fs/ramfs/file-nommu.c: make ramfs_nommu_get_unmapped_area() and ramfs_nommu_mmap...
[deliverable/linux.git] / include / linux / usb.h
1 #ifndef __LINUX_USB_H
2 #define __LINUX_USB_H
3
4 #include <linux/mod_devicetable.h>
5 #include <linux/usb/ch9.h>
6
7 #define USB_MAJOR 180
8 #define USB_DEVICE_MAJOR 189
9
10
11 #ifdef __KERNEL__
12
13 #include <linux/errno.h> /* for -ENODEV */
14 #include <linux/delay.h> /* for mdelay() */
15 #include <linux/interrupt.h> /* for in_interrupt() */
16 #include <linux/list.h> /* for struct list_head */
17 #include <linux/kref.h> /* for struct kref */
18 #include <linux/device.h> /* for struct device */
19 #include <linux/fs.h> /* for struct file_operations */
20 #include <linux/completion.h> /* for struct completion */
21 #include <linux/sched.h> /* for current && schedule_timeout */
22 #include <linux/mutex.h> /* for struct mutex */
23 #include <linux/pm_runtime.h> /* for runtime PM */
24
25 struct usb_device;
26 struct usb_driver;
27 struct wusb_dev;
28
29 /*-------------------------------------------------------------------------*/
30
31 /*
32 * Host-side wrappers for standard USB descriptors ... these are parsed
33 * from the data provided by devices. Parsing turns them from a flat
34 * sequence of descriptors into a hierarchy:
35 *
36 * - devices have one (usually) or more configs;
37 * - configs have one (often) or more interfaces;
38 * - interfaces have one (usually) or more settings;
39 * - each interface setting has zero or (usually) more endpoints.
40 * - a SuperSpeed endpoint has a companion descriptor
41 *
42 * And there might be other descriptors mixed in with those.
43 *
44 * Devices may also have class-specific or vendor-specific descriptors.
45 */
46
47 struct ep_device;
48
49 /**
50 * struct usb_host_endpoint - host-side endpoint descriptor and queue
51 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
52 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
53 * @urb_list: urbs queued to this endpoint; maintained by usbcore
54 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
55 * with one or more transfer descriptors (TDs) per urb
56 * @ep_dev: ep_device for sysfs info
57 * @extra: descriptors following this endpoint in the configuration
58 * @extralen: how many bytes of "extra" are valid
59 * @enabled: URBs may be submitted to this endpoint
60 *
61 * USB requests are always queued to a given endpoint, identified by a
62 * descriptor within an active interface in a given USB configuration.
63 */
64 struct usb_host_endpoint {
65 struct usb_endpoint_descriptor desc;
66 struct usb_ss_ep_comp_descriptor ss_ep_comp;
67 struct list_head urb_list;
68 void *hcpriv;
69 struct ep_device *ep_dev; /* For sysfs info */
70
71 unsigned char *extra; /* Extra descriptors */
72 int extralen;
73 int enabled;
74 };
75
76 /* host-side wrapper for one interface setting's parsed descriptors */
77 struct usb_host_interface {
78 struct usb_interface_descriptor desc;
79
80 int extralen;
81 unsigned char *extra; /* Extra descriptors */
82
83 /* array of desc.bNumEndpoint endpoints associated with this
84 * interface setting. these will be in no particular order.
85 */
86 struct usb_host_endpoint *endpoint;
87
88 char *string; /* iInterface string, if present */
89 };
90
91 enum usb_interface_condition {
92 USB_INTERFACE_UNBOUND = 0,
93 USB_INTERFACE_BINDING,
94 USB_INTERFACE_BOUND,
95 USB_INTERFACE_UNBINDING,
96 };
97
98 /**
99 * struct usb_interface - what usb device drivers talk to
100 * @altsetting: array of interface structures, one for each alternate
101 * setting that may be selected. Each one includes a set of
102 * endpoint configurations. They will be in no particular order.
103 * @cur_altsetting: the current altsetting.
104 * @num_altsetting: number of altsettings defined.
105 * @intf_assoc: interface association descriptor
106 * @minor: the minor number assigned to this interface, if this
107 * interface is bound to a driver that uses the USB major number.
108 * If this interface does not use the USB major, this field should
109 * be unused. The driver should set this value in the probe()
110 * function of the driver, after it has been assigned a minor
111 * number from the USB core by calling usb_register_dev().
112 * @condition: binding state of the interface: not bound, binding
113 * (in probe()), bound to a driver, or unbinding (in disconnect())
114 * @sysfs_files_created: sysfs attributes exist
115 * @ep_devs_created: endpoint child pseudo-devices exist
116 * @unregistering: flag set when the interface is being unregistered
117 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
118 * capability during autosuspend.
119 * @needs_altsetting0: flag set when a set-interface request for altsetting 0
120 * has been deferred.
121 * @needs_binding: flag set when the driver should be re-probed or unbound
122 * following a reset or suspend operation it doesn't support.
123 * @dev: driver model's view of this device
124 * @usb_dev: if an interface is bound to the USB major, this will point
125 * to the sysfs representation for that device.
126 * @pm_usage_cnt: PM usage counter for this interface
127 * @reset_ws: Used for scheduling resets from atomic context.
128 * @reset_running: set to 1 if the interface is currently running a
129 * queued reset so that usb_cancel_queued_reset() doesn't try to
130 * remove from the workqueue when running inside the worker
131 * thread. See __usb_queue_reset_device().
132 * @resetting_device: USB core reset the device, so use alt setting 0 as
133 * current; needs bandwidth alloc after reset.
134 *
135 * USB device drivers attach to interfaces on a physical device. Each
136 * interface encapsulates a single high level function, such as feeding
137 * an audio stream to a speaker or reporting a change in a volume control.
138 * Many USB devices only have one interface. The protocol used to talk to
139 * an interface's endpoints can be defined in a usb "class" specification,
140 * or by a product's vendor. The (default) control endpoint is part of
141 * every interface, but is never listed among the interface's descriptors.
142 *
143 * The driver that is bound to the interface can use standard driver model
144 * calls such as dev_get_drvdata() on the dev member of this structure.
145 *
146 * Each interface may have alternate settings. The initial configuration
147 * of a device sets altsetting 0, but the device driver can change
148 * that setting using usb_set_interface(). Alternate settings are often
149 * used to control the use of periodic endpoints, such as by having
150 * different endpoints use different amounts of reserved USB bandwidth.
151 * All standards-conformant USB devices that use isochronous endpoints
152 * will use them in non-default settings.
153 *
154 * The USB specification says that alternate setting numbers must run from
155 * 0 to one less than the total number of alternate settings. But some
156 * devices manage to mess this up, and the structures aren't necessarily
157 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to
158 * look up an alternate setting in the altsetting array based on its number.
159 */
160 struct usb_interface {
161 /* array of alternate settings for this interface,
162 * stored in no particular order */
163 struct usb_host_interface *altsetting;
164
165 struct usb_host_interface *cur_altsetting; /* the currently
166 * active alternate setting */
167 unsigned num_altsetting; /* number of alternate settings */
168
169 /* If there is an interface association descriptor then it will list
170 * the associated interfaces */
171 struct usb_interface_assoc_descriptor *intf_assoc;
172
173 int minor; /* minor number this interface is
174 * bound to */
175 enum usb_interface_condition condition; /* state of binding */
176 unsigned sysfs_files_created:1; /* the sysfs attributes exist */
177 unsigned ep_devs_created:1; /* endpoint "devices" exist */
178 unsigned unregistering:1; /* unregistration is in progress */
179 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
180 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */
181 unsigned needs_binding:1; /* needs delayed unbind/rebind */
182 unsigned reset_running:1;
183 unsigned resetting_device:1; /* true: bandwidth alloc after reset */
184
185 struct device dev; /* interface specific device info */
186 struct device *usb_dev;
187 atomic_t pm_usage_cnt; /* usage counter for autosuspend */
188 struct work_struct reset_ws; /* for resets in atomic context */
189 };
190 #define to_usb_interface(d) container_of(d, struct usb_interface, dev)
191
192 static inline void *usb_get_intfdata(struct usb_interface *intf)
193 {
194 return dev_get_drvdata(&intf->dev);
195 }
196
197 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
198 {
199 dev_set_drvdata(&intf->dev, data);
200 }
201
202 struct usb_interface *usb_get_intf(struct usb_interface *intf);
203 void usb_put_intf(struct usb_interface *intf);
204
205 /* this maximum is arbitrary */
206 #define USB_MAXINTERFACES 32
207 #define USB_MAXIADS (USB_MAXINTERFACES/2)
208
209 /**
210 * struct usb_interface_cache - long-term representation of a device interface
211 * @num_altsetting: number of altsettings defined.
