disconnect() methods are called in a context where
851 * they can sleep, but they should avoid abusing the privilege. Most
852 * work to connect to a device should be done when the device is opened,
853 * and undone at the last close. The disconnect code needs to address
854 * concurrency issues with respect to open() and close() methods, as
855 * well as forcing all pending I/O requests to complete (by unlinking
856 * them as necessary, and blocking until the unlinks complete).
857 */
858 struct usb_driver {
859 const char *name;
860
861 int (*probe) (struct usb_interface *intf,
862 const struct usb_device_id *id);
863
864 void (*disconnect) (struct usb_interface *intf);
865
866 int (*ioctl) (struct usb_interface *intf, unsigned int code,
867 void *buf);
868
869 int (*suspend) (struct usb_interface *intf, pm_message_t message);
870 int (*resume) (struct usb_interface *intf);
871 int (*reset_resume)(struct usb_interface *intf);
872
873 int (*pre_reset)(struct usb_interface *intf);
874 int (*post_reset)(struct usb_interface *intf);
875
876 const struct usb_device_id *id_table;
877
878 struct usb_dynids dynids;
879 struct usbdrv_wrap drvwrap;
880 unsigned int no_dynamic_id:1;
881 unsigned int supports_autosuspend:1;
882 unsigned int soft_unbind:1;
883 };
884 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
885
886 /**
887 * struct usb_device_driver - identifies USB device driver to usbcore
888 * @name: The driver name should be unique among USB drivers,
889 * and should normally be the same as the module name.
890 * @probe: Called to see if the driver is willing to manage a particular
891 * device. If it is, probe returns zero and uses dev_set_drvdata()
892 * to associate driver-specific data with the device. If unwilling
893 * to manage the device, return a negative errno value.
894 * @disconnect: Called when the device is no longer accessible, usually
895 * because it has been (or is being) disconnected or the driver's
896 * module is being unloaded.
897 * @suspend: Called when the device is going to be suspended by the system.
898 * @resume: Called when the device is being resumed by the system.
899 * @drvwrap: Driver-model core structure wrapper.
900 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
901 * for devices bound to this driver.
902 *
903 * USB drivers must provide all the fields listed above except drvwrap.
904 */
905 struct usb_device_driver {
906 const char *name;
907
908 int (*probe) (struct usb_device *udev);
909 void (*disconnect) (struct usb_device *udev);
910
911 int (*suspend) (struct usb_device *udev, pm_message_t message);
912 int (*resume) (struct usb_device *udev, pm_message_t message);
913 struct usbdrv_wrap drvwrap;
914 unsigned int supports_autosuspend:1;
915 };
916 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
917 drvwrap.driver)
918
919 extern struct bus_type usb_bus_type;
920
921 /**
922 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
923 * @name: the usb class device name for this driver. Will show up in sysfs.
924 * @devnode: Callback to provide a naming hint for a possible
925 * device node to create.
926 * @fops: pointer to the struct file_operations of this driver.
927 * @minor_base: the start of the minor range for this driver.
928 *
929 * This structure is used for the usb_register_dev() and
930 * usb_unregister_dev() functions, to consolidate a number of the
931 * parameters used for them.
