Merge v2.6.37-rc8 into powerpc/next
[deliverable/linux.git] / include / linux / usb.h
1 #ifndef __LINUX_USB_H
2 #define __LINUX_USB_H
3
4 #include <linux/mod_devicetable.h>
5 #include <linux/usb/ch9.h>
6
7 #define USB_MAJOR 180
8 #define USB_DEVICE_MAJOR 189
9
10
11 #ifdef __KERNEL__
12
13 #include <linux/errno.h> /* for -ENODEV */
14 #include <linux/delay.h> /* for mdelay() */
15 #include <linux/interrupt.h> /* for in_interrupt() */
16 #include <linux/list.h> /* for struct list_head */
17 #include <linux/kref.h> /* for struct kref */
18 #include <linux/device.h> /* for struct device */
19 #include <linux/fs.h> /* for struct file_operations */
20 #include <linux/completion.h> /* for struct completion */
21 #include <linux/sched.h> /* for current && schedule_timeout */
22 #include <linux/mutex.h> /* for struct mutex */
23
24 struct usb_device;
25 struct usb_driver;
26 struct wusb_dev;
27
28 /*-------------------------------------------------------------------------*/
29
30 /*
31 * Host-side wrappers for standard USB descriptors ... these are parsed
32 * from the data provided by devices. Parsing turns them from a flat
33 * sequence of descriptors into a hierarchy:
34 *
35 * - devices have one (usually) or more configs;
36 * - configs have one (often) or more interfaces;
37 * - interfaces have one (usually) or more settings;
38 * - each interface setting has zero or (usually) more endpoints.
39 * - a SuperSpeed endpoint has a companion descriptor
40 *
41 * And there might be other descriptors mixed in with those.
42 *
43 * Devices may also have class-specific or vendor-specific descriptors.
44 */
45
46 struct ep_device;
47
48 /**
49 * struct usb_host_endpoint - host-side endpoint descriptor and queue
50 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
51 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
52 * @urb_list: urbs queued to this endpoint; maintained by usbcore
53 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
54 * with one or more transfer descriptors (TDs) per urb
55 * @ep_dev: ep_device for sysfs info
56 * @extra: descriptors following this endpoint in the configuration
57 * @extralen: how many bytes of "extra" are valid
58 * @enabled: URBs may be submitted to this endpoint
59 *
60 * USB requests are always queued to a given endpoint, identified by a
61 * descriptor within an active interface in a given USB configuration.
62 */
63 struct usb_host_endpoint {
64 struct usb_endpoint_descriptor desc;
65 struct usb_ss_ep_comp_descriptor ss_ep_comp;
66 struct list_head urb_list;
67 void *hcpriv;
68 struct ep_device *ep_dev; /* For sysfs info */
69
70 unsigned char *extra; /* Extra descriptors */
71 int extralen;
72 int enabled;
73 };
74
75 /* host-side wrapper for one interface setting's parsed descriptors */
76 struct usb_host_interface {
77 struct usb_interface_descriptor desc;
78
79 /* array of desc.bNumEndpoint endpoints associated with this
80 * interface setting. these will be in no particular order.
81 */
82 struct usb_host_endpoint *endpoint;
83
84 char *string; /* iInterface string, if present */
85 unsigned char *extra; /* Extra descriptors */
86 int extralen;
87 };
88
89 enum usb_interface_condition {
90 USB_INTERFACE_UNBOUND = 0,
91 USB_INTERFACE_BINDING,
92 USB_INTERFACE_BOUND,
93 USB_INTERFACE_UNBINDING,
94 };
95
96 /**
97 * struct usb_interface - what usb device drivers talk to
98 * @altsetting: array of interface structures, one for each alternate
99 * setting that may be selected. Each one includes a set of
100 * endpoint configurations. They will be in no particular order.
101 * @cur_altsetting: the current altsetting.
102 * @num_altsetting: number of altsettings defined.
103 * @intf_assoc: interface association descriptor
104 * @minor: the minor number assigned to this interface, if this
105 * interface is bound to a driver that uses the USB major number.
106 * If this interface does not use the USB major, this field should
107 * be unused. The driver should set this value in the probe()
108 * function of the driver, after it has been assigned a minor
109 * number from the USB core by calling usb_register_dev().
110 * @condition: binding state of the interface: not bound, binding
111 * (in probe()), bound to a driver, or unbinding (in disconnect())
112 * @sysfs_files_created: sysfs attributes exist
113 * @ep_devs_created: endpoint child pseudo-devices exist
114 * @unregistering: flag set when the interface is being unregistered
115 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
116 * capability during autosuspend.
117 * @needs_altsetting0: flag set when a set-interface request for altsetting 0
118 * has been deferred.
119 * @needs_binding: flag set when the driver should be re-probed or unbound
120 * following a reset or suspend operation it doesn't support.
121 * @dev: driver model's view of this device
122 * @usb_dev: if an interface is bound to the USB major, this will point
123 * to the sysfs representation for that device.
124 * @pm_usage_cnt: PM usage counter for this interface
125 * @reset_ws: Used for scheduling resets from atomic context.
126 * @reset_running: set to 1 if the interface is currently running a
127 * queued reset so that usb_cancel_queued_reset() doesn't try to
128 * remove from the workqueue when running inside the worker
129 * thread. See __usb_queue_reset_device().
130 * @resetting_device: USB core reset the device, so use alt setting 0 as
131 * current; needs bandwidth alloc after reset.
132 *
133 * USB device drivers attach to interfaces on a physical device. Each
134 * interface encapsulates a single high level function, such as feeding
135 * an audio stream to a speaker or reporting a change in a volume control.
136 * Many USB devices only have one interface. The protocol used to talk to
137 * an interface's endpoints can be defined in a usb "class" specification,
138 * or by a product's vendor. The (default) control endpoint is part of
139 * every interface, but is never listed among the interface's descriptors.
140 *
141 * The driver that is bound to the interface can use standard driver model
142 * calls such as dev_get_drvdata() on the dev member of this structure.
143 *
144 * Each interface may have alternate settings. The initial configuration
145 * of a device sets altsetting 0, but the device driver can change
146 * that setting using usb_set_interface(). Alternate settings are often
147 * used to control the use of periodic endpoints, such as by having
148 * different endpoints use different amounts of reserved USB bandwidth.
149 * All standards-conformant USB devices that use isochronous endpoints
150 * will use them in non-default settings.
151 *
152 * The USB specification says that alternate setting numbers must run from
153 * 0 to one less than the total number of alternate settings. But some
154 * devices manage to mess this up, and the structures aren't necessarily
155 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to
156 * look up an alternate setting in the altsetting array based on its number.
