Merge tag 'fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arm...
[deliverable/linux.git] / include / linux / usb.h
1 #ifndef __LINUX_USB_H
2 #define __LINUX_USB_H
3
4 #include <linux/mod_devicetable.h>
5 #include <linux/usb/ch9.h>
6
7 #define USB_MAJOR 180
8 #define USB_DEVICE_MAJOR 189
9
10
11 #ifdef __KERNEL__
12
13 #include <linux/errno.h> /* for -ENODEV */
14 #include <linux/delay.h> /* for mdelay() */
15 #include <linux/interrupt.h> /* for in_interrupt() */
16 #include <linux/list.h> /* for struct list_head */
17 #include <linux/kref.h> /* for struct kref */
18 #include <linux/device.h> /* for struct device */
19 #include <linux/fs.h> /* for struct file_operations */
20 #include <linux/completion.h> /* for struct completion */
21 #include <linux/sched.h> /* for current && schedule_timeout */
22 #include <linux/mutex.h> /* for struct mutex */
23 #include <linux/pm_runtime.h> /* for runtime PM */
24
25 struct usb_device;
26 struct usb_driver;
27 struct wusb_dev;
28
29 /*-------------------------------------------------------------------------*/
30
31 /*
32 * Host-side wrappers for standard USB descriptors ... these are parsed
33 * from the data provided by devices. Parsing turns them from a flat
34 * sequence of descriptors into a hierarchy:
35 *
36 * - devices have one (usually) or more configs;
37 * - configs have one (often) or more interfaces;
38 * - interfaces have one (usually) or more settings;
39 * - each interface setting has zero or (usually) more endpoints.
40 * - a SuperSpeed endpoint has a companion descriptor
41 *
42 * And there might be other descriptors mixed in with those.
43 *
44 * Devices may also have class-specific or vendor-specific descriptors.
45 */
46
47 struct ep_device;
48
49 /**
50 * struct usb_host_endpoint - host-side endpoint descriptor and queue
51 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
52 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
53 * @urb_list: urbs queued to this endpoint; maintained by usbcore
54 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
55 * with one or more transfer descriptors (TDs) per urb
56 * @ep_dev: ep_device for sysfs info
57 * @extra: descriptors following this endpoint in the configuration
58 * @extralen: how many bytes of "extra" are valid
59 * @enabled: URBs may be submitted to this endpoint
60 *
61 * USB requests are always queued to a given endpoint, identified by a
62 * descriptor within an active interface in a given USB configuration.
63 */
64 struct usb_host_endpoint {
65 struct usb_endpoint_descriptor desc;
66 struct usb_ss_ep_comp_descriptor ss_ep_comp;
67 struct list_head urb_list;
68 void *hcpriv;
69 struct ep_device *ep_dev; /* For sysfs info */
70
71 unsigned char *extra; /* Extra descriptors */
72 int extralen;
73 int enabled;
74 };
75
76 /* host-side wrapper for one interface setting's parsed descriptors */
77 struct usb_host_interface {
78 struct usb_interface_descriptor desc;
79
80 int extralen;
81 unsigned char *extra; /* Extra descriptors */
82
83 /* array of desc.bNumEndpoint endpoints associated with this
84 * interface setting. these will be in no particular order.
85 */
86 struct usb_host_endpoint *endpoint;
87
88 char *string; /* iInterface string, if present */
89 };
90
91 enum usb_interface_condition {
92 USB_INTERFACE_UNBOUND = 0,
93 USB_INTERFACE_BINDING,
94 USB_INTERFACE_BOUND,
95 USB_INTERFACE_UNBINDING,
96 };
97
98 /**
99 * struct usb_interface - what usb device drivers talk to
100 * @altsetting: array of interface structures, one for each alternate
101 * setting that may be selected. Each one includes a set of
102 * endpoint configurations. They will be in no particular order.
103 * @cur_altsetting: the current altsetting.
104 * @num_altsetting: number of altsettings defined.
105 * @intf_assoc: interface association descriptor
106 * @minor: the minor number assigned to this interface, if this
107 * interface is bound to a driver that uses the USB major number.
108 * If this interface does not use the USB major, this field should
109 * be unused. The driver should set this value in the probe()
110 * function of the driver, after it has been assigned a minor
111 * number from the USB core by calling usb_register_dev().
112 * @condition: binding state of the interface: not bound, binding
113 * (in probe()), bound to a driver, or unbinding (in disconnect())
114 * @sysfs_files_created: sysfs attributes exist
115 * @ep_devs_created: endpoint child pseudo-devices exist
116 * @unregistering: flag set when the interface is being unregistered
117 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
118 * capability during autosuspend.
119 * @needs_altsetting0: flag set when a set-interface request for altsetting 0
120 * has been deferred.
121 * @needs_binding: flag set when the driver should be re-probed or unbound
122 * following a reset or suspend operation it doesn't support.
123 * @dev: driver model's view of this device
124 * @usb_dev: if an interface is bound to the USB major, this will point
125 * to the sysfs representation for that device.
126 * @pm_usage_cnt: PM usage counter for this interface
127 * @reset_ws: Used for scheduling resets from atomic context.
128 * @reset_running: set to 1 if the interface is currently running a
129 * queued reset so that usb_cancel_queued_reset() doesn't try to
130 * remove from the workqueue when running inside the worker
131 * thread. See __usb_queue_reset_device().
132 * @resetting_device: USB core reset the device, so use alt setting 0 as
133 * current; needs bandwidth alloc after reset.
134 *
135 * USB device drivers attach to interfaces on a physical device. Each
136 * interface encapsulates a single high level function, such as feeding
137 * an audio stream to a speaker or reporting a change in a volume control.
138 * Many USB devices only have one interface. The protocol used to talk to
139 * an interface's endpoints can be defined in a usb "class" specification,
140 * or by a product's vendor. The (default) control endpoint is part of
141 * every interface, but is never listed among the interface's descriptors.
142 *
143 * The driver that is bound to the interface can use standard driver model
144 * calls such as dev_get_drvdata() on the dev member of this structure.
145 *
146 * Each interface may have alternate settings. The initial configuration
147 * of a device sets altsetting 0, but the device driver can change
148 * that setting using usb_set_interface(). Alternate settings are often
149 * used to control the use of periodic endpoints, such as by having
150 * different endpoints use different amounts of reserved USB bandwidth.
151 * All standards-conformant USB devices that use isochronous endpoints
152 * will use them in non-default settings.
153 *
154 * The USB specification says that alternate setting numbers must run from
155 * 0 to one less than the total number of alternate settings. But some
156 * devices manage to mess this up, and the structures aren't necessarily
157 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to
158 * look up an alternate setting in the altsetting array based on its number.
159 */
160 struct usb_interface {
161 /* array of alternate settings for this interface,
162 * stored in no particular order */
163 struct usb_host_interface *altsetting;
164
165 struct usb_host_interface *cur_altsetting; /* the currently
166 * active alternate setting */
167 unsigned num_altsetting; /* number of alternate settings */
168
169 /* If there is an interface association descriptor then it will list
170 * the associated interfaces */
171 struct usb_interface_assoc_descriptor *intf_assoc;
172
173 int minor; /* minor number this interface is
174 * bound to */
175 enum usb_interface_condition condition; /* state of binding */
176 unsigned sysfs_files_created:1; /* the sysfs attributes exist */
177 unsigned ep_devs_created:1; /* endpoint "devices" exist */
178 unsigned unregistering:1; /* unregistration is in progress */
179 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
180 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */
181 unsigned needs_binding:1; /* needs delayed unbind/rebind */
182 unsigned reset_running:1;
183 unsigned resetting_device:1; /* true: bandwidth alloc after reset */
184
185 struct device dev; /* interface specific device info */
186 struct device *usb_dev;
187 atomic_t pm_usage_cnt; /* usage counter for autosuspend */
188 struct work_struct reset_ws; /* for resets in atomic context */
189 };
190 #define to_usb_interface(d) container_of(d, struct usb_interface, dev)
191
192 static inline void *usb_get_intfdata(struct usb_interface *intf)
193 {
194 return dev_get_drvdata(&intf->dev);
195 }
196
197 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
198 {
199 dev_set_drvdata(&intf->dev, data);
200 }
201
202 struct usb_interface *usb_get_intf(struct usb_interface *intf);
203 void usb_put_intf(struct usb_interface *intf);
204
205 /* this maximum is arbitrary */
206 #define USB_MAXINTERFACES 32
207 #define USB_MAXIADS (USB_MAXINTERFACES/2)
208
209 /**
210 * struct usb_interface_cache - long-term representation of a device interface
211 * @num_altsetting: number of altsettings defined.
