Merge tag 'armsoc-dt' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[deliverable/linux.git] / include / linux / usb.h
1 #ifndef __LINUX_USB_H
2 #define __LINUX_USB_H
3
4 #include <linux/mod_devicetable.h>
5 #include <linux/usb/ch9.h>
6
7 #define USB_MAJOR 180
8 #define USB_DEVICE_MAJOR 189
9
10
11 #ifdef __KERNEL__
12
13 #include <linux/errno.h> /* for -ENODEV */
14 #include <linux/delay.h> /* for mdelay() */
15 #include <linux/interrupt.h> /* for in_interrupt() */
16 #include <linux/list.h> /* for struct list_head */
17 #include <linux/kref.h> /* for struct kref */
18 #include <linux/device.h> /* for struct device */
19 #include <linux/fs.h> /* for struct file_operations */
20 #include <linux/completion.h> /* for struct completion */
21 #include <linux/sched.h> /* for current && schedule_timeout */
22 #include <linux/mutex.h> /* for struct mutex */
23 #include <linux/pm_runtime.h> /* for runtime PM */
24
25 struct usb_device;
26 struct usb_driver;
27 struct wusb_dev;
28
29 /*-------------------------------------------------------------------------*/
30
31 /*
32 * Host-side wrappers for standard USB descriptors ... these are parsed
33 * from the data provided by devices. Parsing turns them from a flat
34 * sequence of descriptors into a hierarchy:
35 *
36 * - devices have one (usually) or more configs;
37 * - configs have one (often) or more interfaces;
38 * - interfaces have one (usually) or more settings;
39 * - each interface setting has zero or (usually) more endpoints.
40 * - a SuperSpeed endpoint has a companion descriptor
41 *
42 * And there might be other descriptors mixed in with those.
43 *
44 * Devices may also have class-specific or vendor-specific descriptors.
45 */
46
47 struct ep_device;
48
49 /**
50 * struct usb_host_endpoint - host-side endpoint descriptor and queue
51 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
52 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
53 * @urb_list: urbs queued to this endpoint; maintained by usbcore
54 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
55 * with one or more transfer descriptors (TDs) per urb
56 * @ep_dev: ep_device for sysfs info
57 * @extra: descriptors following this endpoint in the configuration
58 * @extralen: how many bytes of "extra" are valid
59 * @enabled: URBs may be submitted to this endpoint
60 * @streams: number of USB-3 streams allocated on the endpoint
61 *
62 * USB requests are always queued to a given endpoint, identified by a
63 * descriptor within an active interface in a given USB configuration.
64 */
65 struct usb_host_endpoint {
66 struct usb_endpoint_descriptor desc;
67 struct usb_ss_ep_comp_descriptor ss_ep_comp;
68 struct list_head urb_list;
69 void *hcpriv;
70 struct ep_device *ep_dev; /* For sysfs info */
71
72 unsigned char *extra; /* Extra descriptors */
73 int extralen;
74 int enabled;
75 int streams;
76 };
77
78 /* host-side wrapper for one interface setting's parsed descriptors */
79 struct usb_host_interface {
80 struct usb_interface_descriptor desc;
81
82 int extralen;
83 unsigned char *extra; /* Extra descriptors */
84
85 /* array of desc.bNumEndpoints endpoints associated with this
86 * interface setting. these will be in no particular order.
87 */
88 struct usb_host_endpoint *endpoint;
89
90 char *string; /* iInterface string, if present */
91 };
92
93 enum usb_interface_condition {
94 USB_INTERFACE_UNBOUND = 0,
95 USB_INTERFACE_BINDING,
96 USB_INTERFACE_BOUND,
97 USB_INTERFACE_UNBINDING,
98 };
99
100 /**
101 * struct usb_interface - what usb device drivers talk to
102 * @altsetting: array of interface structures, one for each alternate
103 * setting that may be selected. Each one includes a set of
104 * endpoint configurations. They will be in no particular order.
105 * @cur_altsetting: the current altsetting.
106 * @num_altsetting: number of altsettings defined.
107 * @intf_assoc: interface association descriptor
108 * @minor: the minor number assigned to this interface, if this
109 * interface is bound to a driver that uses the USB major number.
110 * If this interface does not use the USB major, this field should
111 * be unused. The driver should set this value in the probe()
112 * function of the driver, after it has been assigned a minor
113 * number from the USB core by calling usb_register_dev().
114 * @condition: binding state of the interface: not bound, binding
115 * (in probe()), bound to a driver, or unbinding (in disconnect())
116 * @sysfs_files_created: sysfs attributes exist
117 * @ep_devs_created: endpoint child pseudo-devices exist
118 * @unregistering: flag set when the interface is being unregistered
119 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
120 * capability during autosuspend.
121 * @needs_altsetting0: flag set when a set-interface request for altsetting 0
122 * has been deferred.
123 * @needs_binding: flag set when the driver should be re-probed or unbound
124 * following a reset or suspend operation it doesn't support.
125 * @authorized: This allows to (de)authorize individual interfaces instead
126 * a whole device in contrast to the device authorization.
127 * @dev: driver model's view of this device
128 * @usb_dev: if an interface is bound to the USB major, this will point
129 * to the sysfs representation for that device.
130 * @pm_usage_cnt: PM usage counter for this interface
131 * @reset_ws: Used for scheduling resets from atomic context.
132 * @resetting_device: USB core reset the device, so use alt setting 0 as
133 * current; needs bandwidth alloc after reset.
134 *
135 * USB device drivers attach to interfaces on a physical device. Each
136 * interface encapsulates a single high level function, such as feeding
137 * an audio stream to a speaker or reporting a change in a volume control.
138 * Many USB devices only have one interface. The protocol used to talk to
139 * an interface's endpoints can be defined in a usb "class" specification,
140 * or by a product's vendor. The (default) control endpoint is part of
141 * every interface, but is never listed among the interface's descriptors.
142 *
143 * The driver that is bound to the interface can use standard driver model
144 * calls such as dev_get_drvdata() on the dev member of this structure.
145 *
146 * Each interface may have alternate settings. The initial configuration
147 * of a device sets altsetting 0, but the device driver can change
148 * that setting using usb_set_interface(). Alternate settings are often
149 * used to control the use of periodic endpoints, such as by having
150 * different endpoints use different amounts of reserved USB bandwidth.
151 * All standards-conformant USB devices that use isochronous endpoints
152 * will use them in non-default settings.
153 *
154 * The USB specification says that alternate setting numbers must run from
155 * 0 to one less than the total number of alternate settings. But some
156 * devices manage to mess this up, and the structures aren't necessarily
157 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to
158 * look up an alternate setting in the altsetting array based on its number.
159 */
160 struct usb_interface {
161 /* array of alternate settings for this interface,
162 * stored in no particular order */
163 struct usb_host_interface *altsetting;
164
165 struct usb_host_interface *cur_altsetting; /* the currently
166 * active alternate setting */
167 unsigned num_altsetting; /* number of alternate settings */
168
169 /* If there is an interface association descriptor then it will list
170 * the associated interfaces */
171 struct usb_interface_assoc_descriptor *intf_assoc;
172
173 int minor; /* minor number this interface is
174 * bound to */
175 enum usb_interface_condition condition; /* state of binding */
176 unsigned sysfs_files_created:1; /* the sysfs attributes exist */
177 unsigned ep_devs_created:1; /* endpoint "devices" exist */
178 unsigned unregistering:1; /* unregistration is in progress */
179 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
180 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */
181 unsigned needs_binding:1; /* needs delayed unbind/rebind */
182 unsigned resetting_device:1; /* true: bandwidth alloc after reset */
183 unsigned authorized:1; /* used for interface authorization */
184
185 struct device dev; /* interface specific device info */
186 struct device *usb_dev;
187 atomic_t pm_usage_cnt; /* usage counter for autosuspend */
188 struct work_struct reset_ws; /* for resets in atomic context */
189 };
190 #define to_usb_interface(d) container_of(d, struct usb_interface, dev)
191
192 static inline void *usb_get_intfdata(struct usb_interface *intf)
193 {
194 return dev_get_drvdata(&intf->dev);
195 }
196
197 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
198 {
199 dev_set_drvdata(&intf->dev, data);
200 }
201
202 struct usb_interface *usb_get_intf(struct usb_interface *intf);
203 void usb_put_intf(struct usb_interface *intf);
204
205 /* Hard limit */
206 #define USB_MAXENDPOINTS 30
207 /* this maximum is arbitrary */
208 #define USB_MAXINTERFACES 32
209 #define USB_MAXIADS (USB_MAXINTERFACES/2)
210
211 /*
212 * USB Resume Timer: Every Host controller driver should drive the resume
213 * signalling on the bus for the amount of time defined by this macro.
214 *
215 * That way we will have a 'stable' behavior among all HCDs supported by Linux.
