usbcore: Add flag for whether a host controller uses DMA
[deliverable/linux.git] / include / linux / usb.h
1 #ifndef __LINUX_USB_H
2 #define __LINUX_USB_H
3
4 #include <linux/mod_devicetable.h>
5 #include <linux/usb_ch9.h>
6
7 #define USB_MAJOR 180
8 #define USB_DEVICE_MAJOR 189
9
10
11 #ifdef __KERNEL__
12
13 #include <linux/errno.h> /* for -ENODEV */
14 #include <linux/delay.h> /* for mdelay() */
15 #include <linux/interrupt.h> /* for in_interrupt() */
16 #include <linux/list.h> /* for struct list_head */
17 #include <linux/kref.h> /* for struct kref */
18 #include <linux/device.h> /* for struct device */
19 #include <linux/fs.h> /* for struct file_operations */
20 #include <linux/completion.h> /* for struct completion */
21 #include <linux/sched.h> /* for current && schedule_timeout */
22
23 struct usb_device;
24 struct usb_driver;
25
26 /*-------------------------------------------------------------------------*/
27
28 /*
29 * Host-side wrappers for standard USB descriptors ... these are parsed
30 * from the data provided by devices. Parsing turns them from a flat
31 * sequence of descriptors into a hierarchy:
32 *
33 * - devices have one (usually) or more configs;
34 * - configs have one (often) or more interfaces;
35 * - interfaces have one (usually) or more settings;
36 * - each interface setting has zero or (usually) more endpoints.
37 *
38 * And there might be other descriptors mixed in with those.
39 *
40 * Devices may also have class-specific or vendor-specific descriptors.
41 */
42
43 struct ep_device;
44
45 /**
46 * struct usb_host_endpoint - host-side endpoint descriptor and queue
47 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
48 * @urb_list: urbs queued to this endpoint; maintained by usbcore
49 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
50 * with one or more transfer descriptors (TDs) per urb
51 * @ep_dev: ep_device for sysfs info
52 * @extra: descriptors following this endpoint in the configuration
53 * @extralen: how many bytes of "extra" are valid
54 *
55 * USB requests are always queued to a given endpoint, identified by a
56 * descriptor within an active interface in a given USB configuration.
57 */
58 struct usb_host_endpoint {
59 struct usb_endpoint_descriptor desc;
60 struct list_head urb_list;
61 void *hcpriv;
62 struct ep_device *ep_dev; /* For sysfs info */
63
64 unsigned char *extra; /* Extra descriptors */
65 int extralen;
66 };
67
68 /* host-side wrapper for one interface setting's parsed descriptors */
69 struct usb_host_interface {
70 struct usb_interface_descriptor desc;
71
72 /* array of desc.bNumEndpoint endpoints associated with this
73 * interface setting. these will be in no particular order.
74 */
75 struct usb_host_endpoint *endpoint;
76
77 char *string; /* iInterface string, if present */
78 unsigned char *extra; /* Extra descriptors */
79 int extralen;
80 };
81
82 enum usb_interface_condition {
83 USB_INTERFACE_UNBOUND = 0,
84 USB_INTERFACE_BINDING,
85 USB_INTERFACE_BOUND,
86 USB_INTERFACE_UNBINDING,
87 };
88
89 /**
90 * struct usb_interface - what usb device drivers talk to
91 * @altsetting: array of interface structures, one for each alternate
92 * setting that may be selected. Each one includes a set of
93 * endpoint configurations. They will be in no particular order.
94 * @num_altsetting: number of altsettings defined.
95 * @cur_altsetting: the current altsetting.
96 * @driver: the USB driver that is bound to this interface.
97 * @minor: the minor number assigned to this interface, if this
98 * interface is bound to a driver that uses the USB major number.
99 * If this interface does not use the USB major, this field should
100 * be unused. The driver should set this value in the probe()
101 * function of the driver, after it has been assigned a minor
102 * number from the USB core by calling usb_register_dev().
103 * @condition: binding state of the interface: not bound, binding
104 * (in probe()), bound to a driver, or unbinding (in disconnect())
105 * @is_active: flag set when the interface is bound and not suspended.
106 * @dev: driver model's view of this device
107 * @class_dev: driver model's class view of this device.
108 *
109 * USB device drivers attach to interfaces on a physical device. Each
110 * interface encapsulates a single high level function, such as feeding
111 * an audio stream to a speaker or reporting a change in a volume control.
112 * Many USB devices only have one interface. The protocol used to talk to
113 * an interface's endpoints can be defined in a usb "class" specification,
114 * or by a product's vendor. The (default) control endpoint is part of
115 * every interface, but is never listed among the interface's descriptors.
116 *
117 * The driver that is bound to the interface can use standard driver model
118 * calls such as dev_get_drvdata() on the dev member of this structure.
119 *
120 * Each interface may have alternate settings. The initial configuration
121 * of a device sets altsetting 0, but the device driver can change
122 * that setting using usb_set_interface(). Alternate settings are often
123 * used to control the the use of periodic endpoints, such as by having
124 * different endpoints use different amounts of reserved USB bandwidth.
125 * All standards-conformant USB devices that use isochronous endpoints
126 * will use them in non-default settings.
127 *
128 * The USB specification says that alternate setting numbers must run from
129 * 0 to one less than the total number of alternate settings. But some
130 * devices manage to mess this up, and the structures aren't necessarily
131 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to
132 * look up an alternate setting in the altsetting array based on its number.
133 */
134 struct usb_interface {
135 /* array of alternate settings for this interface,
136 * stored in no particular order */
137 struct usb_host_interface *altsetting;
138
139 struct usb_host_interface *cur_altsetting; /* the currently
140 * active alternate setting */
141 unsigned num_altsetting; /* number of alternate settings */
142
143 int minor; /* minor number this interface is
144 * bound to */
145 enum usb_interface_condition condition; /* state of binding */
146 unsigned is_active:1; /* the interface is not suspended */
147
148 struct device dev; /* interface specific device info */
149 struct class_device *class_dev;
150 };
151 #define to_usb_interface(d) container_of(d, struct usb_interface, dev)
152 #define interface_to_usbdev(intf) \
153 container_of(intf->dev.parent, struct usb_device, dev)
154
155 static inline void *usb_get_intfdata (struct usb_interface *intf)
156 {
157 return dev_get_drvdata (&intf->dev);
158 }
159
160 static inline void usb_set_intfdata (struct usb_interface *intf, void *data)
161 {
162 dev_set_drvdata(&intf->dev, data);
163 }
164
165 struct usb_interface *usb_get_intf(struct usb_interface *intf);
166 void usb_put_intf(struct usb_interface *intf);
167
168 /* this maximum is arbitrary */
169 #define USB_MAXINTERFACES 32
170
171 /**
172 * struct usb_interface_cache - long-term representation of a device interface
173 * @num_altsetting: number of altsettings defined.