932 */
933 struct usb_class_driver {
934 char *name;
935 char *(*devnode)(struct device *dev, mode_t *mode);
936 const struct file_operations *fops;
937 int minor_base;
938 };
939
940 /*
941 * use these in module_init()/module_exit()
942 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
943 */
944 extern int usb_register_driver(struct usb_driver *, struct module *,
945 const char *);
946 static inline int usb_register(struct usb_driver *driver)
947 {
948 return usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME);
949 }
950 extern void usb_deregister(struct usb_driver *);
951
952 extern int usb_register_device_driver(struct usb_device_driver *,
953 struct module *);
954 extern void usb_deregister_device_driver(struct usb_device_driver *);
955
956 extern int usb_register_dev(struct usb_interface *intf,
957 struct usb_class_driver *class_driver);
958 extern void usb_deregister_dev(struct usb_interface *intf,
959 struct usb_class_driver *class_driver);
960
961 extern int usb_disabled(void);
962
963 /* ----------------------------------------------------------------------- */
964
965 /*
966 * URB support, for asynchronous request completions
967 */
968
969 /*
970 * urb->transfer_flags:
971 *
972 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
973 */
974 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */
975 #define URB_ISO_ASAP 0x0002 /* iso-only, urb->start_frame
976 * ignored */
977 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */
978 #define URB_NO_SETUP_DMA_MAP 0x0008 /* urb->setup_dma valid on submit */
979 #define URB_NO_FSBR 0x0020 /* UHCI-specific */
980 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */
981 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt
982 * needed */
983 #define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */
984
985 #define URB_DIR_IN 0x0200 /* Transfer from device to host */
986 #define URB_DIR_OUT 0
987 #define URB_DIR_MASK URB_DIR_IN
988
989 struct usb_iso_packet_descriptor {
990 unsigned int offset;
991 unsigned int length; /* expected length */
992 unsigned int actual_length;
993 int status;
994 };
995
996 struct urb;
997
998 struct usb_anchor {
999 struct list_head urb_list;
1000 wait_queue_head_t wait;
1001 spinlock_t lock;
1002 unsigned int poisoned:1;
1003 };
1004
1005 static inline void init_usb_anchor(struct usb_anchor *anchor)
1006 {
1007 INIT_LIST_HEAD(&anchor->urb_list);
1008 init_waitqueue_head(&anchor->wait);
1009 spin_lock_init(&anchor->lock);
1010 }
1011
1012 typedef void (*usb_complete_t)(struct urb *);
1013
1014 /**
1015 * struct urb - USB Request Block
1016 * @urb_list: For use by current owner of the URB.
1017 * @anchor_list: membership in the list of an anchor
1018 * @anchor: to anchor URBs to a common mooring
1019 * @ep: Points to the endpoint's data structure. Will eventually
1020 * replace @pipe.
1021 * @pipe: Holds endpoint number, direction, type, and more.
1022 * Create these values with the eight macros available;
1023 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1024 * (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1025 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint
1026 * numbers range from zero to fifteen. Note that "in" endpoint two
1027 * is a different endpoint (and pipe) from "out" endpoint two.
1028 * The current configuration controls the existence, type, and
1029 * maximum packet size of any given endpoint.
1030 * @dev: Identifies the USB device to perform the request.
1031 * @status: This is read in non-iso completion functions to get the
1032 * status of the particular request. ISO requests only use it
1033 * to tell whether the URB was unlinked; detailed status for
1034 * each frame is in the fields of the iso_frame-desc.
1035 * @transfer_flags: A variety of flags may be used to affect how URB
1036 * submission, unlinking, or operation are handled. Different
1037 * kinds of URB can use different flags.
1038 * @transfer_buffer: This identifies the buffer to (or from) which the I/O
1039 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1040 * (however, do not leave garbage in transfer_buffer even then).
1041 * This buffer must be suitable for DMA; allocate it with
1042 * kmalloc() or equivalent. For transfers to "in" endpoints, contents
1043 * of this buffer will be modified. This buffer is used for the data
1044 * stage of control transfers.
1045 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1046 * the device driver is saying that it provided this DMA address,
1047 * which the host controller driver should use in preference to the
1048 * transfer_buffer.
1049 * @sg: scatter gather buffer list
1050 * @num_sgs: number of entries in the sg list
1051 * @transfer_buffer_length: How big is transfer_buffer. The transfer may
1052 * be broken up into chunks according to the current maximum packet
1053 * size for the endpoint, which is a function of the configuration
1054 * and is encoded in the pipe. When the length is zero, neither
1055 * transfer_buffer nor transfer_dma is used.
1056 * @actual_length: This is read in non-iso completion functions, and
1057 * it tells how many bytes (out of transfer_buffer_length) were
1058 * transferred. It will normally be the same as requested, unless
1059 * either an error was reported or a short read was performed.
1060 * The URB_SHORT_NOT_OK transfer flag may be used to make such
1061 * short reads be reported as errors.
1062 * @setup_packet: Only used for control transfers, this points to eight bytes
1063 * of setup data. Control transfers always start by sending this data
1064 * to the device. Then transfer_buffer is read or written, if needed.
1065 * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the
1066 * device driver has provided this DMA address for the setup packet.