212 * @ref: reference counter.
213 * @altsetting: variable-length array of interface structures, one for
214 * each alternate setting that may be selected. Each one includes a
215 * set of endpoint configurations. They will be in no particular order.
216 *
217 * These structures persist for the lifetime of a usb_device, unlike
218 * struct usb_interface (which persists only as long as its configuration
219 * is installed). The altsetting arrays can be accessed through these
220 * structures at any time, permitting comparison of configurations and
221 * providing support for the /proc/bus/usb/devices pseudo-file.
222 */
223 struct usb_interface_cache {
224 unsigned num_altsetting; /* number of alternate settings */
225 struct kref ref; /* reference counter */
226
227 /* variable-length array of alternate settings for this interface,
228 * stored in no particular order */
229 struct usb_host_interface altsetting[0];
230 };
231 #define ref_to_usb_interface_cache(r) \
232 container_of(r, struct usb_interface_cache, ref)
233 #define altsetting_to_usb_interface_cache(a) \
234 container_of(a, struct usb_interface_cache, altsetting[0])
235
236 /**
237 * struct usb_host_config - representation of a device's configuration
238 * @desc: the device's configuration descriptor.
239 * @string: pointer to the cached version of the iConfiguration string, if
240 * present for this configuration.
241 * @intf_assoc: list of any interface association descriptors in this config
242 * @interface: array of pointers to usb_interface structures, one for each
243 * interface in the configuration. The number of interfaces is stored
244 * in desc.bNumInterfaces. These pointers are valid only while the
245 * the configuration is active.
246 * @intf_cache: array of pointers to usb_interface_cache structures, one
247 * for each interface in the configuration. These structures exist
248 * for the entire life of the device.
249 * @extra: pointer to buffer containing all extra descriptors associated
250 * with this configuration (those preceding the first interface
251 * descriptor).
252 * @extralen: length of the extra descriptors buffer.
253 *
254 * USB devices may have multiple configurations, but only one can be active
255 * at any time. Each encapsulates a different operational environment;
256 * for example, a dual-speed device would have separate configurations for
257 * full-speed and high-speed operation. The number of configurations
258 * available is stored in the device descriptor as bNumConfigurations.
259 *
260 * A configuration can contain multiple interfaces. Each corresponds to
261 * a different function of the USB device, and all are available whenever
262 * the configuration is active. The USB standard says that interfaces
263 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
264 * of devices get this wrong. In addition, the interface array is not
265 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to
266 * look up an interface entry based on its number.
267 *
268 * Device drivers should not attempt to activate configurations. The choice
269 * of which configuration to install is a policy decision based on such
270 * considerations as available power, functionality provided, and the user's
271 * desires (expressed through userspace tools). However, drivers can call
272 * usb_reset_configuration() to reinitialize the current configuration and
273 * all its interfaces.
274 */
275 struct usb_host_config {
276 struct usb_config_descriptor desc;
277
278 char *string; /* iConfiguration string, if present */
279
280 /* List of any Interface Association Descriptors in this
281 * configuration. */
282 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
283
284 /* the interfaces associated with this configuration,
285 * stored in no particular order */
286 struct usb_interface *interface[USB_MAXINTERFACES];
287
288 /* Interface information available even when this is not the
289 * active configuration */
290 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
291
292 unsigned char *extra; /* Extra descriptors */
293 int extralen;
294 };
295
296 /* USB2.0 and USB3.0 device BOS descriptor set */
297 struct usb_host_bos {
298 struct usb_bos_descriptor *desc;
299
300 /* wireless cap descriptor is handled by wusb */
301 struct usb_ext_cap_descriptor *ext_cap;
302 struct usb_ss_cap_descriptor *ss_cap;
303 struct usb_ss_container_id_descriptor *ss_id;
304 };
305
306 int __usb_get_extra_descriptor(char *buffer, unsigned size,
307 unsigned char type, void **ptr);
308 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
309 __usb_get_extra_descriptor((ifpoint)->extra, \
310 (ifpoint)->extralen, \
311 type, (void **)ptr)
312
313 /* ----------------------------------------------------------------------- */
314
315 /* USB device number allocation bitmap */
316 struct usb_devmap {
317 unsigned long devicemap[128 / (8*sizeof(unsigned long))];
318 };
319
320 /*
321 * Allocated per bus (tree of devices) we have:
322 */
323 struct usb_bus {
324 struct device *controller; /* host/master side hardware */
325 int busnum; /* Bus number (in order of reg) */
326 const char *bus_name; /* stable id (PCI slot_name etc) */
327 u8 uses_dma; /* Does the host controller use DMA? */
328 u8 uses_pio_for_control; /*
329 * Does the host controller use PIO
330 * for control transfers?
331 */
332 u8 otg_port; /* 0, or number of OTG/HNP port */
333 unsigned is_b_host:1; /* true during some HNP roleswitches */
334 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */
335 unsigned no_stop_on_short:1; /*
336 * Quirk: some controllers don't stop
337 * the ep queue on a short transfer
338 * with the URB_SHORT_NOT_OK flag set.
339 */
340 unsigned sg_tablesize; /* 0 or largest number of sg list entries */
341
342 int devnum_next; /* Next open device number in
343 * round-robin allocation */
344
345 struct usb_devmap devmap; /* device address allocation map */
346 struct usb_device *root_hub; /* Root hub */
347 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */
348 struct list_head bus_list; /* list of busses */
349
350 int bandwidth_allocated; /* on this bus: how much of the time
351 * reserved for periodic (intr/iso)
352 * requests is used, on average?
353 * Units: microseconds/frame.
354 * Limits: Full/low speed reserve 90%,
355 * while high speed reserves 80%.
356 */
357 int bandwidth_int_reqs; /* number of Interrupt requests */
358 int bandwidth_isoc_reqs; /* number of Isoc. requests */
359
360 unsigned resuming_ports; /* bit array: resuming root-hub ports */
361
362 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
363 struct mon_bus *mon_bus; /* non-null when associated */
364 int monitored; /* non-zero when monitored */
365 #endif
366 };
367
368 /* ----------------------------------------------------------------------- */
369
370 /* This is arbitrary.
371 * From USB 2.0 spec Table 11-13, offset 7, a hub can
372 * have up to 255 ports. The most yet reported is 10.
373 *
374 * Current Wireless USB host hardware (Intel i1480 for example) allows
375 * up to 22 devices to connect. Upcoming hardware might raise that
376 * limit. Because the arrays need to add a bit for hub status data, we
377 * do 31, so plus one evens out to four bytes.
378 */
379 #define USB_MAXCHILDREN (31)
380
381 struct usb_tt;
382
383 enum usb_device_removable {
384 USB_DEVICE_REMOVABLE_UNKNOWN = 0,
385 USB_DEVICE_REMOVABLE,
386 USB_DEVICE_FIXED,
387 };
388
389 enum usb_port_connect_type {
390 USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
391 USB_PORT_CONNECT_TYPE_HOT_PLUG,
392 USB_PORT_CONNECT_TYPE_HARD_WIRED,
393 USB_PORT_NOT_USED,
394 };
395
396 /*
397 * USB 3.0 Link Power Management (LPM) parameters.
398 *
399 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
400 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
401 * All three are stored in nanoseconds.
402 */
403 struct usb3_lpm_parameters {
404 /*
405 * Maximum exit latency (MEL) for the host to send a packet to the
406 * device (either a Ping for isoc endpoints, or a data packet for
407 * interrupt endpoints), the hubs to decode the packet, and for all hubs
408 * in the path to transition the links to U0.
409 */
410 unsigned int mel;
411 /*
412 * Maximum exit latency for a device-initiated LPM transition to bring
413 * all links into U0. Abbreviated as "PEL" in section 9.4.12 of the USB
414 * 3.0 spec, with no explanation of what "P" stands for. "Path"?
415 */
416 unsigned int pel;
417
418 /*
419 * The System Exit Latency (SEL) includes PEL, and three other
420 * latencies. After a device initiates a U0 transition, it will take
421 * some time from when the device sends the ERDY to when it will finally
422 * receive the data packet. Basically, SEL should be the worse-case
423 * latency from when a device starts initiating a U0 transition to when
424 * it will get data.
425 */
426 unsigned int sel;
427 /*
428 * The idle timeout value that is currently programmed into the parent
429 * hub for this device. When the timer counts to zero, the parent hub
430 * will initiate an LPM transition to either U1 or U2.
431 */
432 int timeout;
433 };
434
435 /**
436 * struct usb_device - kernel's representation of a USB device
437 * @devnum: device number; address on a USB bus
438 * @devpath: device ID string for use in messages (e.g., /port/...)