174 * @ref: reference counter.
175 * @altsetting: variable-length array of interface structures, one for
176 * each alternate setting that may be selected. Each one includes a
177 * set of endpoint configurations. They will be in no particular order.
178 *
179 * These structures persist for the lifetime of a usb_device, unlike
180 * struct usb_interface (which persists only as long as its configuration
181 * is installed). The altsetting arrays can be accessed through these
182 * structures at any time, permitting comparison of configurations and
183 * providing support for the /proc/bus/usb/devices pseudo-file.
184 */
185 struct usb_interface_cache {
186 unsigned num_altsetting; /* number of alternate settings */
187 struct kref ref; /* reference counter */
188
189 /* variable-length array of alternate settings for this interface,
190 * stored in no particular order */
191 struct usb_host_interface altsetting[0];
192 };
193 #define ref_to_usb_interface_cache(r) \
194 container_of(r, struct usb_interface_cache, ref)
195 #define altsetting_to_usb_interface_cache(a) \
196 container_of(a, struct usb_interface_cache, altsetting[0])
197
198 /**
199 * struct usb_host_config - representation of a device's configuration
200 * @desc: the device's configuration descriptor.
201 * @string: pointer to the cached version of the iConfiguration string, if
202 * present for this configuration.
203 * @interface: array of pointers to usb_interface structures, one for each
204 * interface in the configuration. The number of interfaces is stored
205 * in desc.bNumInterfaces. These pointers are valid only while the
206 * the configuration is active.
207 * @intf_cache: array of pointers to usb_interface_cache structures, one
208 * for each interface in the configuration. These structures exist
209 * for the entire life of the device.
210 * @extra: pointer to buffer containing all extra descriptors associated
211 * with this configuration (those preceding the first interface
212 * descriptor).
213 * @extralen: length of the extra descriptors buffer.
214 *
215 * USB devices may have multiple configurations, but only one can be active
216 * at any time. Each encapsulates a different operational environment;
217 * for example, a dual-speed device would have separate configurations for
218 * full-speed and high-speed operation. The number of configurations
219 * available is stored in the device descriptor as bNumConfigurations.
220 *
221 * A configuration can contain multiple interfaces. Each corresponds to
222 * a different function of the USB device, and all are available whenever
223 * the configuration is active. The USB standard says that interfaces
224 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
225 * of devices get this wrong. In addition, the interface array is not
226 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to
227 * look up an interface entry based on its number.
228 *
229 * Device drivers should not attempt to activate configurations. The choice
230 * of which configuration to install is a policy decision based on such
231 * considerations as available power, functionality provided, and the user's
232 * desires (expressed through userspace tools). However, drivers can call
233 * usb_reset_configuration() to reinitialize the current configuration and
234 * all its interfaces.
235 */
236 struct usb_host_config {
237 struct usb_config_descriptor desc;
238
239 char *string; /* iConfiguration string, if present */
240 /* the interfaces associated with this configuration,
241 * stored in no particular order */
242 struct usb_interface *interface[USB_MAXINTERFACES];
243
244 /* Interface information available even when this is not the
245 * active configuration */
246 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
247
248 unsigned char *extra; /* Extra descriptors */
249 int extralen;
250 };
251
252 int __usb_get_extra_descriptor(char *buffer, unsigned size,
253 unsigned char type, void **ptr);
254 #define usb_get_extra_descriptor(ifpoint,type,ptr)\
255 __usb_get_extra_descriptor((ifpoint)->extra,(ifpoint)->extralen,\
256 type,(void**)ptr)
257
258 /* ----------------------------------------------------------------------- */
259
260 /* USB device number allocation bitmap */
261 struct usb_devmap {
262 unsigned long devicemap[128 / (8*sizeof(unsigned long))];
263 };
264
265 /*
266 * Allocated per bus (tree of devices) we have:
267 */
268 struct usb_bus {
269 struct device *controller; /* host/master side hardware */
270 int busnum; /* Bus number (in order of reg) */
271 char *bus_name; /* stable id (PCI slot_name etc) */
272 u8 uses_dma; /* Does the host controller use DMA? */
273 u8 otg_port; /* 0, or number of OTG/HNP port */
274 unsigned is_b_host:1; /* true during some HNP roleswitches */
275 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */
276
277 int devnum_next; /* Next open device number in
278 * round-robin allocation */
279
280 struct usb_devmap devmap; /* device address allocation map */
281 struct usb_device *root_hub; /* Root hub */
282 struct list_head bus_list; /* list of busses */
283 void *hcpriv; /* Host Controller private data */
284
285 int bandwidth_allocated; /* on this bus: how much of the time
286 * reserved for periodic (intr/iso)
287 * requests is used, on average?
288 * Units: microseconds/frame.
289 * Limits: Full/low speed reserve 90%,
290 * while high speed reserves 80%.
291 */
292 int bandwidth_int_reqs; /* number of Interrupt requests */
293 int bandwidth_isoc_reqs; /* number of Isoc. requests */
294
295 struct dentry *usbfs_dentry; /* usbfs dentry entry for the bus */
296
297 struct class_device *class_dev; /* class device for this bus */
298 struct kref kref; /* reference counting for this bus */
299 void (*release)(struct usb_bus *bus);
300
301 #if defined(CONFIG_USB_MON)
302 struct mon_bus *mon_bus; /* non-null when associated */
303 int monitored; /* non-zero when monitored */
304 #endif
305 };
306
307 /* ----------------------------------------------------------------------- */
308
309 /* This is arbitrary.
310 * From USB 2.0 spec Table 11-13, offset 7, a hub can
311 * have up to 255 ports. The most yet reported is 10.
312 */
313 #define USB_MAXCHILDREN (16)
314
315 struct usb_tt;
316
317 /*
318 * struct usb_device - kernel's representation of a USB device
319 *
320 * FIXME: Write the kerneldoc!
321 *
322 * Usbcore drivers should not set usbdev->state directly. Instead use
323 * usb_set_device_state().