157 */
158 struct usb_interface {
159 /* array of alternate settings for this interface,
160 * stored in no particular order */
161 struct usb_host_interface *altsetting;
162
163 struct usb_host_interface *cur_altsetting; /* the currently
164 * active alternate setting */
165 unsigned num_altsetting; /* number of alternate settings */
166
167 /* If there is an interface association descriptor then it will list
168 * the associated interfaces */
169 struct usb_interface_assoc_descriptor *intf_assoc;
170
171 int minor; /* minor number this interface is
172 * bound to */
173 enum usb_interface_condition condition; /* state of binding */
174 unsigned sysfs_files_created:1; /* the sysfs attributes exist */
175 unsigned ep_devs_created:1; /* endpoint "devices" exist */
176 unsigned unregistering:1; /* unregistration is in progress */
177 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
178 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */
179 unsigned needs_binding:1; /* needs delayed unbind/rebind */
180 unsigned reset_running:1;
181 unsigned resetting_device:1; /* true: bandwidth alloc after reset */
182
183 struct device dev; /* interface specific device info */
184 struct device *usb_dev;
185 atomic_t pm_usage_cnt; /* usage counter for autosuspend */
186 struct work_struct reset_ws; /* for resets in atomic context */
187 };
188 #define to_usb_interface(d) container_of(d, struct usb_interface, dev)
189
190 static inline void *usb_get_intfdata(struct usb_interface *intf)
191 {
192 return dev_get_drvdata(&intf->dev);
193 }
194
195 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
196 {
197 dev_set_drvdata(&intf->dev, data);
198 }
199
200 struct usb_interface *usb_get_intf(struct usb_interface *intf);
201 void usb_put_intf(struct usb_interface *intf);
202
203 /* this maximum is arbitrary */
204 #define USB_MAXINTERFACES 32
205 #define USB_MAXIADS (USB_MAXINTERFACES/2)
206
207 /**
208 * struct usb_interface_cache - long-term representation of a device interface
209 * @num_altsetting: number of altsettings defined.
210 * @ref: reference counter.
211 * @altsetting: variable-length array of interface structures, one for
212 * each alternate setting that may be selected. Each one includes a
213 * set of endpoint configurations. They will be in no particular order.
214 *
215 * These structures persist for the lifetime of a usb_device, unlike
216 * struct usb_interface (which persists only as long as its configuration
217 * is installed). The altsetting arrays can be accessed through these
218 * structures at any time, permitting comparison of configurations and
219 * providing support for the /proc/bus/usb/devices pseudo-file.
220 */
221 struct usb_interface_cache {
222 unsigned num_altsetting; /* number of alternate settings */
223 struct kref ref; /* reference counter */
224
225 /* variable-length array of alternate settings for this interface,
226 * stored in no particular order */
227 struct usb_host_interface altsetting[0];
228 };
229 #define ref_to_usb_interface_cache(r) \
230 container_of(r, struct usb_interface_cache, ref)
231 #define altsetting_to_usb_interface_cache(a) \
232 container_of(a, struct usb_interface_cache, altsetting[0])
233
234 /**
235 * struct usb_host_config - representation of a device's configuration
236 * @desc: the device's configuration descriptor.
237 * @string: pointer to the cached version of the iConfiguration string, if
238 * present for this configuration.
239 * @intf_assoc: list of any interface association descriptors in this config
240 * @interface: array of pointers to usb_interface structures, one for each
241 * interface in the configuration. The number of interfaces is stored
242 * in desc.bNumInterfaces. These pointers are valid only while the
243 * the configuration is active.
244 * @intf_cache: array of pointers to usb_interface_cache structures, one
245 * for each interface in the configuration. These structures exist
246 * for the entire life of the device.
247 * @extra: pointer to buffer containing all extra descriptors associated
248 * with this configuration (those preceding the first interface
249 * descriptor).
250 * @extralen: length of the extra descriptors buffer.
251 *
252 * USB devices may have multiple configurations, but only one can be active
253 * at any time. Each encapsulates a different operational environment;
254 * for example, a dual-speed device would have separate configurations for
255 * full-speed and high-speed operation. The number of configurations
256 * available is stored in the device descriptor as bNumConfigurations.
257 *
258 * A configuration can contain multiple interfaces. Each corresponds to
259 * a different function of the USB device, and all are available whenever
260 * the configuration is active. The USB standard says that interfaces
261 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
262 * of devices get this wrong. In addition, the interface array is not
263 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to
264 * look up an interface entry based on its number.
265 *
266 * Device drivers should not attempt to activate configurations. The choice
267 * of which configuration to install is a policy decision based on such
268 * considerations as available power, functionality provided, and the user's
269 * desires (expressed through userspace tools). However, drivers can call
270 * usb_reset_configuration() to reinitialize the current configuration and
271 * all its interfaces.
272 */
273 struct usb_host_config {
274 struct usb_config_descriptor desc;
275
276 char *string; /* iConfiguration string, if present */
277
278 /* List of any Interface Association Descriptors in this
279 * configuration. */
280 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
281
282 /* the interfaces associated with this configuration,
283 * stored in no particular order */
284 struct usb_interface *interface[USB_MAXINTERFACES];
285
286 /* Interface information available even when this is not the
287 * active configuration */
288 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
289
290 unsigned char *extra; /* Extra descriptors */
291 int extralen;
292 };
293
294 int __usb_get_extra_descriptor(char *buffer, unsigned size,
295 unsigned char type, void **ptr);
296 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
297 __usb_get_extra_descriptor((ifpoint)->extra, \
298 (ifpoint)->extralen, \
299 type, (void **)ptr)
300
301 /* ----------------------------------------------------------------------- */
302
303 /* USB device number allocation bitmap */
304 struct usb_devmap {
305 unsigned long devicemap[128 / (8*sizeof(unsigned long))];
306 };
307
308 /*
309 * Allocated per bus (tree of devices) we have:
310 */
311 struct usb_bus {
312 struct device *controller; /* host/master side hardware */
313 int busnum; /* Bus number (in order of reg) */
314 const char *bus_name; /* stable id (PCI slot_name etc) */
315 u8 uses_dma; /* Does the host controller use DMA? */
316 u8 uses_pio_for_control; /*
317 * Does the host controller use PIO
318 * for control transfers?
319 */
320 u8 otg_port; /* 0, or number of OTG/HNP port */
321 unsigned is_b_host:1; /* true during some HNP roleswitches */
322 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */
323 unsigned sg_tablesize; /* 0 or largest number of sg list entries */
324
325 int devnum_next; /* Next open device number in
326 * round-robin allocation */
327
328 struct usb_devmap devmap; /* device address allocation map */
329 struct usb_device *root_hub; /* Root hub */
330 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */
331 struct list_head bus_list; /* list of busses */
332
333 int bandwidth_allocated; /* on this bus: how much of the time
334 * reserved for periodic (intr/iso)
335 * requests is used, on average?
336 * Units: microseconds/frame.
337 * Limits: Full/low speed reserve 90%,
338 * while high speed reserves 80%.
339 */
340 int bandwidth_int_reqs; /* number of Interrupt requests */
341 int bandwidth_isoc_reqs; /* number of Isoc. requests */
342
343 #ifdef CONFIG_USB_DEVICEFS
344 struct dentry *usbfs_dentry; /* usbfs dentry entry for the bus */
345 #endif
346
347 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
348 struct mon_bus *mon_bus; /* non-null when associated */
349 int monitored; /* non-zero when monitored */
350 #endif
351 };
352
353 /* ----------------------------------------------------------------------- */
354
355 /* This is arbitrary.
356 * From USB 2.0 spec Table 11-13, offset 7, a hub can
357 * have up to 255 ports. The most yet reported is 10.
358 *
359 * Current Wireless USB host hardware (Intel i1480 for example) allows
360 * up to 22 devices to connect. Upcoming hardware might raise that
361 * limit. Because the arrays need to add a bit for hub status data, we
362 * do 31, so plus one evens out to four bytes.
363 */
364 #define USB_MAXCHILDREN (31)
365
366 struct usb_tt;
367
368 /**
369 * struct usb_device - kernel's representation of a USB device
370 * @devnum: device number; address on a USB bus
371 * @devpath: device ID string for use in messages (e.g., /port/...)
372 * @route: tree topology hex string for use with xHCI
373 * @state: device state: configured, not attached, etc.
