usbcore: trim down usb_bus structure
[deliverable/linux.git] / include / linux / usb.h
1 #ifndef __LINUX_USB_H
2 #define __LINUX_USB_H
3
4 #include <linux/mod_devicetable.h>
5 #include <linux/usb_ch9.h>
6
7 #define USB_MAJOR 180
8 #define USB_DEVICE_MAJOR 189
9
10
11 #ifdef __KERNEL__
12
13 #include <linux/errno.h> /* for -ENODEV */
14 #include <linux/delay.h> /* for mdelay() */
15 #include <linux/interrupt.h> /* for in_interrupt() */
16 #include <linux/list.h> /* for struct list_head */
17 #include <linux/kref.h> /* for struct kref */
18 #include <linux/device.h> /* for struct device */
19 #include <linux/fs.h> /* for struct file_operations */
20 #include <linux/completion.h> /* for struct completion */
21 #include <linux/sched.h> /* for current && schedule_timeout */
22
23 struct usb_device;
24 struct usb_driver;
25
26 /*-------------------------------------------------------------------------*/
27
28 /*
29 * Host-side wrappers for standard USB descriptors ... these are parsed
30 * from the data provided by devices. Parsing turns them from a flat
31 * sequence of descriptors into a hierarchy:
32 *
33 * - devices have one (usually) or more configs;
34 * - configs have one (often) or more interfaces;
35 * - interfaces have one (usually) or more settings;
36 * - each interface setting has zero or (usually) more endpoints.
37 *
38 * And there might be other descriptors mixed in with those.
39 *
40 * Devices may also have class-specific or vendor-specific descriptors.
41 */
42
43 struct ep_device;
44
45 /**
46 * struct usb_host_endpoint - host-side endpoint descriptor and queue
47 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
48 * @urb_list: urbs queued to this endpoint; maintained by usbcore
49 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
50 * with one or more transfer descriptors (TDs) per urb
51 * @ep_dev: ep_device for sysfs info
52 * @extra: descriptors following this endpoint in the configuration
53 * @extralen: how many bytes of "extra" are valid
54 *
55 * USB requests are always queued to a given endpoint, identified by a
56 * descriptor within an active interface in a given USB configuration.
57 */
58 struct usb_host_endpoint {
59 struct usb_endpoint_descriptor desc;
60 struct list_head urb_list;
61 void *hcpriv;
62 struct ep_device *ep_dev; /* For sysfs info */
63
64 unsigned char *extra; /* Extra descriptors */
65 int extralen;
66 };
67
68 /* host-side wrapper for one interface setting's parsed descriptors */
69 struct usb_host_interface {
70 struct usb_interface_descriptor desc;
71
72 /* array of desc.bNumEndpoint endpoints associated with this
73 * interface setting. these will be in no particular order.
74 */
75 struct usb_host_endpoint *endpoint;
76
77 char *string; /* iInterface string, if present */
78 unsigned char *extra; /* Extra descriptors */
79 int extralen;
80 };
81
82 enum usb_interface_condition {
83 USB_INTERFACE_UNBOUND = 0,
84 USB_INTERFACE_BINDING,
85 USB_INTERFACE_BOUND,
86 USB_INTERFACE_UNBINDING,
87 };
88
89 /**
90 * struct usb_interface - what usb device drivers talk to
91 * @altsetting: array of interface structures, one for each alternate
92 * setting that may be selected. Each one includes a set of
93 * endpoint configurations. They will be in no particular order.
94 * @num_altsetting: number of altsettings defined.
95 * @cur_altsetting: the current altsetting.
96 * @driver: the USB driver that is bound to this interface.
97 * @minor: the minor number assigned to this interface, if this
98 * interface is bound to a driver that uses the USB major number.
99 * If this interface does not use the USB major, this field should
100 * be unused. The driver should set this value in the probe()
101 * function of the driver, after it has been assigned a minor
102 * number from the USB core by calling usb_register_dev().
103 * @condition: binding state of the interface: not bound, binding
104 * (in probe()), bound to a driver, or unbinding (in disconnect())
105 * @is_active: flag set when the interface is bound and not suspended.
106 * @dev: driver model's view of this device
107 * @class_dev: driver model's class view of this device.
108 *
109 * USB device drivers attach to interfaces on a physical device. Each
110 * interface encapsulates a single high level function, such as feeding
111 * an audio stream to a speaker or reporting a change in a volume control.
112 * Many USB devices only have one interface. The protocol used to talk to
113 * an interface's endpoints can be defined in a usb "class" specification,
114 * or by a product's vendor. The (default) control endpoint is part of
115 * every interface, but is never listed among the interface's descriptors.
116 *
117 * The driver that is bound to the interface can use standard driver model
118 * calls such as dev_get_drvdata() on the dev member of this structure.
119 *
120 * Each interface may have alternate settings. The initial configuration
121 * of a device sets altsetting 0, but the device driver can change
122 * that setting using usb_set_interface(). Alternate settings are often
123 * used to control the the use of periodic endpoints, such as by having
124 * different endpoints use different amounts of reserved USB bandwidth.
125 * All standards-conformant USB devices that use isochronous endpoints
126 * will use them in non-default settings.
127 *
128 * The USB specification says that alternate setting numbers must run from
129 * 0 to one less than the total number of alternate settings. But some
130 * devices manage to mess this up, and the structures aren't necessarily
131 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to
132 * look up an alternate setting in the altsetting array based on its number.
133 */
134 struct usb_interface {
135 /* array of alternate settings for this interface,
136 * stored in no particular order */
137 struct usb_host_interface *altsetting;
138
139 struct usb_host_interface *cur_altsetting; /* the currently
140 * active alternate setting */
141 unsigned num_altsetting; /* number of alternate settings */
142
143 int minor; /* minor number this interface is
144 * bound to */
145 enum usb_interface_condition condition; /* state of binding */
146 unsigned is_active:1; /* the interface is not suspended */
147
148 struct device dev; /* interface specific device info */
149 struct class_device *class_dev;
150 };
151 #define to_usb_interface(d) container_of(d, struct usb_interface, dev)
152 #define interface_to_usbdev(intf) \
153 container_of(intf->dev.parent, struct usb_device, dev)
154
155 static inline void *usb_get_intfdata (struct usb_interface *intf)
156 {
157 return dev_get_drvdata (&intf->dev);
158 }
159
160 static inline void usb_set_intfdata (struct usb_interface *intf, void *data)
161 {
162 dev_set_drvdata(&intf->dev, data);
163 }
164
165 struct usb_interface *usb_get_intf(struct usb_interface *intf);
166 void usb_put_intf(struct usb_interface *intf);
167
168 /* this maximum is arbitrary */
169 #define USB_MAXINTERFACES 32
170
171 /**
172 * struct usb_interface_cache - long-term representation of a device interface
173 * @num_altsetting: number of altsettings defined.