216 *
217 * Note that the USB Specification states we should drive resume for *at least*
218 * 20 ms, but it doesn't give an upper bound. This creates two possible
219 * situations which we want to avoid:
220 *
221 * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes
222 * us to fail USB Electrical Tests, thus failing Certification
223 *
224 * (b) Some (many) devices actually need more than 20 ms of resume signalling,
225 * and while we can argue that's against the USB Specification, we don't have
226 * control over which devices a certification laboratory will be using for
227 * certification. If CertLab uses a device which was tested against Windows and
228 * that happens to have relaxed resume signalling rules, we might fall into
229 * situations where we fail interoperability and electrical tests.
230 *
231 * In order to avoid both conditions, we're using a 40 ms resume timeout, which
232 * should cope with both LPJ calibration errors and devices not following every
233 * detail of the USB Specification.
234 */
235 #define USB_RESUME_TIMEOUT 40 /* ms */
236
237 /**
238 * struct usb_interface_cache - long-term representation of a device interface
239 * @num_altsetting: number of altsettings defined.
240 * @ref: reference counter.
241 * @altsetting: variable-length array of interface structures, one for
242 * each alternate setting that may be selected. Each one includes a
243 * set of endpoint configurations. They will be in no particular order.
244 *
245 * These structures persist for the lifetime of a usb_device, unlike
246 * struct usb_interface (which persists only as long as its configuration
247 * is installed). The altsetting arrays can be accessed through these
248 * structures at any time, permitting comparison of configurations and
249 * providing support for the /proc/bus/usb/devices pseudo-file.
250 */
251 struct usb_interface_cache {
252 unsigned num_altsetting; /* number of alternate settings */
253 struct kref ref; /* reference counter */
254
255 /* variable-length array of alternate settings for this interface,
256 * stored in no particular order */
257 struct usb_host_interface altsetting[0];
258 };
259 #define ref_to_usb_interface_cache(r) \
260 container_of(r, struct usb_interface_cache, ref)
261 #define altsetting_to_usb_interface_cache(a) \
262 container_of(a, struct usb_interface_cache, altsetting[0])
263
264 /**
265 * struct usb_host_config - representation of a device's configuration
266 * @desc: the device's configuration descriptor.
267 * @string: pointer to the cached version of the iConfiguration string, if
268 * present for this configuration.
269 * @intf_assoc: list of any interface association descriptors in this config
270 * @interface: array of pointers to usb_interface structures, one for each
271 * interface in the configuration. The number of interfaces is stored
272 * in desc.bNumInterfaces. These pointers are valid only while the
273 * the configuration is active.
274 * @intf_cache: array of pointers to usb_interface_cache structures, one
275 * for each interface in the configuration. These structures exist
276 * for the entire life of the device.
277 * @extra: pointer to buffer containing all extra descriptors associated
278 * with this configuration (those preceding the first interface
279 * descriptor).
280 * @extralen: length of the extra descriptors buffer.
281 *
282 * USB devices may have multiple configurations, but only one can be active
283 * at any time. Each encapsulates a different operational environment;
284 * for example, a dual-speed device would have separate configurations for
285 * full-speed and high-speed operation. The number of configurations
286 * available is stored in the device descriptor as bNumConfigurations.
287 *
288 * A configuration can contain multiple interfaces. Each corresponds to
289 * a different function of the USB device, and all are available whenever
290 * the configuration is active. The USB standard says that interfaces
291 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
292 * of devices get this wrong. In addition, the interface array is not
293 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to
294 * look up an interface entry based on its number.
295 *
296 * Device drivers should not attempt to activate configurations. The choice
297 * of which configuration to install is a policy decision based on such
298 * considerations as available power, functionality provided, and the user's
299 * desires (expressed through userspace tools). However, drivers can call
300 * usb_reset_configuration() to reinitialize the current configuration and
301 * all its interfaces.
302 */
303 struct usb_host_config {
304 struct usb_config_descriptor desc;
305
306 char *string; /* iConfiguration string, if present */
307
308 /* List of any Interface Association Descriptors in this
309 * configuration. */
310 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
311
312 /* the interfaces associated with this configuration,
313 * stored in no particular order */
314 struct usb_interface *interface[USB_MAXINTERFACES];
315
316 /* Interface information available even when this is not the
317 * active configuration */
318 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
319
320 unsigned char *extra; /* Extra descriptors */
321 int extralen;
322 };
323
324 /* USB2.0 and USB3.0 device BOS descriptor set */
325 struct usb_host_bos {
326 struct usb_bos_descriptor *desc;
327
328 /* wireless cap descriptor is handled by wusb */
329 struct usb_ext_cap_descriptor *ext_cap;
330 struct usb_ss_cap_descriptor *ss_cap;
331 struct usb_ssp_cap_descriptor *ssp_cap;
332 struct usb_ss_container_id_descriptor *ss_id;
333 };
334
335 int __usb_get_extra_descriptor(char *buffer, unsigned size,
336 unsigned char type, void **ptr);
337 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
338 __usb_get_extra_descriptor((ifpoint)->extra, \
339 (ifpoint)->extralen, \
340 type, (void **)ptr)
341
342 /* ----------------------------------------------------------------------- */
343
344 /* USB device number allocation bitmap */
345 struct usb_devmap {
346 unsigned long devicemap[128 / (8*sizeof(unsigned long))];
347 };
348
349 /*
350 * Allocated per bus (tree of devices) we have:
351 */
352 struct usb_bus {
353 struct device *controller; /* host/master side hardware */
354 int busnum; /* Bus number (in order of reg) */
355 const char *bus_name; /* stable id (PCI slot_name etc) */
356 u8 uses_dma; /* Does the host controller use DMA? */
357 u8 uses_pio_for_control; /*
358 * Does the host controller use PIO
359 * for control transfers?
360 */
361 u8 otg_port; /* 0, or number of OTG/HNP port */
362 unsigned is_b_host:1; /* true during some HNP roleswitches */
363 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */
364 unsigned no_stop_on_short:1; /*
365 * Quirk: some controllers don't stop
366 * the ep queue on a short transfer
367 * with the URB_SHORT_NOT_OK flag set.
368 */
369 unsigned no_sg_constraint:1; /* no sg constraint */
370 unsigned sg_tablesize; /* 0 or largest number of sg list entries */
371
372 int devnum_next; /* Next open device number in
373 * round-robin allocation */
374
375 struct usb_devmap devmap; /* device address allocation map */
376 struct usb_device *root_hub; /* Root hub */
377 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */
378 struct list_head bus_list; /* list of busses */
379
380 struct mutex usb_address0_mutex; /* unaddressed device mutex */
381
382 int bandwidth_allocated; /* on this bus: how much of the time
383 * reserved for periodic (intr/iso)
384 * requests is used, on average?
385 * Units: microseconds/frame.
386 * Limits: Full/low speed reserve 90%,
387 * while high speed reserves 80%.
388 */
389 int bandwidth_int_reqs; /* number of Interrupt requests */
390 int bandwidth_isoc_reqs; /* number of Isoc. requests */
391
392 unsigned resuming_ports; /* bit array: resuming root-hub ports */
393
394 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
395 struct mon_bus *mon_bus; /* non-null when associated */
396 int monitored; /* non-zero when monitored */
397 #endif
398 };
399
400 struct usb_dev_state;
401
402 /* ----------------------------------------------------------------------- */
403
404 struct usb_tt;
405
406 enum usb_device_removable {
407 USB_DEVICE_REMOVABLE_UNKNOWN = 0,
408 USB_DEVICE_REMOVABLE,
409 USB_DEVICE_FIXED,
410 };
411
412 enum usb_port_connect_type {
413 USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
414 USB_PORT_CONNECT_TYPE_HOT_PLUG,
415 USB_PORT_CONNECT_TYPE_HARD_WIRED,
416 USB_PORT_NOT_USED,
417 };
418
419 /*
420 * USB 2.0 Link Power Management (LPM) parameters.
421 */
422 struct usb2_lpm_parameters {
423 /* Best effort service latency indicate how long the host will drive
424 * resume on an exit from L1.
425 */
426 unsigned int besl;
427
428 /* Timeout value in microseconds for the L1 inactivity (LPM) timer.
429 * When the timer counts to zero, the parent hub will initiate a LPM
430 * transition to L1.
431 */
432 int timeout;
433 };
434
435 /*
436 * USB 3.0 Link Power Management (LPM) parameters.
437 *
438 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
439 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
440 * All three are stored in nanoseconds.
441 */
442 struct usb3_lpm_parameters {
443 /*
444 * Maximum exit latency (MEL) for the host to send a packet to the
445 * device (either a Ping for isoc endpoints, or a data packet for
446 * interrupt endpoints), the hubs to decode the packet, and for all hubs
447 * in the path to transition the links to U0.
448 */
449 unsigned int mel;
450 /*
451 * Maximum exit latency for a device-initiated LPM transition to bring
452 * all links into U0. Abbreviated as "PEL" in section 9.4.12 of the USB
453 * 3.0 spec, with no explanation of what "P" stands for. "Path"?