439 * @route: tree topology hex string for use with xHCI
440 * @state: device state: configured, not attached, etc.
441 * @speed: device speed: high/full/low (or error)
442 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
443 * @ttport: device port on that tt hub
444 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
445 * @parent: our hub, unless we're the root
446 * @bus: bus we're part of
447 * @ep0: endpoint 0 data (default control pipe)
448 * @dev: generic device interface
449 * @descriptor: USB device descriptor
450 * @bos: USB device BOS descriptor set
451 * @config: all of the device's configs
452 * @actconfig: the active configuration
453 * @ep_in: array of IN endpoints
454 * @ep_out: array of OUT endpoints
455 * @rawdescriptors: raw descriptors for each config
456 * @bus_mA: Current available from the bus
457 * @portnum: parent port number (origin 1)
458 * @level: number of USB hub ancestors
459 * @can_submit: URBs may be submitted
460 * @persist_enabled: USB_PERSIST enabled for this device
461 * @have_langid: whether string_langid is valid
462 * @authorized: policy has said we can use it;
463 * (user space) policy determines if we authorize this device to be
464 * used or not. By default, wired USB devices are authorized.
465 * WUSB devices are not, until we authorize them from user space.
466 * FIXME -- complete doc
467 * @authenticated: Crypto authentication passed
468 * @wusb: device is Wireless USB
469 * @lpm_capable: device supports LPM
470 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
471 * @usb2_hw_lpm_enabled: USB2 hardware LPM enabled
472 * @usb3_lpm_enabled: USB3 hardware LPM enabled
473 * @string_langid: language ID for strings
474 * @product: iProduct string, if present (static)
475 * @manufacturer: iManufacturer string, if present (static)
476 * @serial: iSerialNumber string, if present (static)
477 * @filelist: usbfs files that are open to this device
478 * @maxchild: number of ports if hub
479 * @quirks: quirks of the whole device
480 * @urbnum: number of URBs submitted for the whole device
481 * @active_duration: total time device is not suspended
482 * @connect_time: time device was first connected
483 * @do_remote_wakeup: remote wakeup should be enabled
484 * @reset_resume: needs reset instead of resume
485 * @port_is_suspended: the upstream port is suspended (L2 or U3)
486 * @wusb_dev: if this is a Wireless USB device, link to the WUSB
487 * specific data for the device.
488 * @slot_id: Slot ID assigned by xHCI
489 * @removable: Device can be physically removed from this port
490 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
491 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
492 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
493 * to keep track of the number of functions that require USB 3.0 Link Power
494 * Management to be disabled for this usb_device. This count should only
495 * be manipulated by those functions, with the bandwidth_mutex is held.
496 *
497 * Notes:
498 * Usbcore drivers should not set usbdev->state directly. Instead use
499 * usb_set_device_state().
500 */
501 struct usb_device {
502 int devnum;
503 char devpath[16];
504 u32 route;
505 enum usb_device_state state;
506 enum usb_device_speed speed;
507
508 struct usb_tt *tt;
509 int ttport;
510
511 unsigned int toggle[2];
512
513 struct usb_device *parent;
514 struct usb_bus *bus;
515 struct usb_host_endpoint ep0;
516
517 struct device dev;
518
519 struct usb_device_descriptor descriptor;
520 struct usb_host_bos *bos;
521 struct usb_host_config *config;
522
523 struct usb_host_config *actconfig;
524 struct usb_host_endpoint *ep_in[16];
525 struct usb_host_endpoint *ep_out[16];
526
527 char **rawdescriptors;
528
529 unsigned short bus_mA;
530 u8 portnum;
531 u8 level;
532
533 unsigned can_submit:1;
534 unsigned persist_enabled:1;
535 unsigned have_langid:1;
536 unsigned authorized:1;
537 unsigned authenticated:1;
538 unsigned wusb:1;
539 unsigned lpm_capable:1;
540 unsigned usb2_hw_lpm_capable:1;
541 unsigned usb2_hw_lpm_enabled:1;
542 unsigned usb3_lpm_enabled:1;
543 int string_langid;
544
545 /* static strings from the device */
546 char *product;
547 char *manufacturer;
548 char *serial;
549
550 struct list_head filelist;
551
552 int maxchild;
553
554 u32 quirks;
555 atomic_t urbnum;
556
557 unsigned long active_duration;
558
559 #ifdef CONFIG_PM
560 unsigned long connect_time;
561
562 unsigned do_remote_wakeup:1;
563 unsigned reset_resume:1;
564 unsigned port_is_suspended:1;
565 #endif
566 struct wusb_dev *wusb_dev;
567 int slot_id;
568 enum usb_device_removable removable;
569 struct usb3_lpm_parameters u1_params;
570 struct usb3_lpm_parameters u2_params;
571 unsigned lpm_disable_count;
572 };
573 #define to_usb_device(d) container_of(d, struct usb_device, dev)
574
575 static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
576 {
577 return to_usb_device(intf->dev.parent);
578 }
579
580 extern struct usb_device *usb_get_dev(struct usb_device *dev);
581 extern void usb_put_dev(struct usb_device *dev);
582 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
583 int port1);
584
585 /**
586 * usb_hub_for_each_child - iterate over all child devices on the hub
587 * @hdev: USB device belonging to the usb hub
588 * @port1: portnum associated with child device
589 * @child: child device pointer
590 */
591 #define usb_hub_for_each_child(hdev, port1, child) \
592 for (port1 = 1, child = usb_hub_find_child(hdev, port1); \
593 port1 <= hdev->maxchild; \
594 child = usb_hub_find_child(hdev, ++port1)) \
595 if (!child) continue; else
596
597 /* USB device locking */
598 #define usb_lock_device(udev) device_lock(&(udev)->dev)
599 #define usb_unlock_device(udev) device_unlock(&(udev)->dev)
600 #define usb_trylock_device(udev) device_trylock(&(udev)->dev)
601 extern int usb_lock_device_for_reset(struct usb_device *udev,
602 const struct usb_interface *iface);
603
604 /* USB port reset for device reinitialization */
605 extern int usb_reset_device(struct usb_device *dev);
606 extern void usb_queue_reset_device(struct usb_interface *dev);
607
608 #ifdef CONFIG_ACPI
609 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
610 bool enable);
611 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
612 #else
613 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
614 bool enable) { return 0; }
615 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
616 { return true; }
617 #endif
618
619 /* USB autosuspend and autoresume */
620 #ifdef CONFIG_PM_RUNTIME
621 extern void usb_enable_autosuspend(struct usb_device *udev);
622 extern void usb_disable_autosuspend(struct usb_device *udev);
623
624 extern int usb_autopm_get_interface(struct usb_interface *intf);
625 extern void usb_autopm_put_interface(struct usb_interface *intf);
626 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
627 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
628 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
629 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
630
631 static inline void usb_mark_last_busy(struct usb_device *udev)
632 {
633 pm_runtime_mark_last_busy(&udev->dev);
634 }
635
636 #else
637
638 static inline int usb_enable_autosuspend(struct usb_device *udev)
639 { return 0; }
640 static inline int usb_disable_autosuspend(struct usb_device *udev)
641 { return 0; }
642
643 static inline int usb_autopm_get_interface(struct usb_interface *intf)
644 { return 0; }
645 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
646 { return 0; }
647
648 static inline void usb_autopm_put_interface(struct usb_interface *intf)
649 { }
650 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
651 { }
652 static inline void usb_autopm_get_interface_no_resume(
653 struct usb_interface *intf)
654 { }
655 static inline void usb_autopm_put_interface_no_suspend(
656 struct usb_interface *intf)
657 { }
658 static inline void usb_mark_last_busy(struct usb_device *udev)
659 { }
660 #endif
661
662 extern int usb_disable_lpm(struct usb_device *udev);
663 extern void usb_enable_lpm(struct usb_device *udev);
664 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */
665 extern int usb_unlocked_disable_lpm(struct usb_device *udev);
666 extern void usb_unlocked_enable_lpm(struct usb_device *udev);
667
668 extern int usb_disable_ltm(struct usb_device *udev);
669 extern void usb_enable_ltm(struct usb_device *udev);
670
671 static inline bool usb_device_supports_ltm(struct usb_device *udev)
672 {
673 if (udev->speed != USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
674 return false;
675 return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
676 }
677
678
679 /*-------------------------------------------------------------------------*/
680
681 /* for drivers using iso endpoints */
682 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
683
684 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
685 extern int usb_alloc_streams(struct usb_interface *interface,
686 struct usb_host_endpoint **eps, unsigned int num_eps,
687 unsigned int num_streams, gfp_t mem_flags);
688
689 /* Reverts a group of bulk endpoints back to not using stream IDs. */
690 extern void usb_free_streams(struct usb_interface *interface,
691 struct usb_host_endpoint **eps, unsigned int num_eps,
692 gfp_t mem_flags);
693
694 /* used these for multi-interface device registration */
695 extern int usb_driver_claim_interface(struct usb_driver *driver,
696 struct usb_interface *iface, void *priv);
697
698 /**
699 * usb_interface_claimed - returns true iff an interface is claimed
700 * @iface: the interface being checked
701 *
702 * Returns true (nonzero) iff the interface is claimed, else false (zero).