324 */
325 struct usb_device {
326 int devnum; /* Address on USB bus */
327 char devpath [16]; /* Use in messages: /port/port/... */
328 enum usb_device_state state; /* configured, not attached, etc */
329 enum usb_device_speed speed; /* high/full/low (or error) */
330
331 struct usb_tt *tt; /* low/full speed dev, highspeed hub */
332 int ttport; /* device port on that tt hub */
333
334 unsigned int toggle[2]; /* one bit for each endpoint
335 * ([0] = IN, [1] = OUT) */
336
337 struct usb_device *parent; /* our hub, unless we're the root */
338 struct usb_bus *bus; /* Bus we're part of */
339 struct usb_host_endpoint ep0;
340
341 struct device dev; /* Generic device interface */
342
343 struct usb_device_descriptor descriptor;/* Descriptor */
344 struct usb_host_config *config; /* All of the configs */
345
346 struct usb_host_config *actconfig;/* the active configuration */
347 struct usb_host_endpoint *ep_in[16];
348 struct usb_host_endpoint *ep_out[16];
349
350 char **rawdescriptors; /* Raw descriptors for each config */
351
352 unsigned short bus_mA; /* Current available from the bus */
353 u8 portnum; /* Parent port number (origin 1) */
354
355 int have_langid; /* whether string_langid is valid */
356 int string_langid; /* language ID for strings */
357
358 /* static strings from the device */
359 char *product; /* iProduct string, if present */
360 char *manufacturer; /* iManufacturer string, if present */
361 char *serial; /* iSerialNumber string, if present */
362
363 struct list_head filelist;
364 struct class_device *class_dev;
365 struct dentry *usbfs_dentry; /* usbfs dentry entry for the device */
366
367 /*
368 * Child devices - these can be either new devices
369 * (if this is a hub device), or different instances
370 * of this same device.
371 *
372 * Each instance needs its own set of data structures.
373 */
374
375 int maxchild; /* Number of ports if hub */
376 struct usb_device *children[USB_MAXCHILDREN];
377 };
378 #define to_usb_device(d) container_of(d, struct usb_device, dev)
379
380 extern struct usb_device *usb_get_dev(struct usb_device *dev);
381 extern void usb_put_dev(struct usb_device *dev);
382
383 /* USB device locking */
384 #define usb_lock_device(udev) down(&(udev)->dev.sem)
385 #define usb_unlock_device(udev) up(&(udev)->dev.sem)
386 #define usb_trylock_device(udev) down_trylock(&(udev)->dev.sem)
387 extern int usb_lock_device_for_reset(struct usb_device *udev,
388 const struct usb_interface *iface);
389
390 /* USB port reset for device reinitialization */
391 extern int usb_reset_device(struct usb_device *dev);
392 extern int usb_reset_composite_device(struct usb_device *dev,
393 struct usb_interface *iface);
394
395 extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id);
396
397 /*-------------------------------------------------------------------------*/
398
399 /* for drivers using iso endpoints */
400 extern int usb_get_current_frame_number (struct usb_device *usb_dev);
401
402 /* used these for multi-interface device registration */
403 extern int usb_driver_claim_interface(struct usb_driver *driver,
404 struct usb_interface *iface, void* priv);
405
406 /**
407 * usb_interface_claimed - returns true iff an interface is claimed
408 * @iface: the interface being checked
409 *
410 * Returns true (nonzero) iff the interface is claimed, else false (zero).
411 * Callers must own the driver model's usb bus readlock. So driver
412 * probe() entries don't need extra locking, but other call contexts
413 * may need to explicitly claim that lock.
414 *
415 */
416 static inline int usb_interface_claimed(struct usb_interface *iface) {
417 return (iface->dev.driver != NULL);
418 }
419
420 extern void usb_driver_release_interface(struct usb_driver *driver,
421 struct usb_interface *iface);
422 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
423 const struct usb_device_id *id);
424
425 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
426 int minor);
427 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
428 unsigned ifnum);
429 extern struct usb_host_interface *usb_altnum_to_altsetting(
430 const struct usb_interface *intf, unsigned int altnum);
431
432
433 /**
434 * usb_make_path - returns stable device path in the usb tree
435 * @dev: the device whose path is being constructed
436 * @buf: where to put the string
437 * @size: how big is "buf"?
438 *
439 * Returns length of the string (> 0) or negative if size was too small.
440 *
441 * This identifier is intended to be "stable", reflecting physical paths in
442 * hardware such as physical bus addresses for host controllers or ports on
443 * USB hubs. That makes it stay the same until systems are physically
444 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
445 * controllers. Adding and removing devices, including virtual root hubs
446 * in host controller driver modules, does not change these path identifers;
447 * neither does rebooting or re-enumerating. These are more useful identifiers
448 * than changeable ("unstable") ones like bus numbers or device addresses.
449 *
450 * With a partial exception for devices connected to USB 2.0 root hubs, these
451 * identifiers are also predictable. So long as the device tree isn't changed,
452 * plugging any USB device into a given hub port always gives it the same path.
453 * Because of the use of "companion" controllers, devices connected to ports on
454 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
455 * high speed, and a different one if they are full or low speed.
456 */
457 static inline int usb_make_path (struct usb_device *dev, char *buf,
458 size_t size)
459 {
460 int actual;
461 actual = snprintf (buf, size, "usb-%s-%s", dev->bus->bus_name,
462 dev->devpath);
463 return (actual >= (int)size) ? -1 : actual;
464 }
465
466 /*-------------------------------------------------------------------------*/
467
468 extern int usb_endpoint_dir_in(const struct usb_endpoint_descriptor *epd);
469 extern int usb_endpoint_dir_out(const struct usb_endpoint_descriptor *epd);
470 extern int usb_endpoint_xfer_bulk(const struct usb_endpoint_descriptor *epd);
471 extern int usb_endpoint_xfer_int(const struct usb_endpoint_descriptor *epd);
472 extern int usb_endpoint_xfer_isoc(const struct usb_endpoint_descriptor *epd);
473 extern int usb_endpoint_is_bulk_in(const struct usb_endpoint_descriptor *epd);
474 extern int usb_endpoint_is_bulk_out(const struct usb_endpoint_descriptor *epd);
475 extern int usb_endpoint_is_int_in(const struct usb_endpoint_descriptor *epd);
476 extern int usb_endpoint_is_int_out(const struct usb_endpoint_descriptor *epd);
477 extern int usb_endpoint_is_isoc_in(const struct usb_endpoint_descriptor *epd);
478 extern int usb_endpoint_is_isoc_out(const struct usb_endpoint_descriptor *epd);
479
480 /*-------------------------------------------------------------------------*/
481
482 #define USB_DEVICE_ID_MATCH_DEVICE \
483 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
484 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
485 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
486 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
487 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
488 #define USB_DEVICE_ID_MATCH_DEV_INFO \
489 (USB_DEVICE_ID_MATCH_DEV_CLASS | \
490 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
491 USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
492 #define USB_DEVICE_ID_MATCH_INT_INFO \
493 (USB_DEVICE_ID_MATCH_INT_CLASS | \
494 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
495 USB_DEVICE_ID_MATCH_INT_PROTOCOL)
496
497 /**
498 * USB_DEVICE - macro used to describe a specific usb device
499 * @vend: the 16 bit USB Vendor ID
500 * @prod: the 16 bit USB Product ID
501 *
502 * This macro is used to create a struct usb_device_id that matches a
503 * specific device.