174 * @ref: reference counter.
175 * @altsetting: variable-length array of interface structures, one for
176 * each alternate setting that may be selected. Each one includes a
177 * set of endpoint configurations. They will be in no particular order.
178 *
179 * These structures persist for the lifetime of a usb_device, unlike
180 * struct usb_interface (which persists only as long as its configuration
181 * is installed). The altsetting arrays can be accessed through these
182 * structures at any time, permitting comparison of configurations and
183 * providing support for the /proc/bus/usb/devices pseudo-file.
184 */
185 struct usb_interface_cache {
186 unsigned num_altsetting; /* number of alternate settings */
187 struct kref ref; /* reference counter */
188
189 /* variable-length array of alternate settings for this interface,
190 * stored in no particular order */
191 struct usb_host_interface altsetting[0];
192 };
193 #define ref_to_usb_interface_cache(r) \
194 container_of(r, struct usb_interface_cache, ref)
195 #define altsetting_to_usb_interface_cache(a) \
196 container_of(a, struct usb_interface_cache, altsetting[0])
197
198 /**
199 * struct usb_host_config - representation of a device's configuration
200 * @desc: the device's configuration descriptor.
201 * @string: pointer to the cached version of the iConfiguration string, if
202 * present for this configuration.
203 * @interface: array of pointers to usb_interface structures, one for each
204 * interface in the configuration. The number of interfaces is stored
205 * in desc.bNumInterfaces. These pointers are valid only while the
206 * the configuration is active.
207 * @intf_cache: array of pointers to usb_interface_cache structures, one
208 * for each interface in the configuration. These structures exist
209 * for the entire life of the device.
210 * @extra: pointer to buffer containing all extra descriptors associated
211 * with this configuration (those preceding the first interface
212 * descriptor).
213 * @extralen: length of the extra descriptors buffer.
214 *
215 * USB devices may have multiple configurations, but only one can be active
216 * at any time. Each encapsulates a different operational environment;
217 * for example, a dual-speed device would have separate configurations for
218 * full-speed and high-speed operation. The number of configurations
219 * available is stored in the device descriptor as bNumConfigurations.
220 *
221 * A configuration can contain multiple interfaces. Each corresponds to
222 * a different function of the USB device, and all are available whenever
223 * the configuration is active. The USB standard says that interfaces
224 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
225 * of devices get this wrong. In addition, the interface array is not
226 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to
227 * look up an interface entry based on its number.
228 *
229 * Device drivers should not attempt to activate configurations. The choice
230 * of which configuration to install is a policy decision based on such
231 * considerations as available power, functionality provided, and the user's
232 * desires (expressed through userspace tools). However, drivers can call
233 * usb_reset_configuration() to reinitialize the current configuration and
234 * all its interfaces.
235 */
236 struct usb_host_config {
237 struct usb_config_descriptor desc;
238
239 char *string; /* iConfiguration string, if present */
240 /* the interfaces associated with this configuration,
241 * stored in no particular order */
242 struct usb_interface *interface[USB_MAXINTERFACES];
243
244 /* Interface information available even when this is not the
245 * active configuration */
246 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
247
248 unsigned char *extra; /* Extra descriptors */
249 int extralen;
250 };
251
252 int __usb_get_extra_descriptor(char *buffer, unsigned size,
253 unsigned char type, void **ptr);
254 #define usb_get_extra_descriptor(ifpoint,type,ptr)\
255 __usb_get_extra_descriptor((ifpoint)->extra,(ifpoint)->extralen,\
256 type,(void**)ptr)
257
258 /* ----------------------------------------------------------------------- */
259
260 /* USB device number allocation bitmap */
261 struct usb_devmap {
262 unsigned long devicemap[128 / (8*sizeof(unsigned long))];
263 };
264
265 /*
266 * Allocated per bus (tree of devices) we have:
267 */
268 struct usb_bus {
269 struct device *controller; /* host/master side hardware */
270 int busnum; /* Bus number (in order of reg) */
271 char *bus_name; /* stable id (PCI slot_name etc) */
272 u8 uses_dma; /* Does the host controller use DMA? */
273 u8 otg_port; /* 0, or number of OTG/HNP port */
274 unsigned is_b_host:1; /* true during some HNP roleswitches */
275 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */
276
277 int devnum_next; /* Next open device number in
278 * round-robin allocation */
279
280 struct usb_devmap devmap; /* device address allocation map */
281 struct usb_device *root_hub; /* Root hub */
282 struct list_head bus_list; /* list of busses */
283
284 int bandwidth_allocated; /* on this bus: how much of the time
285 * reserved for periodic (intr/iso)
286 * requests is used, on average?
287 * Units: microseconds/frame.
288 * Limits: Full/low speed reserve 90%,
289 * while high speed reserves 80%.
290 */
291 int bandwidth_int_reqs; /* number of Interrupt requests */
292 int bandwidth_isoc_reqs; /* number of Isoc. requests */
293
294 struct dentry *usbfs_dentry; /* usbfs dentry entry for the bus */
295
296 struct class_device *class_dev; /* class device for this bus */
297
298 #if defined(CONFIG_USB_MON)
299 struct mon_bus *mon_bus; /* non-null when associated */
300 int monitored; /* non-zero when monitored */
301 #endif
302 };
303
304 /* ----------------------------------------------------------------------- */
305
306 /* This is arbitrary.
307 * From USB 2.0 spec Table 11-13, offset 7, a hub can
308 * have up to 255 ports. The most yet reported is 10.
309 */
310 #define USB_MAXCHILDREN (16)
311
312 struct usb_tt;
313
314 /*
315 * struct usb_device - kernel's representation of a USB device
316 *
317 * FIXME: Write the kerneldoc!
318 *
319 * Usbcore drivers should not set usbdev->state directly. Instead use
320 * usb_set_device_state().