212 * @ref: reference counter.
213 * @altsetting: variable-length array of interface structures, one for
214 * each alternate setting that may be selected. Each one includes a
215 * set of endpoint configurations. They will be in no particular order.
216 *
217 * These structures persist for the lifetime of a usb_device, unlike
218 * struct usb_interface (which persists only as long as its configuration
219 * is installed). The altsetting arrays can be accessed through these
220 * structures at any time, permitting comparison of configurations and
221 * providing support for the /proc/bus/usb/devices pseudo-file.
222 */
223 struct usb_interface_cache {
224 unsigned num_altsetting; /* number of alternate settings */
225 struct kref ref; /* reference counter */
226
227 /* variable-length array of alternate settings for this interface,
228 * stored in no particular order */
229 struct usb_host_interface altsetting[0];
230 };
231 #define ref_to_usb_interface_cache(r) \
232 container_of(r, struct usb_interface_cache, ref)
233 #define altsetting_to_usb_interface_cache(a) \
234 container_of(a, struct usb_interface_cache, altsetting[0])
235
236 /**
237 * struct usb_host_config - representation of a device's configuration
238 * @desc: the device's configuration descriptor.
239 * @string: pointer to the cached version of the iConfiguration string, if
240 * present for this configuration.
241 * @intf_assoc: list of any interface association descriptors in this config
242 * @interface: array of pointers to usb_interface structures, one for each
243 * interface in the configuration. The number of interfaces is stored
244 * in desc.bNumInterfaces. These pointers are valid only while the
245 * the configuration is active.
246 * @intf_cache: array of pointers to usb_interface_cache structures, one
247 * for each interface in the configuration. These structures exist
248 * for the entire life of the device.
249 * @extra: pointer to buffer containing all extra descriptors associated
250 * with this configuration (those preceding the first interface
251 * descriptor).
252 * @extralen: length of the extra descriptors buffer.
253 *
254 * USB devices may have multiple configurations, but only one can be active
255 * at any time. Each encapsulates a different operational environment;
256 * for example, a dual-speed device would have separate configurations for
257 * full-speed and high-speed operation. The number of configurations
258 * available is stored in the device descriptor as bNumConfigurations.
259 *
260 * A configuration can contain multiple interfaces. Each corresponds to
261 * a different function of the USB device, and all are available whenever
262 * the configuration is active. The USB standard says that interfaces
263 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
264 * of devices get this wrong. In addition, the interface array is not
265 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to
266 * look up an interface entry based on its number.
267 *
268 * Device drivers should not attempt to activate configurations. The choice
269 * of which configuration to install is a policy decision based on such
270 * considerations as available power, functionality provided, and the user's
271 * desires (expressed through userspace tools). However, drivers can call
272 * usb_reset_configuration() to reinitialize the current configuration and
273 * all its interfaces.
274 */
275 struct usb_host_config {
276 struct usb_config_descriptor desc;
277
278 char *string; /* iConfiguration string, if present */
279
280 /* List of any Interface Association Descriptors in this
281 * configuration. */
282 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
283
284 /* the interfaces associated with this configuration,
285 * stored in no particular order */
286 struct usb_interface *interface[USB_MAXINTERFACES];
287
288 /* Interface information available even when this is not the
289 * active configuration */
290 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
291
292 unsigned char *extra; /* Extra descriptors */
293 int extralen;
294 };
295
296 /* USB2.0 and USB3.0 device BOS descriptor set */
297 struct usb_host_bos {
298 struct usb_bos_descriptor *desc;
299
300 /* wireless cap descriptor is handled by wusb */
301 struct usb_ext_cap_descriptor *ext_cap;
302 struct usb_ss_cap_descriptor *ss_cap;
303 struct usb_ss_container_id_descriptor *ss_id;
304 };
305
306 int __usb_get_extra_descriptor(char *buffer, unsigned size,
307 unsigned char type, void **ptr);
308 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
309 __usb_get_extra_descriptor((ifpoint)->extra, \
310 (ifpoint)->extralen, \
311 type, (void **)ptr)
312
313 /* ----------------------------------------------------------------------- */
314
315 /* USB device number allocation bitmap */
316 struct usb_devmap {
317 unsigned long devicemap[128 / (8*sizeof(unsigned long))];
318 };
319
320 /*
321 * Allocated per bus (tree of devices) we have:
322 */
323 struct usb_bus {
324 struct device *controller; /* host/master side hardware */
325 int busnum; /* Bus number (in order of reg) */
326 const char *bus_name; /* stable id (PCI slot_name etc) */
327 u8 uses_dma; /* Does the host controller use DMA? */
328 u8 uses_pio_for_control; /*
329 * Does the host controller use PIO
330 * for control transfers?
331 */
332 u8 otg_port; /* 0, or number of OTG/HNP port */
333 unsigned is_b_host:1; /* true during some HNP roleswitches */
334 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */
335 unsigned no_stop_on_short:1; /*
336 * Quirk: some controllers don't stop
337 * the ep queue on a short transfer
338 * with the URB_SHORT_NOT_OK flag set.
339 */
340 unsigned no_sg_constraint:1; /* no sg constraint */
341 unsigned sg_tablesize; /* 0 or largest number of sg list entries */
342
343 int devnum_next; /* Next open device number in
344 * round-robin allocation */
345
346 struct usb_devmap devmap; /* device address allocation map */
347 struct usb_device *root_hub; /* Root hub */
348 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */
349 struct list_head bus_list; /* list of busses */
350
351 int bandwidth_allocated; /* on this bus: how much of the time
352 * reserved for periodic (intr/iso)
353 * requests is used, on average?
354 * Units: microseconds/frame.
355 * Limits: Full/low speed reserve 90%,
356 * while high speed reserves 80%.
357 */
358 int bandwidth_int_reqs; /* number of Interrupt requests */
359 int bandwidth_isoc_reqs; /* number of Isoc. requests */
360
361 unsigned resuming_ports; /* bit array: resuming root-hub ports */
362
363 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
364 struct mon_bus *mon_bus; /* non-null when associated */
365 int monitored; /* non-zero when monitored */
366 #endif
367 };
368
369 /* ----------------------------------------------------------------------- */
370
371 struct usb_tt;
372
373 enum usb_device_removable {
374 USB_DEVICE_REMOVABLE_UNKNOWN = 0,
375 USB_DEVICE_REMOVABLE,
376 USB_DEVICE_FIXED,
377 };
378
379 enum usb_port_connect_type {
380 USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
381 USB_PORT_CONNECT_TYPE_HOT_PLUG,
382 USB_PORT_CONNECT_TYPE_HARD_WIRED,
383 USB_PORT_NOT_USED,
384 };
385
386 /*
387 * USB 2.0 Link Power Management (LPM) parameters.
388 */
389 struct usb2_lpm_parameters {
390 /* Best effort service latency indicate how long the host will drive
391 * resume on an exit from L1.
392 */
393 unsigned int besl;
394
395 /* Timeout value in microseconds for the L1 inactivity (LPM) timer.
396 * When the timer counts to zero, the parent hub will initiate a LPM
397 * transition to L1.
398 */
399 int timeout;
400 };
401
402 /*
403 * USB 3.0 Link Power Management (LPM) parameters.
404 *
405 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
406 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
407 * All three are stored in nanoseconds.
408 */
409 struct usb3_lpm_parameters {
410 /*
411 * Maximum exit latency (MEL) for the host to send a packet to the
412 * device (either a Ping for isoc endpoints, or a data packet for
413 * interrupt endpoints), the hubs to decode the packet, and for all hubs
414 * in the path to transition the links to U0.
415 */
416 unsigned int mel;
417 /*
418 * Maximum exit latency for a device-initiated LPM transition to bring
419 * all links into U0. Abbreviated as "PEL" in section 9.4.12 of the USB
420 * 3.0 spec, with no explanation of what "P" stands for. "Path"?
421 */
422 unsigned int pel;
423
424 /*
425 * The System Exit Latency (SEL) includes PEL, and three other
426 * latencies. After a device initiates a U0 transition, it will take
427 * some time from when the device sends the ERDY to when it will finally
428 * receive the data packet. Basically, SEL should be the worse-case
429 * latency from when a device starts initiating a U0 transition to when
430 * it will get data.
431 */
432 unsigned int sel;
433 /*
434 * The idle timeout value that is currently programmed into the parent
435 * hub for this device. When the timer counts to zero, the parent hub
436 * will initiate an LPM transition to either U1 or U2.
437 */
438 int timeout;
439 };
440
441 /**
442 * struct usb_device - kernel's representation of a USB device
443 * @devnum: device number; address on a USB bus
444 * @devpath: device ID string for use in messages (e.g., /port/...)