504 */
505 #define USB_DEVICE(vend,prod) \
506 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, .idVendor = (vend), \
507 .idProduct = (prod)
508 /**
509 * USB_DEVICE_VER - macro used to describe a specific usb device with a
510 * version range
511 * @vend: the 16 bit USB Vendor ID
512 * @prod: the 16 bit USB Product ID
513 * @lo: the bcdDevice_lo value
514 * @hi: the bcdDevice_hi value
515 *
516 * This macro is used to create a struct usb_device_id that matches a
517 * specific device, with a version range.
518 */
519 #define USB_DEVICE_VER(vend,prod,lo,hi) \
520 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
521 .idVendor = (vend), .idProduct = (prod), \
522 .bcdDevice_lo = (lo), .bcdDevice_hi = (hi)
523
524 /**
525 * USB_DEVICE_INFO - macro used to describe a class of usb devices
526 * @cl: bDeviceClass value
527 * @sc: bDeviceSubClass value
528 * @pr: bDeviceProtocol value
529 *
530 * This macro is used to create a struct usb_device_id that matches a
531 * specific class of devices.
532 */
533 #define USB_DEVICE_INFO(cl,sc,pr) \
534 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, .bDeviceClass = (cl), \
535 .bDeviceSubClass = (sc), .bDeviceProtocol = (pr)
536
537 /**
538 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
539 * @cl: bInterfaceClass value
540 * @sc: bInterfaceSubClass value
541 * @pr: bInterfaceProtocol value
542 *
543 * This macro is used to create a struct usb_device_id that matches a
544 * specific class of interfaces.
545 */
546 #define USB_INTERFACE_INFO(cl,sc,pr) \
547 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, .bInterfaceClass = (cl), \
548 .bInterfaceSubClass = (sc), .bInterfaceProtocol = (pr)
549
550 /* ----------------------------------------------------------------------- */
551
552 struct usb_dynids {
553 spinlock_t lock;
554 struct list_head list;
555 };
556
557 /**
558 * struct usbdrv_wrap - wrapper for driver-model structure
559 * @driver: The driver-model core driver structure.
560 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
561 */
562 struct usbdrv_wrap {
563 struct device_driver driver;
564 int for_devices;
565 };
566
567 /**
568 * struct usb_driver - identifies USB interface driver to usbcore
569 * @name: The driver name should be unique among USB drivers,
570 * and should normally be the same as the module name.
571 * @probe: Called to see if the driver is willing to manage a particular
572 * interface on a device. If it is, probe returns zero and uses
573 * dev_set_drvdata() to associate driver-specific data with the
574 * interface. It may also use usb_set_interface() to specify the
575 * appropriate altsetting. If unwilling to manage the interface,
576 * return a negative errno value.
577 * @disconnect: Called when the interface is no longer accessible, usually
578 * because its device has been (or is being) disconnected or the
579 * driver module is being unloaded.
580 * @ioctl: Used for drivers that want to talk to userspace through
581 * the "usbfs" filesystem. This lets devices provide ways to
582 * expose information to user space regardless of where they
583 * do (or don't) show up otherwise in the filesystem.
584 * @suspend: Called when the device is going to be suspended by the system.
585 * @resume: Called when the device is being resumed by the system.
586 * @pre_reset: Called by usb_reset_composite_device() when the device
587 * is about to be reset.
588 * @post_reset: Called by usb_reset_composite_device() after the device
589 * has been reset.
590 * @id_table: USB drivers use ID table to support hotplugging.
591 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set
592 * or your driver's probe function will never get called.
593 * @dynids: used internally to hold the list of dynamically added device
594 * ids for this driver.
595 * @drvwrap: Driver-model core structure wrapper.
596 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
597 * added to this driver by preventing the sysfs file from being created.
598 *
599 * USB interface drivers must provide a name, probe() and disconnect()
600 * methods, and an id_table. Other driver fields are optional.
601 *
602 * The id_table is used in hotplugging. It holds a set of descriptors,
603 * and specialized data may be associated with each entry. That table
604 * is used by both user and kernel mode hotplugging support.
605 *
606 * The probe() and disconnect() methods are called in a context where
607 * they can sleep, but they should avoid abusing the privilege. Most
608 * work to connect to a device should be done when the device is opened,
609 * and undone at the last close. The disconnect code needs to address
610 * concurrency issues with respect to open() and close() methods, as
611 * well as forcing all pending I/O requests to complete (by unlinking
612 * them as necessary, and blocking until the unlinks complete).
613 */
614 struct usb_driver {
615 const char *name;
616
617 int (*probe) (struct usb_interface *intf,
618 const struct usb_device_id *id);
619
620 void (*disconnect) (struct usb_interface *intf);
621
622 int (*ioctl) (struct usb_interface *intf, unsigned int code,
623 void *buf);
624
625 int (*suspend) (struct usb_interface *intf, pm_message_t message);
626 int (*resume) (struct usb_interface *intf);
627
628 void (*pre_reset) (struct usb_interface *intf);
629 void (*post_reset) (struct usb_interface *intf);
630
631 const struct usb_device_id *id_table;
632
633 struct usb_dynids dynids;
634 struct usbdrv_wrap drvwrap;
635 unsigned int no_dynamic_id:1;
636 };
637 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
638
639 /**
640 * struct usb_device_driver - identifies USB device driver to usbcore
641 * @name: The driver name should be unique among USB drivers,
642 * and should normally be the same as the module name.