374 * @speed: device speed: high/full/low (or error)
375 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
376 * @ttport: device port on that tt hub
377 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
378 * @parent: our hub, unless we're the root
379 * @bus: bus we're part of
380 * @ep0: endpoint 0 data (default control pipe)
381 * @dev: generic device interface
382 * @descriptor: USB device descriptor
383 * @config: all of the device's configs
384 * @actconfig: the active configuration
385 * @ep_in: array of IN endpoints
386 * @ep_out: array of OUT endpoints
387 * @rawdescriptors: raw descriptors for each config
388 * @bus_mA: Current available from the bus
389 * @portnum: parent port number (origin 1)
390 * @level: number of USB hub ancestors
391 * @can_submit: URBs may be submitted
392 * @persist_enabled: USB_PERSIST enabled for this device
393 * @have_langid: whether string_langid is valid
394 * @authorized: policy has said we can use it;
395 * (user space) policy determines if we authorize this device to be
396 * used or not. By default, wired USB devices are authorized.
397 * WUSB devices are not, until we authorize them from user space.
398 * FIXME -- complete doc
399 * @authenticated: Crypto authentication passed
400 * @wusb: device is Wireless USB
401 * @string_langid: language ID for strings
402 * @product: iProduct string, if present (static)
403 * @manufacturer: iManufacturer string, if present (static)
404 * @serial: iSerialNumber string, if present (static)
405 * @filelist: usbfs files that are open to this device
406 * @usb_classdev: USB class device that was created for usbfs device
407 * access from userspace
408 * @usbfs_dentry: usbfs dentry entry for the device
409 * @maxchild: number of ports if hub
410 * @children: child devices - USB devices that are attached to this hub
411 * @quirks: quirks of the whole device
412 * @urbnum: number of URBs submitted for the whole device
413 * @active_duration: total time device is not suspended
414 * @last_busy: time of last use
415 * @autosuspend_delay: in jiffies
416 * @connect_time: time device was first connected
417 * @do_remote_wakeup: remote wakeup should be enabled
418 * @reset_resume: needs reset instead of resume
419 * @wusb_dev: if this is a Wireless USB device, link to the WUSB
420 * specific data for the device.
421 * @slot_id: Slot ID assigned by xHCI
422 *
423 * Notes:
424 * Usbcore drivers should not set usbdev->state directly. Instead use
425 * usb_set_device_state().
426 */
427 struct usb_device {
428 int devnum;
429 char devpath[16];
430 u32 route;
431 enum usb_device_state state;
432 enum usb_device_speed speed;
433
434 struct usb_tt *tt;
435 int ttport;
436
437 unsigned int toggle[2];
438
439 struct usb_device *parent;
440 struct usb_bus *bus;
441 struct usb_host_endpoint ep0;
442
443 struct device dev;
444
445 struct usb_device_descriptor descriptor;
446 struct usb_host_config *config;
447
448 struct usb_host_config *actconfig;
449 struct usb_host_endpoint *ep_in[16];
450 struct usb_host_endpoint *ep_out[16];
451
452 char **rawdescriptors;
453
454 unsigned short bus_mA;
455 u8 portnum;
456 u8 level;
457
458 unsigned can_submit:1;
459 unsigned persist_enabled:1;
460 unsigned have_langid:1;
461 unsigned authorized:1;
462 unsigned authenticated:1;
463 unsigned wusb:1;
464 int string_langid;
465
466 /* static strings from the device */
467 char *product;
468 char *manufacturer;
469 char *serial;
470
471 struct list_head filelist;
472 #ifdef CONFIG_USB_DEVICE_CLASS
473 struct device *usb_classdev;
474 #endif
475 #ifdef CONFIG_USB_DEVICEFS
476 struct dentry *usbfs_dentry;
477 #endif
478
479 int maxchild;
480 struct usb_device *children[USB_MAXCHILDREN];
481
482 u32 quirks;
483 atomic_t urbnum;
484
485 unsigned long active_duration;
486
487 #ifdef CONFIG_PM
488 unsigned long last_busy;
489 int autosuspend_delay;
490 unsigned long connect_time;
491
492 unsigned do_remote_wakeup:1;
493 unsigned reset_resume:1;
494 #endif
495 struct wusb_dev *wusb_dev;
496 int slot_id;
497 };
498 #define to_usb_device(d) container_of(d, struct usb_device, dev)
499
500 static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
501 {
502 return to_usb_device(intf->dev.parent);
503 }
504
505 extern struct usb_device *usb_get_dev(struct usb_device *dev);
506 extern void usb_put_dev(struct usb_device *dev);
507
508 /* USB device locking */
509 #define usb_lock_device(udev) device_lock(&(udev)->dev)
510 #define usb_unlock_device(udev) device_unlock(&(udev)->dev)
511 #define usb_trylock_device(udev) device_trylock(&(udev)->dev)
512 extern int usb_lock_device_for_reset(struct usb_device *udev,
513 const struct usb_interface *iface);
514
515 /* USB port reset for device reinitialization */
516 extern int usb_reset_device(struct usb_device *dev);
517 extern void usb_queue_reset_device(struct usb_interface *dev);
518
519
520 /* USB autosuspend and autoresume */
521 #ifdef CONFIG_USB_SUSPEND
522 extern void usb_enable_autosuspend(struct usb_device *udev);
523 extern void usb_disable_autosuspend(struct usb_device *udev);
524
525 extern int usb_autopm_get_interface(struct usb_interface *intf);
526 extern void usb_autopm_put_interface(struct usb_interface *intf);
527 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
528 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
529 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
530 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
531
532 static inline void usb_mark_last_busy(struct usb_device *udev)
533 {
534 udev->last_busy = jiffies;
535 }
536
537 #else
538
539 static inline int usb_enable_autosuspend(struct usb_device *udev)
540 { return 0; }
541 static inline int usb_disable_autosuspend(struct usb_device *udev)
542 { return 0; }
543
544 static inline int usb_autopm_get_interface(struct usb_interface *intf)
545 { return 0; }
546 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
547 { return 0; }
548
549 static inline void usb_autopm_put_interface(struct usb_interface *intf)
550 { }
551 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
552 { }
553 static inline void usb_autopm_get_interface_no_resume(
554 struct usb_interface *intf)
555 { }
556 static inline void usb_autopm_put_interface_no_suspend(
557 struct usb_interface *intf)
558 { }
559 static inline void usb_mark_last_busy(struct usb_device *udev)
560 { }
561 #endif
562
563 /*-------------------------------------------------------------------------*/
564
565 /* for drivers using iso endpoints */
566 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
567
568 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
569 extern int usb_alloc_streams(struct usb_interface *interface,
570 struct usb_host_endpoint **eps, unsigned int num_eps,
571 unsigned int num_streams, gfp_t mem_flags);
572
573 /* Reverts a group of bulk endpoints back to not using stream IDs. */
574 extern void usb_free_streams(struct usb_interface *interface,
575 struct usb_host_endpoint **eps, unsigned int num_eps,
576 gfp_t mem_flags);
577
578 /* used these for multi-interface device registration */
579 extern int usb_driver_claim_interface(struct usb_driver *driver,
580 struct usb_interface *iface, void *priv);
581
582 /**
583 * usb_interface_claimed - returns true iff an interface is claimed
584 * @iface: the interface being checked
585 *
586 * Returns true (nonzero) iff the interface is claimed, else false (zero).
587 * Callers must own the driver model's usb bus readlock. So driver
588 * probe() entries don't need extra locking, but other call contexts
589 * may need to explicitly claim that lock.