445 * @route: tree topology hex string for use with xHCI
446 * @state: device state: configured, not attached, etc.
447 * @speed: device speed: high/full/low (or error)
448 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
449 * @ttport: device port on that tt hub
450 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
451 * @parent: our hub, unless we're the root
452 * @bus: bus we're part of
453 * @ep0: endpoint 0 data (default control pipe)
454 * @dev: generic device interface
455 * @descriptor: USB device descriptor
456 * @bos: USB device BOS descriptor set
457 * @config: all of the device's configs
458 * @actconfig: the active configuration
459 * @ep_in: array of IN endpoints
460 * @ep_out: array of OUT endpoints
461 * @rawdescriptors: raw descriptors for each config
462 * @bus_mA: Current available from the bus
463 * @portnum: parent port number (origin 1)
464 * @level: number of USB hub ancestors
465 * @can_submit: URBs may be submitted
466 * @persist_enabled: USB_PERSIST enabled for this device
467 * @have_langid: whether string_langid is valid
468 * @authorized: policy has said we can use it;
469 * (user space) policy determines if we authorize this device to be
470 * used or not. By default, wired USB devices are authorized.
471 * WUSB devices are not, until we authorize them from user space.
472 * FIXME -- complete doc
473 * @authenticated: Crypto authentication passed
474 * @wusb: device is Wireless USB
475 * @lpm_capable: device supports LPM
476 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
477 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
478 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
479 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
480 * @usb3_lpm_enabled: USB3 hardware LPM enabled
481 * @string_langid: language ID for strings
482 * @product: iProduct string, if present (static)
483 * @manufacturer: iManufacturer string, if present (static)
484 * @serial: iSerialNumber string, if present (static)
485 * @filelist: usbfs files that are open to this device
486 * @maxchild: number of ports if hub
487 * @quirks: quirks of the whole device
488 * @urbnum: number of URBs submitted for the whole device
489 * @active_duration: total time device is not suspended
490 * @connect_time: time device was first connected
491 * @do_remote_wakeup: remote wakeup should be enabled
492 * @reset_resume: needs reset instead of resume
493 * @port_is_suspended: the upstream port is suspended (L2 or U3)
494 * @wusb_dev: if this is a Wireless USB device, link to the WUSB
495 * specific data for the device.
496 * @slot_id: Slot ID assigned by xHCI
497 * @removable: Device can be physically removed from this port
498 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
499 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
500 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
501 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
502 * to keep track of the number of functions that require USB 3.0 Link Power
503 * Management to be disabled for this usb_device. This count should only
504 * be manipulated by those functions, with the bandwidth_mutex is held.
505 *
506 * Notes:
507 * Usbcore drivers should not set usbdev->state directly. Instead use
508 * usb_set_device_state().
509 */
510 struct usb_device {
511 int devnum;
512 char devpath[16];
513 u32 route;
514 enum usb_device_state state;
515 enum usb_device_speed speed;
516
517 struct usb_tt *tt;
518 int ttport;
519
520 unsigned int toggle[2];
521
522 struct usb_device *parent;
523 struct usb_bus *bus;
524 struct usb_host_endpoint ep0;
525
526 struct device dev;
527
528 struct usb_device_descriptor descriptor;
529 struct usb_host_bos *bos;
530 struct usb_host_config *config;
531
532 struct usb_host_config *actconfig;
533 struct usb_host_endpoint *ep_in[16];
534 struct usb_host_endpoint *ep_out[16];
535
536 char **rawdescriptors;
537
538 unsigned short bus_mA;
539 u8 portnum;
540 u8 level;
541
542 unsigned can_submit:1;
543 unsigned persist_enabled:1;
544 unsigned have_langid:1;
545 unsigned authorized:1;
546 unsigned authenticated:1;
547 unsigned wusb:1;
548 unsigned lpm_capable:1;
549 unsigned usb2_hw_lpm_capable:1;
550 unsigned usb2_hw_lpm_besl_capable:1;
551 unsigned usb2_hw_lpm_enabled:1;
552 unsigned usb2_hw_lpm_allowed:1;
553 unsigned usb3_lpm_enabled:1;
554 int string_langid;
555
556 /* static strings from the device */
557 char *product;
558 char *manufacturer;
559 char *serial;
560
561 struct list_head filelist;
562
563 int maxchild;
564
565 u32 quirks;
566 atomic_t urbnum;
567
568 unsigned long active_duration;
569
570 #ifdef CONFIG_PM
571 unsigned long connect_time;
572
573 unsigned do_remote_wakeup:1;
574 unsigned reset_resume:1;
575 unsigned port_is_suspended:1;
576 #endif
577 struct wusb_dev *wusb_dev;
578 int slot_id;
579 enum usb_device_removable removable;
580 struct usb2_lpm_parameters l1_params;
581 struct usb3_lpm_parameters u1_params;
582 struct usb3_lpm_parameters u2_params;
583 unsigned lpm_disable_count;
584 };
585 #define to_usb_device(d) container_of(d, struct usb_device, dev)
586
587 static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
588 {
589 return to_usb_device(intf->dev.parent);
590 }
591
592 extern struct usb_device *usb_get_dev(struct usb_device *dev);
593 extern void usb_put_dev(struct usb_device *dev);
594 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
595 int port1);
596
597 /**
598 * usb_hub_for_each_child - iterate over all child devices on the hub
599 * @hdev: USB device belonging to the usb hub
600 * @port1: portnum associated with child device
601 * @child: child device pointer
602 */
603 #define usb_hub_for_each_child(hdev, port1, child) \
604 for (port1 = 1, child = usb_hub_find_child(hdev, port1); \
605 port1 <= hdev->maxchild; \
606 child = usb_hub_find_child(hdev, ++port1)) \
607 if (!child) continue; else
608
609 /* USB device locking */
610 #define usb_lock_device(udev) device_lock(&(udev)->dev)
611 #define usb_unlock_device(udev) device_unlock(&(udev)->dev)
612 #define usb_trylock_device(udev) device_trylock(&(udev)->dev)
613 extern int usb_lock_device_for_reset(struct usb_device *udev,
614 const struct usb_interface *iface);
615
616 /* USB port reset for device reinitialization */
617 extern int usb_reset_device(struct usb_device *dev);
618 extern void usb_queue_reset_device(struct usb_interface *dev);
619
620 #ifdef CONFIG_ACPI
621 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
622 bool enable);
623 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
624 #else
625 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
626 bool enable) { return 0; }
627 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
628 { return true; }
629 #endif
630
631 /* USB autosuspend and autoresume */
632 #ifdef CONFIG_PM_RUNTIME
633 extern void usb_enable_autosuspend(struct usb_device *udev);
634 extern void usb_disable_autosuspend(struct usb_device *udev);
635
636 extern int usb_autopm_get_interface(struct usb_interface *intf);
637 extern void usb_autopm_put_interface(struct usb_interface *intf);
638 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
639 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
640 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
641 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
642
643 static inline void usb_mark_last_busy(struct usb_device *udev)
644 {
645 pm_runtime_mark_last_busy(&udev->dev);
646 }
647
648 #else
649
650 static inline int usb_enable_autosuspend(struct usb_device *udev)
651 { return 0; }
652 static inline int usb_disable_autosuspend(struct usb_device *udev)
653 { return 0; }
654
655 static inline int usb_autopm_get_interface(struct usb_interface *intf)
656 { return 0; }
657 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
658 { return 0; }
659
660 static inline void usb_autopm_put_interface(struct usb_interface *intf)
661 { }
662 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
663 { }
664 static inline void usb_autopm_get_interface_no_resume(
665 struct usb_interface *intf)
666 { }
667 static inline void usb_autopm_put_interface_no_suspend(
668 struct usb_interface *intf)
669 { }
670 static inline void usb_mark_last_busy(struct usb_device *udev)
671 { }
672 #endif
673
674 extern int usb_disable_lpm(struct usb_device *udev);
675 extern void usb_enable_lpm(struct usb_device *udev);
676 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */
677 extern int usb_unlocked_disable_lpm(struct usb_device *udev);
678 extern void usb_unlocked_enable_lpm(struct usb_device *udev);
679
680 extern int usb_disable_ltm(struct usb_device *udev);
681 extern void usb_enable_ltm(struct usb_device *udev);
682
683 static inline bool usb_device_supports_ltm(struct usb_device *udev)
684 {
685 if (udev->speed != USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
686 return false;
687 return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
688 }
689
690 static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
691 {
692 return udev && udev->bus && udev->bus->no_sg_constraint;
693 }
694
695
696 /*-------------------------------------------------------------------------*/
697
698 /* for drivers using iso endpoints */
699 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
700
701 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
702 extern int usb_alloc_streams(struct usb_interface *interface,
703 struct usb_host_endpoint **eps, unsigned int num_eps,
704 unsigned int num_streams, gfp_t mem_flags);
705
706 /* Reverts a group of bulk endpoints back to not using stream IDs. */
707 extern int usb_free_streams(struct usb_interface *interface,
708 struct usb_host_endpoint **eps, unsigned int num_eps,
709 gfp_t mem_flags);
710
711 /* used these for multi-interface device registration */
712 extern int usb_driver_claim_interface(struct usb_driver *driver,
713 struct usb_interface *iface, void *priv);
714
715 /**
716 * usb_interface_claimed - returns true iff an interface is claimed
717 * @iface: the interface being checked
718 *
719 * Return: %true (nonzero) iff the interface is claimed, else %false
720 * (zero).