643 * @probe: Called to see if the driver is willing to manage a particular
644 * device. If it is, probe returns zero and uses dev_set_drvdata()
645 * to associate driver-specific data with the device. If unwilling
646 * to manage the device, return a negative errno value.
647 * @disconnect: Called when the device is no longer accessible, usually
648 * because it has been (or is being) disconnected or the driver's
649 * module is being unloaded.
650 * @suspend: Called when the device is going to be suspended by the system.
651 * @resume: Called when the device is being resumed by the system.
652 * @drvwrap: Driver-model core structure wrapper.
653 *
654 * USB drivers must provide all the fields listed above except drvwrap.
655 */
656 struct usb_device_driver {
657 const char *name;
658
659 int (*probe) (struct usb_device *udev);
660 void (*disconnect) (struct usb_device *udev);
661
662 int (*suspend) (struct usb_device *udev, pm_message_t message);
663 int (*resume) (struct usb_device *udev);
664 struct usbdrv_wrap drvwrap;
665 };
666 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
667 drvwrap.driver)
668
669 extern struct bus_type usb_bus_type;
670
671 /**
672 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
673 * @name: the usb class device name for this driver. Will show up in sysfs.
674 * @fops: pointer to the struct file_operations of this driver.
675 * @minor_base: the start of the minor range for this driver.
676 *
677 * This structure is used for the usb_register_dev() and
678 * usb_unregister_dev() functions, to consolidate a number of the
679 * parameters used for them.
680 */
681 struct usb_class_driver {
682 char *name;
683 const struct file_operations *fops;
684 int minor_base;
685 };
686
687 /*
688 * use these in module_init()/module_exit()
689 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
690 */
691 extern int usb_register_driver(struct usb_driver *, struct module *);
692 static inline int usb_register(struct usb_driver *driver)
693 {
694 return usb_register_driver(driver, THIS_MODULE);
695 }
696 extern void usb_deregister(struct usb_driver *);
697
698 extern int usb_register_device_driver(struct usb_device_driver *,
699 struct module *);
700 extern void usb_deregister_device_driver(struct usb_device_driver *);
701
702 extern int usb_register_dev(struct usb_interface *intf,
703 struct usb_class_driver *class_driver);
704 extern void usb_deregister_dev(struct usb_interface *intf,
705 struct usb_class_driver *class_driver);
706
707 extern int usb_disabled(void);
708
709 /* ----------------------------------------------------------------------- */
710
711 /*
712 * URB support, for asynchronous request completions
713 */
714
715 /*
716 * urb->transfer_flags:
717 */
718 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */
719 #define URB_ISO_ASAP 0x0002 /* iso-only, urb->start_frame
720 * ignored */
721 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */
722 #define URB_NO_SETUP_DMA_MAP 0x0008 /* urb->setup_dma valid on submit */
723 #define URB_NO_FSBR 0x0020 /* UHCI-specific */
724 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */
725 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt
726 * needed */
727
728 struct usb_iso_packet_descriptor {
729 unsigned int offset;
730 unsigned int length; /* expected length */
731 unsigned int actual_length;
732 unsigned int status;
733 };
734
735 struct urb;
736 struct pt_regs;
737
738 typedef void (*usb_complete_t)(struct urb *, struct pt_regs *);
739
740 /**
741 * struct urb - USB Request Block
742 * @urb_list: For use by current owner of the URB.
743 * @pipe: Holds endpoint number, direction, type, and more.
744 * Create these values with the eight macros available;
745 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
746 * (control), "bulk", "int" (interrupt), or "iso" (isochronous).
747 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint
748 * numbers range from zero to fifteen. Note that "in" endpoint two
749 * is a different endpoint (and pipe) from "out" endpoint two.
750 * The current configuration controls the existence, type, and
751 * maximum packet size of any given endpoint.
752 * @dev: Identifies the USB device to perform the request.
753 * @status: This is read in non-iso completion functions to get the
754 * status of the particular request. ISO requests only use it
755 * to tell whether the URB was unlinked; detailed status for
756 * each frame is in the fields of the iso_frame-desc.
757 * @transfer_flags: A variety of flags may be used to affect how URB
758 * submission, unlinking, or operation are handled. Different
759 * kinds of URB can use different flags.
760 * @transfer_buffer: This identifies the buffer to (or from) which
761 * the I/O request will be performed (unless URB_NO_TRANSFER_DMA_MAP
762 * is set). This buffer must be suitable for DMA; allocate it with
763 * kmalloc() or equivalent. For transfers to "in" endpoints, contents
764 * of this buffer will be modified. This buffer is used for the data
765 * stage of control transfers.
766 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
767 * the device driver is saying that it provided this DMA address,
768 * which the host controller driver should use in preference to the
769 * transfer_buffer.
770 * @transfer_buffer_length: How big is transfer_buffer. The transfer may
771 * be broken up into chunks according to the current maximum packet
772 * size for the endpoint, which is a function of the configuration
773 * and is encoded in the pipe. When the length is zero, neither
774 * transfer_buffer nor transfer_dma is used.
775 * @actual_length: This is read in non-iso completion functions, and
776 * it tells how many bytes (out of transfer_buffer_length) were
777 * transferred. It will normally be the same as requested, unless
778 * either an error was reported or a short read was performed.
779 * The URB_SHORT_NOT_OK transfer flag may be used to make such
780 * short reads be reported as errors.
781 * @setup_packet: Only used for control transfers, this points to eight bytes
782 * of setup data. Control transfers always start by sending this data
783 * to the device. Then transfer_buffer is read or written, if needed.
784 * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the
785 * device driver has provided this DMA address for the setup packet.
786 * The host controller driver should use this in preference to
787 * setup_packet.
788 * @start_frame: Returns the initial frame for isochronous transfers.
789 * @number_of_packets: Lists the number of ISO transfer buffers.
790 * @interval: Specifies the polling interval for interrupt or isochronous
791 * transfers. The units are frames (milliseconds) for for full and low
792 * speed devices, and microframes (1/8 millisecond) for highspeed ones.
793 * @error_count: Returns the number of ISO transfers that reported errors.
794 * @context: For use in completion functions. This normally points to
795 * request-specific driver context.
796 * @complete: Completion handler. This URB is passed as the parameter to the
797 * completion function. The completion function may then do what
798 * it likes with the URB, including resubmitting or freeing it.
799 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
800 * collect the transfer status for each buffer.
