uwb: per-radio controller event thread and beacon cache
[deliverable/linux.git] / include / linux / uwb.h
1 /*
2 * Ultra Wide Band
3 * UWB API
4 *
5 * Copyright (C) 2005-2006 Intel Corporation
6 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License version
10 * 2 as published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
20 * 02110-1301, USA.
21 *
22 *
23 * FIXME: doc: overview of the API, different parts and pointers
24 */
25
26 #ifndef __LINUX__UWB_H__
27 #define __LINUX__UWB_H__
28
29 #include <linux/limits.h>
30 #include <linux/device.h>
31 #include <linux/mutex.h>
32 #include <linux/timer.h>
33 #include <linux/wait.h>
34 #include <linux/workqueue.h>
35 #include <linux/uwb/spec.h>
36
37 struct uwb_dev;
38 struct uwb_beca_e;
39 struct uwb_rc;
40 struct uwb_rsv;
41 struct uwb_dbg;
42
43 /**
44 * struct uwb_dev - a UWB Device
45 * @rc: UWB Radio Controller that discovered the device (kind of its
46 * parent).
47 * @bce: a beacon cache entry for this device; or NULL if the device
48 * is a local radio controller.
49 * @mac_addr: the EUI-48 address of this device.
50 * @dev_addr: the current DevAddr used by this device.
51 * @beacon_slot: the slot number the beacon is using.
52 * @streams: bitmap of streams allocated to reservations targeted at
53 * this device. For an RC, this is the streams allocated for
54 * reservations targeted at DevAddrs.
55 *
56 * A UWB device may either by a neighbor or part of a local radio
57 * controller.
58 */
59 struct uwb_dev {
60 struct mutex mutex;
61 struct list_head list_node;
62 struct device dev;
63 struct uwb_rc *rc; /* radio controller */
64 struct uwb_beca_e *bce; /* Beacon Cache Entry */
65
66 struct uwb_mac_addr mac_addr;
67 struct uwb_dev_addr dev_addr;
68 int beacon_slot;
69 DECLARE_BITMAP(streams, UWB_NUM_STREAMS);
70 };
71 #define to_uwb_dev(d) container_of(d, struct uwb_dev, dev)
72
73 /**
74 * UWB HWA/WHCI Radio Control {Command|Event} Block context IDs
75 *
76 * RC[CE]Bs have a 'context ID' field that matches the command with
77 * the event received to confirm it.
78 *
79 * Maximum number of context IDs
80 */
81 enum { UWB_RC_CTX_MAX = 256 };
82
83
84 /** Notification chain head for UWB generated events to listeners */
85 struct uwb_notifs_chain {
86 struct list_head list;
87 struct mutex mutex;
88 };
89
90 /* Beacon cache list */
91 struct uwb_beca {
92 struct list_head list;
93 size_t entries;
94 struct mutex mutex;
95 };
96
97 /* Event handling thread. */
98 struct uwbd {
99 int pid;
100 struct task_struct *task;
101 wait_queue_head_t wq;
102 struct list_head event_list;
103 spinlock_t event_list_lock;
104 };
105
106 /**
107 * struct uwb_mas_bm - a bitmap of all MAS in a superframe
108 * @bm: a bitmap of length #UWB_NUM_MAS
109 */
110 struct uwb_mas_bm {
111 DECLARE_BITMAP(bm, UWB_NUM_MAS);
112 };
113
114 /**
115 * uwb_rsv_state - UWB Reservation state.
116 *
117 * NONE - reservation is not active (no DRP IE being transmitted).
118 *
119 * Owner reservation states:
120 *
121 * INITIATED - owner has sent an initial DRP request.
122 * PENDING - target responded with pending Reason Code.
123 * MODIFIED - reservation manager is modifying an established
124 * reservation with a different MAS allocation.
125 * ESTABLISHED - the reservation has been successfully negotiated.
126 *
127 * Target reservation states:
128 *
129 * DENIED - request is denied.
130 * ACCEPTED - request is accepted.
131 * PENDING - PAL has yet to make a decision to whether to accept or
132 * deny.
133 *
134 * FIXME: further target states TBD.