454 */
455 unsigned int pel;
456
457 /*
458 * The System Exit Latency (SEL) includes PEL, and three other
459 * latencies. After a device initiates a U0 transition, it will take
460 * some time from when the device sends the ERDY to when it will finally
461 * receive the data packet. Basically, SEL should be the worse-case
462 * latency from when a device starts initiating a U0 transition to when
463 * it will get data.
464 */
465 unsigned int sel;
466 /*
467 * The idle timeout value that is currently programmed into the parent
468 * hub for this device. When the timer counts to zero, the parent hub
469 * will initiate an LPM transition to either U1 or U2.
470 */
471 int timeout;
472 };
473
474 /**
475 * struct usb_device - kernel's representation of a USB device
476 * @devnum: device number; address on a USB bus
477 * @devpath: device ID string for use in messages (e.g., /port/...)
478 * @route: tree topology hex string for use with xHCI
479 * @state: device state: configured, not attached, etc.
480 * @speed: device speed: high/full/low (or error)
481 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
482 * @ttport: device port on that tt hub
483 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
484 * @parent: our hub, unless we're the root
485 * @bus: bus we're part of
486 * @ep0: endpoint 0 data (default control pipe)
487 * @dev: generic device interface
488 * @descriptor: USB device descriptor
489 * @bos: USB device BOS descriptor set
490 * @config: all of the device's configs
491 * @actconfig: the active configuration
492 * @ep_in: array of IN endpoints
493 * @ep_out: array of OUT endpoints
494 * @rawdescriptors: raw descriptors for each config
495 * @bus_mA: Current available from the bus
496 * @portnum: parent port number (origin 1)
497 * @level: number of USB hub ancestors
498 * @can_submit: URBs may be submitted
499 * @persist_enabled: USB_PERSIST enabled for this device
500 * @have_langid: whether string_langid is valid
501 * @authorized: policy has said we can use it;
502 * (user space) policy determines if we authorize this device to be
503 * used or not. By default, wired USB devices are authorized.
504 * WUSB devices are not, until we authorize them from user space.
505 * FIXME -- complete doc
506 * @authenticated: Crypto authentication passed
507 * @wusb: device is Wireless USB
508 * @lpm_capable: device supports LPM
509 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
510 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
511 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
512 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
513 * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled
514 * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled
515 * @string_langid: language ID for strings
516 * @product: iProduct string, if present (static)
517 * @manufacturer: iManufacturer string, if present (static)
518 * @serial: iSerialNumber string, if present (static)
519 * @filelist: usbfs files that are open to this device
520 * @maxchild: number of ports if hub
521 * @quirks: quirks of the whole device
522 * @urbnum: number of URBs submitted for the whole device
523 * @active_duration: total time device is not suspended
524 * @connect_time: time device was first connected
525 * @do_remote_wakeup: remote wakeup should be enabled
526 * @reset_resume: needs reset instead of resume
527 * @port_is_suspended: the upstream port is suspended (L2 or U3)
528 * @wusb_dev: if this is a Wireless USB device, link to the WUSB
529 * specific data for the device.
530 * @slot_id: Slot ID assigned by xHCI
531 * @removable: Device can be physically removed from this port
532 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
533 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
534 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
535 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
536 * to keep track of the number of functions that require USB 3.0 Link Power
537 * Management to be disabled for this usb_device. This count should only
538 * be manipulated by those functions, with the bandwidth_mutex is held.
539 *
540 * Notes:
541 * Usbcore drivers should not set usbdev->state directly. Instead use
542 * usb_set_device_state().
543 */
544 struct usb_device {
545 int devnum;
546 char devpath[16];
547 u32 route;
548 enum usb_device_state state;
549 enum usb_device_speed speed;
550
551 struct usb_tt *tt;
552 int ttport;
553
554 unsigned int toggle[2];
555
556 struct usb_device *parent;
557 struct usb_bus *bus;
558 struct usb_host_endpoint ep0;
559
560 struct device dev;
561
562 struct usb_device_descriptor descriptor;
563 struct usb_host_bos *bos;
564 struct usb_host_config *config;
565
566 struct usb_host_config *actconfig;
567 struct usb_host_endpoint *ep_in[16];
568 struct usb_host_endpoint *ep_out[16];
569
570 char **rawdescriptors;
571
572 unsigned short bus_mA;
573 u8 portnum;
574 u8 level;
575
576 unsigned can_submit:1;
577 unsigned persist_enabled:1;
578 unsigned have_langid:1;
579 unsigned authorized:1;
580 unsigned authenticated:1;
581 unsigned wusb:1;
582 unsigned lpm_capable:1;
583 unsigned usb2_hw_lpm_capable:1;
584 unsigned usb2_hw_lpm_besl_capable:1;
585 unsigned usb2_hw_lpm_enabled:1;
586 unsigned usb2_hw_lpm_allowed:1;
587 unsigned usb3_lpm_u1_enabled:1;
588 unsigned usb3_lpm_u2_enabled:1;
589 int string_langid;
590
591 /* static strings from the device */
592 char *product;
593 char *manufacturer;
594 char *serial;
595
596 struct list_head filelist;
597
598 int maxchild;
599
600 u32 quirks;
601 atomic_t urbnum;
602
603 unsigned long active_duration;
604
605 #ifdef CONFIG_PM
606 unsigned long connect_time;
607
608 unsigned do_remote_wakeup:1;
609 unsigned reset_resume:1;
610 unsigned port_is_suspended:1;
611 #endif
612 struct wusb_dev *wusb_dev;
613 int slot_id;
614 enum usb_device_removable removable;
615 struct usb2_lpm_parameters l1_params;
616 struct usb3_lpm_parameters u1_params;
617 struct usb3_lpm_parameters u2_params;
618 unsigned lpm_disable_count;
619 };
620 #define to_usb_device(d) container_of(d, struct usb_device, dev)
621
622 static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
623 {
624 return to_usb_device(intf->dev.parent);
625 }
626
627 extern struct usb_device *usb_get_dev(struct usb_device *dev);
628 extern void usb_put_dev(struct usb_device *dev);
629 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
630 int port1);
631
632 /**
633 * usb_hub_for_each_child - iterate over all child devices on the hub
634 * @hdev: USB device belonging to the usb hub
635 * @port1: portnum associated with child device
636 * @child: child device pointer
637 */
638 #define usb_hub_for_each_child(hdev, port1, child) \
639 for (port1 = 1, child = usb_hub_find_child(hdev, port1); \
640 port1 <= hdev->maxchild; \
641 child = usb_hub_find_child(hdev, ++port1)) \
642 if (!child) continue; else
643
644 /* USB device locking */
645 #define usb_lock_device(udev) device_lock(&(udev)->dev)
646 #define usb_unlock_device(udev) device_unlock(&(udev)->dev)
647 #define usb_trylock_device(udev) device_trylock(&(udev)->dev)
648 extern int usb_lock_device_for_reset(struct usb_device *udev,
649 const struct usb_interface *iface);
650
651 /* USB port reset for device reinitialization */
652 extern int usb_reset_device(struct usb_device *dev);
653 extern void usb_queue_reset_device(struct usb_interface *dev);
654
655 #ifdef CONFIG_ACPI
656 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
657 bool enable);
658 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
659 #else
660 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
661 bool enable) { return 0; }
662 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
663 { return true; }
664 #endif
665
666 /* USB autosuspend and autoresume */
667 #ifdef CONFIG_PM
668 extern void usb_enable_autosuspend(struct usb_device *udev);
669 extern void usb_disable_autosuspend(struct usb_device *udev);
670
671 extern int usb_autopm_get_interface(struct usb_interface *intf);
672 extern void usb_autopm_put_interface(struct usb_interface *intf);
673 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
674 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
675 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
676 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
677
678 static inline void usb_mark_last_busy(struct usb_device *udev)
679 {
680 pm_runtime_mark_last_busy(&udev->dev);
681 }
682
683 #else
684
685 static inline int usb_enable_autosuspend(struct usb_device *udev)
686 { return 0; }
687 static inline int usb_disable_autosuspend(struct usb_device *udev)
688 { return 0; }
689
690 static inline int usb_autopm_get_interface(struct usb_interface *intf)
691 { return 0; }
692 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
693 { return 0; }
694
695 static inline void usb_autopm_put_interface(struct usb_interface *intf)
696 { }
697 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
698 { }
699 static inline void usb_autopm_get_interface_no_resume(
700 struct usb_interface *intf)
701 { }
702 static inline void usb_autopm_put_interface_no_suspend(
703 struct usb_interface *intf)
704 { }
705 static inline void usb_mark_last_busy(struct usb_device *udev)
706 { }
707 #endif
708
709 extern int usb_disable_lpm(struct usb_device *udev);
710 extern void usb_enable_lpm(struct usb_device *udev);
711 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */
712 extern int usb_unlocked_disable_lpm(struct usb_device *udev);
713 extern void usb_unlocked_enable_lpm(struct usb_device *udev);
714
715 extern int usb_disable_ltm(struct usb_device *udev);
716 extern void usb_enable_ltm(struct usb_device *udev);
717
718 static inline bool usb_device_supports_ltm(struct usb_device *udev)
719 {
720 if (udev->speed != USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
721 return false;
722 return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
723 }
724
725 static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
726 {
727 return udev && udev->bus && udev->bus->no_sg_constraint;
728 }
729
730
731 /*-------------------------------------------------------------------------*/
732
733 /* for drivers using iso endpoints */
734 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
735
736 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
737 extern int usb_alloc_streams(struct usb_interface *interface,
738 struct usb_host_endpoint **eps, unsigned int num_eps,
739 unsigned int num_streams, gfp_t mem_flags);
740
741 /* Reverts a group of bulk endpoints back to not using stream IDs. */
742 extern int usb_free_streams(struct usb_interface *interface,
743 struct usb_host_endpoint **eps, unsigned int num_eps,
744 gfp_t mem_flags);
745
746 /* used these for multi-interface device registration */
747 extern int usb_driver_claim_interface(struct usb_driver *driver,
748 struct usb_interface *iface, void *priv);
749
750 /**
751 * usb_interface_claimed - returns true iff an interface is claimed
752 * @iface: the interface being checked
753 *
754 * Return: %true (nonzero) iff the interface is claimed, else %false
755 * (zero).