1067 * The host controller driver should use this in preference to
1068 * setup_packet, but the HCD may chose to ignore the address if it must
1069 * copy the setup packet into internal structures. Therefore, setup_packet
1070 * must always point to a valid buffer.
1071 * @start_frame: Returns the initial frame for isochronous transfers.
1072 * @number_of_packets: Lists the number of ISO transfer buffers.
1073 * @interval: Specifies the polling interval for interrupt or isochronous
1074 * transfers. The units are frames (milliseconds) for full and low
1075 * speed devices, and microframes (1/8 millisecond) for highspeed ones.
1076 * @error_count: Returns the number of ISO transfers that reported errors.
1077 * @context: For use in completion functions. This normally points to
1078 * request-specific driver context.
1079 * @complete: Completion handler. This URB is passed as the parameter to the
1080 * completion function. The completion function may then do what
1081 * it likes with the URB, including resubmitting or freeing it.
1082 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1083 * collect the transfer status for each buffer.
1084 *
1085 * This structure identifies USB transfer requests. URBs must be allocated by
1086 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1087 * Initialization may be done using various usb_fill_*_urb() functions. URBs
1088 * are submitted using usb_submit_urb(), and pending requests may be canceled
1089 * using usb_unlink_urb() or usb_kill_urb().
1090 *
1091 * Data Transfer Buffers:
1092 *
1093 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1094 * taken from the general page pool. That is provided by transfer_buffer
1095 * (control requests also use setup_packet), and host controller drivers
1096 * perform a dma mapping (and unmapping) for each buffer transferred. Those
1097 * mapping operations can be expensive on some platforms (perhaps using a dma
1098 * bounce buffer or talking to an IOMMU),
1099 * although they're cheap on commodity x86 and ppc hardware.
1100 *
1101 * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags,
1102 * which tell the host controller driver that no such mapping is needed since
1103 * the device driver is DMA-aware. For example, a device driver might
1104 * allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map().
1105 * When these transfer flags are provided, host controller drivers will
1106 * attempt to use the dma addresses found in the transfer_dma and/or
1107 * setup_dma fields rather than determining a dma address themselves.
1108 *
1109 * Note that transfer_buffer must still be set if the controller
1110 * does not support DMA (as indicated by bus.uses_dma) and when talking
1111 * to root hub. If you have to trasfer between highmem zone and the device
1112 * on such controller, create a bounce buffer or bail out with an error.
1113 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1114 * capable, assign NULL to it, so that usbmon knows not to use the value.
1115 * The setup_packet must always be set, so it cannot be located in highmem.
1116 *
1117 * Initialization:
1118 *
1119 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1120 * zero), and complete fields. All URBs must also initialize
1121 * transfer_buffer and transfer_buffer_length. They may provide the
1122 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1123 * to be treated as errors; that flag is invalid for write requests.
1124 *
1125 * Bulk URBs may
1126 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1127 * should always terminate with a short packet, even if it means adding an
1128 * extra zero length packet.
1129 *
1130 * Control URBs must provide a setup_packet. The setup_packet and
1131 * transfer_buffer may each be mapped for DMA or not, independently of
1132 * the other. The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and
1133 * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped.
1134 * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs.
1135 *
1136 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1137 * or, for highspeed devices, 125 microsecond units)
1138 * to poll for transfers. After the URB has been submitted, the interval
1139 * field reflects how the transfer was actually scheduled.
1140 * The polling interval may be more frequent than requested.
1141 * For example, some controllers have a maximum interval of 32 milliseconds,
1142 * while others support intervals of up to 1024 milliseconds.
1143 * Isochronous URBs also have transfer intervals. (Note that for isochronous
1144 * endpoints, as well as high speed interrupt endpoints, the encoding of
1145 * the transfer interval in the endpoint descriptor is logarithmic.
1146 * Device drivers must convert that value to linear units themselves.)
1147 *
1148 * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling
1149 * the host controller to schedule the transfer as soon as bandwidth
1150 * utilization allows, and then set start_frame to reflect the actual frame
1151 * selected during submission. Otherwise drivers must specify the start_frame
1152 * and handle the case where the transfer can't begin then. However, drivers
1153 * won't know how bandwidth is currently allocated, and while they can
1154 * find the current frame using usb_get_current_frame_number () they can't
1155 * know the range for that frame number. (Ranges for frame counter values
1156 * are HC-specific, and can go from 256 to 65536 frames from "now".)