721 *
722 * Note:
723 * Callers must own the driver model's usb bus readlock. So driver
724 * probe() entries don't need extra locking, but other call contexts
725 * may need to explicitly claim that lock.
726 *
727 */
728 static inline int usb_interface_claimed(struct usb_interface *iface)
729 {
730 return (iface->dev.driver != NULL);
731 }
732
733 extern void usb_driver_release_interface(struct usb_driver *driver,
734 struct usb_interface *iface);
735 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
736 const struct usb_device_id *id);
737 extern int usb_match_one_id(struct usb_interface *interface,
738 const struct usb_device_id *id);
739
740 extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
741 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
742 int minor);
743 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
744 unsigned ifnum);
745 extern struct usb_host_interface *usb_altnum_to_altsetting(
746 const struct usb_interface *intf, unsigned int altnum);
747 extern struct usb_host_interface *usb_find_alt_setting(
748 struct usb_host_config *config,
749 unsigned int iface_num,
750 unsigned int alt_num);
751
752
753 /**
754 * usb_make_path - returns stable device path in the usb tree
755 * @dev: the device whose path is being constructed
756 * @buf: where to put the string
757 * @size: how big is "buf"?
758 *
759 * Return: Length of the string (> 0) or negative if size was too small.
760 *
761 * Note:
762 * This identifier is intended to be "stable", reflecting physical paths in
763 * hardware such as physical bus addresses for host controllers or ports on
764 * USB hubs. That makes it stay the same until systems are physically
765 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
766 * controllers. Adding and removing devices, including virtual root hubs
767 * in host controller driver modules, does not change these path identifiers;
768 * neither does rebooting or re-enumerating. These are more useful identifiers
769 * than changeable ("unstable") ones like bus numbers or device addresses.
770 *
771 * With a partial exception for devices connected to USB 2.0 root hubs, these
772 * identifiers are also predictable. So long as the device tree isn't changed,
773 * plugging any USB device into a given hub port always gives it the same path.
774 * Because of the use of "companion" controllers, devices connected to ports on
775 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
776 * high speed, and a different one if they are full or low speed.
777 */
778 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
779 {
780 int actual;
781 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
782 dev->devpath);
783 return (actual >= (int)size) ? -1 : actual;
784 }
785
786 /*-------------------------------------------------------------------------*/
787
788 #define USB_DEVICE_ID_MATCH_DEVICE \
789 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
790 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
791 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
792 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
793 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
794 #define USB_DEVICE_ID_MATCH_DEV_INFO \
795 (USB_DEVICE_ID_MATCH_DEV_CLASS | \
796 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
797 USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
798 #define USB_DEVICE_ID_MATCH_INT_INFO \
799 (USB_DEVICE_ID_MATCH_INT_CLASS | \
800 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
801 USB_DEVICE_ID_MATCH_INT_PROTOCOL)
802
803 /**
804 * USB_DEVICE - macro used to describe a specific usb device
805 * @vend: the 16 bit USB Vendor ID
806 * @prod: the 16 bit USB Product ID
807 *
808 * This macro is used to create a struct usb_device_id that matches a
809 * specific device.
810 */
811 #define USB_DEVICE(vend, prod) \
812 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
813 .idVendor = (vend), \
814 .idProduct = (prod)
815 /**
816 * USB_DEVICE_VER - describe a specific usb device with a version range
817 * @vend: the 16 bit USB Vendor ID
818 * @prod: the 16 bit USB Product ID
819 * @lo: the bcdDevice_lo value
820 * @hi: the bcdDevice_hi value
821 *
822 * This macro is used to create a struct usb_device_id that matches a
823 * specific device, with a version range.
824 */
825 #define USB_DEVICE_VER(vend, prod, lo, hi) \
826 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
827 .idVendor = (vend), \
828 .idProduct = (prod), \
829 .bcdDevice_lo = (lo), \
830 .bcdDevice_hi = (hi)
831
832 /**
833 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
834 * @vend: the 16 bit USB Vendor ID
835 * @prod: the 16 bit USB Product ID
836 * @cl: bInterfaceClass value
837 *
838 * This macro is used to create a struct usb_device_id that matches a
839 * specific interface class of devices.
840 */
841 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
842 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
843 USB_DEVICE_ID_MATCH_INT_CLASS, \
844 .idVendor = (vend), \
845 .idProduct = (prod), \
846 .bInterfaceClass = (cl)
847
848 /**
849 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
850 * @vend: the 16 bit USB Vendor ID
851 * @prod: the 16 bit USB Product ID
852 * @pr: bInterfaceProtocol value
853 *
854 * This macro is used to create a struct usb_device_id that matches a
855 * specific interface protocol of devices.
856 */
857 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
858 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
859 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
860 .idVendor = (vend), \
861 .idProduct = (prod), \
862 .bInterfaceProtocol = (pr)
863
864 /**
865 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
866 * @vend: the 16 bit USB Vendor ID
867 * @prod: the 16 bit USB Product ID
868 * @num: bInterfaceNumber value
869 *
870 * This macro is used to create a struct usb_device_id that matches a
871 * specific interface number of devices.
872 */
873 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
874 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
875 USB_DEVICE_ID_MATCH_INT_NUMBER, \
876 .idVendor = (vend), \
877 .idProduct = (prod), \
878 .bInterfaceNumber = (num)
879
880 /**
881 * USB_DEVICE_INFO - macro used to describe a class of usb devices
882 * @cl: bDeviceClass value
883 * @sc: bDeviceSubClass value
884 * @pr: bDeviceProtocol value
885 *
886 * This macro is used to create a struct usb_device_id that matches a
887 * specific class of devices.
888 */
889 #define USB_DEVICE_INFO(cl, sc, pr) \
890 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
891 .bDeviceClass = (cl), \
892 .bDeviceSubClass = (sc), \
893 .bDeviceProtocol = (pr)
894
895 /**
896 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
897 * @cl: bInterfaceClass value
898 * @sc: bInterfaceSubClass value
899 * @pr: bInterfaceProtocol value
900 *
901 * This macro is used to create a struct usb_device_id that matches a
902 * specific class of interfaces.
903 */
904 #define USB_INTERFACE_INFO(cl, sc, pr) \
905 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
906 .bInterfaceClass = (cl), \
907 .bInterfaceSubClass = (sc), \
908 .bInterfaceProtocol = (pr)
909
910 /**
911 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
912 * @vend: the 16 bit USB Vendor ID
913 * @prod: the 16 bit USB Product ID
914 * @cl: bInterfaceClass value
915 * @sc: bInterfaceSubClass value
916 * @pr: bInterfaceProtocol value
917 *
918 * This macro is used to create a struct usb_device_id that matches a
919 * specific device with a specific class of interfaces.
920 *
921 * This is especially useful when explicitly matching devices that have
922 * vendor specific bDeviceClass values, but standards-compliant interfaces.
923 */
924 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
925 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
926 | USB_DEVICE_ID_MATCH_DEVICE, \
927 .idVendor = (vend), \
928 .idProduct = (prod), \
929 .bInterfaceClass = (cl), \
930 .bInterfaceSubClass = (sc), \
931 .bInterfaceProtocol = (pr)
932
933 /**
934 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
935 * @vend: the 16 bit USB Vendor ID
936 * @cl: bInterfaceClass value
937 * @sc: bInterfaceSubClass value
938 * @pr: bInterfaceProtocol value
939 *
940 * This macro is used to create a struct usb_device_id that matches a
941 * specific vendor with a specific class of interfaces.
942 *
943 * This is especially useful when explicitly matching devices that have
944 * vendor specific bDeviceClass values, but standards-compliant interfaces.