756 *
757 * Note:
758 * Callers must own the driver model's usb bus readlock. So driver
759 * probe() entries don't need extra locking, but other call contexts
760 * may need to explicitly claim that lock.
761 *
762 */
763 static inline int usb_interface_claimed(struct usb_interface *iface)
764 {
765 return (iface->dev.driver != NULL);
766 }
767
768 extern void usb_driver_release_interface(struct usb_driver *driver,
769 struct usb_interface *iface);
770 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
771 const struct usb_device_id *id);
772 extern int usb_match_one_id(struct usb_interface *interface,
773 const struct usb_device_id *id);
774
775 extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
776 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
777 int minor);
778 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
779 unsigned ifnum);
780 extern struct usb_host_interface *usb_altnum_to_altsetting(
781 const struct usb_interface *intf, unsigned int altnum);
782 extern struct usb_host_interface *usb_find_alt_setting(
783 struct usb_host_config *config,
784 unsigned int iface_num,
785 unsigned int alt_num);
786
787 /* port claiming functions */
788 int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
789 struct usb_dev_state *owner);
790 int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
791 struct usb_dev_state *owner);
792
793 /**
794 * usb_make_path - returns stable device path in the usb tree
795 * @dev: the device whose path is being constructed
796 * @buf: where to put the string
797 * @size: how big is "buf"?
798 *
799 * Return: Length of the string (> 0) or negative if size was too small.
800 *
801 * Note:
802 * This identifier is intended to be "stable", reflecting physical paths in
803 * hardware such as physical bus addresses for host controllers or ports on
804 * USB hubs. That makes it stay the same until systems are physically
805 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
806 * controllers. Adding and removing devices, including virtual root hubs
807 * in host controller driver modules, does not change these path identifiers;
808 * neither does rebooting or re-enumerating. These are more useful identifiers
809 * than changeable ("unstable") ones like bus numbers or device addresses.
810 *
811 * With a partial exception for devices connected to USB 2.0 root hubs, these
812 * identifiers are also predictable. So long as the device tree isn't changed,
813 * plugging any USB device into a given hub port always gives it the same path.
814 * Because of the use of "companion" controllers, devices connected to ports on
815 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
816 * high speed, and a different one if they are full or low speed.
817 */
818 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
819 {
820 int actual;
821 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
822 dev->devpath);
823 return (actual >= (int)size) ? -1 : actual;
824 }
825
826 /*-------------------------------------------------------------------------*/
827
828 #define USB_DEVICE_ID_MATCH_DEVICE \
829 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
830 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
831 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
832 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
833 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
834 #define USB_DEVICE_ID_MATCH_DEV_INFO \
835 (USB_DEVICE_ID_MATCH_DEV_CLASS | \
836 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
837 USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
838 #define USB_DEVICE_ID_MATCH_INT_INFO \
839 (USB_DEVICE_ID_MATCH_INT_CLASS | \
840 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
841 USB_DEVICE_ID_MATCH_INT_PROTOCOL)
842
843 /**
844 * USB_DEVICE - macro used to describe a specific usb device
845 * @vend: the 16 bit USB Vendor ID
846 * @prod: the 16 bit USB Product ID
847 *
848 * This macro is used to create a struct usb_device_id that matches a
849 * specific device.
850 */
851 #define USB_DEVICE(vend, prod) \
852 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
853 .idVendor = (vend), \
854 .idProduct = (prod)
855 /**
856 * USB_DEVICE_VER - describe a specific usb device with a version range
857 * @vend: the 16 bit USB Vendor ID
858 * @prod: the 16 bit USB Product ID
859 * @lo: the bcdDevice_lo value
860 * @hi: the bcdDevice_hi value
861 *
862 * This macro is used to create a struct usb_device_id that matches a
863 * specific device, with a version range.
864 */
865 #define USB_DEVICE_VER(vend, prod, lo, hi) \
866 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
867 .idVendor = (vend), \
868 .idProduct = (prod), \
869 .bcdDevice_lo = (lo), \
870 .bcdDevice_hi = (hi)
871
872 /**
873 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
874 * @vend: the 16 bit USB Vendor ID
875 * @prod: the 16 bit USB Product ID
876 * @cl: bInterfaceClass value
877 *
878 * This macro is used to create a struct usb_device_id that matches a
879 * specific interface class of devices.
880 */
881 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
882 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
883 USB_DEVICE_ID_MATCH_INT_CLASS, \
884 .idVendor = (vend), \
885 .idProduct = (prod), \
886 .bInterfaceClass = (cl)
887
888 /**
889 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
890 * @vend: the 16 bit USB Vendor ID
891 * @prod: the 16 bit USB Product ID
892 * @pr: bInterfaceProtocol value
893 *
894 * This macro is used to create a struct usb_device_id that matches a
895 * specific interface protocol of devices.
896 */
897 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
898 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
899 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
900 .idVendor = (vend), \
901 .idProduct = (prod), \
902 .bInterfaceProtocol = (pr)
903
904 /**
905 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
906 * @vend: the 16 bit USB Vendor ID
907 * @prod: the 16 bit USB Product ID
908 * @num: bInterfaceNumber value
909 *
910 * This macro is used to create a struct usb_device_id that matches a
911 * specific interface number of devices.
912 */
913 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
914 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
915 USB_DEVICE_ID_MATCH_INT_NUMBER, \
916 .idVendor = (vend), \
917 .idProduct = (prod), \
918 .bInterfaceNumber = (num)
919
920 /**
921 * USB_DEVICE_INFO - macro used to describe a class of usb devices
922 * @cl: bDeviceClass value
923 * @sc: bDeviceSubClass value
924 * @pr: bDeviceProtocol value
925 *
926 * This macro is used to create a struct usb_device_id that matches a
927 * specific class of devices.
928 */
929 #define USB_DEVICE_INFO(cl, sc, pr) \
930 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
931 .bDeviceClass = (cl), \
932 .bDeviceSubClass = (sc), \
933 .bDeviceProtocol = (pr)
934
935 /**
936 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
937 * @cl: bInterfaceClass value
938 * @sc: bInterfaceSubClass value
939 * @pr: bInterfaceProtocol value
940 *
941 * This macro is used to create a struct usb_device_id that matches a
942 * specific class of interfaces.
943 */
944 #define USB_INTERFACE_INFO(cl, sc, pr) \
945 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
946 .bInterfaceClass = (cl), \
947 .bInterfaceSubClass = (sc), \
948 .bInterfaceProtocol = (pr)
949
950 /**
951 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
952 * @vend: the 16 bit USB Vendor ID
953 * @prod: the 16 bit USB Product ID
954 * @cl: bInterfaceClass value
955 * @sc: bInterfaceSubClass value
956 * @pr: bInterfaceProtocol value
957 *
958 * This macro is used to create a struct usb_device_id that matches a
959 * specific device with a specific class of interfaces.
960 *
961 * This is especially useful when explicitly matching devices that have
962 * vendor specific bDeviceClass values, but standards-compliant interfaces.
963 */
964 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
965 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
966 | USB_DEVICE_ID_MATCH_DEVICE, \
967 .idVendor = (vend), \
968 .idProduct = (prod), \
969 .bInterfaceClass = (cl), \
970 .bInterfaceSubClass = (sc), \
971 .bInterfaceProtocol = (pr)
972
973 /**
974 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
975 * @vend: the 16 bit USB Vendor ID
976 * @cl: bInterfaceClass value
977 * @sc: bInterfaceSubClass value
978 * @pr: bInterfaceProtocol value
979 *
980 * This macro is used to create a struct usb_device_id that matches a
981 * specific vendor with a specific class of interfaces.