1157 *
1158 * Isochronous URBs have a different data transfer model, in part because
1159 * the quality of service is only "best effort". Callers provide specially
1160 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1161 * at the end. Each such packet is an individual ISO transfer. Isochronous
1162 * URBs are normally queued, submitted by drivers to arrange that
1163 * transfers are at least double buffered, and then explicitly resubmitted
1164 * in completion handlers, so
1165 * that data (such as audio or video) streams at as constant a rate as the
1166 * host controller scheduler can support.
1167 *
1168 * Completion Callbacks:
1169 *
1170 * The completion callback is made in_interrupt(), and one of the first
1171 * things that a completion handler should do is check the status field.
1172 * The status field is provided for all URBs. It is used to report
1173 * unlinked URBs, and status for all non-ISO transfers. It should not
1174 * be examined before the URB is returned to the completion handler.
1175 *
1176 * The context field is normally used to link URBs back to the relevant
1177 * driver or request state.
1178 *
1179 * When the completion callback is invoked for non-isochronous URBs, the
1180 * actual_length field tells how many bytes were transferred. This field
1181 * is updated even when the URB terminated with an error or was unlinked.
1182 *
1183 * ISO transfer status is reported in the status and actual_length fields
1184 * of the iso_frame_desc array, and the number of errors is reported in
1185 * error_count. Completion callbacks for ISO transfers will normally
1186 * (re)submit URBs to ensure a constant transfer rate.
1187 *
1188 * Note that even fields marked "public" should not be touched by the driver
1189 * when the urb is owned by the hcd, that is, since the call to
1190 * usb_submit_urb() till the entry into the completion routine.
1191 */
1192 struct urb {
1193 /* private: usb core and host controller only fields in the urb */
1194 struct kref kref; /* reference count of the URB */
1195 void *hcpriv; /* private data for host controller */
1196 atomic_t use_count; /* concurrent submissions counter */
1197 atomic_t reject; /* submissions will fail */
1198 int unlinked; /* unlink error code */
1199
1200 /* public: documented fields in the urb that can be used by drivers */
1201 struct list_head urb_list; /* list head for use by the urb's
1202 * current owner */
1203 struct list_head anchor_list; /* the URB may be anchored */
1204 struct usb_anchor *anchor;
1205 struct usb_device *dev; /* (in) pointer to associated device */
1206 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */
1207 unsigned int pipe; /* (in) pipe information */
1208 int status; /* (return) non-ISO status */
1209 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
1210 void *transfer_buffer; /* (in) associated data buffer */
1211 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */
1212 struct usb_sg_request *sg; /* (in) scatter gather buffer list */
1213 int num_sgs; /* (in) number of entries in the sg list */
1214 u32 transfer_buffer_length; /* (in) data buffer length */
1215 u32 actual_length; /* (return) actual transfer length */
1216 unsigned char *setup_packet; /* (in) setup packet (control only) */
1217 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */
1218 int start_frame; /* (modify) start frame (ISO) */
1219 int number_of_packets; /* (in) number of ISO packets */
1220 int interval; /* (modify) transfer interval
1221 * (INT/ISO) */
1222 int error_count; /* (return) number of ISO errors */
1223 void *context; /* (in) context for completion */
1224 usb_complete_t complete; /* (in) completion routine */
1225 struct usb_iso_packet_descriptor iso_frame_desc[0];
1226 /* (in) ISO ONLY */
1227 };
1228
1229 /* ----------------------------------------------------------------------- */
1230
1231 /**
1232 * usb_fill_control_urb - initializes a control urb
1233 * @urb: pointer to the urb to initialize.
1234 * @dev: pointer to the struct usb_device for this urb.
1235 * @pipe: the endpoint pipe
1236 * @setup_packet: pointer to the setup_packet buffer
1237 * @transfer_buffer: pointer to the transfer buffer
1238 * @buffer_length: length of the transfer buffer
1239 * @complete_fn: pointer to the usb_complete_t function
1240 * @context: what to set the urb context to.