703 * Callers must own the driver model's usb bus readlock. So driver
704 * probe() entries don't need extra locking, but other call contexts
705 * may need to explicitly claim that lock.
706 *
707 */
708 static inline int usb_interface_claimed(struct usb_interface *iface)
709 {
710 return (iface->dev.driver != NULL);
711 }
712
713 extern void usb_driver_release_interface(struct usb_driver *driver,
714 struct usb_interface *iface);
715 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
716 const struct usb_device_id *id);
717 extern int usb_match_one_id(struct usb_interface *interface,
718 const struct usb_device_id *id);
719
720 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
721 int minor);
722 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
723 unsigned ifnum);
724 extern struct usb_host_interface *usb_altnum_to_altsetting(
725 const struct usb_interface *intf, unsigned int altnum);
726 extern struct usb_host_interface *usb_find_alt_setting(
727 struct usb_host_config *config,
728 unsigned int iface_num,
729 unsigned int alt_num);
730
731
732 /**
733 * usb_make_path - returns stable device path in the usb tree
734 * @dev: the device whose path is being constructed
735 * @buf: where to put the string
736 * @size: how big is "buf"?
737 *
738 * Returns length of the string (> 0) or negative if size was too small.
739 *
740 * This identifier is intended to be "stable", reflecting physical paths in
741 * hardware such as physical bus addresses for host controllers or ports on
742 * USB hubs. That makes it stay the same until systems are physically
743 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
744 * controllers. Adding and removing devices, including virtual root hubs
745 * in host controller driver modules, does not change these path identifiers;
746 * neither does rebooting or re-enumerating. These are more useful identifiers
747 * than changeable ("unstable") ones like bus numbers or device addresses.
748 *
749 * With a partial exception for devices connected to USB 2.0 root hubs, these
750 * identifiers are also predictable. So long as the device tree isn't changed,
751 * plugging any USB device into a given hub port always gives it the same path.
752 * Because of the use of "companion" controllers, devices connected to ports on
753 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
754 * high speed, and a different one if they are full or low speed.
755 */
756 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
757 {
758 int actual;
759 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
760 dev->devpath);
761 return (actual >= (int)size) ? -1 : actual;
762 }
763
764 /*-------------------------------------------------------------------------*/
765
766 #define USB_DEVICE_ID_MATCH_DEVICE \
767 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
768 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
769 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
770 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
771 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
772 #define USB_DEVICE_ID_MATCH_DEV_INFO \
773 (USB_DEVICE_ID_MATCH_DEV_CLASS | \
774 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
775 USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
776 #define USB_DEVICE_ID_MATCH_INT_INFO \
777 (USB_DEVICE_ID_MATCH_INT_CLASS | \
778 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
779 USB_DEVICE_ID_MATCH_INT_PROTOCOL)
780
781 /**
782 * USB_DEVICE - macro used to describe a specific usb device
783 * @vend: the 16 bit USB Vendor ID
784 * @prod: the 16 bit USB Product ID
785 *
786 * This macro is used to create a struct usb_device_id that matches a
787 * specific device.
788 */
789 #define USB_DEVICE(vend, prod) \
790 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
791 .idVendor = (vend), \
792 .idProduct = (prod)
793 /**
794 * USB_DEVICE_VER - describe a specific usb device with a version range
795 * @vend: the 16 bit USB Vendor ID
796 * @prod: the 16 bit USB Product ID
797 * @lo: the bcdDevice_lo value
798 * @hi: the bcdDevice_hi value
799 *
800 * This macro is used to create a struct usb_device_id that matches a
801 * specific device, with a version range.
802 */
803 #define USB_DEVICE_VER(vend, prod, lo, hi) \
804 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
805 .idVendor = (vend), \
806 .idProduct = (prod), \
807 .bcdDevice_lo = (lo), \
808 .bcdDevice_hi = (hi)
809
810 /**
811 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
812 * @vend: the 16 bit USB Vendor ID
813 * @prod: the 16 bit USB Product ID
814 * @cl: bInterfaceClass value
815 *
816 * This macro is used to create a struct usb_device_id that matches a
817 * specific interface class of devices.
818 */
819 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
820 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
821 USB_DEVICE_ID_MATCH_INT_CLASS, \
822 .idVendor = (vend), \
823 .idProduct = (prod), \
824 .bInterfaceClass = (cl)
825
826 /**
827 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
828 * @vend: the 16 bit USB Vendor ID
829 * @prod: the 16 bit USB Product ID
830 * @pr: bInterfaceProtocol value
831 *
832 * This macro is used to create a struct usb_device_id that matches a
833 * specific interface protocol of devices.
834 */
835 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
836 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
837 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
838 .idVendor = (vend), \
839 .idProduct = (prod), \
840 .bInterfaceProtocol = (pr)
841
842 /**
843 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
844 * @vend: the 16 bit USB Vendor ID
845 * @prod: the 16 bit USB Product ID
846 * @num: bInterfaceNumber value
847 *
848 * This macro is used to create a struct usb_device_id that matches a
849 * specific interface number of devices.
850 */
851 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
852 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
853 USB_DEVICE_ID_MATCH_INT_NUMBER, \
854 .idVendor = (vend), \
855 .idProduct = (prod), \
856 .bInterfaceNumber = (num)
857
858 /**
859 * USB_DEVICE_INFO - macro used to describe a class of usb devices
860 * @cl: bDeviceClass value
861 * @sc: bDeviceSubClass value
862 * @pr: bDeviceProtocol value
863 *
864 * This macro is used to create a struct usb_device_id that matches a
865 * specific class of devices.
866 */
867 #define USB_DEVICE_INFO(cl, sc, pr) \
868 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
869 .bDeviceClass = (cl), \
870 .bDeviceSubClass = (sc), \
871 .bDeviceProtocol = (pr)
872
873 /**
874 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
875 * @cl: bInterfaceClass value
876 * @sc: bInterfaceSubClass value
877 * @pr: bInterfaceProtocol value
878 *
879 * This macro is used to create a struct usb_device_id that matches a
880 * specific class of interfaces.
881 */
882 #define USB_INTERFACE_INFO(cl, sc, pr) \
883 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
884 .bInterfaceClass = (cl), \
885 .bInterfaceSubClass = (sc), \
886 .bInterfaceProtocol = (pr)
887
888 /**
889 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
890 * @vend: the 16 bit USB Vendor ID
891 * @prod: the 16 bit USB Product ID
892 * @cl: bInterfaceClass value
893 * @sc: bInterfaceSubClass value
894 * @pr: bInterfaceProtocol value
895 *
896 * This macro is used to create a struct usb_device_id that matches a
897 * specific device with a specific class of interfaces.
898 *
899 * This is especially useful when explicitly matching devices that have
900 * vendor specific bDeviceClass values, but standards-compliant interfaces.
901 */
902 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
903 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
904 | USB_DEVICE_ID_MATCH_DEVICE, \
905 .idVendor = (vend), \
906 .idProduct = (prod), \
907 .bInterfaceClass = (cl), \
908 .bInterfaceSubClass = (sc), \
909 .bInterfaceProtocol = (pr)
910
911 /**
912 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
913 * @vend: the 16 bit USB Vendor ID
914 * @cl: bInterfaceClass value
915 * @sc: bInterfaceSubClass value
916 * @pr: bInterfaceProtocol value
917 *
918 * This macro is used to create a struct usb_device_id that matches a
919 * specific vendor with a specific class of interfaces.
920 *
921 * This is especially useful when explicitly matching devices that have
922 * vendor specific bDeviceClass values, but standards-compliant interfaces.