982 *
983 * This is especially useful when explicitly matching devices that have
984 * vendor specific bDeviceClass values, but standards-compliant interfaces.
985 */
986 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
987 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
988 | USB_DEVICE_ID_MATCH_VENDOR, \
989 .idVendor = (vend), \
990 .bInterfaceClass = (cl), \
991 .bInterfaceSubClass = (sc), \
992 .bInterfaceProtocol = (pr)
993
994 /* ----------------------------------------------------------------------- */
995
996 /* Stuff for dynamic usb ids */
997 struct usb_dynids {
998 spinlock_t lock;
999 struct list_head list;
1000 };
1001
1002 struct usb_dynid {
1003 struct list_head node;
1004 struct usb_device_id id;
1005 };
1006
1007 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
1008 const struct usb_device_id *id_table,
1009 struct device_driver *driver,
1010 const char *buf, size_t count);
1011
1012 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
1013
1014 /**
1015 * struct usbdrv_wrap - wrapper for driver-model structure
1016 * @driver: The driver-model core driver structure.
1017 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
1018 */
1019 struct usbdrv_wrap {
1020 struct device_driver driver;
1021 int for_devices;
1022 };
1023
1024 /**
1025 * struct usb_driver - identifies USB interface driver to usbcore
1026 * @name: The driver name should be unique among USB drivers,
1027 * and should normally be the same as the module name.
1028 * @probe: Called to see if the driver is willing to manage a particular
1029 * interface on a device. If it is, probe returns zero and uses
1030 * usb_set_intfdata() to associate driver-specific data with the
1031 * interface. It may also use usb_set_interface() to specify the
1032 * appropriate altsetting. If unwilling to manage the interface,
1033 * return -ENODEV, if genuine IO errors occurred, an appropriate
1034 * negative errno value.
1035 * @disconnect: Called when the interface is no longer accessible, usually
1036 * because its device has been (or is being) disconnected or the
1037 * driver module is being unloaded.
1038 * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1039 * the "usbfs" filesystem. This lets devices provide ways to
1040 * expose information to user space regardless of where they
1041 * do (or don't) show up otherwise in the filesystem.
1042 * @suspend: Called when the device is going to be suspended by the
1043 * system either from system sleep or runtime suspend context. The
1044 * return value will be ignored in system sleep context, so do NOT
1045 * try to continue using the device if suspend fails in this case.
1046 * Instead, let the resume or reset-resume routine recover from
1047 * the failure.
1048 * @resume: Called when the device is being resumed by the system.
1049 * @reset_resume: Called when the suspended device has been reset instead
1050 * of being resumed.
1051 * @pre_reset: Called by usb_reset_device() when the device is about to be
1052 * reset. This routine must not return until the driver has no active
1053 * URBs for the device, and no more URBs may be submitted until the
1054 * post_reset method is called.
1055 * @post_reset: Called by usb_reset_device() after the device
1056 * has been reset
1057 * @id_table: USB drivers use ID table to support hotplugging.
1058 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set
1059 * or your driver's probe function will never get called.
1060 * @dynids: used internally to hold the list of dynamically added device
1061 * ids for this driver.
1062 * @drvwrap: Driver-model core structure wrapper.
1063 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1064 * added to this driver by preventing the sysfs file from being created.
1065 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1066 * for interfaces bound to this driver.
1067 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1068 * endpoints before calling the driver's disconnect method.
1069 * @disable_hub_initiated_lpm: if set to 0, the USB core will not allow hubs
1070 * to initiate lower power link state transitions when an idle timeout
1071 * occurs. Device-initiated USB 3.0 link PM will still be allowed.
1072 *
1073 * USB interface drivers must provide a name, probe() and disconnect()
1074 * methods, and an id_table. Other driver fields are optional.
1075 *
1076 * The id_table is used in hotplugging. It holds a set of descriptors,
1077 * and specialized data may be associated with each entry. That table
1078 * is used by both user and kernel mode hotplugging support.
1079 *
1080 * The probe() and disconnect() methods are called in a context where
1081 * they can sleep, but they should avoid abusing the privilege. Most
1082 * work to connect to a device should be done when the device is opened,
1083 * and undone at the last close. The disconnect code needs to address
1084 * concurrency issues with respect to open() and close() methods, as
1085 * well as forcing all pending I/O requests to complete (by unlinking
1086 * them as necessary, and blocking until the unlinks complete).
1087 */
1088 struct usb_driver {
1089 const char *name;
1090
1091 int (*probe) (struct usb_interface *intf,
1092 const struct usb_device_id *id);
1093
1094 void (*disconnect) (struct usb_interface *intf);
1095
1096 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1097 void *buf);
1098
1099 int (*suspend) (struct usb_interface *intf, pm_message_t message);
1100 int (*resume) (struct usb_interface *intf);
1101 int (*reset_resume)(struct usb_interface *intf);
1102
1103 int (*pre_reset)(struct usb_interface *intf);
1104 int (*post_reset)(struct usb_interface *intf);
1105
1106 const struct usb_device_id *id_table;
1107
1108 struct usb_dynids dynids;
1109 struct usbdrv_wrap drvwrap;
1110 unsigned int no_dynamic_id:1;
1111 unsigned int supports_autosuspend:1;
1112 unsigned int disable_hub_initiated_lpm:1;
1113 unsigned int soft_unbind:1;
1114 };
1115 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1116
1117 /**
1118 * struct usb_device_driver - identifies USB device driver to usbcore
1119 * @name: The driver name should be unique among USB drivers,
1120 * and should normally be the same as the module name.
1121 * @probe: Called to see if the driver is willing to manage a particular
1122 * device. If it is, probe returns zero and uses dev_set_drvdata()
1123 * to associate driver-specific data with the device. If unwilling
1124 * to manage the device, return a negative errno value.
1125 * @disconnect: Called when the device is no longer accessible, usually
1126 * because it has been (or is being) disconnected or the driver's
1127 * module is being unloaded.
1128 * @suspend: Called when the device is going to be suspended by the system.
1129 * @resume: Called when the device is being resumed by the system.
1130 * @drvwrap: Driver-model core structure wrapper.
1131 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1132 * for devices bound to this driver.
1133 *
1134 * USB drivers must provide all the fields listed above except drvwrap.
1135 */
1136 struct usb_device_driver {
1137 const char *name;
1138
1139 int (*probe) (struct usb_device *udev);
1140 void (*disconnect) (struct usb_device *udev);
1141
1142 int (*suspend) (struct usb_device *udev, pm_message_t message);
1143 int (*resume) (struct usb_device *udev, pm_message_t message);
1144 struct usbdrv_wrap drvwrap;
1145 unsigned int supports_autosuspend:1;
1146 };
1147 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1148 drvwrap.driver)
1149
1150 extern struct bus_type usb_bus_type;
1151
1152 /**
1153 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1154 * @name: the usb class device name for this driver. Will show up in sysfs.
1155 * @devnode: Callback to provide a naming hint for a possible
1156 * device node to create.
1157 * @fops: pointer to the struct file_operations of this driver.
1158 * @minor_base: the start of the minor range for this driver.
1159 *
1160 * This structure is used for the usb_register_dev() and
1161 * usb_unregister_dev() functions, to consolidate a number of the
1162 * parameters used for them.
1163 */
1164 struct usb_class_driver {
1165 char *name;
1166 char *(*devnode)(struct device *dev, umode_t *mode);
1167 const struct file_operations *fops;
1168 int minor_base;
1169 };
1170
1171 /*
1172 * use these in module_init()/module_exit()
1173 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1174 */
1175 extern int usb_register_driver(struct usb_driver *, struct module *,
1176 const char *);
1177
1178 /* use a define to avoid include chaining to get THIS_MODULE & friends */
1179 #define usb_register(driver) \
1180 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1181
1182 extern void usb_deregister(struct usb_driver *);
1183
1184 /**
1185 * module_usb_driver() - Helper macro for registering a USB driver
1186 * @__usb_driver: usb_driver struct
1187 *
1188 * Helper macro for USB drivers which do not do anything special in module
1189 * init/exit. This eliminates a lot of boilerplate. Each module may only
1190 * use this macro once, and calling it replaces module_init() and module_exit()
1191 */
1192 #define module_usb_driver(__usb_driver) \
1193 module_driver(__usb_driver, usb_register, \
1194 usb_deregister)
1195
1196 extern int usb_register_device_driver(struct usb_device_driver *,
1197 struct module *);
1198 extern void usb_deregister_device_driver(struct usb_device_driver *);
1199
1200 extern int usb_register_dev(struct usb_interface *intf,
1201 struct usb_class_driver *class_driver);
1202 extern void usb_deregister_dev(struct usb_interface *intf,
1203 struct usb_class_driver *class_driver);
1204
1205 extern int usb_disabled(void);
1206
1207 /* ----------------------------------------------------------------------- */
1208
1209 /*
1210 * URB support, for asynchronous request completions
1211 */
1212
1213 /*
1214 * urb->transfer_flags:
1215 *
1216 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1217 */
1218 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */
1219 #define URB_ISO_ASAP 0x0002 /* iso-only; use the first unexpired
1220 * slot in the schedule */
1221 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */
1222 #define URB_NO_FSBR 0x0020 /* UHCI-specific */
1223 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */
1224 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt
1225 * needed */
1226 #define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */
1227
1228 /* The following flags are used internally by usbcore and HCDs */
1229 #define URB_DIR_IN 0x0200 /* Transfer from device to host */
1230 #define URB_DIR_OUT 0
1231 #define URB_DIR_MASK URB_DIR_IN
1232
1233 #define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */
1234 #define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */
1235 #define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */
1236 #define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */
1237 #define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */
1238 #define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */
1239 #define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */
1240 #define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */
1241
1242 struct usb_iso_packet_descriptor {
1243 unsigned int offset;
1244 unsigned int length; /* expected length */
1245 unsigned int actual_length;
1246 int status;
1247 };
1248
1249 struct urb;
1250
1251 struct usb_anchor {
1252 struct list_head urb_list;
1253 wait_queue_head_t wait;
1254 spinlock_t lock;
1255 atomic_t suspend_wakeups;
1256 unsigned int poisoned:1;
1257 };
1258
1259 static inline void init_usb_anchor(struct usb_anchor *anchor)
1260 {
1261 memset(anchor, 0, sizeof(*anchor));
1262 INIT_LIST_HEAD(&anchor->urb_list);
1263 init_waitqueue_head(&anchor->wait);
1264 spin_lock_init(&anchor->lock);
1265 }
1266
1267 typedef void (*usb_complete_t)(struct urb *);
1268
1269 /**
1270 * struct urb - USB Request Block
1271 * @urb_list: For use by current owner of the URB.