590 *
591 */
592 static inline int usb_interface_claimed(struct usb_interface *iface)
593 {
594 return (iface->dev.driver != NULL);
595 }
596
597 extern void usb_driver_release_interface(struct usb_driver *driver,
598 struct usb_interface *iface);
599 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
600 const struct usb_device_id *id);
601 extern int usb_match_one_id(struct usb_interface *interface,
602 const struct usb_device_id *id);
603
604 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
605 int minor);
606 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
607 unsigned ifnum);
608 extern struct usb_host_interface *usb_altnum_to_altsetting(
609 const struct usb_interface *intf, unsigned int altnum);
610 extern struct usb_host_interface *usb_find_alt_setting(
611 struct usb_host_config *config,
612 unsigned int iface_num,
613 unsigned int alt_num);
614
615
616 /**
617 * usb_make_path - returns stable device path in the usb tree
618 * @dev: the device whose path is being constructed
619 * @buf: where to put the string
620 * @size: how big is "buf"?
621 *
622 * Returns length of the string (> 0) or negative if size was too small.
623 *
624 * This identifier is intended to be "stable", reflecting physical paths in
625 * hardware such as physical bus addresses for host controllers or ports on
626 * USB hubs. That makes it stay the same until systems are physically
627 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
628 * controllers. Adding and removing devices, including virtual root hubs
629 * in host controller driver modules, does not change these path identifers;
630 * neither does rebooting or re-enumerating. These are more useful identifiers
631 * than changeable ("unstable") ones like bus numbers or device addresses.
632 *
633 * With a partial exception for devices connected to USB 2.0 root hubs, these
634 * identifiers are also predictable. So long as the device tree isn't changed,
635 * plugging any USB device into a given hub port always gives it the same path.
636 * Because of the use of "companion" controllers, devices connected to ports on
637 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
638 * high speed, and a different one if they are full or low speed.
639 */
640 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
641 {
642 int actual;
643 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
644 dev->devpath);
645 return (actual >= (int)size) ? -1 : actual;
646 }
647
648 /*-------------------------------------------------------------------------*/
649
650 #define USB_DEVICE_ID_MATCH_DEVICE \
651 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
652 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
653 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
654 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
655 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
656 #define USB_DEVICE_ID_MATCH_DEV_INFO \
657 (USB_DEVICE_ID_MATCH_DEV_CLASS | \
658 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
659 USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
660 #define USB_DEVICE_ID_MATCH_INT_INFO \
661 (USB_DEVICE_ID_MATCH_INT_CLASS | \
662 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
663 USB_DEVICE_ID_MATCH_INT_PROTOCOL)
664
665 /**
666 * USB_DEVICE - macro used to describe a specific usb device
667 * @vend: the 16 bit USB Vendor ID
668 * @prod: the 16 bit USB Product ID
669 *
670 * This macro is used to create a struct usb_device_id that matches a
671 * specific device.
672 */
673 #define USB_DEVICE(vend, prod) \
674 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
675 .idVendor = (vend), \
676 .idProduct = (prod)
677 /**
678 * USB_DEVICE_VER - describe a specific usb device with a version range
679 * @vend: the 16 bit USB Vendor ID
680 * @prod: the 16 bit USB Product ID
681 * @lo: the bcdDevice_lo value
682 * @hi: the bcdDevice_hi value
683 *
684 * This macro is used to create a struct usb_device_id that matches a
685 * specific device, with a version range.
686 */
687 #define USB_DEVICE_VER(vend, prod, lo, hi) \
688 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
689 .idVendor = (vend), \
690 .idProduct = (prod), \
691 .bcdDevice_lo = (lo), \
692 .bcdDevice_hi = (hi)
693
694 /**
695 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
696 * @vend: the 16 bit USB Vendor ID
697 * @prod: the 16 bit USB Product ID
698 * @pr: bInterfaceProtocol value
699 *
700 * This macro is used to create a struct usb_device_id that matches a
701 * specific interface protocol of devices.
702 */
703 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
704 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
705 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
706 .idVendor = (vend), \
707 .idProduct = (prod), \
708 .bInterfaceProtocol = (pr)
709
710 /**
711 * USB_DEVICE_INFO - macro used to describe a class of usb devices
712 * @cl: bDeviceClass value
713 * @sc: bDeviceSubClass value
714 * @pr: bDeviceProtocol value
715 *
716 * This macro is used to create a struct usb_device_id that matches a
717 * specific class of devices.
718 */
719 #define USB_DEVICE_INFO(cl, sc, pr) \
720 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
721 .bDeviceClass = (cl), \
722 .bDeviceSubClass = (sc), \
723 .bDeviceProtocol = (pr)
724
725 /**
726 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
727 * @cl: bInterfaceClass value
728 * @sc: bInterfaceSubClass value
729 * @pr: bInterfaceProtocol value
730 *
731 * This macro is used to create a struct usb_device_id that matches a
732 * specific class of interfaces.
733 */
734 #define USB_INTERFACE_INFO(cl, sc, pr) \
735 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
736 .bInterfaceClass = (cl), \
737 .bInterfaceSubClass = (sc), \
738 .bInterfaceProtocol = (pr)
739
740 /**
741 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
742 * @vend: the 16 bit USB Vendor ID
743 * @prod: the 16 bit USB Product ID
744 * @cl: bInterfaceClass value
745 * @sc: bInterfaceSubClass value
746 * @pr: bInterfaceProtocol value
747 *
748 * This macro is used to create a struct usb_device_id that matches a
749 * specific device with a specific class of interfaces.
750 *
751 * This is especially useful when explicitly matching devices that have
752 * vendor specific bDeviceClass values, but standards-compliant interfaces.
753 */
754 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
755 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
756 | USB_DEVICE_ID_MATCH_DEVICE, \
757 .idVendor = (vend), \
758 .idProduct = (prod), \
759 .bInterfaceClass = (cl), \
760 .bInterfaceSubClass = (sc), \
761 .bInterfaceProtocol = (pr)
762
763 /* ----------------------------------------------------------------------- */
764
765 /* Stuff for dynamic usb ids */
766 struct usb_dynids {
767 spinlock_t lock;
768 struct list_head list;
769 };
770
771 struct usb_dynid {
772 struct list_head node;
773 struct usb_device_id id;
774 };
775
776 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
777 struct device_driver *driver,
778 const char *buf, size_t count);
779
780 /**
781 * struct usbdrv_wrap - wrapper for driver-model structure
782 * @driver: The driver-model core driver structure.
783 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
784 */
785 struct usbdrv_wrap {
786 struct device_driver driver;
787 int for_devices;
788 };
789
790 /**
791 * struct usb_driver - identifies USB interface driver to usbcore
792 * @name: The driver name should be unique among USB drivers,
793 * and should normally be the same as the module name.
794 * @probe: Called to see if the driver is willing to manage a particular
795 * interface on a device. If it is, probe returns zero and uses
796 * usb_set_intfdata() to associate driver-specific data with the
797 * interface. It may also use usb_set_interface() to specify the
798 * appropriate altsetting. If unwilling to manage the interface,
799 * return -ENODEV, if genuine IO errors occured, an appropriate
800 * negative errno value.
801 * @disconnect: Called when the interface is no longer accessible, usually
802 * because its device has been (or is being) disconnected or the
803 * driver module is being unloaded.
804 * @unlocked_ioctl: Used for drivers that want to talk to userspace through
805 * the "usbfs" filesystem. This lets devices provide ways to
806 * expose information to user space regardless of where they
807 * do (or don't) show up otherwise in the filesystem.
808 * @suspend: Called when the device is going to be suspended by the system.
809 * @resume: Called when the device is being resumed by the system.
810 * @reset_resume: Called when the suspended device has been reset instead
811 * of being resumed.
812 * @pre_reset: Called by usb_reset_device() when the device
813 * is about to be reset.