923 */
924 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
925 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
926 | USB_DEVICE_ID_MATCH_VENDOR, \
927 .idVendor = (vend), \
928 .bInterfaceClass = (cl), \
929 .bInterfaceSubClass = (sc), \
930 .bInterfaceProtocol = (pr)
931
932 /* ----------------------------------------------------------------------- */
933
934 /* Stuff for dynamic usb ids */
935 struct usb_dynids {
936 spinlock_t lock;
937 struct list_head list;
938 };
939
940 struct usb_dynid {
941 struct list_head node;
942 struct usb_device_id id;
943 };
944
945 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
946 struct device_driver *driver,
947 const char *buf, size_t count);
948
949 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
950
951 /**
952 * struct usbdrv_wrap - wrapper for driver-model structure
953 * @driver: The driver-model core driver structure.
954 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
955 */
956 struct usbdrv_wrap {
957 struct device_driver driver;
958 int for_devices;
959 };
960
961 /**
962 * struct usb_driver - identifies USB interface driver to usbcore
963 * @name: The driver name should be unique among USB drivers,
964 * and should normally be the same as the module name.
965 * @probe: Called to see if the driver is willing to manage a particular
966 * interface on a device. If it is, probe returns zero and uses
967 * usb_set_intfdata() to associate driver-specific data with the
968 * interface. It may also use usb_set_interface() to specify the
969 * appropriate altsetting. If unwilling to manage the interface,
970 * return -ENODEV, if genuine IO errors occurred, an appropriate
971 * negative errno value.
972 * @disconnect: Called when the interface is no longer accessible, usually
973 * because its device has been (or is being) disconnected or the
974 * driver module is being unloaded.
975 * @unlocked_ioctl: Used for drivers that want to talk to userspace through
976 * the "usbfs" filesystem. This lets devices provide ways to
977 * expose information to user space regardless of where they
978 * do (or don't) show up otherwise in the filesystem.
979 * @suspend: Called when the device is going to be suspended by the
980 * system either from system sleep or runtime suspend context. The
981 * return value will be ignored in system sleep context, so do NOT
982 * try to continue using the device if suspend fails in this case.
983 * Instead, let the resume or reset-resume routine recover from
984 * the failure.
985 * @resume: Called when the device is being resumed by the system.
986 * @reset_resume: Called when the suspended device has been reset instead
987 * of being resumed.
988 * @pre_reset: Called by usb_reset_device() when the device is about to be
989 * reset. This routine must not return until the driver has no active
990 * URBs for the device, and no more URBs may be submitted until the
991 * post_reset method is called.
992 * @post_reset: Called by usb_reset_device() after the device
993 * has been reset
994 * @id_table: USB drivers use ID table to support hotplugging.
995 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set
996 * or your driver's probe function will never get called.
997 * @dynids: used internally to hold the list of dynamically added device
998 * ids for this driver.
999 * @drvwrap: Driver-model core structure wrapper.
1000 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1001 * added to this driver by preventing the sysfs file from being created.
1002 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1003 * for interfaces bound to this driver.
1004 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1005 * endpoints before calling the driver's disconnect method.
1006 * @disable_hub_initiated_lpm: if set to 0, the USB core will not allow hubs
1007 * to initiate lower power link state transitions when an idle timeout
1008 * occurs. Device-initiated USB 3.0 link PM will still be allowed.
1009 *
1010 * USB interface drivers must provide a name, probe() and disconnect()
1011 * methods, and an id_table. Other driver fields are optional.
1012 *
1013 * The id_table is used in hotplugging. It holds a set of descriptors,
1014 * and specialized data may be associated with each entry. That table
1015 * is used by both user and kernel mode hotplugging support.
1016 *
1017 * The probe() and disconnect() methods are called in a context where
1018 * they can sleep, but they should avoid abusing the privilege. Most
1019 * work to connect to a device should be done when the device is opened,
1020 * and undone at the last close. The disconnect code needs to address
1021 * concurrency issues with respect to open() and close() methods, as
1022 * well as forcing all pending I/O requests to complete (by unlinking
1023 * them as necessary, and blocking until the unlinks complete).
1024 */
1025 struct usb_driver {
1026 const char *name;
1027
1028 int (*probe) (struct usb_interface *intf,
1029 const struct usb_device_id *id);
1030
1031 void (*disconnect) (struct usb_interface *intf);
1032
1033 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1034 void *buf);
1035
1036 int (*suspend) (struct usb_interface *intf, pm_message_t message);
1037 int (*resume) (struct usb_interface *intf);
1038 int (*reset_resume)(struct usb_interface *intf);
1039
1040 int (*pre_reset)(struct usb_interface *intf);
1041 int (*post_reset)(struct usb_interface *intf);
1042
1043 const struct usb_device_id *id_table;
1044
1045 struct usb_dynids dynids;
1046 struct usbdrv_wrap drvwrap;
1047 unsigned int no_dynamic_id:1;
1048 unsigned int supports_autosuspend:1;
1049 unsigned int disable_hub_initiated_lpm:1;
1050 unsigned int soft_unbind:1;
1051 };
1052 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1053
1054 /**
1055 * struct usb_device_driver - identifies USB device driver to usbcore
1056 * @name: The driver name should be unique among USB drivers,
1057 * and should normally be the same as the module name.
1058 * @probe: Called to see if the driver is willing to manage a particular
1059 * device. If it is, probe returns zero and uses dev_set_drvdata()
1060 * to associate driver-specific data with the device. If unwilling
1061 * to manage the device, return a negative errno value.
1062 * @disconnect: Called when the device is no longer accessible, usually
1063 * because it has been (or is being) disconnected or the driver's
1064 * module is being unloaded.
1065 * @suspend: Called when the device is going to be suspended by the system.
1066 * @resume: Called when the device is being resumed by the system.
1067 * @drvwrap: Driver-model core structure wrapper.
1068 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1069 * for devices bound to this driver.
1070 *
1071 * USB drivers must provide all the fields listed above except drvwrap.
1072 */
1073 struct usb_device_driver {
1074 const char *name;
1075
1076 int (*probe) (struct usb_device *udev);
1077 void (*disconnect) (struct usb_device *udev);
1078
1079 int (*suspend) (struct usb_device *udev, pm_message_t message);
1080 int (*resume) (struct usb_device *udev, pm_message_t message);
1081 struct usbdrv_wrap drvwrap;
1082 unsigned int supports_autosuspend:1;
1083 };
1084 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1085 drvwrap.driver)
1086
1087 extern struct bus_type usb_bus_type;
1088
1089 /**
1090 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1091 * @name: the usb class device name for this driver. Will show up in sysfs.
1092 * @devnode: Callback to provide a naming hint for a possible
1093 * device node to create.
1094 * @fops: pointer to the struct file_operations of this driver.
1095 * @minor_base: the start of the minor range for this driver.
1096 *
1097 * This structure is used for the usb_register_dev() and
1098 * usb_unregister_dev() functions, to consolidate a number of the
1099 * parameters used for them.
1100 */
1101 struct usb_class_driver {
1102 char *name;
1103 char *(*devnode)(struct device *dev, umode_t *mode);
1104 const struct file_operations *fops;
1105 int minor_base;
1106 };
1107
1108 /*
1109 * use these in module_init()/module_exit()
1110 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1111 */
1112 extern int usb_register_driver(struct usb_driver *, struct module *,
1113 const char *);
1114
1115 /* use a define to avoid include chaining to get THIS_MODULE & friends */
1116 #define usb_register(driver) \
1117 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1118
1119 extern void usb_deregister(struct usb_driver *);
1120
1121 /**
1122 * module_usb_driver() - Helper macro for registering a USB driver
1123 * @__usb_driver: usb_driver struct
1124 *
1125 * Helper macro for USB drivers which do not do anything special in module
1126 * init/exit. This eliminates a lot of boilerplate. Each module may only
1127 * use this macro once, and calling it replaces module_init() and module_exit()
1128 */
1129 #define module_usb_driver(__usb_driver) \
1130 module_driver(__usb_driver, usb_register, \
1131 usb_deregister)
1132
1133 extern int usb_register_device_driver(struct usb_device_driver *,
1134 struct module *);
1135 extern void usb_deregister_device_driver(struct usb_device_driver *);
1136
1137 extern int usb_register_dev(struct usb_interface *intf,
1138 struct usb_class_driver *class_driver);
1139 extern void usb_deregister_dev(struct usb_interface *intf,
1140 struct usb_class_driver *class_driver);
1141
1142 extern int usb_disabled(void);
1143
1144 /* ----------------------------------------------------------------------- */
1145
1146 /*
1147 * URB support, for asynchronous request completions
1148 */
1149
1150 /*
1151 * urb->transfer_flags:
1152 *
1153 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1154 */
1155 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */
1156 #define URB_ISO_ASAP 0x0002 /* iso-only; use the first unexpired
1157 * slot in the schedule */
1158 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */
1159 #define URB_NO_FSBR 0x0020 /* UHCI-specific */
1160 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */
1161 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt
1162 * needed */
1163 #define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */
1164
1165 /* The following flags are used internally by usbcore and HCDs */
1166 #define URB_DIR_IN 0x0200 /* Transfer from device to host */
1167 #define URB_DIR_OUT 0
1168 #define URB_DIR_MASK URB_DIR_IN
1169
1170 #define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */
1171 #define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */
1172 #define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */
1173 #define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */
1174 #define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */
1175 #define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */
1176 #define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */
1177 #define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */
1178
1179 struct usb_iso_packet_descriptor {
1180 unsigned int offset;
1181 unsigned int length; /* expected length */
1182 unsigned int actual_length;
1183 int status;
1184 };
1185
1186 struct urb;
1187
1188 struct usb_anchor {
1189 struct list_head urb_list;
1190 wait_queue_head_t wait;
1191 spinlock_t lock;
1192 unsigned int poisoned:1;
1193 };
1194
1195 static inline void init_usb_anchor(struct usb_anchor *anchor)
1196 {
1197 INIT_LIST_HEAD(&anchor->urb_list);
1198 init_waitqueue_head(&anchor->wait);
1199 spin_lock_init(&anchor->lock);
1200 }
1201
1202 typedef void (*usb_complete_t)(struct urb *);
1203
1204 /**
1205 * struct urb - USB Request Block
1206 * @urb_list: For use by current owner of the URB.