1272 * @anchor_list: membership in the list of an anchor
1273 * @anchor: to anchor URBs to a common mooring
1274 * @ep: Points to the endpoint's data structure. Will eventually
1275 * replace @pipe.
1276 * @pipe: Holds endpoint number, direction, type, and more.
1277 * Create these values with the eight macros available;
1278 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1279 * (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1280 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint
1281 * numbers range from zero to fifteen. Note that "in" endpoint two
1282 * is a different endpoint (and pipe) from "out" endpoint two.
1283 * The current configuration controls the existence, type, and
1284 * maximum packet size of any given endpoint.
1285 * @stream_id: the endpoint's stream ID for bulk streams
1286 * @dev: Identifies the USB device to perform the request.
1287 * @status: This is read in non-iso completion functions to get the
1288 * status of the particular request. ISO requests only use it
1289 * to tell whether the URB was unlinked; detailed status for
1290 * each frame is in the fields of the iso_frame-desc.
1291 * @transfer_flags: A variety of flags may be used to affect how URB
1292 * submission, unlinking, or operation are handled. Different
1293 * kinds of URB can use different flags.
1294 * @transfer_buffer: This identifies the buffer to (or from) which the I/O
1295 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1296 * (however, do not leave garbage in transfer_buffer even then).
1297 * This buffer must be suitable for DMA; allocate it with
1298 * kmalloc() or equivalent. For transfers to "in" endpoints, contents
1299 * of this buffer will be modified. This buffer is used for the data
1300 * stage of control transfers.
1301 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1302 * the device driver is saying that it provided this DMA address,
1303 * which the host controller driver should use in preference to the
1304 * transfer_buffer.
1305 * @sg: scatter gather buffer list, the buffer size of each element in
1306 * the list (except the last) must be divisible by the endpoint's
1307 * max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1308 * @num_mapped_sgs: (internal) number of mapped sg entries
1309 * @num_sgs: number of entries in the sg list
1310 * @transfer_buffer_length: How big is transfer_buffer. The transfer may
1311 * be broken up into chunks according to the current maximum packet
1312 * size for the endpoint, which is a function of the configuration
1313 * and is encoded in the pipe. When the length is zero, neither
1314 * transfer_buffer nor transfer_dma is used.
1315 * @actual_length: This is read in non-iso completion functions, and
1316 * it tells how many bytes (out of transfer_buffer_length) were
1317 * transferred. It will normally be the same as requested, unless
1318 * either an error was reported or a short read was performed.
1319 * The URB_SHORT_NOT_OK transfer flag may be used to make such
1320 * short reads be reported as errors.
1321 * @setup_packet: Only used for control transfers, this points to eight bytes
1322 * of setup data. Control transfers always start by sending this data
1323 * to the device. Then transfer_buffer is read or written, if needed.
1324 * @setup_dma: DMA pointer for the setup packet. The caller must not use
1325 * this field; setup_packet must point to a valid buffer.
1326 * @start_frame: Returns the initial frame for isochronous transfers.
1327 * @number_of_packets: Lists the number of ISO transfer buffers.
1328 * @interval: Specifies the polling interval for interrupt or isochronous
1329 * transfers. The units are frames (milliseconds) for full and low
1330 * speed devices, and microframes (1/8 millisecond) for highspeed
1331 * and SuperSpeed devices.
1332 * @error_count: Returns the number of ISO transfers that reported errors.
1333 * @context: For use in completion functions. This normally points to
1334 * request-specific driver context.
1335 * @complete: Completion handler. This URB is passed as the parameter to the
1336 * completion function. The completion function may then do what
1337 * it likes with the URB, including resubmitting or freeing it.
1338 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1339 * collect the transfer status for each buffer.
1340 *
1341 * This structure identifies USB transfer requests. URBs must be allocated by
1342 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1343 * Initialization may be done using various usb_fill_*_urb() functions. URBs
1344 * are submitted using usb_submit_urb(), and pending requests may be canceled
1345 * using usb_unlink_urb() or usb_kill_urb().
1346 *
1347 * Data Transfer Buffers:
1348 *
1349 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1350 * taken from the general page pool. That is provided by transfer_buffer
1351 * (control requests also use setup_packet), and host controller drivers
1352 * perform a dma mapping (and unmapping) for each buffer transferred. Those
1353 * mapping operations can be expensive on some platforms (perhaps using a dma
1354 * bounce buffer or talking to an IOMMU),
1355 * although they're cheap on commodity x86 and ppc hardware.
1356 *
1357 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1358 * which tells the host controller driver that no such mapping is needed for
1359 * the transfer_buffer since
1360 * the device driver is DMA-aware. For example, a device driver might
1361 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1362 * When this transfer flag is provided, host controller drivers will
1363 * attempt to use the dma address found in the transfer_dma
1364 * field rather than determining a dma address themselves.
1365 *
1366 * Note that transfer_buffer must still be set if the controller
1367 * does not support DMA (as indicated by bus.uses_dma) and when talking
1368 * to root hub. If you have to trasfer between highmem zone and the device
1369 * on such controller, create a bounce buffer or bail out with an error.
1370 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1371 * capable, assign NULL to it, so that usbmon knows not to use the value.
1372 * The setup_packet must always be set, so it cannot be located in highmem.
1373 *
1374 * Initialization:
1375 *
1376 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1377 * zero), and complete fields. All URBs must also initialize
1378 * transfer_buffer and transfer_buffer_length. They may provide the
1379 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1380 * to be treated as errors; that flag is invalid for write requests.
1381 *
1382 * Bulk URBs may
1383 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1384 * should always terminate with a short packet, even if it means adding an
1385 * extra zero length packet.
1386 *
1387 * Control URBs must provide a valid pointer in the setup_packet field.
1388 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1389 * beforehand.
1390 *
1391 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1392 * or, for highspeed devices, 125 microsecond units)
1393 * to poll for transfers. After the URB has been submitted, the interval
1394 * field reflects how the transfer was actually scheduled.
1395 * The polling interval may be more frequent than requested.
1396 * For example, some controllers have a maximum interval of 32 milliseconds,
1397 * while others support intervals of up to 1024 milliseconds.
1398 * Isochronous URBs also have transfer intervals. (Note that for isochronous
1399 * endpoints, as well as high speed interrupt endpoints, the encoding of
1400 * the transfer interval in the endpoint descriptor is logarithmic.
1401 * Device drivers must convert that value to linear units themselves.)
1402 *
1403 * If an isochronous endpoint queue isn't already running, the host
1404 * controller will schedule a new URB to start as soon as bandwidth
1405 * utilization allows. If the queue is running then a new URB will be
1406 * scheduled to start in the first transfer slot following the end of the
1407 * preceding URB, if that slot has not already expired. If the slot has
1408 * expired (which can happen when IRQ delivery is delayed for a long time),
1409 * the scheduling behavior depends on the URB_ISO_ASAP flag. If the flag
1410 * is clear then the URB will be scheduled to start in the expired slot,
1411 * implying that some of its packets will not be transferred; if the flag
1412 * is set then the URB will be scheduled in the first unexpired slot,
1413 * breaking the queue's synchronization. Upon URB completion, the
1414 * start_frame field will be set to the (micro)frame number in which the
1415 * transfer was scheduled. Ranges for frame counter values are HC-specific
1416 * and can go from as low as 256 to as high as 65536 frames.