814 * @post_reset: Called by usb_reset_device() after the device
815 * has been reset
816 * @id_table: USB drivers use ID table to support hotplugging.
817 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set
818 * or your driver's probe function will never get called.
819 * @dynids: used internally to hold the list of dynamically added device
820 * ids for this driver.
821 * @drvwrap: Driver-model core structure wrapper.
822 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
823 * added to this driver by preventing the sysfs file from being created.
824 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
825 * for interfaces bound to this driver.
826 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
827 * endpoints before calling the driver's disconnect method.
828 *
829 * USB interface drivers must provide a name, probe() and disconnect()
830 * methods, and an id_table. Other driver fields are optional.
831 *
832 * The id_table is used in hotplugging. It holds a set of descriptors,
833 * and specialized data may be associated with each entry. That table
834 * is used by both user and kernel mode hotplugging support.
835 *
836 * The probe() and disconnect() methods are called in a context where
837 * they can sleep, but they should avoid abusing the privilege. Most
838 * work to connect to a device should be done when the device is opened,
839 * and undone at the last close. The disconnect code needs to address
840 * concurrency issues with respect to open() and close() methods, as
841 * well as forcing all pending I/O requests to complete (by unlinking
842 * them as necessary, and blocking until the unlinks complete).
843 */
844 struct usb_driver {
845 const char *name;
846
847 int (*probe) (struct usb_interface *intf,
848 const struct usb_device_id *id);
849
850 void (*disconnect) (struct usb_interface *intf);
851
852 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
853 void *buf);
854
855 int (*suspend) (struct usb_interface *intf, pm_message_t message);
856 int (*resume) (struct usb_interface *intf);
857 int (*reset_resume)(struct usb_interface *intf);
858
859 int (*pre_reset)(struct usb_interface *intf);
860 int (*post_reset)(struct usb_interface *intf);
861
862 const struct usb_device_id *id_table;
863
864 struct usb_dynids dynids;
865 struct usbdrv_wrap drvwrap;
866 unsigned int no_dynamic_id:1;
867 unsigned int supports_autosuspend:1;
868 unsigned int soft_unbind:1;
869 };
870 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
871
872 /**
873 * struct usb_device_driver - identifies USB device driver to usbcore
874 * @name: The driver name should be unique among USB drivers,
875 * and should normally be the same as the module name.
876 * @probe: Called to see if the driver is willing to manage a particular
877 * device. If it is, probe returns zero and uses dev_set_drvdata()
878 * to associate driver-specific data with the device. If unwilling
879 * to manage the device, return a negative errno value.
880 * @disconnect: Called when the device is no longer accessible, usually
881 * because it has been (or is being) disconnected or the driver's
882 * module is being unloaded.
883 * @suspend: Called when the device is going to be suspended by the system.
884 * @resume: Called when the device is being resumed by the system.
885 * @drvwrap: Driver-model core structure wrapper.
886 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
887 * for devices bound to this driver.
888 *
889 * USB drivers must provide all the fields listed above except drvwrap.
890 */
891 struct usb_device_driver {
892 const char *name;
893
894 int (*probe) (struct usb_device *udev);
895 void (*disconnect) (struct usb_device *udev);
896
897 int (*suspend) (struct usb_device *udev, pm_message_t message);
898 int (*resume) (struct usb_device *udev, pm_message_t message);
899 struct usbdrv_wrap drvwrap;
900 unsigned int supports_autosuspend:1;
901 };
902 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
903 drvwrap.driver)
904
905 extern struct bus_type usb_bus_type;
906
907 /**
908 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
909 * @name: the usb class device name for this driver. Will show up in sysfs.
910 * @devnode: Callback to provide a naming hint for a possible
911 * device node to create.
912 * @fops: pointer to the struct file_operations of this driver.
913 * @minor_base: the start of the minor range for this driver.
914 *
915 * This structure is used for the usb_register_dev() and
916 * usb_unregister_dev() functions, to consolidate a number of the
917 * parameters used for them.
918 */
919 struct usb_class_driver {
920 char *name;
921 char *(*devnode)(struct device *dev, mode_t *mode);
922 const struct file_operations *fops;
923 int minor_base;
924 };
925
926 /*
927 * use these in module_init()/module_exit()
928 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
929 */
930 extern int usb_register_driver(struct usb_driver *, struct module *,
931 const char *);
932 static inline int usb_register(struct usb_driver *driver)
933 {
934 return usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME);
935 }
936 extern void usb_deregister(struct usb_driver *);
937
938 extern int usb_register_device_driver(struct usb_device_driver *,
939 struct module *);
940 extern void usb_deregister_device_driver(struct usb_device_driver *);
941
942 extern int usb_register_dev(struct usb_interface *intf,
943 struct usb_class_driver *class_driver);
944 extern void usb_deregister_dev(struct usb_interface *intf,
945 struct usb_class_driver *class_driver);
946
947 extern int usb_disabled(void);
948
949 /* ----------------------------------------------------------------------- */
950
951 /*
952 * URB support, for asynchronous request completions
953 */
954
955 /*
956 * urb->transfer_flags:
957 *
958 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
959 */
960 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */
961 #define URB_ISO_ASAP 0x0002 /* iso-only, urb->start_frame
962 * ignored */
963 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */
964 #define URB_NO_FSBR 0x0020 /* UHCI-specific */
965 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */
966 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt
967 * needed */
968 #define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */
969
970 /* The following flags are used internally by usbcore and HCDs */
971 #define URB_DIR_IN 0x0200 /* Transfer from device to host */
972 #define URB_DIR_OUT 0
973 #define URB_DIR_MASK URB_DIR_IN
974
975 #define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */
976 #define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */
977 #define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */
978 #define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */
979 #define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */
980 #define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */
981 #define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */
982
983 struct usb_iso_packet_descriptor {
984 unsigned int offset;
985 unsigned int length; /* expected length */
986 unsigned int actual_length;
987 int status;
988 };
989
990 struct urb;
991
992 struct usb_anchor {
993 struct list_head urb_list;
994 wait_queue_head_t wait;
995 spinlock_t lock;
996 unsigned int poisoned:1;
997 };
998
999 static inline void init_usb_anchor(struct usb_anchor *anchor)
1000 {
1001 INIT_LIST_HEAD(&anchor->urb_list);
1002 init_waitqueue_head(&anchor->wait);
1003 spin_lock_init(&anchor->lock);
1004 }
1005
1006 typedef void (*usb_complete_t)(struct urb *);
1007
1008 /**
1009 * struct urb - USB Request Block
1010 * @urb_list: For use by current owner of the URB.
1011 * @anchor_list: membership in the list of an anchor
1012 * @anchor: to anchor URBs to a common mooring
1013 * @ep: Points to the endpoint's data structure. Will eventually
1014 * replace @pipe.
1015 * @pipe: Holds endpoint number, direction, type, and more.
1016 * Create these values with the eight macros available;
1017 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1018 * (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1019 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint
1020 * numbers range from zero to fifteen. Note that "in" endpoint two
1021 * is a different endpoint (and pipe) from "out" endpoint two.
1022 * The current configuration controls the existence, type, and
1023 * maximum packet size of any given endpoint.
1024 * @stream_id: the endpoint's stream ID for bulk streams
1025 * @dev: Identifies the USB device to perform the request.
1026 * @status: This is read in non-iso completion functions to get the
1027 * status of the particular request. ISO requests only use it
1028 * to tell whether the URB was unlinked; detailed status for
1029 * each frame is in the fields of the iso_frame-desc.
1030 * @transfer_flags: A variety of flags may be used to affect how URB
1031 * submission, unlinking, or operation are handled. Different
1032 * kinds of URB can use different flags.