801 *
802 * This structure identifies USB transfer requests. URBs must be allocated by
803 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
804 * Initialization may be done using various usb_fill_*_urb() functions. URBs
805 * are submitted using usb_submit_urb(), and pending requests may be canceled
806 * using usb_unlink_urb() or usb_kill_urb().
807 *
808 * Data Transfer Buffers:
809 *
810 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
811 * taken from the general page pool. That is provided by transfer_buffer
812 * (control requests also use setup_packet), and host controller drivers
813 * perform a dma mapping (and unmapping) for each buffer transferred. Those
814 * mapping operations can be expensive on some platforms (perhaps using a dma
815 * bounce buffer or talking to an IOMMU),
816 * although they're cheap on commodity x86 and ppc hardware.
817 *
818 * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags,
819 * which tell the host controller driver that no such mapping is needed since
820 * the device driver is DMA-aware. For example, a device driver might
821 * allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map().
822 * When these transfer flags are provided, host controller drivers will
823 * attempt to use the dma addresses found in the transfer_dma and/or
824 * setup_dma fields rather than determining a dma address themselves. (Note
825 * that transfer_buffer and setup_packet must still be set because not all
826 * host controllers use DMA, nor do virtual root hubs).
827 *
828 * Initialization:
829 *
830 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
831 * zero), and complete fields. All URBs must also initialize
832 * transfer_buffer and transfer_buffer_length. They may provide the
833 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
834 * to be treated as errors; that flag is invalid for write requests.
835 *
836 * Bulk URBs may
837 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
838 * should always terminate with a short packet, even if it means adding an
839 * extra zero length packet.
840 *
841 * Control URBs must provide a setup_packet. The setup_packet and
842 * transfer_buffer may each be mapped for DMA or not, independently of
843 * the other. The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and
844 * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped.
845 * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs.
846 *
847 * Interrupt URBs must provide an interval, saying how often (in milliseconds
848 * or, for highspeed devices, 125 microsecond units)
849 * to poll for transfers. After the URB has been submitted, the interval
850 * field reflects how the transfer was actually scheduled.
851 * The polling interval may be more frequent than requested.
852 * For example, some controllers have a maximum interval of 32 milliseconds,
853 * while others support intervals of up to 1024 milliseconds.
854 * Isochronous URBs also have transfer intervals. (Note that for isochronous
855 * endpoints, as well as high speed interrupt endpoints, the encoding of
856 * the transfer interval in the endpoint descriptor is logarithmic.
857 * Device drivers must convert that value to linear units themselves.)
858 *
859 * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling
860 * the host controller to schedule the transfer as soon as bandwidth
861 * utilization allows, and then set start_frame to reflect the actual frame
862 * selected during submission. Otherwise drivers must specify the start_frame
863 * and handle the case where the transfer can't begin then. However, drivers
864 * won't know how bandwidth is currently allocated, and while they can
865 * find the current frame using usb_get_current_frame_number () they can't
866 * know the range for that frame number. (Ranges for frame counter values
867 * are HC-specific, and can go from 256 to 65536 frames from "now".)
868 *
869 * Isochronous URBs have a different data transfer model, in part because
870 * the quality of service is only "best effort". Callers provide specially
871 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
872 * at the end. Each such packet is an individual ISO transfer. Isochronous
873 * URBs are normally queued, submitted by drivers to arrange that
874 * transfers are at least double buffered, and then explicitly resubmitted
875 * in completion handlers, so
876 * that data (such as audio or video) streams at as constant a rate as the
877 * host controller scheduler can support.
878 *
879 * Completion Callbacks:
880 *
881 * The completion callback is made in_interrupt(), and one of the first
882 * things that a completion handler should do is check the status field.
883 * The status field is provided for all URBs. It is used to report
884 * unlinked URBs, and status for all non-ISO transfers. It should not
885 * be examined before the URB is returned to the completion handler.
886 *
887 * The context field is normally used to link URBs back to the relevant
888 * driver or request state.
889 *
890 * When the completion callback is invoked for non-isochronous URBs, the
891 * actual_length field tells how many bytes were transferred. This field
892 * is updated even when the URB terminated with an error or was unlinked.
893 *
894 * ISO transfer status is reported in the status and actual_length fields
895 * of the iso_frame_desc array, and the number of errors is reported in
896 * error_count. Completion callbacks for ISO transfers will normally
897 * (re)submit URBs to ensure a constant transfer rate.
898 *
899 * Note that even fields marked "public" should not be touched by the driver
900 * when the urb is owned by the hcd, that is, since the call to
901 * usb_submit_urb() till the entry into the completion routine.
902 */
903 struct urb
904 {
905 /* private: usb core and host controller only fields in the urb */
906 struct kref kref; /* reference count of the URB */
907 spinlock_t lock; /* lock for the URB */
908 void *hcpriv; /* private data for host controller */
909 int bandwidth; /* bandwidth for INT/ISO request */
910 atomic_t use_count; /* concurrent submissions counter */
911 u8 reject; /* submissions will fail */
912
913 /* public: documented fields in the urb that can be used by drivers */
914 struct list_head urb_list; /* list head for use by the urb's
915 * current owner */
916 struct usb_device *dev; /* (in) pointer to associated device */
917 unsigned int pipe; /* (in) pipe information */
918 int status; /* (return) non-ISO status */
919 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
920 void *transfer_buffer; /* (in) associated data buffer */
921 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */
922 int transfer_buffer_length; /* (in) data buffer length */
923 int actual_length; /* (return) actual transfer length */
924 unsigned char *setup_packet; /* (in) setup packet (control only) */
925 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */
926 int start_frame; /* (modify) start frame (ISO) */
927 int number_of_packets; /* (in) number of ISO packets */
928 int interval; /* (modify) transfer interval
929 * (INT/ISO) */
930 int error_count; /* (return) number of ISO errors */
931 void *context; /* (in) context for completion */
932 usb_complete_t complete; /* (in) completion routine */
933 struct usb_iso_packet_descriptor iso_frame_desc[0];
934 /* (in) ISO ONLY */
935 };
936
937 /* ----------------------------------------------------------------------- */
938
939 /**
940 * usb_fill_control_urb - initializes a control urb
941 * @urb: pointer to the urb to initialize.
942 * @dev: pointer to the struct usb_device for this urb.