321 */
322 struct usb_device {
323 int devnum; /* Address on USB bus */
324 char devpath [16]; /* Use in messages: /port/port/... */
325 enum usb_device_state state; /* configured, not attached, etc */
326 enum usb_device_speed speed; /* high/full/low (or error) */
327
328 struct usb_tt *tt; /* low/full speed dev, highspeed hub */
329 int ttport; /* device port on that tt hub */
330
331 unsigned int toggle[2]; /* one bit for each endpoint
332 * ([0] = IN, [1] = OUT) */
333
334 struct usb_device *parent; /* our hub, unless we're the root */
335 struct usb_bus *bus; /* Bus we're part of */
336 struct usb_host_endpoint ep0;
337
338 struct device dev; /* Generic device interface */
339
340 struct usb_device_descriptor descriptor;/* Descriptor */
341 struct usb_host_config *config; /* All of the configs */
342
343 struct usb_host_config *actconfig;/* the active configuration */
344 struct usb_host_endpoint *ep_in[16];
345 struct usb_host_endpoint *ep_out[16];
346
347 char **rawdescriptors; /* Raw descriptors for each config */
348
349 unsigned short bus_mA; /* Current available from the bus */
350 u8 portnum; /* Parent port number (origin 1) */
351
352 int have_langid; /* whether string_langid is valid */
353 int string_langid; /* language ID for strings */
354
355 /* static strings from the device */
356 char *product; /* iProduct string, if present */
357 char *manufacturer; /* iManufacturer string, if present */
358 char *serial; /* iSerialNumber string, if present */
359
360 struct list_head filelist;
361 struct class_device *class_dev;
362 struct dentry *usbfs_dentry; /* usbfs dentry entry for the device */
363
364 /*
365 * Child devices - these can be either new devices
366 * (if this is a hub device), or different instances
367 * of this same device.
368 *
369 * Each instance needs its own set of data structures.
370 */
371
372 int maxchild; /* Number of ports if hub */
373 struct usb_device *children[USB_MAXCHILDREN];
374 };
375 #define to_usb_device(d) container_of(d, struct usb_device, dev)
376
377 extern struct usb_device *usb_get_dev(struct usb_device *dev);
378 extern void usb_put_dev(struct usb_device *dev);
379
380 /* USB device locking */
381 #define usb_lock_device(udev) down(&(udev)->dev.sem)
382 #define usb_unlock_device(udev) up(&(udev)->dev.sem)
383 #define usb_trylock_device(udev) down_trylock(&(udev)->dev.sem)
384 extern int usb_lock_device_for_reset(struct usb_device *udev,
385 const struct usb_interface *iface);
386
387 /* USB port reset for device reinitialization */
388 extern int usb_reset_device(struct usb_device *dev);
389 extern int usb_reset_composite_device(struct usb_device *dev,
390 struct usb_interface *iface);
391
392 extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id);
393
394 /*-------------------------------------------------------------------------*/
395
396 /* for drivers using iso endpoints */
397 extern int usb_get_current_frame_number (struct usb_device *usb_dev);
398
399 /* used these for multi-interface device registration */
400 extern int usb_driver_claim_interface(struct usb_driver *driver,
401 struct usb_interface *iface, void* priv);
402
403 /**
404 * usb_interface_claimed - returns true iff an interface is claimed
405 * @iface: the interface being checked
406 *
407 * Returns true (nonzero) iff the interface is claimed, else false (zero).
408 * Callers must own the driver model's usb bus readlock. So driver
409 * probe() entries don't need extra locking, but other call contexts
410 * may need to explicitly claim that lock.
411 *
412 */
413 static inline int usb_interface_claimed(struct usb_interface *iface) {
414 return (iface->dev.driver != NULL);
415 }
416
417 extern void usb_driver_release_interface(struct usb_driver *driver,
418 struct usb_interface *iface);
419 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
420 const struct usb_device_id *id);
421
422 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
423 int minor);
424 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
425 unsigned ifnum);
426 extern struct usb_host_interface *usb_altnum_to_altsetting(
427 const struct usb_interface *intf, unsigned int altnum);
428
429
430 /**
431 * usb_make_path - returns stable device path in the usb tree
432 * @dev: the device whose path is being constructed
433 * @buf: where to put the string
434 * @size: how big is "buf"?
435 *
436 * Returns length of the string (> 0) or negative if size was too small.
437 *
438 * This identifier is intended to be "stable", reflecting physical paths in
439 * hardware such as physical bus addresses for host controllers or ports on
440 * USB hubs. That makes it stay the same until systems are physically
441 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
442 * controllers. Adding and removing devices, including virtual root hubs
443 * in host controller driver modules, does not change these path identifers;
444 * neither does rebooting or re-enumerating. These are more useful identifiers
445 * than changeable ("unstable") ones like bus numbers or device addresses.
446 *
447 * With a partial exception for devices connected to USB 2.0 root hubs, these
448 * identifiers are also predictable. So long as the device tree isn't changed,
449 * plugging any USB device into a given hub port always gives it the same path.
450 * Because of the use of "companion" controllers, devices connected to ports on
451 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
452 * high speed, and a different one if they are full or low speed.
453 */
454 static inline int usb_make_path (struct usb_device *dev, char *buf,
455 size_t size)
456 {
457 int actual;
458 actual = snprintf (buf, size, "usb-%s-%s", dev->bus->bus_name,
459 dev->devpath);
460 return (actual >= (int)size) ? -1 : actual;
461 }
462
463 /*-------------------------------------------------------------------------*/
464
465 extern int usb_endpoint_dir_in(const struct usb_endpoint_descriptor *epd);
466 extern int usb_endpoint_dir_out(const struct usb_endpoint_descriptor *epd);
467 extern int usb_endpoint_xfer_bulk(const struct usb_endpoint_descriptor *epd);
468 extern int usb_endpoint_xfer_int(const struct usb_endpoint_descriptor *epd);
469 extern int usb_endpoint_xfer_isoc(const struct usb_endpoint_descriptor *epd);
470 extern int usb_endpoint_is_bulk_in(const struct usb_endpoint_descriptor *epd);
471 extern int usb_endpoint_is_bulk_out(const struct usb_endpoint_descriptor *epd);
472 extern int usb_endpoint_is_int_in(const struct usb_endpoint_descriptor *epd);
473 extern int usb_endpoint_is_int_out(const struct usb_endpoint_descriptor *epd);
474 extern int usb_endpoint_is_isoc_in(const struct usb_endpoint_descriptor *epd);
475 extern int usb_endpoint_is_isoc_out(const struct usb_endpoint_descriptor *epd);
476
477 /*-------------------------------------------------------------------------*/
478
479 #define USB_DEVICE_ID_MATCH_DEVICE \
480 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
481 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
482 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
483 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
484 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
485 #define USB_DEVICE_ID_MATCH_DEV_INFO \
486 (USB_DEVICE_ID_MATCH_DEV_CLASS | \
487 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
488 USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
489 #define USB_DEVICE_ID_MATCH_INT_INFO \
490 (USB_DEVICE_ID_MATCH_INT_CLASS | \
491 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
492 USB_DEVICE_ID_MATCH_INT_PROTOCOL)
493
494 /**
495 * USB_DEVICE - macro used to describe a specific usb device
496 * @vend: the 16 bit USB Vendor ID
497 * @prod: the 16 bit USB Product ID
498 *
499 * This macro is used to create a struct usb_device_id that matches a
500 * specific device.