945 */
946 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
947 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
948 | USB_DEVICE_ID_MATCH_VENDOR, \
949 .idVendor = (vend), \
950 .bInterfaceClass = (cl), \
951 .bInterfaceSubClass = (sc), \
952 .bInterfaceProtocol = (pr)
953
954 /* ----------------------------------------------------------------------- */
955
956 /* Stuff for dynamic usb ids */
957 struct usb_dynids {
958 spinlock_t lock;
959 struct list_head list;
960 };
961
962 struct usb_dynid {
963 struct list_head node;
964 struct usb_device_id id;
965 };
966
967 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
968 const struct usb_device_id *id_table,
969 struct device_driver *driver,
970 const char *buf, size_t count);
971
972 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
973
974 /**
975 * struct usbdrv_wrap - wrapper for driver-model structure
976 * @driver: The driver-model core driver structure.
977 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
978 */
979 struct usbdrv_wrap {
980 struct device_driver driver;
981 int for_devices;
982 };
983
984 /**
985 * struct usb_driver - identifies USB interface driver to usbcore
986 * @name: The driver name should be unique among USB drivers,
987 * and should normally be the same as the module name.
988 * @probe: Called to see if the driver is willing to manage a particular
989 * interface on a device. If it is, probe returns zero and uses
990 * usb_set_intfdata() to associate driver-specific data with the
991 * interface. It may also use usb_set_interface() to specify the
992 * appropriate altsetting. If unwilling to manage the interface,
993 * return -ENODEV, if genuine IO errors occurred, an appropriate
994 * negative errno value.
995 * @disconnect: Called when the interface is no longer accessible, usually
996 * because its device has been (or is being) disconnected or the
997 * driver module is being unloaded.
998 * @unlocked_ioctl: Used for drivers that want to talk to userspace through
999 * the "usbfs" filesystem. This lets devices provide ways to
1000 * expose information to user space regardless of where they
1001 * do (or don't) show up otherwise in the filesystem.
1002 * @suspend: Called when the device is going to be suspended by the
1003 * system either from system sleep or runtime suspend context. The
1004 * return value will be ignored in system sleep context, so do NOT
1005 * try to continue using the device if suspend fails in this case.
1006 * Instead, let the resume or reset-resume routine recover from
1007 * the failure.
1008 * @resume: Called when the device is being resumed by the system.
1009 * @reset_resume: Called when the suspended device has been reset instead
1010 * of being resumed.
1011 * @pre_reset: Called by usb_reset_device() when the device is about to be
1012 * reset. This routine must not return until the driver has no active
1013 * URBs for the device, and no more URBs may be submitted until the
1014 * post_reset method is called.
1015 * @post_reset: Called by usb_reset_device() after the device
1016 * has been reset
1017 * @id_table: USB drivers use ID table to support hotplugging.
1018 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set
1019 * or your driver's probe function will never get called.
1020 * @dynids: used internally to hold the list of dynamically added device
1021 * ids for this driver.
1022 * @drvwrap: Driver-model core structure wrapper.
1023 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1024 * added to this driver by preventing the sysfs file from being created.
1025 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1026 * for interfaces bound to this driver.
1027 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1028 * endpoints before calling the driver's disconnect method.
1029 * @disable_hub_initiated_lpm: if set to 0, the USB core will not allow hubs
1030 * to initiate lower power link state transitions when an idle timeout
1031 * occurs. Device-initiated USB 3.0 link PM will still be allowed.
1032 *
1033 * USB interface drivers must provide a name, probe() and disconnect()
1034 * methods, and an id_table. Other driver fields are optional.
1035 *
1036 * The id_table is used in hotplugging. It holds a set of descriptors,
1037 * and specialized data may be associated with each entry. That table
1038 * is used by both user and kernel mode hotplugging support.
1039 *
1040 * The probe() and disconnect() methods are called in a context where
1041 * they can sleep, but they should avoid abusing the privilege. Most
1042 * work to connect to a device should be done when the device is opened,
1043 * and undone at the last close. The disconnect code needs to address
1044 * concurrency issues with respect to open() and close() methods, as
1045 * well as forcing all pending I/O requests to complete (by unlinking
1046 * them as necessary, and blocking until the unlinks complete).
1047 */
1048 struct usb_driver {
1049 const char *name;
1050
1051 int (*probe) (struct usb_interface *intf,
1052 const struct usb_device_id *id);
1053
1054 void (*disconnect) (struct usb_interface *intf);
1055
1056 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1057 void *buf);
1058
1059 int (*suspend) (struct usb_interface *intf, pm_message_t message);
1060 int (*resume) (struct usb_interface *intf);
1061 int (*reset_resume)(struct usb_interface *intf);
1062
1063 int (*pre_reset)(struct usb_interface *intf);
1064 int (*post_reset)(struct usb_interface *intf);
1065
1066 const struct usb_device_id *id_table;
1067
1068 struct usb_dynids dynids;
1069 struct usbdrv_wrap drvwrap;
1070 unsigned int no_dynamic_id:1;
1071 unsigned int supports_autosuspend:1;
1072 unsigned int disable_hub_initiated_lpm:1;
1073 unsigned int soft_unbind:1;
1074 };
1075 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1076
1077 /**
1078 * struct usb_device_driver - identifies USB device driver to usbcore
1079 * @name: The driver name should be unique among USB drivers,
1080 * and should normally be the same as the module name.
1081 * @probe: Called to see if the driver is willing to manage a particular
1082 * device. If it is, probe returns zero and uses dev_set_drvdata()
1083 * to associate driver-specific data with the device. If unwilling
1084 * to manage the device, return a negative errno value.
1085 * @disconnect: Called when the device is no longer accessible, usually
1086 * because it has been (or is being) disconnected or the driver's
1087 * module is being unloaded.
1088 * @suspend: Called when the device is going to be suspended by the system.
1089 * @resume: Called when the device is being resumed by the system.
1090 * @drvwrap: Driver-model core structure wrapper.
1091 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1092 * for devices bound to this driver.
1093 *
1094 * USB drivers must provide all the fields listed above except drvwrap.
1095 */
1096 struct usb_device_driver {
1097 const char *name;
1098
1099 int (*probe) (struct usb_device *udev);
1100 void (*disconnect) (struct usb_device *udev);
1101
1102 int (*suspend) (struct usb_device *udev, pm_message_t message);
1103 int (*resume) (struct usb_device *udev, pm_message_t message);
1104 struct usbdrv_wrap drvwrap;
1105 unsigned int supports_autosuspend:1;
1106 };
1107 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1108 drvwrap.driver)
1109
1110 extern struct bus_type usb_bus_type;
1111
1112 /**
1113 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1114 * @name: the usb class device name for this driver. Will show up in sysfs.
1115 * @devnode: Callback to provide a naming hint for a possible
1116 * device node to create.
1117 * @fops: pointer to the struct file_operations of this driver.
1118 * @minor_base: the start of the minor range for this driver.
1119 *
1120 * This structure is used for the usb_register_dev() and
1121 * usb_unregister_dev() functions, to consolidate a number of the
1122 * parameters used for them.
1123 */
1124 struct usb_class_driver {
1125 char *name;
1126 char *(*devnode)(struct device *dev, umode_t *mode);
1127 const struct file_operations *fops;
1128 int minor_base;
1129 };
1130
1131 /*
1132 * use these in module_init()/module_exit()
1133 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1134 */
1135 extern int usb_register_driver(struct usb_driver *, struct module *,
1136 const char *);
1137
1138 /* use a define to avoid include chaining to get THIS_MODULE & friends */
1139 #define usb_register(driver) \
1140 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1141
1142 extern void usb_deregister(struct usb_driver *);
1143
1144 /**
1145 * module_usb_driver() - Helper macro for registering a USB driver
1146 * @__usb_driver: usb_driver struct
1147 *
1148 * Helper macro for USB drivers which do not do anything special in module
1149 * init/exit. This eliminates a lot of boilerplate. Each module may only
1150 * use this macro once, and calling it replaces module_init() and module_exit()
1151 */
1152 #define module_usb_driver(__usb_driver) \
1153 module_driver(__usb_driver, usb_register, \
1154 usb_deregister)
1155
1156 extern int usb_register_device_driver(struct usb_device_driver *,
1157 struct module *);
1158 extern void usb_deregister_device_driver(struct usb_device_driver *);
1159
1160 extern int usb_register_dev(struct usb_interface *intf,
1161 struct usb_class_driver *class_driver);
1162 extern void usb_deregister_dev(struct usb_interface *intf,
1163 struct usb_class_driver *class_driver);
1164
1165 extern int usb_disabled(void);
1166
1167 /* ----------------------------------------------------------------------- */
1168
1169 /*
1170 * URB support, for asynchronous request completions
1171 */
1172
1173 /*
1174 * urb->transfer_flags:
1175 *
1176 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1177 */
1178 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */
1179 #define URB_ISO_ASAP 0x0002 /* iso-only; use the first unexpired
1180 * slot in the schedule */
1181 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */
1182 #define URB_NO_FSBR 0x0020 /* UHCI-specific */
1183 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */
1184 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt
1185 * needed */
1186 #define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */
1187
1188 /* The following flags are used internally by usbcore and HCDs */
1189 #define URB_DIR_IN 0x0200 /* Transfer from device to host */
1190 #define URB_DIR_OUT 0
1191 #define URB_DIR_MASK URB_DIR_IN
1192
1193 #define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */
1194 #define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */
1195 #define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */
1196 #define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */
1197 #define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */
1198 #define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */
1199 #define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */
1200 #define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */
1201
1202 struct usb_iso_packet_descriptor {
1203 unsigned int offset;
1204 unsigned int length; /* expected length */
1205 unsigned int actual_length;
1206 int status;
1207 };
1208
1209 struct urb;
1210
1211 struct usb_anchor {
1212 struct list_head urb_list;
1213 wait_queue_head_t wait;
1214 spinlock_t lock;
1215 atomic_t suspend_wakeups;
1216 unsigned int poisoned:1;
1217 };
1218
1219 static inline void init_usb_anchor(struct usb_anchor *anchor)
1220 {
1221 memset(anchor, 0, sizeof(*anchor));
1222 INIT_LIST_HEAD(&anchor->urb_list);
1223 init_waitqueue_head(&anchor->wait);
1224 spin_lock_init(&anchor->lock);
1225 }
1226
1227 typedef void (*usb_complete_t)(struct urb *);
1228
1229 /**
1230 * struct urb - USB Request Block
1231 * @urb_list: For use by current owner of the URB.