1417 *
1418 * Isochronous URBs have a different data transfer model, in part because
1419 * the quality of service is only "best effort". Callers provide specially
1420 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1421 * at the end. Each such packet is an individual ISO transfer. Isochronous
1422 * URBs are normally queued, submitted by drivers to arrange that
1423 * transfers are at least double buffered, and then explicitly resubmitted
1424 * in completion handlers, so
1425 * that data (such as audio or video) streams at as constant a rate as the
1426 * host controller scheduler can support.
1427 *
1428 * Completion Callbacks:
1429 *
1430 * The completion callback is made in_interrupt(), and one of the first
1431 * things that a completion handler should do is check the status field.
1432 * The status field is provided for all URBs. It is used to report
1433 * unlinked URBs, and status for all non-ISO transfers. It should not
1434 * be examined before the URB is returned to the completion handler.
1435 *
1436 * The context field is normally used to link URBs back to the relevant
1437 * driver or request state.
1438 *
1439 * When the completion callback is invoked for non-isochronous URBs, the
1440 * actual_length field tells how many bytes were transferred. This field
1441 * is updated even when the URB terminated with an error or was unlinked.
1442 *
1443 * ISO transfer status is reported in the status and actual_length fields
1444 * of the iso_frame_desc array, and the number of errors is reported in
1445 * error_count. Completion callbacks for ISO transfers will normally
1446 * (re)submit URBs to ensure a constant transfer rate.
1447 *
1448 * Note that even fields marked "public" should not be touched by the driver
1449 * when the urb is owned by the hcd, that is, since the call to
1450 * usb_submit_urb() till the entry into the completion routine.
1451 */
1452 struct urb {
1453 /* private: usb core and host controller only fields in the urb */
1454 struct kref kref; /* reference count of the URB */
1455 void *hcpriv; /* private data for host controller */
1456 atomic_t use_count; /* concurrent submissions counter */
1457 atomic_t reject; /* submissions will fail */
1458 int unlinked; /* unlink error code */
1459
1460 /* public: documented fields in the urb that can be used by drivers */
1461 struct list_head urb_list; /* list head for use by the urb's
1462 * current owner */
1463 struct list_head anchor_list; /* the URB may be anchored */
1464 struct usb_anchor *anchor;
1465 struct usb_device *dev; /* (in) pointer to associated device */
1466 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */
1467 unsigned int pipe; /* (in) pipe information */
1468 unsigned int stream_id; /* (in) stream ID */
1469 int status; /* (return) non-ISO status */
1470 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
1471 void *transfer_buffer; /* (in) associated data buffer */
1472 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */
1473 struct scatterlist *sg; /* (in) scatter gather buffer list */
1474 int num_mapped_sgs; /* (internal) mapped sg entries */
1475 int num_sgs; /* (in) number of entries in the sg list */
1476 u32 transfer_buffer_length; /* (in) data buffer length */
1477 u32 actual_length; /* (return) actual transfer length */
1478 unsigned char *setup_packet; /* (in) setup packet (control only) */
1479 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */
1480 int start_frame; /* (modify) start frame (ISO) */
1481 int number_of_packets; /* (in) number of ISO packets */
1482 int interval; /* (modify) transfer interval
1483 * (INT/ISO) */
1484 int error_count; /* (return) number of ISO errors */
1485 void *context; /* (in) context for completion */
1486 usb_complete_t complete; /* (in) completion routine */
1487 struct usb_iso_packet_descriptor iso_frame_desc[0];
1488 /* (in) ISO ONLY */
1489 };
1490
1491 /* ----------------------------------------------------------------------- */
1492
1493 /**
1494 * usb_fill_control_urb - initializes a control urb
1495 * @urb: pointer to the urb to initialize.
1496 * @dev: pointer to the struct usb_device for this urb.
1497 * @pipe: the endpoint pipe
1498 * @setup_packet: pointer to the setup_packet buffer
1499 * @transfer_buffer: pointer to the transfer buffer
1500 * @buffer_length: length of the transfer buffer
1501 * @complete_fn: pointer to the usb_complete_t function
1502 * @context: what to set the urb context to.
1503 *
1504 * Initializes a control urb with the proper information needed to submit
1505 * it to a device.
1506 */
1507 static inline void usb_fill_control_urb(struct urb *urb,
1508 struct usb_device *dev,
1509 unsigned int pipe,
1510 unsigned char *setup_packet,
1511 void *transfer_buffer,
1512 int buffer_length,
1513 usb_complete_t complete_fn,
1514 void *context)
1515 {
1516 urb->dev = dev;
1517 urb->pipe = pipe;
1518 urb->setup_packet = setup_packet;
1519 urb->transfer_buffer = transfer_buffer;
1520 urb->transfer_buffer_length = buffer_length;
1521 urb->complete = complete_fn;
1522 urb->context = context;
1523 }
1524
1525 /**
1526 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1527 * @urb: pointer to the urb to initialize.
1528 * @dev: pointer to the struct usb_device for this urb.
1529 * @pipe: the endpoint pipe
1530 * @transfer_buffer: pointer to the transfer buffer
1531 * @buffer_length: length of the transfer buffer
1532 * @complete_fn: pointer to the usb_complete_t function
1533 * @context: what to set the urb context to.
1534 *
1535 * Initializes a bulk urb with the proper information needed to submit it
1536 * to a device.
1537 */
1538 static inline void usb_fill_bulk_urb(struct urb *urb,
1539 struct usb_device *dev,
1540 unsigned int pipe,
1541 void *transfer_buffer,
1542 int buffer_length,
1543 usb_complete_t complete_fn,
1544 void *context)
1545 {
1546 urb->dev = dev;
1547 urb->pipe = pipe;
1548 urb->transfer_buffer = transfer_buffer;
1549 urb->transfer_buffer_length = buffer_length;
1550 urb->complete = complete_fn;
1551 urb->context = context;
1552 }
1553
1554 /**
1555 * usb_fill_int_urb - macro to help initialize a interrupt urb
1556 * @urb: pointer to the urb to initialize.
1557 * @dev: pointer to the struct usb_device for this urb.
1558 * @pipe: the endpoint pipe
1559 * @transfer_buffer: pointer to the transfer buffer
1560 * @buffer_length: length of the transfer buffer
1561 * @complete_fn: pointer to the usb_complete_t function
1562 * @context: what to set the urb context to.
1563 * @interval: what to set the urb interval to, encoded like
1564 * the endpoint descriptor's bInterval value.
1565 *
1566 * Initializes a interrupt urb with the proper information needed to submit
1567 * it to a device.
1568 *
1569 * Note that High Speed and SuperSpeed interrupt endpoints use a logarithmic
1570 * encoding of the endpoint interval, and express polling intervals in
1571 * microframes (eight per millisecond) rather than in frames (one per
1572 * millisecond).
1573 *
1574 * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1575 * 128us instead of 125us. For Wireless USB devices, the interval is passed
1576 * through to the host controller, rather than being translated into microframe
1577 * units.
1578 */
1579 static inline void usb_fill_int_urb(struct urb *urb,
1580 struct usb_device *dev,
1581 unsigned int pipe,
1582 void *transfer_buffer,
1583 int buffer_length,
1584 usb_complete_t complete_fn,
1585 void *context,
1586 int interval)
1587 {
1588 urb->dev = dev;
1589 urb->pipe = pipe;
1590 urb->transfer_buffer = transfer_buffer;
1591 urb->transfer_buffer_length = buffer_length;
1592 urb->complete = complete_fn;
1593 urb->context = context;
1594
1595 if (dev->speed == USB_SPEED_HIGH || dev->speed == USB_SPEED_SUPER) {
1596 /* make sure interval is within allowed range */
1597 interval = clamp(interval, 1, 16);
1598
1599 urb->interval = 1 << (interval - 1);
1600 } else {
1601 urb->interval = interval;
1602 }
1603
1604 urb->start_frame = -1;
1605 }
1606
1607 extern void usb_init_urb(struct urb *urb);
1608 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1609 extern void usb_free_urb(struct urb *urb);
1610 #define usb_put_urb usb_free_urb
1611 extern struct urb *usb_get_urb(struct urb *urb);
1612 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1613 extern int usb_unlink_urb(struct urb *urb);
1614 extern void usb_kill_urb(struct urb *urb);
1615 extern void usb_poison_urb(struct urb *urb);
1616 extern void usb_unpoison_urb(struct urb *urb);
1617 extern void usb_block_urb(struct urb *urb);
1618 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1619 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1620 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1621 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1622 extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1623 extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1624 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1625 extern void usb_unanchor_urb(struct urb *urb);
1626 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1627 unsigned int timeout);
1628 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1629 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1630 extern int usb_anchor_empty(struct usb_anchor *anchor);
1631
1632 #define usb_unblock_urb usb_unpoison_urb
1633
1634 /**
1635 * usb_urb_dir_in - check if an URB describes an IN transfer
1636 * @urb: URB to be checked
1637 *
1638 * Return: 1 if @urb describes an IN transfer (device-to-host),
1639 * otherwise 0.