501 */
502 #define USB_DEVICE(vend,prod) \
503 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, .idVendor = (vend), \
504 .idProduct = (prod)
505 /**
506 * USB_DEVICE_VER - macro used to describe a specific usb device with a
507 * version range
508 * @vend: the 16 bit USB Vendor ID
509 * @prod: the 16 bit USB Product ID
510 * @lo: the bcdDevice_lo value
511 * @hi: the bcdDevice_hi value
512 *
513 * This macro is used to create a struct usb_device_id that matches a
514 * specific device, with a version range.
515 */
516 #define USB_DEVICE_VER(vend,prod,lo,hi) \
517 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
518 .idVendor = (vend), .idProduct = (prod), \
519 .bcdDevice_lo = (lo), .bcdDevice_hi = (hi)
520
521 /**
522 * USB_DEVICE_INFO - macro used to describe a class of usb devices
523 * @cl: bDeviceClass value
524 * @sc: bDeviceSubClass value
525 * @pr: bDeviceProtocol value
526 *
527 * This macro is used to create a struct usb_device_id that matches a
528 * specific class of devices.
529 */
530 #define USB_DEVICE_INFO(cl,sc,pr) \
531 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, .bDeviceClass = (cl), \
532 .bDeviceSubClass = (sc), .bDeviceProtocol = (pr)
533
534 /**
535 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
536 * @cl: bInterfaceClass value
537 * @sc: bInterfaceSubClass value
538 * @pr: bInterfaceProtocol value
539 *
540 * This macro is used to create a struct usb_device_id that matches a
541 * specific class of interfaces.
542 */
543 #define USB_INTERFACE_INFO(cl,sc,pr) \
544 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, .bInterfaceClass = (cl), \
545 .bInterfaceSubClass = (sc), .bInterfaceProtocol = (pr)
546
547 /* ----------------------------------------------------------------------- */
548
549 struct usb_dynids {
550 spinlock_t lock;
551 struct list_head list;
552 };
553
554 /**
555 * struct usbdrv_wrap - wrapper for driver-model structure
556 * @driver: The driver-model core driver structure.
557 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
558 */
559 struct usbdrv_wrap {
560 struct device_driver driver;
561 int for_devices;
562 };
563
564 /**
565 * struct usb_driver - identifies USB interface driver to usbcore
566 * @name: The driver name should be unique among USB drivers,
567 * and should normally be the same as the module name.
568 * @probe: Called to see if the driver is willing to manage a particular
569 * interface on a device. If it is, probe returns zero and uses
570 * dev_set_drvdata() to associate driver-specific data with the
571 * interface. It may also use usb_set_interface() to specify the
572 * appropriate altsetting. If unwilling to manage the interface,
573 * return a negative errno value.
574 * @disconnect: Called when the interface is no longer accessible, usually
575 * because its device has been (or is being) disconnected or the
576 * driver module is being unloaded.
577 * @ioctl: Used for drivers that want to talk to userspace through
578 * the "usbfs" filesystem. This lets devices provide ways to
579 * expose information to user space regardless of where they
580 * do (or don't) show up otherwise in the filesystem.
581 * @suspend: Called when the device is going to be suspended by the system.
582 * @resume: Called when the device is being resumed by the system.
583 * @pre_reset: Called by usb_reset_composite_device() when the device
584 * is about to be reset.
585 * @post_reset: Called by usb_reset_composite_device() after the device
586 * has been reset.
587 * @id_table: USB drivers use ID table to support hotplugging.
588 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set
589 * or your driver's probe function will never get called.
590 * @dynids: used internally to hold the list of dynamically added device
591 * ids for this driver.
592 * @drvwrap: Driver-model core structure wrapper.
593 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
594 * added to this driver by preventing the sysfs file from being created.
595 *
596 * USB interface drivers must provide a name, probe() and disconnect()
597 * methods, and an id_table. Other driver fields are optional.
598 *
599 * The id_table is used in hotplugging. It holds a set of descriptors,
600 * and specialized data may be associated with each entry. That table
601 * is used by both user and kernel mode hotplugging support.
602 *
603 * The probe() and disconnect() methods are called in a context where
604 * they can sleep, but they should avoid abusing the privilege. Most
605 * work to connect to a device should be done when the device is opened,
606 * and undone at the last close. The disconnect code needs to address
607 * concurrency issues with respect to open() and close() methods, as
608 * well as forcing all pending I/O requests to complete (by unlinking
609 * them as necessary, and blocking until the unlinks complete).
610 */
611 struct usb_driver {
612 const char *name;
613
614 int (*probe) (struct usb_interface *intf,
615 const struct usb_device_id *id);
616
617 void (*disconnect) (struct usb_interface *intf);
618
619 int (*ioctl) (struct usb_interface *intf, unsigned int code,
620 void *buf);
621
622 int (*suspend) (struct usb_interface *intf, pm_message_t message);
623 int (*resume) (struct usb_interface *intf);
624
625 void (*pre_reset) (struct usb_interface *intf);
626 void (*post_reset) (struct usb_interface *intf);
627
628 const struct usb_device_id *id_table;
629
630 struct usb_dynids dynids;
631 struct usbdrv_wrap drvwrap;
632 unsigned int no_dynamic_id:1;
633 };
634 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
635
636 /**
637 * struct usb_device_driver - identifies USB device driver to usbcore
638 * @name: The driver name should be unique among USB drivers,
639 * and should normally be the same as the module name.