943 * @pipe: the endpoint pipe
944 * @setup_packet: pointer to the setup_packet buffer
945 * @transfer_buffer: pointer to the transfer buffer
946 * @buffer_length: length of the transfer buffer
947 * @complete_fn: pointer to the usb_complete_t function
948 * @context: what to set the urb context to.
949 *
950 * Initializes a control urb with the proper information needed to submit
951 * it to a device.
952 */
953 static inline void usb_fill_control_urb (struct urb *urb,
954 struct usb_device *dev,
955 unsigned int pipe,
956 unsigned char *setup_packet,
957 void *transfer_buffer,
958 int buffer_length,
959 usb_complete_t complete_fn,
960 void *context)
961 {
962 spin_lock_init(&urb->lock);
963 urb->dev = dev;
964 urb->pipe = pipe;
965 urb->setup_packet = setup_packet;
966 urb->transfer_buffer = transfer_buffer;
967 urb->transfer_buffer_length = buffer_length;
968 urb->complete = complete_fn;
969 urb->context = context;
970 }
971
972 /**
973 * usb_fill_bulk_urb - macro to help initialize a bulk urb
974 * @urb: pointer to the urb to initialize.
975 * @dev: pointer to the struct usb_device for this urb.
976 * @pipe: the endpoint pipe
977 * @transfer_buffer: pointer to the transfer buffer
978 * @buffer_length: length of the transfer buffer
979 * @complete_fn: pointer to the usb_complete_t function
980 * @context: what to set the urb context to.
981 *
982 * Initializes a bulk urb with the proper information needed to submit it
983 * to a device.
984 */
985 static inline void usb_fill_bulk_urb (struct urb *urb,
986 struct usb_device *dev,
987 unsigned int pipe,
988 void *transfer_buffer,
989 int buffer_length,
990 usb_complete_t complete_fn,
991 void *context)
992 {
993 spin_lock_init(&urb->lock);
994 urb->dev = dev;
995 urb->pipe = pipe;
996 urb->transfer_buffer = transfer_buffer;
997 urb->transfer_buffer_length = buffer_length;
998 urb->complete = complete_fn;
999 urb->context = context;
1000 }
1001
1002 /**
1003 * usb_fill_int_urb - macro to help initialize a interrupt urb
1004 * @urb: pointer to the urb to initialize.
1005 * @dev: pointer to the struct usb_device for this urb.
1006 * @pipe: the endpoint pipe
1007 * @transfer_buffer: pointer to the transfer buffer
1008 * @buffer_length: length of the transfer buffer
1009 * @complete_fn: pointer to the usb_complete_t function
1010 * @context: what to set the urb context to.
1011 * @interval: what to set the urb interval to, encoded like
1012 * the endpoint descriptor's bInterval value.
1013 *
1014 * Initializes a interrupt urb with the proper information needed to submit
1015 * it to a device.
1016 * Note that high speed interrupt endpoints use a logarithmic encoding of
1017 * the endpoint interval, and express polling intervals in microframes
1018 * (eight per millisecond) rather than in frames (one per millisecond).
1019 */
1020 static inline void usb_fill_int_urb (struct urb *urb,
1021 struct usb_device *dev,
1022 unsigned int pipe,
1023 void *transfer_buffer,
1024 int buffer_length,
1025 usb_complete_t complete_fn,
1026 void *context,
1027 int interval)
1028 {
1029 spin_lock_init(&urb->lock);
1030 urb->dev = dev;
1031 urb->pipe = pipe;
1032 urb->transfer_buffer = transfer_buffer;
1033 urb->transfer_buffer_length = buffer_length;
1034 urb->complete = complete_fn;
1035 urb->context = context;
1036 if (dev->speed == USB_SPEED_HIGH)
1037 urb->interval = 1 << (interval - 1);
1038 else
1039 urb->interval = interval;
1040 urb->start_frame = -1;
1041 }
1042
1043 extern void usb_init_urb(struct urb *urb);
1044 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1045 extern void usb_free_urb(struct urb *urb);
1046 #define usb_put_urb usb_free_urb
1047 extern struct urb *usb_get_urb(struct urb *urb);
1048 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1049 extern int usb_unlink_urb(struct urb *urb);
1050 extern void usb_kill_urb(struct urb *urb);
1051
1052 void *usb_buffer_alloc (struct usb_device *dev, size_t size,
1053 gfp_t mem_flags, dma_addr_t *dma);
1054 void usb_buffer_free (struct usb_device *dev, size_t size,
1055 void *addr, dma_addr_t dma);
1056
1057 #if 0
1058 struct urb *usb_buffer_map (struct urb *urb);
1059 void usb_buffer_dmasync (struct urb *urb);
1060 void usb_buffer_unmap (struct urb *urb);
1061 #endif
1062
1063 struct scatterlist;
1064 int usb_buffer_map_sg(const struct usb_device *dev, unsigned pipe,
1065 struct scatterlist *sg, int nents);
1066 #if 0
1067 void usb_buffer_dmasync_sg(const struct usb_device *dev, unsigned pipe,
1068 struct scatterlist *sg, int n_hw_ents);
1069 #endif
1070 void usb_buffer_unmap_sg(const struct usb_device *dev, unsigned pipe,
1071 struct scatterlist *sg, int n_hw_ents);
1072
1073 /*-------------------------------------------------------------------*
1074 * SYNCHRONOUS CALL SUPPORT *
1075 *-------------------------------------------------------------------*/
1076
1077 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1078 __u8 request, __u8 requesttype, __u16 value, __u16 index,
1079 void *data, __u16 size, int timeout);
1080 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1081 void *data, int len, int *actual_length, int timeout);
1082 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1083 void *data, int len, int *actual_length,
1084 int timeout);
1085
1086 /* wrappers around usb_control_msg() for the most common standard requests */
1087 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1088 unsigned char descindex, void *buf, int size);
1089 extern int usb_get_status(struct usb_device *dev,
1090 int type, int target, void *data);
1091 extern int usb_string(struct usb_device *dev, int index,
1092 char *buf, size_t size);
1093
1094 /* wrappers that also update important state inside usbcore */
1095 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1096 extern int usb_reset_configuration(struct usb_device *dev);
1097 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1098
1099 /* this request isn't really synchronous, but it belongs with the others */
1100 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1101
1102 /*
1103 * timeouts, in milliseconds, used for sending/receiving control messages
1104 * they typically complete within a few frames (msec) after they're issued
1105 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1106 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1107 */
1108 #define USB_CTRL_GET_TIMEOUT 5000
1109 #define USB_CTRL_SET_TIMEOUT 5000
1110
1111
1112 /**
1113 * struct usb_sg_request - support for scatter/gather I/O
1114 * @status: zero indicates success, else negative errno
1115 * @bytes: counts bytes transferred.