1232 * @anchor_list: membership in the list of an anchor
1233 * @anchor: to anchor URBs to a common mooring
1234 * @ep: Points to the endpoint's data structure. Will eventually
1235 * replace @pipe.
1236 * @pipe: Holds endpoint number, direction, type, and more.
1237 * Create these values with the eight macros available;
1238 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1239 * (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1240 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint
1241 * numbers range from zero to fifteen. Note that "in" endpoint two
1242 * is a different endpoint (and pipe) from "out" endpoint two.
1243 * The current configuration controls the existence, type, and
1244 * maximum packet size of any given endpoint.
1245 * @stream_id: the endpoint's stream ID for bulk streams
1246 * @dev: Identifies the USB device to perform the request.
1247 * @status: This is read in non-iso completion functions to get the
1248 * status of the particular request. ISO requests only use it
1249 * to tell whether the URB was unlinked; detailed status for
1250 * each frame is in the fields of the iso_frame-desc.
1251 * @transfer_flags: A variety of flags may be used to affect how URB
1252 * submission, unlinking, or operation are handled. Different
1253 * kinds of URB can use different flags.
1254 * @transfer_buffer: This identifies the buffer to (or from) which the I/O
1255 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1256 * (however, do not leave garbage in transfer_buffer even then).
1257 * This buffer must be suitable for DMA; allocate it with
1258 * kmalloc() or equivalent. For transfers to "in" endpoints, contents
1259 * of this buffer will be modified. This buffer is used for the data
1260 * stage of control transfers.
1261 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1262 * the device driver is saying that it provided this DMA address,
1263 * which the host controller driver should use in preference to the
1264 * transfer_buffer.
1265 * @sg: scatter gather buffer list, the buffer size of each element in
1266 * the list (except the last) must be divisible by the endpoint's
1267 * max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1268 * (FIXME: scatter-gather under xHCI is broken for periodic transfers.
1269 * Do not use urb->sg for interrupt endpoints for now, only bulk.)
1270 * @num_mapped_sgs: (internal) number of mapped sg entries
1271 * @num_sgs: number of entries in the sg list
1272 * @transfer_buffer_length: How big is transfer_buffer. The transfer may
1273 * be broken up into chunks according to the current maximum packet
1274 * size for the endpoint, which is a function of the configuration
1275 * and is encoded in the pipe. When the length is zero, neither
1276 * transfer_buffer nor transfer_dma is used.
1277 * @actual_length: This is read in non-iso completion functions, and
1278 * it tells how many bytes (out of transfer_buffer_length) were
1279 * transferred. It will normally be the same as requested, unless
1280 * either an error was reported or a short read was performed.
1281 * The URB_SHORT_NOT_OK transfer flag may be used to make such
1282 * short reads be reported as errors.
1283 * @setup_packet: Only used for control transfers, this points to eight bytes
1284 * of setup data. Control transfers always start by sending this data
1285 * to the device. Then transfer_buffer is read or written, if needed.
1286 * @setup_dma: DMA pointer for the setup packet. The caller must not use
1287 * this field; setup_packet must point to a valid buffer.
1288 * @start_frame: Returns the initial frame for isochronous transfers.
1289 * @number_of_packets: Lists the number of ISO transfer buffers.
1290 * @interval: Specifies the polling interval for interrupt or isochronous
1291 * transfers. The units are frames (milliseconds) for full and low
1292 * speed devices, and microframes (1/8 millisecond) for highspeed
1293 * and SuperSpeed devices.
1294 * @error_count: Returns the number of ISO transfers that reported errors.
1295 * @context: For use in completion functions. This normally points to
1296 * request-specific driver context.
1297 * @complete: Completion handler. This URB is passed as the parameter to the
1298 * completion function. The completion function may then do what
1299 * it likes with the URB, including resubmitting or freeing it.
1300 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1301 * collect the transfer status for each buffer.
1302 *
1303 * This structure identifies USB transfer requests. URBs must be allocated by
1304 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1305 * Initialization may be done using various usb_fill_*_urb() functions. URBs
1306 * are submitted using usb_submit_urb(), and pending requests may be canceled
1307 * using usb_unlink_urb() or usb_kill_urb().
1308 *
1309 * Data Transfer Buffers:
1310 *
1311 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1312 * taken from the general page pool. That is provided by transfer_buffer
1313 * (control requests also use setup_packet), and host controller drivers
1314 * perform a dma mapping (and unmapping) for each buffer transferred. Those
1315 * mapping operations can be expensive on some platforms (perhaps using a dma
1316 * bounce buffer or talking to an IOMMU),
1317 * although they're cheap on commodity x86 and ppc hardware.
1318 *
1319 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1320 * which tells the host controller driver that no such mapping is needed for
1321 * the transfer_buffer since
1322 * the device driver is DMA-aware. For example, a device driver might
1323 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1324 * When this transfer flag is provided, host controller drivers will
1325 * attempt to use the dma address found in the transfer_dma
1326 * field rather than determining a dma address themselves.
1327 *
1328 * Note that transfer_buffer must still be set if the controller
1329 * does not support DMA (as indicated by bus.uses_dma) and when talking
1330 * to root hub. If you have to trasfer between highmem zone and the device
1331 * on such controller, create a bounce buffer or bail out with an error.
1332 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1333 * capable, assign NULL to it, so that usbmon knows not to use the value.
1334 * The setup_packet must always be set, so it cannot be located in highmem.
1335 *
1336 * Initialization:
1337 *
1338 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1339 * zero), and complete fields. All URBs must also initialize
1340 * transfer_buffer and transfer_buffer_length. They may provide the
1341 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1342 * to be treated as errors; that flag is invalid for write requests.
1343 *
1344 * Bulk URBs may
1345 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1346 * should always terminate with a short packet, even if it means adding an
1347 * extra zero length packet.
1348 *
1349 * Control URBs must provide a valid pointer in the setup_packet field.
1350 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1351 * beforehand.
1352 *
1353 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1354 * or, for highspeed devices, 125 microsecond units)
1355 * to poll for transfers. After the URB has been submitted, the interval
1356 * field reflects how the transfer was actually scheduled.
1357 * The polling interval may be more frequent than requested.
1358 * For example, some controllers have a maximum interval of 32 milliseconds,
1359 * while others support intervals of up to 1024 milliseconds.
1360 * Isochronous URBs also have transfer intervals. (Note that for isochronous
1361 * endpoints, as well as high speed interrupt endpoints, the encoding of
1362 * the transfer interval in the endpoint descriptor is logarithmic.
1363 * Device drivers must convert that value to linear units themselves.)
1364 *
1365 * If an isochronous endpoint queue isn't already running, the host
1366 * controller will schedule a new URB to start as soon as bandwidth
1367 * utilization allows. If the queue is running then a new URB will be
1368 * scheduled to start in the first transfer slot following the end of the
1369 * preceding URB, if that slot has not already expired. If the slot has
1370 * expired (which can happen when IRQ delivery is delayed for a long time),
1371 * the scheduling behavior depends on the URB_ISO_ASAP flag. If the flag
1372 * is clear then the URB will be scheduled to start in the expired slot,
1373 * implying that some of its packets will not be transferred; if the flag
1374 * is set then the URB will be scheduled in the first unexpired slot,
1375 * breaking the queue's synchronization. Upon URB completion, the
1376 * start_frame field will be set to the (micro)frame number in which the
1377 * transfer was scheduled. Ranges for frame counter values are HC-specific
1378 * and can go from as low as 256 to as high as 65536 frames.