640 * @probe: Called to see if the driver is willing to manage a particular
641 * device. If it is, probe returns zero and uses dev_set_drvdata()
642 * to associate driver-specific data with the device. If unwilling
643 * to manage the device, return a negative errno value.
644 * @disconnect: Called when the device is no longer accessible, usually
645 * because it has been (or is being) disconnected or the driver's
646 * module is being unloaded.
647 * @suspend: Called when the device is going to be suspended by the system.
648 * @resume: Called when the device is being resumed by the system.
649 * @drvwrap: Driver-model core structure wrapper.
650 *
651 * USB drivers must provide all the fields listed above except drvwrap.
652 */
653 struct usb_device_driver {
654 const char *name;
655
656 int (*probe) (struct usb_device *udev);
657 void (*disconnect) (struct usb_device *udev);
658
659 int (*suspend) (struct usb_device *udev, pm_message_t message);
660 int (*resume) (struct usb_device *udev);
661 struct usbdrv_wrap drvwrap;
662 };
663 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
664 drvwrap.driver)
665
666 extern struct bus_type usb_bus_type;
667
668 /**
669 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
670 * @name: the usb class device name for this driver. Will show up in sysfs.
671 * @fops: pointer to the struct file_operations of this driver.
672 * @minor_base: the start of the minor range for this driver.
673 *
674 * This structure is used for the usb_register_dev() and
675 * usb_unregister_dev() functions, to consolidate a number of the
676 * parameters used for them.
677 */
678 struct usb_class_driver {
679 char *name;
680 const struct file_operations *fops;
681 int minor_base;
682 };
683
684 /*
685 * use these in module_init()/module_exit()
686 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
687 */
688 extern int usb_register_driver(struct usb_driver *, struct module *);
689 static inline int usb_register(struct usb_driver *driver)
690 {
691 return usb_register_driver(driver, THIS_MODULE);
692 }
693 extern void usb_deregister(struct usb_driver *);
694
695 extern int usb_register_device_driver(struct usb_device_driver *,
696 struct module *);
697 extern void usb_deregister_device_driver(struct usb_device_driver *);
698
699 extern int usb_register_dev(struct usb_interface *intf,
700 struct usb_class_driver *class_driver);
701 extern void usb_deregister_dev(struct usb_interface *intf,
702 struct usb_class_driver *class_driver);
703
704 extern int usb_disabled(void);
705
706 /* ----------------------------------------------------------------------- */
707
708 /*
709 * URB support, for asynchronous request completions
710 */
711
712 /*
713 * urb->transfer_flags:
714 */
715 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */
716 #define URB_ISO_ASAP 0x0002 /* iso-only, urb->start_frame
717 * ignored */
718 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */
719 #define URB_NO_SETUP_DMA_MAP 0x0008 /* urb->setup_dma valid on submit */
720 #define URB_NO_FSBR 0x0020 /* UHCI-specific */
721 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */
722 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt
723 * needed */
724
725 struct usb_iso_packet_descriptor {
726 unsigned int offset;
727 unsigned int length; /* expected length */
728 unsigned int actual_length;
729 unsigned int status;
730 };
731
732 struct urb;
733 struct pt_regs;
734
735 typedef void (*usb_complete_t)(struct urb *, struct pt_regs *);
736
737 /**
738 * struct urb - USB Request Block
739 * @urb_list: For use by current owner of the URB.
740 * @pipe: Holds endpoint number, direction, type, and more.
741 * Create these values with the eight macros available;
742 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
743 * (control), "bulk", "int" (interrupt), or "iso" (isochronous).
744 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint
745 * numbers range from zero to fifteen. Note that "in" endpoint two
746 * is a different endpoint (and pipe) from "out" endpoint two.
747 * The current configuration controls the existence, type, and
748 * maximum packet size of any given endpoint.
749 * @dev: Identifies the USB device to perform the request.
750 * @status: This is read in non-iso completion functions to get the
751 * status of the particular request. ISO requests only use it
752 * to tell whether the URB was unlinked; detailed status for
753 * each frame is in the fields of the iso_frame-desc.
754 * @transfer_flags: A variety of flags may be used to affect how URB
755 * submission, unlinking, or operation are handled. Different
756 * kinds of URB can use different flags.
757 * @transfer_buffer: This identifies the buffer to (or from) which
758 * the I/O request will be performed (unless URB_NO_TRANSFER_DMA_MAP
759 * is set). This buffer must be suitable for DMA; allocate it with
760 * kmalloc() or equivalent. For transfers to "in" endpoints, contents
761 * of this buffer will be modified. This buffer is used for the data
762 * stage of control transfers.
763 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
764 * the device driver is saying that it provided this DMA address,
765 * which the host controller driver should use in preference to the
766 * transfer_buffer.
767 * @transfer_buffer_length: How big is transfer_buffer. The transfer may
768 * be broken up into chunks according to the current maximum packet
769 * size for the endpoint, which is a function of the configuration
770 * and is encoded in the pipe. When the length is zero, neither
771 * transfer_buffer nor transfer_dma is used.
772 * @actual_length: This is read in non-iso completion functions, and
773 * it tells how many bytes (out of transfer_buffer_length) were
774 * transferred. It will normally be the same as requested, unless
775 * either an error was reported or a short read was performed.
776 * The URB_SHORT_NOT_OK transfer flag may be used to make such
777 * short reads be reported as errors.
778 * @setup_packet: Only used for control transfers, this points to eight bytes
779 * of setup data. Control transfers always start by sending this data
780 * to the device. Then transfer_buffer is read or written, if needed.
781 * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the
782 * device driver has provided this DMA address for the setup packet.
783 * The host controller driver should use this in preference to
784 * setup_packet.
785 * @start_frame: Returns the initial frame for isochronous transfers.
786 * @number_of_packets: Lists the number of ISO transfer buffers.
787 * @interval: Specifies the polling interval for interrupt or isochronous
788 * transfers. The units are frames (milliseconds) for for full and low
789 * speed devices, and microframes (1/8 millisecond) for highspeed ones.
790 * @error_count: Returns the number of ISO transfers that reported errors.
791 * @context: For use in completion functions. This normally points to
792 * request-specific driver context.
793 * @complete: Completion handler. This URB is passed as the parameter to the
794 * completion function. The completion function may then do what
795 * it likes with the URB, including resubmitting or freeing it.
796 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
797 * collect the transfer status for each buffer.