1640 */
1641 static inline int usb_urb_dir_in(struct urb *urb)
1642 {
1643 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1644 }
1645
1646 /**
1647 * usb_urb_dir_out - check if an URB describes an OUT transfer
1648 * @urb: URB to be checked
1649 *
1650 * Return: 1 if @urb describes an OUT transfer (host-to-device),
1651 * otherwise 0.
1652 */
1653 static inline int usb_urb_dir_out(struct urb *urb)
1654 {
1655 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1656 }
1657
1658 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1659 gfp_t mem_flags, dma_addr_t *dma);
1660 void usb_free_coherent(struct usb_device *dev, size_t size,
1661 void *addr, dma_addr_t dma);
1662
1663 #if 0
1664 struct urb *usb_buffer_map(struct urb *urb);
1665 void usb_buffer_dmasync(struct urb *urb);
1666 void usb_buffer_unmap(struct urb *urb);
1667 #endif
1668
1669 struct scatterlist;
1670 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1671 struct scatterlist *sg, int nents);
1672 #if 0
1673 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1674 struct scatterlist *sg, int n_hw_ents);
1675 #endif
1676 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1677 struct scatterlist *sg, int n_hw_ents);
1678
1679 /*-------------------------------------------------------------------*
1680 * SYNCHRONOUS CALL SUPPORT *
1681 *-------------------------------------------------------------------*/
1682
1683 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1684 __u8 request, __u8 requesttype, __u16 value, __u16 index,
1685 void *data, __u16 size, int timeout);
1686 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1687 void *data, int len, int *actual_length, int timeout);
1688 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1689 void *data, int len, int *actual_length,
1690 int timeout);
1691
1692 /* wrappers around usb_control_msg() for the most common standard requests */
1693 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1694 unsigned char descindex, void *buf, int size);
1695 extern int usb_get_status(struct usb_device *dev,
1696 int type, int target, void *data);
1697 extern int usb_string(struct usb_device *dev, int index,
1698 char *buf, size_t size);
1699
1700 /* wrappers that also update important state inside usbcore */
1701 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1702 extern int usb_reset_configuration(struct usb_device *dev);
1703 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1704 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1705
1706 /* this request isn't really synchronous, but it belongs with the others */
1707 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1708
1709 /* choose and set configuration for device */
1710 extern int usb_choose_configuration(struct usb_device *udev);
1711 extern int usb_set_configuration(struct usb_device *dev, int configuration);
1712
1713 /*
1714 * timeouts, in milliseconds, used for sending/receiving control messages
1715 * they typically complete within a few frames (msec) after they're issued
1716 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1717 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1718 */
1719 #define USB_CTRL_GET_TIMEOUT 5000
1720 #define USB_CTRL_SET_TIMEOUT 5000
1721
1722
1723 /**
1724 * struct usb_sg_request - support for scatter/gather I/O
1725 * @status: zero indicates success, else negative errno
1726 * @bytes: counts bytes transferred.
1727 *
1728 * These requests are initialized using usb_sg_init(), and then are used
1729 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most
1730 * members of the request object aren't for driver access.
1731 *
1732 * The status and bytecount values are valid only after usb_sg_wait()
1733 * returns. If the status is zero, then the bytecount matches the total
1734 * from the request.
1735 *
1736 * After an error completion, drivers may need to clear a halt condition
1737 * on the endpoint.
1738 */
1739 struct usb_sg_request {
1740 int status;
1741 size_t bytes;
1742
1743 /* private:
1744 * members below are private to usbcore,
1745 * and are not provided for driver access!
1746 */
1747 spinlock_t lock;
1748
1749 struct usb_device *dev;
1750 int pipe;
1751
1752 int entries;
1753 struct urb **urbs;
1754
1755 int count;
1756 struct completion complete;
1757 };
1758
1759 int usb_sg_init(
1760 struct usb_sg_request *io,
1761 struct usb_device *dev,
1762 unsigned pipe,
1763 unsigned period,
1764 struct scatterlist *sg,
1765 int nents,
1766 size_t length,
1767 gfp_t mem_flags
1768 );
1769 void usb_sg_cancel(struct usb_sg_request *io);
1770 void usb_sg_wait(struct usb_sg_request *io);
1771
1772
1773 /* ----------------------------------------------------------------------- */
1774
1775 /*
1776 * For various legacy reasons, Linux has a small cookie that's paired with
1777 * a struct usb_device to identify an endpoint queue. Queue characteristics
1778 * are defined by the endpoint's descriptor. This cookie is called a "pipe",
1779 * an unsigned int encoded as:
1780 *
1781 * - direction: bit 7 (0 = Host-to-Device [Out],
1782 * 1 = Device-to-Host [In] ...
1783 * like endpoint bEndpointAddress)
1784 * - device address: bits 8-14 ... bit positions known to uhci-hcd
1785 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd
1786 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt,
1787 * 10 = control, 11 = bulk)
1788 *
1789 * Given the device address and endpoint descriptor, pipes are redundant.
1790 */
1791
1792 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */
1793 /* (yet ... they're the values used by usbfs) */
1794 #define PIPE_ISOCHRONOUS 0
1795 #define PIPE_INTERRUPT 1
1796 #define PIPE_CONTROL 2
1797 #define PIPE_BULK 3
1798
1799 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN)
1800 #define usb_pipeout(pipe) (!usb_pipein(pipe))
1801
1802 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f)
1803 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf)
1804
1805 #define usb_pipetype(pipe) (((pipe) >> 30) & 3)
1806 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1807 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1808 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL)
1809 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK)
1810
1811 static inline unsigned int __create_pipe(struct usb_device *dev,
1812 unsigned int endpoint)
1813 {
1814 return (dev->devnum << 8) | (endpoint << 15);
1815 }
1816
1817 /* Create various pipes... */
1818 #define usb_sndctrlpipe(dev, endpoint) \
1819 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1820 #define usb_rcvctrlpipe(dev, endpoint) \
1821 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1822 #define usb_sndisocpipe(dev, endpoint) \
1823 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1824 #define usb_rcvisocpipe(dev, endpoint) \
1825 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1826 #define usb_sndbulkpipe(dev, endpoint) \
1827 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1828 #define usb_rcvbulkpipe(dev, endpoint) \
1829 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1830 #define usb_sndintpipe(dev, endpoint) \
1831 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1832 #define usb_rcvintpipe(dev, endpoint) \
1833 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1834
1835 static inline struct usb_host_endpoint *
1836 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1837 {
1838 struct usb_host_endpoint **eps;
1839 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1840 return eps[usb_pipeendpoint(pipe)];
1841 }
1842
1843 /*-------------------------------------------------------------------------*/
1844
1845 static inline __u16
1846 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1847 {
1848 struct usb_host_endpoint *ep;
1849 unsigned epnum = usb_pipeendpoint(pipe);
1850
1851 if (is_out) {
1852 WARN_ON(usb_pipein(pipe));
1853 ep = udev->ep_out[epnum];
1854 } else {
1855 WARN_ON(usb_pipeout(pipe));
1856 ep = udev->ep_in[epnum];
1857 }
1858 if (!ep)
1859 return 0;
1860
1861 /* NOTE: only 0x07ff bits are for packet size... */
1862 return usb_endpoint_maxp(&ep->desc);
1863 }
1864
1865 /* ----------------------------------------------------------------------- */
1866
1867 /* translate USB error codes to codes user space understands */
1868 static inline int usb_translate_errors(int error_code)
1869 {
1870 switch (error_code) {
1871 case 0:
1872 case -ENOMEM:
1873 case -ENODEV:
1874 case -EOPNOTSUPP:
1875 return error_code;
1876 default:
1877 return -EIO;
1878 }
1879 }
1880
1881 /* Events from the usb core */
1882 #define USB_DEVICE_ADD 0x0001
1883 #define USB_DEVICE_REMOVE 0x0002
1884 #define USB_BUS_ADD 0x0003
1885 #define USB_BUS_REMOVE 0x0004
1886 extern void usb_register_notify(struct notifier_block *nb);
1887 extern void usb_unregister_notify(struct notifier_block *nb);
1888
1889 /* debugfs stuff */
1890 extern struct dentry *usb_debug_root;
1891
1892 /* LED triggers */
1893 enum usb_led_event {
1894 USB_LED_EVENT_HOST = 0,
1895 USB_LED_EVENT_GADGET = 1,
1896 };
1897
1898 #ifdef CONFIG_USB_LED_TRIG
1899 extern void usb_led_activity(enum usb_led_event ev);
1900 #else
1901 static inline void usb_led_activity(enum usb_led_event ev) {}
1902 #endif
1903
1904 #endif /* __KERNEL__ */
1905
1906 #endif
This page took 0.072129 seconds and 6 git commands to generate.