1379 *
1380 * Isochronous URBs have a different data transfer model, in part because
1381 * the quality of service is only "best effort". Callers provide specially
1382 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1383 * at the end. Each such packet is an individual ISO transfer. Isochronous
1384 * URBs are normally queued, submitted by drivers to arrange that
1385 * transfers are at least double buffered, and then explicitly resubmitted
1386 * in completion handlers, so
1387 * that data (such as audio or video) streams at as constant a rate as the
1388 * host controller scheduler can support.
1389 *
1390 * Completion Callbacks:
1391 *
1392 * The completion callback is made in_interrupt(), and one of the first
1393 * things that a completion handler should do is check the status field.
1394 * The status field is provided for all URBs. It is used to report
1395 * unlinked URBs, and status for all non-ISO transfers. It should not
1396 * be examined before the URB is returned to the completion handler.
1397 *
1398 * The context field is normally used to link URBs back to the relevant
1399 * driver or request state.
1400 *
1401 * When the completion callback is invoked for non-isochronous URBs, the
1402 * actual_length field tells how many bytes were transferred. This field
1403 * is updated even when the URB terminated with an error or was unlinked.
1404 *
1405 * ISO transfer status is reported in the status and actual_length fields
1406 * of the iso_frame_desc array, and the number of errors is reported in
1407 * error_count. Completion callbacks for ISO transfers will normally
1408 * (re)submit URBs to ensure a constant transfer rate.
1409 *
1410 * Note that even fields marked "public" should not be touched by the driver
1411 * when the urb is owned by the hcd, that is, since the call to
1412 * usb_submit_urb() till the entry into the completion routine.
1413 */
1414 struct urb {
1415 /* private: usb core and host controller only fields in the urb */
1416 struct kref kref; /* reference count of the URB */
1417 void *hcpriv; /* private data for host controller */
1418 atomic_t use_count; /* concurrent submissions counter */
1419 atomic_t reject; /* submissions will fail */
1420 int unlinked; /* unlink error code */
1421
1422 /* public: documented fields in the urb that can be used by drivers */
1423 struct list_head urb_list; /* list head for use by the urb's
1424 * current owner */
1425 struct list_head anchor_list; /* the URB may be anchored */
1426 struct usb_anchor *anchor;
1427 struct usb_device *dev; /* (in) pointer to associated device */
1428 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */
1429 unsigned int pipe; /* (in) pipe information */
1430 unsigned int stream_id; /* (in) stream ID */
1431 int status; /* (return) non-ISO status */
1432 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
1433 void *transfer_buffer; /* (in) associated data buffer */
1434 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */
1435 struct scatterlist *sg; /* (in) scatter gather buffer list */
1436 int num_mapped_sgs; /* (internal) mapped sg entries */
1437 int num_sgs; /* (in) number of entries in the sg list */
1438 u32 transfer_buffer_length; /* (in) data buffer length */
1439 u32 actual_length; /* (return) actual transfer length */
1440 unsigned char *setup_packet; /* (in) setup packet (control only) */
1441 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */
1442 int start_frame; /* (modify) start frame (ISO) */
1443 int number_of_packets; /* (in) number of ISO packets */
1444 int interval; /* (modify) transfer interval
1445 * (INT/ISO) */
1446 int error_count; /* (return) number of ISO errors */
1447 void *context; /* (in) context for completion */
1448 usb_complete_t complete; /* (in) completion routine */
1449 struct usb_iso_packet_descriptor iso_frame_desc[0];
1450 /* (in) ISO ONLY */
1451 };
1452
1453 /* ----------------------------------------------------------------------- */
1454
1455 /**
1456 * usb_fill_control_urb - initializes a control urb
1457 * @urb: pointer to the urb to initialize.
1458 * @dev: pointer to the struct usb_device for this urb.
1459 * @pipe: the endpoint pipe
1460 * @setup_packet: pointer to the setup_packet buffer
1461 * @transfer_buffer: pointer to the transfer buffer
1462 * @buffer_length: length of the transfer buffer
1463 * @complete_fn: pointer to the usb_complete_t function
1464 * @context: what to set the urb context to.
1465 *
1466 * Initializes a control urb with the proper information needed to submit
1467 * it to a device.
1468 */
1469 static inline void usb_fill_control_urb(struct urb *urb,
1470 struct usb_device *dev,
1471 unsigned int pipe,
1472 unsigned char *setup_packet,
1473 void *transfer_buffer,
1474 int buffer_length,
1475 usb_complete_t complete_fn,
1476 void *context)
1477 {
1478 urb->dev = dev;
1479 urb->pipe = pipe;
1480 urb->setup_packet = setup_packet;
1481 urb->transfer_buffer = transfer_buffer;
1482 urb->transfer_buffer_length = buffer_length;
1483 urb->complete = complete_fn;
1484 urb->context = context;
1485 }
1486
1487 /**
1488 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1489 * @urb: pointer to the urb to initialize.
1490 * @dev: pointer to the struct usb_device for this urb.
1491 * @pipe: the endpoint pipe
1492 * @transfer_buffer: pointer to the transfer buffer
1493 * @buffer_length: length of the transfer buffer
1494 * @complete_fn: pointer to the usb_complete_t function
1495 * @context: what to set the urb context to.
1496 *
1497 * Initializes a bulk urb with the proper information needed to submit it
1498 * to a device.
1499 */
1500 static inline void usb_fill_bulk_urb(struct urb *urb,
1501 struct usb_device *dev,
1502 unsigned int pipe,
1503 void *transfer_buffer,
1504 int buffer_length,
1505 usb_complete_t complete_fn,
1506 void *context)
1507 {
1508 urb->dev = dev;
1509 urb->pipe = pipe;
1510 urb->transfer_buffer = transfer_buffer;
1511 urb->transfer_buffer_length = buffer_length;
1512 urb->complete = complete_fn;
1513 urb->context = context;
1514 }
1515
1516 /**
1517 * usb_fill_int_urb - macro to help initialize a interrupt urb
1518 * @urb: pointer to the urb to initialize.
1519 * @dev: pointer to the struct usb_device for this urb.
1520 * @pipe: the endpoint pipe
1521 * @transfer_buffer: pointer to the transfer buffer
1522 * @buffer_length: length of the transfer buffer
1523 * @complete_fn: pointer to the usb_complete_t function
1524 * @context: what to set the urb context to.
1525 * @interval: what to set the urb interval to, encoded like
1526 * the endpoint descriptor's bInterval value.
1527 *
1528 * Initializes a interrupt urb with the proper information needed to submit
1529 * it to a device.
1530 *
1531 * Note that High Speed and SuperSpeed interrupt endpoints use a logarithmic
1532 * encoding of the endpoint interval, and express polling intervals in
1533 * microframes (eight per millisecond) rather than in frames (one per
1534 * millisecond).
1535 *
1536 * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1537 * 128us instead of 125us. For Wireless USB devices, the interval is passed
1538 * through to the host controller, rather than being translated into microframe
1539 * units.
1540 */
1541 static inline void usb_fill_int_urb(struct urb *urb,
1542 struct usb_device *dev,
1543 unsigned int pipe,
1544 void *transfer_buffer,
1545 int buffer_length,
1546 usb_complete_t complete_fn,
1547 void *context,
1548 int interval)
1549 {
1550 urb->dev = dev;
1551 urb->pipe = pipe;
1552 urb->transfer_buffer = transfer_buffer;
1553 urb->transfer_buffer_length = buffer_length;
1554 urb->complete = complete_fn;
1555 urb->context = context;
1556
1557 if (dev->speed == USB_SPEED_HIGH || dev->speed == USB_SPEED_SUPER) {
1558 /* make sure interval is within allowed range */
1559 interval = clamp(interval, 1, 16);
1560
1561 urb->interval = 1 << (interval - 1);
1562 } else {
1563 urb->interval = interval;
1564 }
1565
1566 urb->start_frame = -1;
1567 }
1568
1569 extern void usb_init_urb(struct urb *urb);
1570 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1571 extern void usb_free_urb(struct urb *urb);
1572 #define usb_put_urb usb_free_urb
1573 extern struct urb *usb_get_urb(struct urb *urb);
1574 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1575 extern int usb_unlink_urb(struct urb *urb);
1576 extern void usb_kill_urb(struct urb *urb);
1577 extern void usb_poison_urb(struct urb *urb);
1578 extern void usb_unpoison_urb(struct urb *urb);
1579 extern void usb_block_urb(struct urb *urb);
1580 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1581 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1582 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1583 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1584 extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1585 extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1586 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1587 extern void usb_unanchor_urb(struct urb *urb);
1588 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1589 unsigned int timeout);
1590 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1591 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1592 extern int usb_anchor_empty(struct usb_anchor *anchor);
1593
1594 #define usb_unblock_urb usb_unpoison_urb
1595
1596 /**
1597 * usb_urb_dir_in - check if an URB describes an IN transfer
1598 * @urb: URB to be checked
1599 *
1600 * Return: 1 if @urb describes an IN transfer (device-to-host),
1601 * otherwise 0.