798 *
799 * This structure identifies USB transfer requests. URBs must be allocated by
800 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
801 * Initialization may be done using various usb_fill_*_urb() functions. URBs
802 * are submitted using usb_submit_urb(), and pending requests may be canceled
803 * using usb_unlink_urb() or usb_kill_urb().
804 *
805 * Data Transfer Buffers:
806 *
807 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
808 * taken from the general page pool. That is provided by transfer_buffer
809 * (control requests also use setup_packet), and host controller drivers
810 * perform a dma mapping (and unmapping) for each buffer transferred. Those
811 * mapping operations can be expensive on some platforms (perhaps using a dma
812 * bounce buffer or talking to an IOMMU),
813 * although they're cheap on commodity x86 and ppc hardware.
814 *
815 * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags,
816 * which tell the host controller driver that no such mapping is needed since
817 * the device driver is DMA-aware. For example, a device driver might
818 * allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map().
819 * When these transfer flags are provided, host controller drivers will
820 * attempt to use the dma addresses found in the transfer_dma and/or
821 * setup_dma fields rather than determining a dma address themselves. (Note
822 * that transfer_buffer and setup_packet must still be set because not all
823 * host controllers use DMA, nor do virtual root hubs).
824 *
825 * Initialization:
826 *
827 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
828 * zero), and complete fields. All URBs must also initialize
829 * transfer_buffer and transfer_buffer_length. They may provide the
830 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
831 * to be treated as errors; that flag is invalid for write requests.
832 *
833 * Bulk URBs may
834 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
835 * should always terminate with a short packet, even if it means adding an
836 * extra zero length packet.
837 *
838 * Control URBs must provide a setup_packet. The setup_packet and
839 * transfer_buffer may each be mapped for DMA or not, independently of
840 * the other. The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and
841 * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped.
842 * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs.
843 *
844 * Interrupt URBs must provide an interval, saying how often (in milliseconds
845 * or, for highspeed devices, 125 microsecond units)
846 * to poll for transfers. After the URB has been submitted, the interval
847 * field reflects how the transfer was actually scheduled.
848 * The polling interval may be more frequent than requested.
849 * For example, some controllers have a maximum interval of 32 milliseconds,
850 * while others support intervals of up to 1024 milliseconds.
851 * Isochronous URBs also have transfer intervals. (Note that for isochronous
852 * endpoints, as well as high speed interrupt endpoints, the encoding of
853 * the transfer interval in the endpoint descriptor is logarithmic.
854 * Device drivers must convert that value to linear units themselves.)
855 *
856 * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling
857 * the host controller to schedule the transfer as soon as bandwidth
858 * utilization allows, and then set start_frame to reflect the actual frame
859 * selected during submission. Otherwise drivers must specify the start_frame
860 * and handle the case where the transfer can't begin then. However, drivers
861 * won't know how bandwidth is currently allocated, and while they can
862 * find the current frame using usb_get_current_frame_number () they can't
863 * know the range for that frame number. (Ranges for frame counter values
864 * are HC-specific, and can go from 256 to 65536 frames from "now".)
865 *
866 * Isochronous URBs have a different data transfer model, in part because
867 * the quality of service is only "best effort". Callers provide specially
868 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
869 * at the end. Each such packet is an individual ISO transfer. Isochronous
870 * URBs are normally queued, submitted by drivers to arrange that
871 * transfers are at least double buffered, and then explicitly resubmitted
872 * in completion handlers, so
873 * that data (such as audio or video) streams at as constant a rate as the
874 * host controller scheduler can support.
875 *
876 * Completion Callbacks:
877 *
878 * The completion callback is made in_interrupt(), and one of the first
879 * things that a completion handler should do is check the status field.
880 * The status field is provided for all URBs. It is used to report
881 * unlinked URBs, and status for all non-ISO transfers. It should not
882 * be examined before the URB is returned to the completion handler.
883 *
884 * The context field is normally used to link URBs back to the relevant
885 * driver or request state.
886 *
887 * When the completion callback is invoked for non-isochronous URBs, the
888 * actual_length field tells how many bytes were transferred. This field
889 * is updated even when the URB terminated with an error or was unlinked.
890 *
891 * ISO transfer status is reported in the status and actual_length fields
892 * of the iso_frame_desc array, and the number of errors is reported in
893 * error_count. Completion callbacks for ISO transfers will normally
894 * (re)submit URBs to ensure a constant transfer rate.
895 *
896 * Note that even fields marked "public" should not be touched by the driver
897 * when the urb is owned by the hcd, that is, since the call to
898 * usb_submit_urb() till the entry into the completion routine.
899 */
900 struct urb
901 {
902 /* private: usb core and host controller only fields in the urb */
903 struct kref kref; /* reference count of the URB */
904 spinlock_t lock; /* lock for the URB */
905 void *hcpriv; /* private data for host controller */
906 int bandwidth; /* bandwidth for INT/ISO request */
907 atomic_t use_count; /* concurrent submissions counter */
908 u8 reject; /* submissions will fail */
909
910 /* public: documented fields in the urb that can be used by drivers */
911 struct list_head urb_list; /* list head for use by the urb's
912 * current owner */
913 struct usb_device *dev; /* (in) pointer to associated device */
914 unsigned int pipe; /* (in) pipe information */
915 int status; /* (return) non-ISO status */
916 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
917 void *transfer_buffer; /* (in) associated data buffer */
918 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */
919 int transfer_buffer_length; /* (in) data buffer length */
920 int actual_length; /* (return) actual transfer length */
921 unsigned char *setup_packet; /* (in) setup packet (control only) */
922 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */
923 int start_frame; /* (modify) start frame (ISO) */
924 int number_of_packets; /* (in) number of ISO packets */
925 int interval; /* (modify) transfer interval
926 * (INT/ISO) */
927 int error_count; /* (return) number of ISO errors */
928 void *context; /* (in) context for completion */
929 usb_complete_t complete; /* (in) completion routine */
930 struct usb_iso_packet_descriptor iso_frame_desc[0];
931 /* (in) ISO ONLY */
932 };
933
934 /* ----------------------------------------------------------------------- */
935
936 /**
937 * usb_fill_control_urb - initializes a control urb
938 * @urb: pointer to the urb to initialize.
939 * @dev: pointer to the struct usb_device for this urb.