1116 *
1117 * These requests are initialized using usb_sg_init(), and then are used
1118 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most
1119 * members of the request object aren't for driver access.
1120 *
1121 * The status and bytecount values are valid only after usb_sg_wait()
1122 * returns. If the status is zero, then the bytecount matches the total
1123 * from the request.
1124 *
1125 * After an error completion, drivers may need to clear a halt condition
1126 * on the endpoint.
1127 */
1128 struct usb_sg_request {
1129 int status;
1130 size_t bytes;
1131
1132 /*
1133 * members below are private: to usbcore,
1134 * and are not provided for driver access!
1135 */
1136 spinlock_t lock;
1137
1138 struct usb_device *dev;
1139 int pipe;
1140 struct scatterlist *sg;
1141 int nents;
1142
1143 int entries;
1144 struct urb **urbs;
1145
1146 int count;
1147 struct completion complete;
1148 };
1149
1150 int usb_sg_init (
1151 struct usb_sg_request *io,
1152 struct usb_device *dev,
1153 unsigned pipe,
1154 unsigned period,
1155 struct scatterlist *sg,
1156 int nents,
1157 size_t length,
1158 gfp_t mem_flags
1159 );
1160 void usb_sg_cancel (struct usb_sg_request *io);
1161 void usb_sg_wait (struct usb_sg_request *io);
1162
1163
1164 /* ----------------------------------------------------------------------- */
1165
1166 /*
1167 * For various legacy reasons, Linux has a small cookie that's paired with
1168 * a struct usb_device to identify an endpoint queue. Queue characteristics
1169 * are defined by the endpoint's descriptor. This cookie is called a "pipe",
1170 * an unsigned int encoded as:
1171 *
1172 * - direction: bit 7 (0 = Host-to-Device [Out],
1173 * 1 = Device-to-Host [In] ...
1174 * like endpoint bEndpointAddress)
1175 * - device address: bits 8-14 ... bit positions known to uhci-hcd
1176 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd
1177 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt,
1178 * 10 = control, 11 = bulk)
1179 *
1180 * Given the device address and endpoint descriptor, pipes are redundant.
1181 */
1182
1183 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */
1184 /* (yet ... they're the values used by usbfs) */
1185 #define PIPE_ISOCHRONOUS 0
1186 #define PIPE_INTERRUPT 1
1187 #define PIPE_CONTROL 2
1188 #define PIPE_BULK 3
1189
1190 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN)
1191 #define usb_pipeout(pipe) (!usb_pipein(pipe))
1192
1193 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f)
1194 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf)
1195
1196 #define usb_pipetype(pipe) (((pipe) >> 30) & 3)
1197 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1198 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1199 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL)
1200 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK)
1201
1202 /* The D0/D1 toggle bits ... USE WITH CAUTION (they're almost hcd-internal) */
1203 #define usb_gettoggle(dev, ep, out) (((dev)->toggle[out] >> (ep)) & 1)
1204 #define usb_dotoggle(dev, ep, out) ((dev)->toggle[out] ^= (1 << (ep)))
1205 #define usb_settoggle(dev, ep, out, bit) \
1206 ((dev)->toggle[out] = ((dev)->toggle[out] & ~(1 << (ep))) | \
1207 ((bit) << (ep)))
1208
1209
1210 static inline unsigned int __create_pipe(struct usb_device *dev,
1211 unsigned int endpoint)
1212 {
1213 return (dev->devnum << 8) | (endpoint << 15);
1214 }
1215
1216 /* Create various pipes... */
1217 #define usb_sndctrlpipe(dev,endpoint) \
1218 ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint))
1219 #define usb_rcvctrlpipe(dev,endpoint) \
1220 ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1221 #define usb_sndisocpipe(dev,endpoint) \
1222 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint))
1223 #define usb_rcvisocpipe(dev,endpoint) \
1224 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1225 #define usb_sndbulkpipe(dev,endpoint) \
1226 ((PIPE_BULK << 30) | __create_pipe(dev,endpoint))
1227 #define usb_rcvbulkpipe(dev,endpoint) \
1228 ((PIPE_BULK << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1229 #define usb_sndintpipe(dev,endpoint) \
1230 ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint))
1231 #define usb_rcvintpipe(dev,endpoint) \
1232 ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1233
1234 /*-------------------------------------------------------------------------*/
1235
1236 static inline __u16
1237 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1238 {
1239 struct usb_host_endpoint *ep;
1240 unsigned epnum = usb_pipeendpoint(pipe);
1241
1242 if (is_out) {
1243 WARN_ON(usb_pipein(pipe));
1244 ep = udev->ep_out[epnum];
1245 } else {
1246 WARN_ON(usb_pipeout(pipe));
1247 ep = udev->ep_in[epnum];
1248 }
1249 if (!ep)
1250 return 0;
1251
1252 /* NOTE: only 0x07ff bits are for packet size... */
1253 return le16_to_cpu(ep->desc.wMaxPacketSize);
1254 }
1255
1256 /* ----------------------------------------------------------------------- */
1257
1258 /* Events from the usb core */
1259 #define USB_DEVICE_ADD 0x0001
1260 #define USB_DEVICE_REMOVE 0x0002
1261 #define USB_BUS_ADD 0x0003
1262 #define USB_BUS_REMOVE 0x0004
1263 extern void usb_register_notify(struct notifier_block *nb);
1264 extern void usb_unregister_notify(struct notifier_block *nb);
1265
1266 #ifdef DEBUG
1267 #define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , \
1268 __FILE__ , ## arg)
1269 #else
1270 #define dbg(format, arg...) do {} while (0)
1271 #endif
1272
1273 #define err(format, arg...) printk(KERN_ERR "%s: " format "\n" , \
1274 __FILE__ , ## arg)
1275 #define info(format, arg...) printk(KERN_INFO "%s: " format "\n" , \
1276 __FILE__ , ## arg)
1277 #define warn(format, arg...) printk(KERN_WARNING "%s: " format "\n" , \
1278 __FILE__ , ## arg)
1279
1280
1281 #endif /* __KERNEL__ */
1282
1283 #endif
This page took 0.058189 seconds and 6 git commands to generate.