1033 * @transfer_buffer: This identifies the buffer to (or from) which the I/O
1034 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1035 * (however, do not leave garbage in transfer_buffer even then).
1036 * This buffer must be suitable for DMA; allocate it with
1037 * kmalloc() or equivalent. For transfers to "in" endpoints, contents
1038 * of this buffer will be modified. This buffer is used for the data
1039 * stage of control transfers.
1040 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1041 * the device driver is saying that it provided this DMA address,
1042 * which the host controller driver should use in preference to the
1043 * transfer_buffer.
1044 * @sg: scatter gather buffer list
1045 * @num_sgs: number of entries in the sg list
1046 * @transfer_buffer_length: How big is transfer_buffer. The transfer may
1047 * be broken up into chunks according to the current maximum packet
1048 * size for the endpoint, which is a function of the configuration
1049 * and is encoded in the pipe. When the length is zero, neither
1050 * transfer_buffer nor transfer_dma is used.
1051 * @actual_length: This is read in non-iso completion functions, and
1052 * it tells how many bytes (out of transfer_buffer_length) were
1053 * transferred. It will normally be the same as requested, unless
1054 * either an error was reported or a short read was performed.
1055 * The URB_SHORT_NOT_OK transfer flag may be used to make such
1056 * short reads be reported as errors.
1057 * @setup_packet: Only used for control transfers, this points to eight bytes
1058 * of setup data. Control transfers always start by sending this data
1059 * to the device. Then transfer_buffer is read or written, if needed.
1060 * @setup_dma: DMA pointer for the setup packet. The caller must not use
1061 * this field; setup_packet must point to a valid buffer.
1062 * @start_frame: Returns the initial frame for isochronous transfers.
1063 * @number_of_packets: Lists the number of ISO transfer buffers.
1064 * @interval: Specifies the polling interval for interrupt or isochronous
1065 * transfers. The units are frames (milliseconds) for full and low
1066 * speed devices, and microframes (1/8 millisecond) for highspeed
1067 * and SuperSpeed devices.
1068 * @error_count: Returns the number of ISO transfers that reported errors.
1069 * @context: For use in completion functions. This normally points to
1070 * request-specific driver context.
1071 * @complete: Completion handler. This URB is passed as the parameter to the
1072 * completion function. The completion function may then do what
1073 * it likes with the URB, including resubmitting or freeing it.
1074 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1075 * collect the transfer status for each buffer.
1076 *
1077 * This structure identifies USB transfer requests. URBs must be allocated by
1078 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1079 * Initialization may be done using various usb_fill_*_urb() functions. URBs
1080 * are submitted using usb_submit_urb(), and pending requests may be canceled
1081 * using usb_unlink_urb() or usb_kill_urb().
1082 *
1083 * Data Transfer Buffers:
1084 *
1085 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1086 * taken from the general page pool. That is provided by transfer_buffer
1087 * (control requests also use setup_packet), and host controller drivers
1088 * perform a dma mapping (and unmapping) for each buffer transferred. Those
1089 * mapping operations can be expensive on some platforms (perhaps using a dma
1090 * bounce buffer or talking to an IOMMU),
1091 * although they're cheap on commodity x86 and ppc hardware.
1092 *
1093 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1094 * which tells the host controller driver that no such mapping is needed for
1095 * the transfer_buffer since
1096 * the device driver is DMA-aware. For example, a device driver might
1097 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1098 * When this transfer flag is provided, host controller drivers will
1099 * attempt to use the dma address found in the transfer_dma
1100 * field rather than determining a dma address themselves.
1101 *
1102 * Note that transfer_buffer must still be set if the controller
1103 * does not support DMA (as indicated by bus.uses_dma) and when talking
1104 * to root hub. If you have to trasfer between highmem zone and the device
1105 * on such controller, create a bounce buffer or bail out with an error.
1106 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1107 * capable, assign NULL to it, so that usbmon knows not to use the value.
1108 * The setup_packet must always be set, so it cannot be located in highmem.
1109 *
1110 * Initialization:
1111 *
1112 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1113 * zero), and complete fields. All URBs must also initialize
1114 * transfer_buffer and transfer_buffer_length. They may provide the
1115 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1116 * to be treated as errors; that flag is invalid for write requests.
1117 *
1118 * Bulk URBs may
1119 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1120 * should always terminate with a short packet, even if it means adding an
1121 * extra zero length packet.
1122 *
1123 * Control URBs must provide a valid pointer in the setup_packet field.
1124 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1125 * beforehand.
1126 *
1127 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1128 * or, for highspeed devices, 125 microsecond units)
1129 * to poll for transfers. After the URB has been submitted, the interval
1130 * field reflects how the transfer was actually scheduled.
1131 * The polling interval may be more frequent than requested.
1132 * For example, some controllers have a maximum interval of 32 milliseconds,
1133 * while others support intervals of up to 1024 milliseconds.
1134 * Isochronous URBs also have transfer intervals. (Note that for isochronous
1135 * endpoints, as well as high speed interrupt endpoints, the encoding of
1136 * the transfer interval in the endpoint descriptor is logarithmic.
1137 * Device drivers must convert that value to linear units themselves.)
1138 *
1139 * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling
1140 * the host controller to schedule the transfer as soon as bandwidth
1141 * utilization allows, and then set start_frame to reflect the actual frame
1142 * selected during submission. Otherwise drivers must specify the start_frame
1143 * and handle the case where the transfer can't begin then. However, drivers
1144 * won't know how bandwidth is currently allocated, and while they can
1145 * find the current frame using usb_get_current_frame_number () they can't
1146 * know the range for that frame number. (Ranges for frame counter values
1147 * are HC-specific, and can go from 256 to 65536 frames from "now".)
1148 *
1149 * Isochronous URBs have a different data transfer model, in part because
1150 * the quality of service is only "best effort". Callers provide specially
1151 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1152 * at the end. Each such packet is an individual ISO transfer. Isochronous
1153 * URBs are normally queued, submitted by drivers to arrange that
1154 * transfers are at least double buffered, and then explicitly resubmitted
1155 * in completion handlers, so
1156 * that data (such as audio or video) streams at as constant a rate as the
1157 * host controller scheduler can support.
1158 *
1159 * Completion Callbacks:
1160 *
1161 * The completion callback is made in_interrupt(), and one of the first
1162 * things that a completion handler should do is check the status field.
1163 * The status field is provided for all URBs. It is used to report
1164 * unlinked URBs, and status for all non-ISO transfers. It should not
1165 * be examined before the URB is returned to the completion handler.
1166 *
1167 * The context field is normally used to link URBs back to the relevant
1168 * driver or request state.
1169 *
1170 * When the completion callback is invoked for non-isochronous URBs, the
1171 * actual_length field tells how many bytes were transferred. This field
1172 * is updated even when the URB terminated with an error or was unlinked.
1173 *
1174 * ISO transfer status is reported in the status and actual_length fields
1175 * of the iso_frame_desc array, and the number of errors is reported in
1176 * error_count. Completion callbacks for ISO transfers will normally
1177 * (re)submit URBs to ensure a constant transfer rate.
1178 *
1179 * Note that even fields marked "public" should not be touched by the driver
1180 * when the urb is owned by the hcd, that is, since the call to
1181 * usb_submit_urb() till the entry into the completion routine.