940 * @pipe: the endpoint pipe
941 * @setup_packet: pointer to the setup_packet buffer
942 * @transfer_buffer: pointer to the transfer buffer
943 * @buffer_length: length of the transfer buffer
944 * @complete_fn: pointer to the usb_complete_t function
945 * @context: what to set the urb context to.
946 *
947 * Initializes a control urb with the proper information needed to submit
948 * it to a device.
949 */
950 static inline void usb_fill_control_urb (struct urb *urb,
951 struct usb_device *dev,
952 unsigned int pipe,
953 unsigned char *setup_packet,
954 void *transfer_buffer,
955 int buffer_length,
956 usb_complete_t complete_fn,
957 void *context)
958 {
959 spin_lock_init(&urb->lock);
960 urb->dev = dev;
961 urb->pipe = pipe;
962 urb->setup_packet = setup_packet;
963 urb->transfer_buffer = transfer_buffer;
964 urb->transfer_buffer_length = buffer_length;
965 urb->complete = complete_fn;
966 urb->context = context;
967 }
968
969 /**
970 * usb_fill_bulk_urb - macro to help initialize a bulk urb
971 * @urb: pointer to the urb to initialize.
972 * @dev: pointer to the struct usb_device for this urb.
973 * @pipe: the endpoint pipe
974 * @transfer_buffer: pointer to the transfer buffer
975 * @buffer_length: length of the transfer buffer
976 * @complete_fn: pointer to the usb_complete_t function
977 * @context: what to set the urb context to.
978 *
979 * Initializes a bulk urb with the proper information needed to submit it
980 * to a device.
981 */
982 static inline void usb_fill_bulk_urb (struct urb *urb,
983 struct usb_device *dev,
984 unsigned int pipe,
985 void *transfer_buffer,
986 int buffer_length,
987 usb_complete_t complete_fn,
988 void *context)
989 {
990 spin_lock_init(&urb->lock);
991 urb->dev = dev;
992 urb->pipe = pipe;
993 urb->transfer_buffer = transfer_buffer;
994 urb->transfer_buffer_length = buffer_length;
995 urb->complete = complete_fn;
996 urb->context = context;
997 }
998
999 /**
1000 * usb_fill_int_urb - macro to help initialize a interrupt urb
1001 * @urb: pointer to the urb to initialize.
1002 * @dev: pointer to the struct usb_device for this urb.
1003 * @pipe: the endpoint pipe
1004 * @transfer_buffer: pointer to the transfer buffer
1005 * @buffer_length: length of the transfer buffer
1006 * @complete_fn: pointer to the usb_complete_t function
1007 * @context: what to set the urb context to.
1008 * @interval: what to set the urb interval to, encoded like
1009 * the endpoint descriptor's bInterval value.
1010 *
1011 * Initializes a interrupt urb with the proper information needed to submit
1012 * it to a device.
1013 * Note that high speed interrupt endpoints use a logarithmic encoding of
1014 * the endpoint interval, and express polling intervals in microframes
1015 * (eight per millisecond) rather than in frames (one per millisecond).
1016 */
1017 static inline void usb_fill_int_urb (struct urb *urb,
1018 struct usb_device *dev,
1019 unsigned int pipe,
1020 void *transfer_buffer,
1021 int buffer_length,
1022 usb_complete_t complete_fn,
1023 void *context,
1024 int interval)
1025 {
1026 spin_lock_init(&urb->lock);
1027 urb->dev = dev;
1028 urb->pipe = pipe;
1029 urb->transfer_buffer = transfer_buffer;
1030 urb->transfer_buffer_length = buffer_length;
1031 urb->complete = complete_fn;
1032 urb->context = context;
1033 if (dev->speed == USB_SPEED_HIGH)
1034 urb->interval = 1 << (interval - 1);
1035 else
1036 urb->interval = interval;
1037 urb->start_frame = -1;
1038 }
1039
1040 extern void usb_init_urb(struct urb *urb);
1041 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1042 extern void usb_free_urb(struct urb *urb);
1043 #define usb_put_urb usb_free_urb
1044 extern struct urb *usb_get_urb(struct urb *urb);
1045 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1046 extern int usb_unlink_urb(struct urb *urb);
1047 extern void usb_kill_urb(struct urb *urb);
1048
1049 void *usb_buffer_alloc (struct usb_device *dev, size_t size,
1050 gfp_t mem_flags, dma_addr_t *dma);
1051 void usb_buffer_free (struct usb_device *dev, size_t size,
1052 void *addr, dma_addr_t dma);
1053
1054 #if 0
1055 struct urb *usb_buffer_map (struct urb *urb);
1056 void usb_buffer_dmasync (struct urb *urb);
1057 void usb_buffer_unmap (struct urb *urb);
1058 #endif
1059
1060 struct scatterlist;
1061 int usb_buffer_map_sg(const struct usb_device *dev, unsigned pipe,
1062 struct scatterlist *sg, int nents);
1063 #if 0
1064 void usb_buffer_dmasync_sg(const struct usb_device *dev, unsigned pipe,
1065 struct scatterlist *sg, int n_hw_ents);
1066 #endif
1067 void usb_buffer_unmap_sg(const struct usb_device *dev, unsigned pipe,
1068 struct scatterlist *sg, int n_hw_ents);
1069
1070 /*-------------------------------------------------------------------*
1071 * SYNCHRONOUS CALL SUPPORT *
1072 *-------------------------------------------------------------------*/
1073
1074 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1075 __u8 request, __u8 requesttype, __u16 value, __u16 index,
1076 void *data, __u16 size, int timeout);
1077 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1078 void *data, int len, int *actual_length, int timeout);
1079 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1080 void *data, int len, int *actual_length,
1081 int timeout);
1082
1083 /* wrappers around usb_control_msg() for the most common standard requests */
1084 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1085 unsigned char descindex, void *buf, int size);
1086 extern int usb_get_status(struct usb_device *dev,
1087 int type, int target, void *data);
1088 extern int usb_string(struct usb_device *dev, int index,
1089 char *buf, size_t size);
1090
1091 /* wrappers that also update important state inside usbcore */
1092 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1093 extern int usb_reset_configuration(struct usb_device *dev);
1094 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1095
1096 /* this request isn't really synchronous, but it belongs with the others */
1097 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1098
1099 /*
1100 * timeouts, in milliseconds, used for sending/receiving control messages
1101 * they typically complete within a few frames (msec) after they're issued
1102 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1103 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1104 */
1105 #define USB_CTRL_GET_TIMEOUT 5000
1106 #define USB_CTRL_SET_TIMEOUT 5000
1107
1108
1109 /**
1110 * struct usb_sg_request - support for scatter/gather I/O
1111 * @status: zero indicates success, else negative errno
1112 * @bytes: counts bytes transferred.