1241 *
1242 * Initializes a control urb with the proper information needed to submit
1243 * it to a device.
1244 */
1245 static inline void usb_fill_control_urb(struct urb *urb,
1246 struct usb_device *dev,
1247 unsigned int pipe,
1248 unsigned char *setup_packet,
1249 void *transfer_buffer,
1250 int buffer_length,
1251 usb_complete_t complete_fn,
1252 void *context)
1253 {
1254 urb->dev = dev;
1255 urb->pipe = pipe;
1256 urb->setup_packet = setup_packet;
1257 urb->transfer_buffer = transfer_buffer;
1258 urb->transfer_buffer_length = buffer_length;
1259 urb->complete = complete_fn;
1260 urb->context = context;
1261 }
1262
1263 /**
1264 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1265 * @urb: pointer to the urb to initialize.
1266 * @dev: pointer to the struct usb_device for this urb.
1267 * @pipe: the endpoint pipe
1268 * @transfer_buffer: pointer to the transfer buffer
1269 * @buffer_length: length of the transfer buffer
1270 * @complete_fn: pointer to the usb_complete_t function
1271 * @context: what to set the urb context to.
1272 *
1273 * Initializes a bulk urb with the proper information needed to submit it
1274 * to a device.
1275 */
1276 static inline void usb_fill_bulk_urb(struct urb *urb,
1277 struct usb_device *dev,
1278 unsigned int pipe,
1279 void *transfer_buffer,
1280 int buffer_length,
1281 usb_complete_t complete_fn,
1282 void *context)
1283 {
1284 urb->dev = dev;
1285 urb->pipe = pipe;
1286 urb->transfer_buffer = transfer_buffer;
1287 urb->transfer_buffer_length = buffer_length;
1288 urb->complete = complete_fn;
1289 urb->context = context;
1290 }
1291
1292 /**
1293 * usb_fill_int_urb - macro to help initialize a interrupt urb
1294 * @urb: pointer to the urb to initialize.
1295 * @dev: pointer to the struct usb_device for this urb.
1296 * @pipe: the endpoint pipe
1297 * @transfer_buffer: pointer to the transfer buffer
1298 * @buffer_length: length of the transfer buffer
1299 * @complete_fn: pointer to the usb_complete_t function
1300 * @context: what to set the urb context to.
1301 * @interval: what to set the urb interval to, encoded like
1302 * the endpoint descriptor's bInterval value.
1303 *
1304 * Initializes a interrupt urb with the proper information needed to submit
1305 * it to a device.
1306 * Note that high speed interrupt endpoints use a logarithmic encoding of
1307 * the endpoint interval, and express polling intervals in microframes
1308 * (eight per millisecond) rather than in frames (one per millisecond).
1309 */
1310 static inline void usb_fill_int_urb(struct urb *urb,
1311 struct usb_device *dev,
1312 unsigned int pipe,
1313 void *transfer_buffer,
1314 int buffer_length,
1315 usb_complete_t complete_fn,
1316 void *context,
1317 int interval)
1318 {
1319 urb->dev = dev;
1320 urb->pipe = pipe;
1321 urb->transfer_buffer = transfer_buffer;
1322 urb->transfer_buffer_length = buffer_length;
1323 urb->complete = complete_fn;
1324 urb->context = context;
1325 if (dev->speed == USB_SPEED_HIGH)
1326 urb->interval = 1 << (interval - 1);
1327 else
1328 urb->interval = interval;
1329 urb->start_frame = -1;
1330 }
1331
1332 extern void usb_init_urb(struct urb *urb);
1333 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1334 extern void usb_free_urb(struct urb *urb);
1335 #define usb_put_urb usb_free_urb
1336 extern struct urb *usb_get_urb(struct urb *urb);
1337 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1338 extern int usb_unlink_urb(struct urb *urb);
1339 extern void usb_kill_urb(struct urb *urb);
1340 extern void usb_poison_urb(struct urb *urb);
1341 extern void usb_unpoison_urb(struct urb *urb);
1342 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1343 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1344 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1345 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1346 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1347 extern void usb_unanchor_urb(struct urb *urb);
1348 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1349 unsigned int timeout);
1350 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1351 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1352 extern int usb_anchor_empty(struct usb_anchor *anchor);
1353
1354 /**
1355 * usb_urb_dir_in - check if an URB describes an IN transfer
1356 * @urb: URB to be checked
1357 *
1358 * Returns 1 if @urb describes an IN transfer (device-to-host),
1359 * otherwise 0.