1207 * @anchor_list: membership in the list of an anchor
1208 * @anchor: to anchor URBs to a common mooring
1209 * @ep: Points to the endpoint's data structure. Will eventually
1210 * replace @pipe.
1211 * @pipe: Holds endpoint number, direction, type, and more.
1212 * Create these values with the eight macros available;
1213 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1214 * (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1215 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint
1216 * numbers range from zero to fifteen. Note that "in" endpoint two
1217 * is a different endpoint (and pipe) from "out" endpoint two.
1218 * The current configuration controls the existence, type, and
1219 * maximum packet size of any given endpoint.
1220 * @stream_id: the endpoint's stream ID for bulk streams
1221 * @dev: Identifies the USB device to perform the request.
1222 * @status: This is read in non-iso completion functions to get the
1223 * status of the particular request. ISO requests only use it
1224 * to tell whether the URB was unlinked; detailed status for
1225 * each frame is in the fields of the iso_frame-desc.
1226 * @transfer_flags: A variety of flags may be used to affect how URB
1227 * submission, unlinking, or operation are handled. Different
1228 * kinds of URB can use different flags.
1229 * @transfer_buffer: This identifies the buffer to (or from) which the I/O
1230 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1231 * (however, do not leave garbage in transfer_buffer even then).
1232 * This buffer must be suitable for DMA; allocate it with
1233 * kmalloc() or equivalent. For transfers to "in" endpoints, contents
1234 * of this buffer will be modified. This buffer is used for the data
1235 * stage of control transfers.
1236 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1237 * the device driver is saying that it provided this DMA address,
1238 * which the host controller driver should use in preference to the
1239 * transfer_buffer.
1240 * @sg: scatter gather buffer list
1241 * @num_mapped_sgs: (internal) number of mapped sg entries
1242 * @num_sgs: number of entries in the sg list
1243 * @transfer_buffer_length: How big is transfer_buffer. The transfer may
1244 * be broken up into chunks according to the current maximum packet
1245 * size for the endpoint, which is a function of the configuration
1246 * and is encoded in the pipe. When the length is zero, neither
1247 * transfer_buffer nor transfer_dma is used.
1248 * @actual_length: This is read in non-iso completion functions, and
1249 * it tells how many bytes (out of transfer_buffer_length) were
1250 * transferred. It will normally be the same as requested, unless
1251 * either an error was reported or a short read was performed.
1252 * The URB_SHORT_NOT_OK transfer flag may be used to make such
1253 * short reads be reported as errors.
1254 * @setup_packet: Only used for control transfers, this points to eight bytes
1255 * of setup data. Control transfers always start by sending this data
1256 * to the device. Then transfer_buffer is read or written, if needed.
1257 * @setup_dma: DMA pointer for the setup packet. The caller must not use
1258 * this field; setup_packet must point to a valid buffer.
1259 * @start_frame: Returns the initial frame for isochronous transfers.
1260 * @number_of_packets: Lists the number of ISO transfer buffers.
1261 * @interval: Specifies the polling interval for interrupt or isochronous
1262 * transfers. The units are frames (milliseconds) for full and low
1263 * speed devices, and microframes (1/8 millisecond) for highspeed
1264 * and SuperSpeed devices.
1265 * @error_count: Returns the number of ISO transfers that reported errors.
1266 * @context: For use in completion functions. This normally points to
1267 * request-specific driver context.
1268 * @complete: Completion handler. This URB is passed as the parameter to the
1269 * completion function. The completion function may then do what
1270 * it likes with the URB, including resubmitting or freeing it.
1271 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1272 * collect the transfer status for each buffer.
1273 *
1274 * This structure identifies USB transfer requests. URBs must be allocated by
1275 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1276 * Initialization may be done using various usb_fill_*_urb() functions. URBs
1277 * are submitted using usb_submit_urb(), and pending requests may be canceled
1278 * using usb_unlink_urb() or usb_kill_urb().
1279 *
1280 * Data Transfer Buffers:
1281 *
1282 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1283 * taken from the general page pool. That is provided by transfer_buffer
1284 * (control requests also use setup_packet), and host controller drivers
1285 * perform a dma mapping (and unmapping) for each buffer transferred. Those
1286 * mapping operations can be expensive on some platforms (perhaps using a dma
1287 * bounce buffer or talking to an IOMMU),
1288 * although they're cheap on commodity x86 and ppc hardware.
1289 *
1290 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1291 * which tells the host controller driver that no such mapping is needed for
1292 * the transfer_buffer since
1293 * the device driver is DMA-aware. For example, a device driver might
1294 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1295 * When this transfer flag is provided, host controller drivers will
1296 * attempt to use the dma address found in the transfer_dma
1297 * field rather than determining a dma address themselves.
1298 *
1299 * Note that transfer_buffer must still be set if the controller
1300 * does not support DMA (as indicated by bus.uses_dma) and when talking
1301 * to root hub. If you have to trasfer between highmem zone and the device
1302 * on such controller, create a bounce buffer or bail out with an error.
1303 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1304 * capable, assign NULL to it, so that usbmon knows not to use the value.
1305 * The setup_packet must always be set, so it cannot be located in highmem.
1306 *
1307 * Initialization:
1308 *
1309 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1310 * zero), and complete fields. All URBs must also initialize
1311 * transfer_buffer and transfer_buffer_length. They may provide the
1312 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1313 * to be treated as errors; that flag is invalid for write requests.
1314 *
1315 * Bulk URBs may
1316 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1317 * should always terminate with a short packet, even if it means adding an
1318 * extra zero length packet.
1319 *
1320 * Control URBs must provide a valid pointer in the setup_packet field.
1321 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1322 * beforehand.
1323 *
1324 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1325 * or, for highspeed devices, 125 microsecond units)
1326 * to poll for transfers. After the URB has been submitted, the interval
1327 * field reflects how the transfer was actually scheduled.
1328 * The polling interval may be more frequent than requested.
1329 * For example, some controllers have a maximum interval of 32 milliseconds,
1330 * while others support intervals of up to 1024 milliseconds.
1331 * Isochronous URBs also have transfer intervals. (Note that for isochronous
1332 * endpoints, as well as high speed interrupt endpoints, the encoding of
1333 * the transfer interval in the endpoint descriptor is logarithmic.
1334 * Device drivers must convert that value to linear units themselves.)
1335 *
1336 * If an isochronous endpoint queue isn't already running, the host
1337 * controller will schedule a new URB to start as soon as bandwidth
1338 * utilization allows. If the queue is running then a new URB will be
1339 * scheduled to start in the first transfer slot following the end of the
1340 * preceding URB, if that slot has not already expired. If the slot has
1341 * expired (which can happen when IRQ delivery is delayed for a long time),
1342 * the scheduling behavior depends on the URB_ISO_ASAP flag. If the flag
1343 * is clear then the URB will be scheduled to start in the expired slot,
1344 * implying that some of its packets will not be transferred; if the flag
1345 * is set then the URB will be scheduled in the first unexpired slot,
1346 * breaking the queue's synchronization. Upon URB completion, the
1347 * start_frame field will be set to the (micro)frame number in which the
1348 * transfer was scheduled. Ranges for frame counter values are HC-specific
1349 * and can go from as low as 256 to as high as 65536 frames.