1182 */
1183 struct urb {
1184 /* private: usb core and host controller only fields in the urb */
1185 struct kref kref; /* reference count of the URB */
1186 void *hcpriv; /* private data for host controller */
1187 atomic_t use_count; /* concurrent submissions counter */
1188 atomic_t reject; /* submissions will fail */
1189 int unlinked; /* unlink error code */
1190
1191 /* public: documented fields in the urb that can be used by drivers */
1192 struct list_head urb_list; /* list head for use by the urb's
1193 * current owner */
1194 struct list_head anchor_list; /* the URB may be anchored */
1195 struct usb_anchor *anchor;
1196 struct usb_device *dev; /* (in) pointer to associated device */
1197 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */
1198 unsigned int pipe; /* (in) pipe information */
1199 unsigned int stream_id; /* (in) stream ID */
1200 int status; /* (return) non-ISO status */
1201 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
1202 void *transfer_buffer; /* (in) associated data buffer */
1203 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */
1204 struct scatterlist *sg; /* (in) scatter gather buffer list */
1205 int num_sgs; /* (in) number of entries in the sg list */
1206 u32 transfer_buffer_length; /* (in) data buffer length */
1207 u32 actual_length; /* (return) actual transfer length */
1208 unsigned char *setup_packet; /* (in) setup packet (control only) */
1209 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */
1210 int start_frame; /* (modify) start frame (ISO) */
1211 int number_of_packets; /* (in) number of ISO packets */
1212 int interval; /* (modify) transfer interval
1213 * (INT/ISO) */
1214 int error_count; /* (return) number of ISO errors */
1215 void *context; /* (in) context for completion */
1216 usb_complete_t complete; /* (in) completion routine */
1217 struct usb_iso_packet_descriptor iso_frame_desc[0];
1218 /* (in) ISO ONLY */
1219 };
1220
1221 /* ----------------------------------------------------------------------- */
1222
1223 /**
1224 * usb_fill_control_urb - initializes a control urb
1225 * @urb: pointer to the urb to initialize.
1226 * @dev: pointer to the struct usb_device for this urb.
1227 * @pipe: the endpoint pipe
1228 * @setup_packet: pointer to the setup_packet buffer
1229 * @transfer_buffer: pointer to the transfer buffer
1230 * @buffer_length: length of the transfer buffer
1231 * @complete_fn: pointer to the usb_complete_t function
1232 * @context: what to set the urb context to.
1233 *
1234 * Initializes a control urb with the proper information needed to submit
1235 * it to a device.
1236 */
1237 static inline void usb_fill_control_urb(struct urb *urb,
1238 struct usb_device *dev,
1239 unsigned int pipe,
1240 unsigned char *setup_packet,
1241 void *transfer_buffer,
1242 int buffer_length,
1243 usb_complete_t complete_fn,
1244 void *context)
1245 {
1246 urb->dev = dev;
1247 urb->pipe = pipe;
1248 urb->setup_packet = setup_packet;
1249 urb->transfer_buffer = transfer_buffer;
1250 urb->transfer_buffer_length = buffer_length;
1251 urb->complete = complete_fn;
1252 urb->context = context;
1253 }
1254
1255 /**
1256 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1257 * @urb: pointer to the urb to initialize.
1258 * @dev: pointer to the struct usb_device for this urb.
1259 * @pipe: the endpoint pipe
1260 * @transfer_buffer: pointer to the transfer buffer
1261 * @buffer_length: length of the transfer buffer
1262 * @complete_fn: pointer to the usb_complete_t function
1263 * @context: what to set the urb context to.
1264 *
1265 * Initializes a bulk urb with the proper information needed to submit it
1266 * to a device.
1267 */
1268 static inline void usb_fill_bulk_urb(struct urb *urb,
1269 struct usb_device *dev,
1270 unsigned int pipe,
1271 void *transfer_buffer,
1272 int buffer_length,
1273 usb_complete_t complete_fn,
1274 void *context)
1275 {
1276 urb->dev = dev;
1277 urb->pipe = pipe;
1278 urb->transfer_buffer = transfer_buffer;
1279 urb->transfer_buffer_length = buffer_length;
1280 urb->complete = complete_fn;
1281 urb->context = context;
1282 }
1283
1284 /**
1285 * usb_fill_int_urb - macro to help initialize a interrupt urb
1286 * @urb: pointer to the urb to initialize.
1287 * @dev: pointer to the struct usb_device for this urb.
1288 * @pipe: the endpoint pipe
1289 * @transfer_buffer: pointer to the transfer buffer
1290 * @buffer_length: length of the transfer buffer
1291 * @complete_fn: pointer to the usb_complete_t function
1292 * @context: what to set the urb context to.
1293 * @interval: what to set the urb interval to, encoded like
1294 * the endpoint descriptor's bInterval value.
1295 *
1296 * Initializes a interrupt urb with the proper information needed to submit
1297 * it to a device.
1298 *
1299 * Note that High Speed and SuperSpeed interrupt endpoints use a logarithmic
1300 * encoding of the endpoint interval, and express polling intervals in
1301 * microframes (eight per millisecond) rather than in frames (one per
1302 * millisecond).
1303 *
1304 * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1305 * 128us instead of 125us. For Wireless USB devices, the interval is passed
1306 * through to the host controller, rather than being translated into microframe
1307 * units.
1308 */
1309 static inline void usb_fill_int_urb(struct urb *urb,
1310 struct usb_device *dev,
1311 unsigned int pipe,
1312 void *transfer_buffer,
1313 int buffer_length,
1314 usb_complete_t complete_fn,
1315 void *context,
1316 int interval)
1317 {
1318 urb->dev = dev;
1319 urb->pipe = pipe;
1320 urb->transfer_buffer = transfer_buffer;
1321 urb->transfer_buffer_length = buffer_length;
1322 urb->complete = complete_fn;
1323 urb->context = context;
1324 if (dev->speed == USB_SPEED_HIGH || dev->speed == USB_SPEED_SUPER)
1325 urb->interval = 1 << (interval - 1);
1326 else
1327 urb->interval = interval;
1328 urb->start_frame = -1;
1329 }
1330
1331 extern void usb_init_urb(struct urb *urb);
1332 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1333 extern void usb_free_urb(struct urb *urb);
1334 #define usb_put_urb usb_free_urb
1335 extern struct urb *usb_get_urb(struct urb *urb);
1336 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1337 extern int usb_unlink_urb(struct urb *urb);
1338 extern void usb_kill_urb(struct urb *urb);
1339 extern void usb_poison_urb(struct urb *urb);
1340 extern void usb_unpoison_urb(struct urb *urb);
1341 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1342 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1343 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1344 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1345 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1346 extern void usb_unanchor_urb(struct urb *urb);
1347 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1348 unsigned int timeout);
1349 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1350 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1351 extern int usb_anchor_empty(struct usb_anchor *anchor);
1352
1353 /**
1354 * usb_urb_dir_in - check if an URB describes an IN transfer
1355 * @urb: URB to be checked
1356 *
1357 * Returns 1 if @urb describes an IN transfer (device-to-host),
1358 * otherwise 0.
1359 */
1360 static inline int usb_urb_dir_in(struct urb *urb)
1361 {
1362 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1363 }
1364
1365 /**
1366 * usb_urb_dir_out - check if an URB describes an OUT transfer
1367 * @urb: URB to be checked
1368 *
1369 * Returns 1 if @urb describes an OUT transfer (host-to-device),
1370 * otherwise 0.