1360 */
1361 static inline int usb_urb_dir_in(struct urb *urb)
1362 {
1363 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1364 }
1365
1366 /**
1367 * usb_urb_dir_out - check if an URB describes an OUT transfer
1368 * @urb: URB to be checked
1369 *
1370 * Returns 1 if @urb describes an OUT transfer (host-to-device),
1371 * otherwise 0.
1372 */
1373 static inline int usb_urb_dir_out(struct urb *urb)
1374 {
1375 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1376 }
1377
1378 void *usb_buffer_alloc(struct usb_device *dev, size_t size,
1379 gfp_t mem_flags, dma_addr_t *dma);
1380 void usb_buffer_free(struct usb_device *dev, size_t size,
1381 void *addr, dma_addr_t dma);
1382
1383 #if 0
1384 struct urb *usb_buffer_map(struct urb *urb);
1385 void usb_buffer_dmasync(struct urb *urb);
1386 void usb_buffer_unmap(struct urb *urb);
1387 #endif
1388
1389 struct scatterlist;
1390 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1391 struct scatterlist *sg, int nents);
1392 #if 0
1393 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1394 struct scatterlist *sg, int n_hw_ents);
1395 #endif
1396 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1397 struct scatterlist *sg, int n_hw_ents);
1398
1399 /*-------------------------------------------------------------------*
1400 * SYNCHRONOUS CALL SUPPORT *
1401 *-------------------------------------------------------------------*/
1402
1403 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1404 __u8 request, __u8 requesttype, __u16 value, __u16 index,
1405 void *data, __u16 size, int timeout);
1406 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1407 void *data, int len, int *actual_length, int timeout);
1408 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1409 void *data, int len, int *actual_length,
1410 int timeout);
1411
1412 /* wrappers around usb_control_msg() for the most common standard requests */
1413 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1414 unsigned char descindex, void *buf, int size);
1415 extern int usb_get_status(struct usb_device *dev,
1416 int type, int target, void *data);
1417 extern int usb_string(struct usb_device *dev, int index,
1418 char *buf, size_t size);
1419
1420 /* wrappers that also update important state inside usbcore */
1421 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1422 extern int usb_reset_configuration(struct usb_device *dev);
1423 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1424 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1425
1426 /* this request isn't really synchronous, but it belongs with the others */
1427 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1428
1429 /*
1430 * timeouts, in milliseconds, used for sending/receiving control messages
1431 * they typically complete within a few frames (msec) after they're issued
1432 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1433 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1434 */
1435 #define USB_CTRL_GET_TIMEOUT 5000
1436 #define USB_CTRL_SET_TIMEOUT 5000
1437
1438
1439 /**
1440 * struct usb_sg_request - support for scatter/gather I/O
1441 * @status: zero indicates success, else negative errno
1442 * @bytes: counts bytes transferred.
1443 *
1444 * These requests are initialized using usb_sg_init(), and then are used
1445 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most
1446 * members of the request object aren't for driver access.
1447 *
1448 * The status and bytecount values are valid only after usb_sg_wait()
1449 * returns. If the status is zero, then the bytecount matches the total
1450 * from the request.
1451 *
1452 * After an error completion, drivers may need to clear a halt condition
1453 * on the endpoint.
1454 */
1455 struct usb_sg_request {
1456 int status;
1457 size_t bytes;
1458
1459 /* private:
1460 * members below are private to usbcore,
1461 * and are not provided for driver access!