1602 */
1603 static inline int usb_urb_dir_in(struct urb *urb)
1604 {
1605 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1606 }
1607
1608 /**
1609 * usb_urb_dir_out - check if an URB describes an OUT transfer
1610 * @urb: URB to be checked
1611 *
1612 * Return: 1 if @urb describes an OUT transfer (host-to-device),
1613 * otherwise 0.
1614 */
1615 static inline int usb_urb_dir_out(struct urb *urb)
1616 {
1617 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1618 }
1619
1620 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1621 gfp_t mem_flags, dma_addr_t *dma);
1622 void usb_free_coherent(struct usb_device *dev, size_t size,
1623 void *addr, dma_addr_t dma);
1624
1625 #if 0
1626 struct urb *usb_buffer_map(struct urb *urb);
1627 void usb_buffer_dmasync(struct urb *urb);
1628 void usb_buffer_unmap(struct urb *urb);
1629 #endif
1630
1631 struct scatterlist;
1632 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1633 struct scatterlist *sg, int nents);
1634 #if 0
1635 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1636 struct scatterlist *sg, int n_hw_ents);
1637 #endif
1638 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1639 struct scatterlist *sg, int n_hw_ents);
1640
1641 /*-------------------------------------------------------------------*
1642 * SYNCHRONOUS CALL SUPPORT *
1643 *-------------------------------------------------------------------*/
1644
1645 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1646 __u8 request, __u8 requesttype, __u16 value, __u16 index,
1647 void *data, __u16 size, int timeout);
1648 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1649 void *data, int len, int *actual_length, int timeout);
1650 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1651 void *data, int len, int *actual_length,
1652 int timeout);
1653
1654 /* wrappers around usb_control_msg() for the most common standard requests */
1655 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1656 unsigned char descindex, void *buf, int size);
1657 extern int usb_get_status(struct usb_device *dev,
1658 int type, int target, void *data);
1659 extern int usb_string(struct usb_device *dev, int index,
1660 char *buf, size_t size);
1661
1662 /* wrappers that also update important state inside usbcore */
1663 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1664 extern int usb_reset_configuration(struct usb_device *dev);
1665 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1666 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1667
1668 /* this request isn't really synchronous, but it belongs with the others */
1669 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1670
1671 /*
1672 * timeouts, in milliseconds, used for sending/receiving control messages
1673 * they typically complete within a few frames (msec) after they're issued
1674 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1675 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1676 */
1677 #define USB_CTRL_GET_TIMEOUT 5000
1678 #define USB_CTRL_SET_TIMEOUT 5000
1679
1680
1681 /**
1682 * struct usb_sg_request - support for scatter/gather I/O
1683 * @status: zero indicates success, else negative errno
1684 * @bytes: counts bytes transferred.
1685 *
1686 * These requests are initialized using usb_sg_init(), and then are used
1687 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most
1688 * members of the request object aren't for driver access.
1689 *
1690 * The status and bytecount values are valid only after usb_sg_wait()
1691 * returns. If the status is zero, then the bytecount matches the total
1692 * from the request.
1693 *
1694 * After an error completion, drivers may need to clear a halt condition
1695 * on the endpoint.
1696 */
1697 struct usb_sg_request {
1698 int status;
1699 size_t bytes;
1700
1701 /* private:
1702 * members below are private to usbcore,
1703 * and are not provided for driver access!
1704 */
1705 spinlock_t lock;
1706
1707 struct usb_device *dev;
1708 int pipe;
1709
1710 int entries;
1711 struct urb **urbs;
1712
1713 int count;
1714 struct completion complete;
1715 };
1716
1717 int usb_sg_init(
1718 struct usb_sg_request *io,
1719 struct usb_device *dev,
1720 unsigned pipe,
1721 unsigned period,
1722 struct scatterlist *sg,
1723 int nents,
1724 size_t length,
1725 gfp_t mem_flags
1726 );
1727 void usb_sg_cancel(struct usb_sg_request *io);
1728 void usb_sg_wait(struct usb_sg_request *io);
1729
1730
1731 /* ----------------------------------------------------------------------- */
1732
1733 /*
1734 * For various legacy reasons, Linux has a small cookie that's paired with
1735 * a struct usb_device to identify an endpoint queue. Queue characteristics
1736 * are defined by the endpoint's descriptor. This cookie is called a "pipe",
1737 * an unsigned int encoded as:
1738 *
1739 * - direction: bit 7 (0 = Host-to-Device [Out],
1740 * 1 = Device-to-Host [In] ...
1741 * like endpoint bEndpointAddress)
1742 * - device address: bits 8-14 ... bit positions known to uhci-hcd
1743 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd
1744 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt,
1745 * 10 = control, 11 = bulk)
1746 *
1747 * Given the device address and endpoint descriptor, pipes are redundant.
1748 */
1749
1750 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */
1751 /* (yet ... they're the values used by usbfs) */
1752 #define PIPE_ISOCHRONOUS 0
1753 #define PIPE_INTERRUPT 1
1754 #define PIPE_CONTROL 2
1755 #define PIPE_BULK 3
1756
1757 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN)
1758 #define usb_pipeout(pipe) (!usb_pipein(pipe))
1759
1760 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f)
1761 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf)
1762
1763 #define usb_pipetype(pipe) (((pipe) >> 30) & 3)
1764 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1765 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1766 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL)
1767 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK)
1768
1769 static inline unsigned int __create_pipe(struct usb_device *dev,
1770 unsigned int endpoint)
1771 {
1772 return (dev->devnum << 8) | (endpoint << 15);
1773 }
1774
1775 /* Create various pipes... */
1776 #define usb_sndctrlpipe(dev, endpoint) \
1777 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1778 #define usb_rcvctrlpipe(dev, endpoint) \
1779 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1780 #define usb_sndisocpipe(dev, endpoint) \
1781 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1782 #define usb_rcvisocpipe(dev, endpoint) \
1783 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1784 #define usb_sndbulkpipe(dev, endpoint) \
1785 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1786 #define usb_rcvbulkpipe(dev, endpoint) \
1787 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1788 #define usb_sndintpipe(dev, endpoint) \
1789 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1790 #define usb_rcvintpipe(dev, endpoint) \
1791 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1792
1793 static inline struct usb_host_endpoint *
1794 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1795 {
1796 struct usb_host_endpoint **eps;
1797 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1798 return eps[usb_pipeendpoint(pipe)];
1799 }
1800
1801 /*-------------------------------------------------------------------------*/
1802
1803 static inline __u16
1804 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1805 {
1806 struct usb_host_endpoint *ep;
1807 unsigned epnum = usb_pipeendpoint(pipe);
1808
1809 if (is_out) {
1810 WARN_ON(usb_pipein(pipe));
1811 ep = udev->ep_out[epnum];
1812 } else {
1813 WARN_ON(usb_pipeout(pipe));
1814 ep = udev->ep_in[epnum];
1815 }
1816 if (!ep)
1817 return 0;
1818
1819 /* NOTE: only 0x07ff bits are for packet size... */
1820 return usb_endpoint_maxp(&ep->desc);
1821 }
1822
1823 /* ----------------------------------------------------------------------- */
1824
1825 /* translate USB error codes to codes user space understands */
1826 static inline int usb_translate_errors(int error_code)
1827 {
1828 switch (error_code) {
1829 case 0:
1830 case -ENOMEM:
1831 case -ENODEV:
1832 case -EOPNOTSUPP:
1833 return error_code;
1834 default:
1835 return -EIO;
1836 }
1837 }
1838
1839 /* Events from the usb core */
1840 #define USB_DEVICE_ADD 0x0001
1841 #define USB_DEVICE_REMOVE 0x0002
1842 #define USB_BUS_ADD 0x0003
1843 #define USB_BUS_REMOVE 0x0004
1844 extern void usb_register_notify(struct notifier_block *nb);
1845 extern void usb_unregister_notify(struct notifier_block *nb);
1846
1847 /* debugfs stuff */
1848 extern struct dentry *usb_debug_root;
1849
1850 #endif /* __KERNEL__ */
1851
1852 #endif
This page took 0.106607 seconds and 5 git commands to generate.