1113 *
1114 * These requests are initialized using usb_sg_init(), and then are used
1115 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most
1116 * members of the request object aren't for driver access.
1117 *
1118 * The status and bytecount values are valid only after usb_sg_wait()
1119 * returns. If the status is zero, then the bytecount matches the total
1120 * from the request.
1121 *
1122 * After an error completion, drivers may need to clear a halt condition
1123 * on the endpoint.
1124 */
1125 struct usb_sg_request {
1126 int status;
1127 size_t bytes;
1128
1129 /*
1130 * members below are private: to usbcore,
1131 * and are not provided for driver access!
1132 */
1133 spinlock_t lock;
1134
1135 struct usb_device *dev;
1136 int pipe;
1137 struct scatterlist *sg;
1138 int nents;
1139
1140 int entries;
1141 struct urb **urbs;
1142
1143 int count;
1144 struct completion complete;
1145 };
1146
1147 int usb_sg_init (
1148 struct usb_sg_request *io,
1149 struct usb_device *dev,
1150 unsigned pipe,
1151 unsigned period,
1152 struct scatterlist *sg,
1153 int nents,
1154 size_t length,
1155 gfp_t mem_flags
1156 );
1157 void usb_sg_cancel (struct usb_sg_request *io);
1158 void usb_sg_wait (struct usb_sg_request *io);
1159
1160
1161 /* ----------------------------------------------------------------------- */
1162
1163 /*
1164 * For various legacy reasons, Linux has a small cookie that's paired with
1165 * a struct usb_device to identify an endpoint queue. Queue characteristics
1166 * are defined by the endpoint's descriptor. This cookie is called a "pipe",
1167 * an unsigned int encoded as:
1168 *
1169 * - direction: bit 7 (0 = Host-to-Device [Out],
1170 * 1 = Device-to-Host [In] ...
1171 * like endpoint bEndpointAddress)
1172 * - device address: bits 8-14 ... bit positions known to uhci-hcd
1173 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd
1174 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt,
1175 * 10 = control, 11 = bulk)
1176 *
1177 * Given the device address and endpoint descriptor, pipes are redundant.
1178 */
1179
1180 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */
1181 /* (yet ... they're the values used by usbfs) */
1182 #define PIPE_ISOCHRONOUS 0
1183 #define PIPE_INTERRUPT 1
1184 #define PIPE_CONTROL 2
1185 #define PIPE_BULK 3
1186
1187 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN)
1188 #define usb_pipeout(pipe) (!usb_pipein(pipe))
1189
1190 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f)
1191 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf)
1192
1193 #define usb_pipetype(pipe) (((pipe) >> 30) & 3)
1194 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1195 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1196 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL)
1197 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK)
1198
1199 /* The D0/D1 toggle bits ... USE WITH CAUTION (they're almost hcd-internal) */
1200 #define usb_gettoggle(dev, ep, out) (((dev)->toggle[out] >> (ep)) & 1)
1201 #define usb_dotoggle(dev, ep, out) ((dev)->toggle[out] ^= (1 << (ep)))
1202 #define usb_settoggle(dev, ep, out, bit) \
1203 ((dev)->toggle[out] = ((dev)->toggle[out] & ~(1 << (ep))) | \
1204 ((bit) << (ep)))
1205
1206
1207 static inline unsigned int __create_pipe(struct usb_device *dev,
1208 unsigned int endpoint)
1209 {
1210 return (dev->devnum << 8) | (endpoint << 15);
1211 }
1212
1213 /* Create various pipes... */
1214 #define usb_sndctrlpipe(dev,endpoint) \
1215 ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint))
1216 #define usb_rcvctrlpipe(dev,endpoint) \
1217 ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1218 #define usb_sndisocpipe(dev,endpoint) \
1219 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint))
1220 #define usb_rcvisocpipe(dev,endpoint) \
1221 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1222 #define usb_sndbulkpipe(dev,endpoint) \
1223 ((PIPE_BULK << 30) | __create_pipe(dev,endpoint))
1224 #define usb_rcvbulkpipe(dev,endpoint) \
1225 ((PIPE_BULK << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1226 #define usb_sndintpipe(dev,endpoint) \
1227 ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint))
1228 #define usb_rcvintpipe(dev,endpoint) \
1229 ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1230
1231 /*-------------------------------------------------------------------------*/
1232
1233 static inline __u16
1234 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1235 {
1236 struct usb_host_endpoint *ep;
1237 unsigned epnum = usb_pipeendpoint(pipe);
1238
1239 if (is_out) {
1240 WARN_ON(usb_pipein(pipe));
1241 ep = udev->ep_out[epnum];
1242 } else {
1243 WARN_ON(usb_pipeout(pipe));
1244 ep = udev->ep_in[epnum];
1245 }
1246 if (!ep)
1247 return 0;
1248
1249 /* NOTE: only 0x07ff bits are for packet size... */
1250 return le16_to_cpu(ep->desc.wMaxPacketSize);
1251 }
1252
1253 /* ----------------------------------------------------------------------- */
1254
1255 /* Events from the usb core */
1256 #define USB_DEVICE_ADD 0x0001
1257 #define USB_DEVICE_REMOVE 0x0002
1258 #define USB_BUS_ADD 0x0003
1259 #define USB_BUS_REMOVE 0x0004
1260 extern void usb_register_notify(struct notifier_block *nb);
1261 extern void usb_unregister_notify(struct notifier_block *nb);
1262
1263 #ifdef DEBUG
1264 #define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , \
1265 __FILE__ , ## arg)
1266 #else
1267 #define dbg(format, arg...) do {} while (0)
1268 #endif
1269
1270 #define err(format, arg...) printk(KERN_ERR "%s: " format "\n" , \
1271 __FILE__ , ## arg)
1272 #define info(format, arg...) printk(KERN_INFO "%s: " format "\n" , \
1273 __FILE__ , ## arg)
1274 #define warn(format, arg...) printk(KERN_WARNING "%s: " format "\n" , \
1275 __FILE__ , ## arg)
1276
1277
1278 #endif /* __KERNEL__ */
1279
1280 #endif
This page took 0.156743 seconds and 5 git commands to generate.