1462 */
1463 spinlock_t lock;
1464
1465 struct usb_device *dev;
1466 int pipe;
1467 struct scatterlist *sg;
1468 int nents;
1469
1470 int entries;
1471 struct urb **urbs;
1472
1473 int count;
1474 struct completion complete;
1475 };
1476
1477 int usb_sg_init(
1478 struct usb_sg_request *io,
1479 struct usb_device *dev,
1480 unsigned pipe,
1481 unsigned period,
1482 struct scatterlist *sg,
1483 int nents,
1484 size_t length,
1485 gfp_t mem_flags
1486 );
1487 void usb_sg_cancel(struct usb_sg_request *io);
1488 void usb_sg_wait(struct usb_sg_request *io);
1489
1490
1491 /* ----------------------------------------------------------------------- */
1492
1493 /*
1494 * For various legacy reasons, Linux has a small cookie that's paired with
1495 * a struct usb_device to identify an endpoint queue. Queue characteristics
1496 * are defined by the endpoint's descriptor. This cookie is called a "pipe",
1497 * an unsigned int encoded as:
1498 *
1499 * - direction: bit 7 (0 = Host-to-Device [Out],
1500 * 1 = Device-to-Host [In] ...
1501 * like endpoint bEndpointAddress)
1502 * - device address: bits 8-14 ... bit positions known to uhci-hcd
1503 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd
1504 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt,
1505 * 10 = control, 11 = bulk)
1506 *
1507 * Given the device address and endpoint descriptor, pipes are redundant.
1508 */
1509
1510 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */
1511 /* (yet ... they're the values used by usbfs) */
1512 #define PIPE_ISOCHRONOUS 0
1513 #define PIPE_INTERRUPT 1
1514 #define PIPE_CONTROL 2
1515 #define PIPE_BULK 3
1516
1517 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN)
1518 #define usb_pipeout(pipe) (!usb_pipein(pipe))
1519
1520 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f)
1521 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf)
1522
1523 #define usb_pipetype(pipe) (((pipe) >> 30) & 3)
1524 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1525 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1526 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL)
1527 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK)
1528
1529 static inline unsigned int __create_pipe(struct usb_device *dev,
1530 unsigned int endpoint)
1531 {
1532 return (dev->devnum << 8) | (endpoint << 15);
1533 }
1534
1535 /* Create various pipes... */
1536 #define usb_sndctrlpipe(dev,endpoint) \
1537 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1538 #define usb_rcvctrlpipe(dev,endpoint) \
1539 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1540 #define usb_sndisocpipe(dev,endpoint) \
1541 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1542 #define usb_rcvisocpipe(dev,endpoint) \
1543 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1544 #define usb_sndbulkpipe(dev,endpoint) \
1545 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1546 #define usb_rcvbulkpipe(dev,endpoint) \
1547 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1548 #define usb_sndintpipe(dev,endpoint) \
1549 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1550 #define usb_rcvintpipe(dev,endpoint) \
1551 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1552
1553 /*-------------------------------------------------------------------------*/
1554
1555 static inline __u16
1556 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1557 {
1558 struct usb_host_endpoint *ep;
1559 unsigned epnum = usb_pipeendpoint(pipe);
1560
1561 if (is_out) {
1562 WARN_ON(usb_pipein(pipe));
1563 ep = udev->ep_out[epnum];
1564 } else {
1565 WARN_ON(usb_pipeout(pipe));
1566 ep = udev->ep_in[epnum];
1567 }
1568 if (!ep)
1569 return 0;
1570
1571 /* NOTE: only 0x07ff bits are for packet size... */
1572 return le16_to_cpu(ep->desc.wMaxPacketSize);
1573 }
1574
1575 /* ----------------------------------------------------------------------- */
1576
1577 /* Events from the usb core */
1578 #define USB_DEVICE_ADD 0x0001
1579 #define USB_DEVICE_REMOVE 0x0002
1580 #define USB_BUS_ADD 0x0003
1581 #define USB_BUS_REMOVE 0x0004
1582 extern void usb_register_notify(struct notifier_block *nb);
1583 extern void usb_unregister_notify(struct notifier_block *nb);
1584
1585 #ifdef DEBUG
1586 #define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , \
1587 __FILE__ , ## arg)
1588 #else
1589 #define dbg(format, arg...) do {} while (0)
1590 #endif
1591
1592 #define err(format, arg...) printk(KERN_ERR KBUILD_MODNAME ": " \
1593 format "\n" , ## arg)
1594
1595 /* debugfs stuff */
1596 extern struct dentry *usb_debug_root;
1597
1598 #endif /* __KERNEL__ */
1599
1600 #endif
This page took 0.071645 seconds and 5 git commands to generate.