1350 *
1351 * Isochronous URBs have a different data transfer model, in part because
1352 * the quality of service is only "best effort". Callers provide specially
1353 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1354 * at the end. Each such packet is an individual ISO transfer. Isochronous
1355 * URBs are normally queued, submitted by drivers to arrange that
1356 * transfers are at least double buffered, and then explicitly resubmitted
1357 * in completion handlers, so
1358 * that data (such as audio or video) streams at as constant a rate as the
1359 * host controller scheduler can support.
1360 *
1361 * Completion Callbacks:
1362 *
1363 * The completion callback is made in_interrupt(), and one of the first
1364 * things that a completion handler should do is check the status field.
1365 * The status field is provided for all URBs. It is used to report
1366 * unlinked URBs, and status for all non-ISO transfers. It should not
1367 * be examined before the URB is returned to the completion handler.
1368 *
1369 * The context field is normally used to link URBs back to the relevant
1370 * driver or request state.
1371 *
1372 * When the completion callback is invoked for non-isochronous URBs, the
1373 * actual_length field tells how many bytes were transferred. This field
1374 * is updated even when the URB terminated with an error or was unlinked.
1375 *
1376 * ISO transfer status is reported in the status and actual_length fields
1377 * of the iso_frame_desc array, and the number of errors is reported in
1378 * error_count. Completion callbacks for ISO transfers will normally
1379 * (re)submit URBs to ensure a constant transfer rate.
1380 *
1381 * Note that even fields marked "public" should not be touched by the driver
1382 * when the urb is owned by the hcd, that is, since the call to
1383 * usb_submit_urb() till the entry into the completion routine.
1384 */
1385 struct urb {
1386 /* private: usb core and host controller only fields in the urb */
1387 struct kref kref; /* reference count of the URB */
1388 void *hcpriv; /* private data for host controller */
1389 atomic_t use_count; /* concurrent submissions counter */
1390 atomic_t reject; /* submissions will fail */
1391 int unlinked; /* unlink error code */
1392
1393 /* public: documented fields in the urb that can be used by drivers */
1394 struct list_head urb_list; /* list head for use by the urb's
1395 * current owner */
1396 struct list_head anchor_list; /* the URB may be anchored */
1397 struct usb_anchor *anchor;
1398 struct usb_device *dev; /* (in) pointer to associated device */
1399 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */
1400 unsigned int pipe; /* (in) pipe information */
1401 unsigned int stream_id; /* (in) stream ID */
1402 int status; /* (return) non-ISO status */
1403 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
1404 void *transfer_buffer; /* (in) associated data buffer */
1405 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */
1406 struct scatterlist *sg; /* (in) scatter gather buffer list */
1407 int num_mapped_sgs; /* (internal) mapped sg entries */
1408 int num_sgs; /* (in) number of entries in the sg list */
1409 u32 transfer_buffer_length; /* (in) data buffer length */
1410 u32 actual_length; /* (return) actual transfer length */
1411 unsigned char *setup_packet; /* (in) setup packet (control only) */
1412 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */
1413 int start_frame; /* (modify) start frame (ISO) */
1414 int number_of_packets; /* (in) number of ISO packets */
1415 int interval; /* (modify) transfer interval
1416 * (INT/ISO) */
1417 int error_count; /* (return) number of ISO errors */
1418 void *context; /* (in) context for completion */
1419 usb_complete_t complete; /* (in) completion routine */
1420 struct usb_iso_packet_descriptor iso_frame_desc[0];
1421 /* (in) ISO ONLY */
1422 };
1423
1424 /* ----------------------------------------------------------------------- */
1425
1426 /**
1427 * usb_fill_control_urb - initializes a control urb
1428 * @urb: pointer to the urb to initialize.
1429 * @dev: pointer to the struct usb_device for this urb.
1430 * @pipe: the endpoint pipe
1431 * @setup_packet: pointer to the setup_packet buffer
1432 * @transfer_buffer: pointer to the transfer buffer
1433 * @buffer_length: length of the transfer buffer
1434 * @complete_fn: pointer to the usb_complete_t function
1435 * @context: what to set the urb context to.
1436 *
1437 * Initializes a control urb with the proper information needed to submit
1438 * it to a device.
1439 */
1440 static inline void usb_fill_control_urb(struct urb *urb,
1441 struct usb_device *dev,
1442 unsigned int pipe,
1443 unsigned char *setup_packet,
1444 void *transfer_buffer,
1445 int buffer_length,
1446 usb_complete_t complete_fn,
1447 void *context)
1448 {
1449 urb->dev = dev;
1450 urb->pipe = pipe;
1451 urb->setup_packet = setup_packet;
1452 urb->transfer_buffer = transfer_buffer;
1453 urb->transfer_buffer_length = buffer_length;
1454 urb->complete = complete_fn;
1455 urb->context = context;
1456 }
1457
1458 /**
1459 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1460 * @urb: pointer to the urb to initialize.
1461 * @dev: pointer to the struct usb_device for this urb.
1462 * @pipe: the endpoint pipe
1463 * @transfer_buffer: pointer to the transfer buffer
1464 * @buffer_length: length of the transfer buffer
1465 * @complete_fn: pointer to the usb_complete_t function
1466 * @context: what to set the urb context to.
1467 *
1468 * Initializes a bulk urb with the proper information needed to submit it
1469 * to a device.
1470 */
1471 static inline void usb_fill_bulk_urb(struct urb *urb,
1472 struct usb_device *dev,
1473 unsigned int pipe,
1474 void *transfer_buffer,
1475 int buffer_length,
1476 usb_complete_t complete_fn,
1477 void *context)
1478 {
1479 urb->dev = dev;
1480 urb->pipe = pipe;
1481 urb->transfer_buffer = transfer_buffer;
1482 urb->transfer_buffer_length = buffer_length;
1483 urb->complete = complete_fn;
1484 urb->context = context;
1485 }
1486
1487 /**
1488 * usb_fill_int_urb - macro to help initialize a interrupt urb
1489 * @urb: pointer to the urb to initialize.
1490 * @dev: pointer to the struct usb_device for this urb.
1491 * @pipe: the endpoint pipe
1492 * @transfer_buffer: pointer to the transfer buffer
1493 * @buffer_length: length of the transfer buffer
1494 * @complete_fn: pointer to the usb_complete_t function
1495 * @context: what to set the urb context to.
1496 * @interval: what to set the urb interval to, encoded like
1497 * the endpoint descriptor's bInterval value.
1498 *
1499 * Initializes a interrupt urb with the proper information needed to submit
1500 * it to a device.
1501 *
1502 * Note that High Speed and SuperSpeed interrupt endpoints use a logarithmic
1503 * encoding of the endpoint interval, and express polling intervals in
1504 * microframes (eight per millisecond) rather than in frames (one per
1505 * millisecond).
1506 *
1507 * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1508 * 128us instead of 125us. For Wireless USB devices, the interval is passed
1509 * through to the host controller, rather than being translated into microframe
1510 * units.
1511 */
1512 static inline void usb_fill_int_urb(struct urb *urb,
1513 struct usb_device *dev,
1514 unsigned int pipe,
1515 void *transfer_buffer,
1516 int buffer_length,
1517 usb_complete_t complete_fn,
1518 void *context,
1519 int interval)
1520 {
1521 urb->dev = dev;
1522 urb->pipe = pipe;
1523 urb->transfer_buffer = transfer_buffer;
1524 urb->transfer_buffer_length = buffer_length;
1525 urb->complete = complete_fn;
1526 urb->context = context;
1527 if (dev->speed == USB_SPEED_HIGH || dev->speed == USB_SPEED_SUPER)
1528 urb->interval = 1 << (interval - 1);
1529 else
1530 urb->interval = interval;
1531 urb->start_frame = -1;
1532 }
1533
1534 extern void usb_init_urb(struct urb *urb);
1535 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1536 extern void usb_free_urb(struct urb *urb);
1537 #define usb_put_urb usb_free_urb
1538 extern struct urb *usb_get_urb(struct urb *urb);
1539 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1540 extern int usb_unlink_urb(struct urb *urb);
1541 extern void usb_kill_urb(struct urb *urb);
1542 extern void usb_poison_urb(struct urb *urb);
1543 extern void usb_unpoison_urb(struct urb *urb);
1544 extern void usb_block_urb(struct urb *urb);
1545 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1546 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1547 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1548 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1549 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1550 extern void usb_unanchor_urb(struct urb *urb);
1551 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1552 unsigned int timeout);
1553 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1554 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1555 extern int usb_anchor_empty(struct usb_anchor *anchor);
1556
1557 #define usb_unblock_urb usb_unpoison_urb
1558
1559 /**
1560 * usb_urb_dir_in - check if an URB describes an IN transfer
1561 * @urb: URB to be checked
1562 *
1563 * Returns 1 if @urb describes an IN transfer (device-to-host),
1564 * otherwise 0.