1371 */
1372 static inline int usb_urb_dir_out(struct urb *urb)
1373 {
1374 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1375 }
1376
1377 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1378 gfp_t mem_flags, dma_addr_t *dma);
1379 void usb_free_coherent(struct usb_device *dev, size_t size,
1380 void *addr, dma_addr_t dma);
1381
1382 #if 0
1383 struct urb *usb_buffer_map(struct urb *urb);
1384 void usb_buffer_dmasync(struct urb *urb);
1385 void usb_buffer_unmap(struct urb *urb);
1386 #endif
1387
1388 struct scatterlist;
1389 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1390 struct scatterlist *sg, int nents);
1391 #if 0
1392 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1393 struct scatterlist *sg, int n_hw_ents);
1394 #endif
1395 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1396 struct scatterlist *sg, int n_hw_ents);
1397
1398 /*-------------------------------------------------------------------*
1399 * SYNCHRONOUS CALL SUPPORT *
1400 *-------------------------------------------------------------------*/
1401
1402 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1403 __u8 request, __u8 requesttype, __u16 value, __u16 index,
1404 void *data, __u16 size, int timeout);
1405 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1406 void *data, int len, int *actual_length, int timeout);
1407 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1408 void *data, int len, int *actual_length,
1409 int timeout);
1410
1411 /* wrappers around usb_control_msg() for the most common standard requests */
1412 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1413 unsigned char descindex, void *buf, int size);
1414 extern int usb_get_status(struct usb_device *dev,
1415 int type, int target, void *data);
1416 extern int usb_string(struct usb_device *dev, int index,
1417 char *buf, size_t size);
1418
1419 /* wrappers that also update important state inside usbcore */
1420 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1421 extern int usb_reset_configuration(struct usb_device *dev);
1422 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1423 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1424
1425 /* this request isn't really synchronous, but it belongs with the others */
1426 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1427
1428 /*
1429 * timeouts, in milliseconds, used for sending/receiving control messages
1430 * they typically complete within a few frames (msec) after they're issued
1431 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1432 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1433 */
1434 #define USB_CTRL_GET_TIMEOUT 5000
1435 #define USB_CTRL_SET_TIMEOUT 5000
1436
1437
1438 /**
1439 * struct usb_sg_request - support for scatter/gather I/O
1440 * @status: zero indicates success, else negative errno
1441 * @bytes: counts bytes transferred.
1442 *
1443 * These requests are initialized using usb_sg_init(), and then are used
1444 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most
1445 * members of the request object aren't for driver access.
1446 *
1447 * The status and bytecount values are valid only after usb_sg_wait()
1448 * returns. If the status is zero, then the bytecount matches the total
1449 * from the request.
1450 *
1451 * After an error completion, drivers may need to clear a halt condition
1452 * on the endpoint.
1453 */
1454 struct usb_sg_request {
1455 int status;
1456 size_t bytes;
1457
1458 /* private:
1459 * members below are private to usbcore,
1460 * and are not provided for driver access!
1461 */
1462 spinlock_t lock;
1463
1464 struct usb_device *dev;
1465 int pipe;
1466
1467 int entries;
1468 struct urb **urbs;
1469
1470 int count;
1471 struct completion complete;
1472 };
1473
1474 int usb_sg_init(
1475 struct usb_sg_request *io,
1476 struct usb_device *dev,
1477 unsigned pipe,
1478 unsigned period,
1479 struct scatterlist *sg,
1480 int nents,
1481 size_t length,
1482 gfp_t mem_flags
1483 );
1484 void usb_sg_cancel(struct usb_sg_request *io);
1485 void usb_sg_wait(struct usb_sg_request *io);
1486
1487
1488 /* ----------------------------------------------------------------------- */
1489
1490 /*
1491 * For various legacy reasons, Linux has a small cookie that's paired with
1492 * a struct usb_device to identify an endpoint queue. Queue characteristics
1493 * are defined by the endpoint's descriptor. This cookie is called a "pipe",
1494 * an unsigned int encoded as:
1495 *
1496 * - direction: bit 7 (0 = Host-to-Device [Out],
1497 * 1 = Device-to-Host [In] ...
1498 * like endpoint bEndpointAddress)
1499 * - device address: bits 8-14 ... bit positions known to uhci-hcd
1500 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd
1501 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt,
1502 * 10 = control, 11 = bulk)
1503 *
1504 * Given the device address and endpoint descriptor, pipes are redundant.
1505 */
1506
1507 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */
1508 /* (yet ... they're the values used by usbfs) */
1509 #define PIPE_ISOCHRONOUS 0
1510 #define PIPE_INTERRUPT 1
1511 #define PIPE_CONTROL 2
1512 #define PIPE_BULK 3
1513
1514 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN)
1515 #define usb_pipeout(pipe) (!usb_pipein(pipe))
1516
1517 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f)
1518 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf)
1519
1520 #define usb_pipetype(pipe) (((pipe) >> 30) & 3)
1521 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1522 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1523 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL)
1524 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK)
1525
1526 static inline unsigned int __create_pipe(struct usb_device *dev,
1527 unsigned int endpoint)
1528 {
1529 return (dev->devnum << 8) | (endpoint << 15);
1530 }
1531
1532 /* Create various pipes... */
1533 #define usb_sndctrlpipe(dev, endpoint) \
1534 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1535 #define usb_rcvctrlpipe(dev, endpoint) \
1536 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1537 #define usb_sndisocpipe(dev, endpoint) \
1538 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1539 #define usb_rcvisocpipe(dev, endpoint) \
1540 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1541 #define usb_sndbulkpipe(dev, endpoint) \
1542 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1543 #define usb_rcvbulkpipe(dev, endpoint) \
1544 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1545 #define usb_sndintpipe(dev, endpoint) \
1546 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1547 #define usb_rcvintpipe(dev, endpoint) \
1548 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1549
1550 static inline struct usb_host_endpoint *
1551 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1552 {
1553 struct usb_host_endpoint **eps;
1554 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1555 return eps[usb_pipeendpoint(pipe)];
1556 }
1557
1558 /*-------------------------------------------------------------------------*/
1559
1560 static inline __u16
1561 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1562 {
1563 struct usb_host_endpoint *ep;
1564 unsigned epnum = usb_pipeendpoint(pipe);
1565
1566 if (is_out) {
1567 WARN_ON(usb_pipein(pipe));
1568 ep = udev->ep_out[epnum];
1569 } else {
1570 WARN_ON(usb_pipeout(pipe));
1571 ep = udev->ep_in[epnum];
1572 }
1573 if (!ep)
1574 return 0;
1575
1576 /* NOTE: only 0x07ff bits are for packet size... */
1577 return le16_to_cpu(ep->desc.wMaxPacketSize);
1578 }
1579
1580 /* ----------------------------------------------------------------------- */
1581
1582 /* Events from the usb core */
1583 #define USB_DEVICE_ADD 0x0001
1584 #define USB_DEVICE_REMOVE 0x0002
1585 #define USB_BUS_ADD 0x0003
1586 #define USB_BUS_REMOVE 0x0004
1587 extern void usb_register_notify(struct notifier_block *nb);
1588 extern void usb_unregister_notify(struct notifier_block *nb);
1589
1590 #ifdef DEBUG
1591 #define dbg(format, arg...) \
1592 printk(KERN_DEBUG "%s: " format "\n", __FILE__, ##arg)
1593 #else
1594 #define dbg(format, arg...) \
1595 do { \
1596 if (0) \
1597 printk(KERN_DEBUG "%s: " format "\n", __FILE__, ##arg); \
1598 } while (0)
1599 #endif
1600
1601 #define err(format, arg...) \
1602 printk(KERN_ERR KBUILD_MODNAME ": " format "\n", ##arg)
1603
1604 /* debugfs stuff */
1605 extern struct dentry *usb_debug_root;
1606
1607 #endif /* __KERNEL__ */
1608
1609 #endif
This page took 0.063308 seconds and 5 git commands to generate.