1565 */
1566 static inline int usb_urb_dir_in(struct urb *urb)
1567 {
1568 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1569 }
1570
1571 /**
1572 * usb_urb_dir_out - check if an URB describes an OUT transfer
1573 * @urb: URB to be checked
1574 *
1575 * Returns 1 if @urb describes an OUT transfer (host-to-device),
1576 * otherwise 0.
1577 */
1578 static inline int usb_urb_dir_out(struct urb *urb)
1579 {
1580 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1581 }
1582
1583 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1584 gfp_t mem_flags, dma_addr_t *dma);
1585 void usb_free_coherent(struct usb_device *dev, size_t size,
1586 void *addr, dma_addr_t dma);
1587
1588 #if 0
1589 struct urb *usb_buffer_map(struct urb *urb);
1590 void usb_buffer_dmasync(struct urb *urb);
1591 void usb_buffer_unmap(struct urb *urb);
1592 #endif
1593
1594 struct scatterlist;
1595 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1596 struct scatterlist *sg, int nents);
1597 #if 0
1598 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1599 struct scatterlist *sg, int n_hw_ents);
1600 #endif
1601 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1602 struct scatterlist *sg, int n_hw_ents);
1603
1604 /*-------------------------------------------------------------------*
1605 * SYNCHRONOUS CALL SUPPORT *
1606 *-------------------------------------------------------------------*/
1607
1608 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1609 __u8 request, __u8 requesttype, __u16 value, __u16 index,
1610 void *data, __u16 size, int timeout);
1611 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1612 void *data, int len, int *actual_length, int timeout);
1613 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1614 void *data, int len, int *actual_length,
1615 int timeout);
1616
1617 /* wrappers around usb_control_msg() for the most common standard requests */
1618 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1619 unsigned char descindex, void *buf, int size);
1620 extern int usb_get_status(struct usb_device *dev,
1621 int type, int target, void *data);
1622 extern int usb_string(struct usb_device *dev, int index,
1623 char *buf, size_t size);
1624
1625 /* wrappers that also update important state inside usbcore */
1626 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1627 extern int usb_reset_configuration(struct usb_device *dev);
1628 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1629 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1630
1631 /* this request isn't really synchronous, but it belongs with the others */
1632 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1633
1634 /*
1635 * timeouts, in milliseconds, used for sending/receiving control messages
1636 * they typically complete within a few frames (msec) after they're issued
1637 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1638 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1639 */
1640 #define USB_CTRL_GET_TIMEOUT 5000
1641 #define USB_CTRL_SET_TIMEOUT 5000
1642
1643
1644 /**
1645 * struct usb_sg_request - support for scatter/gather I/O
1646 * @status: zero indicates success, else negative errno
1647 * @bytes: counts bytes transferred.
1648 *
1649 * These requests are initialized using usb_sg_init(), and then are used
1650 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most
1651 * members of the request object aren't for driver access.
1652 *
1653 * The status and bytecount values are valid only after usb_sg_wait()
1654 * returns. If the status is zero, then the bytecount matches the total
1655 * from the request.
1656 *
1657 * After an error completion, drivers may need to clear a halt condition
1658 * on the endpoint.
1659 */
1660 struct usb_sg_request {
1661 int status;
1662 size_t bytes;
1663
1664 /* private:
1665 * members below are private to usbcore,
1666 * and are not provided for driver access!
1667 */
1668 spinlock_t lock;
1669
1670 struct usb_device *dev;
1671 int pipe;
1672
1673 int entries;
1674 struct urb **urbs;
1675
1676 int count;
1677 struct completion complete;
1678 };
1679
1680 int usb_sg_init(
1681 struct usb_sg_request *io,
1682 struct usb_device *dev,
1683 unsigned pipe,
1684 unsigned period,
1685 struct scatterlist *sg,
1686 int nents,
1687 size_t length,
1688 gfp_t mem_flags
1689 );
1690 void usb_sg_cancel(struct usb_sg_request *io);
1691 void usb_sg_wait(struct usb_sg_request *io);
1692
1693
1694 /* ----------------------------------------------------------------------- */
1695
1696 /*
1697 * For various legacy reasons, Linux has a small cookie that's paired with
1698 * a struct usb_device to identify an endpoint queue. Queue characteristics
1699 * are defined by the endpoint's descriptor. This cookie is called a "pipe",
1700 * an unsigned int encoded as:
1701 *
1702 * - direction: bit 7 (0 = Host-to-Device [Out],
1703 * 1 = Device-to-Host [In] ...
1704 * like endpoint bEndpointAddress)
1705 * - device address: bits 8-14 ... bit positions known to uhci-hcd
1706 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd
1707 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt,
1708 * 10 = control, 11 = bulk)
1709 *
1710 * Given the device address and endpoint descriptor, pipes are redundant.
1711 */
1712
1713 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */
1714 /* (yet ... they're the values used by usbfs) */
1715 #define PIPE_ISOCHRONOUS 0
1716 #define PIPE_INTERRUPT 1
1717 #define PIPE_CONTROL 2
1718 #define PIPE_BULK 3
1719
1720 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN)
1721 #define usb_pipeout(pipe) (!usb_pipein(pipe))
1722
1723 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f)
1724 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf)
1725
1726 #define usb_pipetype(pipe) (((pipe) >> 30) & 3)
1727 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1728 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1729 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL)
1730 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK)
1731
1732 static inline unsigned int __create_pipe(struct usb_device *dev,
1733 unsigned int endpoint)
1734 {
1735 return (dev->devnum << 8) | (endpoint << 15);
1736 }
1737
1738 /* Create various pipes... */
1739 #define usb_sndctrlpipe(dev, endpoint) \
1740 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1741 #define usb_rcvctrlpipe(dev, endpoint) \
1742 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1743 #define usb_sndisocpipe(dev, endpoint) \
1744 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1745 #define usb_rcvisocpipe(dev, endpoint) \
1746 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1747 #define usb_sndbulkpipe(dev, endpoint) \
1748 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1749 #define usb_rcvbulkpipe(dev, endpoint) \
1750 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1751 #define usb_sndintpipe(dev, endpoint) \
1752 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1753 #define usb_rcvintpipe(dev, endpoint) \
1754 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1755
1756 static inline struct usb_host_endpoint *
1757 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1758 {
1759 struct usb_host_endpoint **eps;
1760 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1761 return eps[usb_pipeendpoint(pipe)];
1762 }
1763
1764 /*-------------------------------------------------------------------------*/
1765
1766 static inline __u16
1767 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1768 {
1769 struct usb_host_endpoint *ep;
1770 unsigned epnum = usb_pipeendpoint(pipe);
1771
1772 if (is_out) {
1773 WARN_ON(usb_pipein(pipe));
1774 ep = udev->ep_out[epnum];
1775 } else {
1776 WARN_ON(usb_pipeout(pipe));
1777 ep = udev->ep_in[epnum];
1778 }
1779 if (!ep)
1780 return 0;
1781
1782 /* NOTE: only 0x07ff bits are for packet size... */
1783 return usb_endpoint_maxp(&ep->desc);
1784 }
1785
1786 /* ----------------------------------------------------------------------- */
1787
1788 /* translate USB error codes to codes user space understands */
1789 static inline int usb_translate_errors(int error_code)
1790 {
1791 switch (error_code) {
1792 case 0:
1793 case -ENOMEM:
1794 case -ENODEV:
1795 case -EOPNOTSUPP:
1796 return error_code;
1797 default:
1798 return -EIO;
1799 }
1800 }
1801
1802 /* Events from the usb core */
1803 #define USB_DEVICE_ADD 0x0001
1804 #define USB_DEVICE_REMOVE 0x0002
1805 #define USB_BUS_ADD 0x0003
1806 #define USB_BUS_REMOVE 0x0004
1807 extern void usb_register_notify(struct notifier_block *nb);
1808 extern void usb_unregister_notify(struct notifier_block *nb);
1809
1810 /* debugfs stuff */
1811 extern struct dentry *usb_debug_root;
1812
1813 #endif /* __KERNEL__ */
1814
1815 #endif
This page took 0.097665 seconds and 5 git commands to generate.