135 */
136 enum uwb_rsv_state {
137 UWB_RSV_STATE_NONE,
138 UWB_RSV_STATE_O_INITIATED,
139 UWB_RSV_STATE_O_PENDING,
140 UWB_RSV_STATE_O_MODIFIED,
141 UWB_RSV_STATE_O_ESTABLISHED,
142 UWB_RSV_STATE_T_ACCEPTED,
143 UWB_RSV_STATE_T_DENIED,
144 UWB_RSV_STATE_T_PENDING,
145
146 UWB_RSV_STATE_LAST,
147 };
148
149 enum uwb_rsv_target_type {
150 UWB_RSV_TARGET_DEV,
151 UWB_RSV_TARGET_DEVADDR,
152 };
153
154 /**
155 * struct uwb_rsv_target - the target of a reservation.
156 *
157 * Reservations unicast and targeted at a single device
158 * (UWB_RSV_TARGET_DEV); or (e.g., in the case of WUSB) targeted at a
159 * specific (private) DevAddr (UWB_RSV_TARGET_DEVADDR).
160 */
161 struct uwb_rsv_target {
162 enum uwb_rsv_target_type type;
163 union {
164 struct uwb_dev *dev;
165 struct uwb_dev_addr devaddr;
166 };
167 };
168
169 /*
170 * Number of streams reserved for reservations targeted at DevAddrs.
171 */
172 #define UWB_NUM_GLOBAL_STREAMS 1
173
174 typedef void (*uwb_rsv_cb_f)(struct uwb_rsv *rsv);
175
176 /**
177 * struct uwb_rsv - a DRP reservation
178 *
179 * Data structure management:
180 *
181 * @rc: the radio controller this reservation is for
182 * (as target or owner)
183 * @rc_node: a list node for the RC
184 * @pal_node: a list node for the PAL
185 *
186 * Owner and target parameters:
187 *
188 * @owner: the UWB device owning this reservation
189 * @target: the target UWB device
190 * @type: reservation type
191 *
192 * Owner parameters:
193 *
194 * @max_mas: maxiumum number of MAS
195 * @min_mas: minimum number of MAS
196 * @sparsity: owner selected sparsity
197 * @is_multicast: true iff multicast
198 *
199 * @callback: callback function when the reservation completes
200 * @pal_priv: private data for the PAL making the reservation
201 *
202 * Reservation status:
203 *
204 * @status: negotiation status
205 * @stream: stream index allocated for this reservation
206 * @mas: reserved MAS
207 * @drp_ie: the DRP IE
208 * @ie_valid: true iff the DRP IE matches the reservation parameters
209 *
210 * DRP reservations are uniquely identified by the owner, target and
211 * stream index. However, when using a DevAddr as a target (e.g., for
212 * a WUSB cluster reservation) the responses may be received from
213 * devices with different DevAddrs. In this case, reservations are
214 * uniquely identified by just the stream index. A number of stream
215 * indexes (UWB_NUM_GLOBAL_STREAMS) are reserved for this.
216 */
217 struct uwb_rsv {
218 struct uwb_rc *rc;
219 struct list_head rc_node;
220 struct list_head pal_node;
221 struct kref kref;
222
223 struct uwb_dev *owner;
224 struct uwb_rsv_target target;
225 enum uwb_drp_type type;
226 int max_mas;
227 int min_mas;
228 int sparsity;
229 bool is_multicast;
230
231 uwb_rsv_cb_f callback;
232 void *pal_priv;
233
234 enum uwb_rsv_state state;
235 u8 stream;
236 struct uwb_mas_bm mas;
237 struct uwb_ie_drp *drp_ie;
238 bool ie_valid;
239 struct timer_list timer;
240 bool expired;
241 };
242
243 static const
244 struct uwb_mas_bm uwb_mas_bm_zero = { .bm = { 0 } };
245
246 static inline void uwb_mas_bm_copy_le(void *dst, const struct uwb_mas_bm *mas)
247 {
248 bitmap_copy_le(dst, mas->bm, UWB_NUM_MAS);
249 }
250
251 /**
252 * struct uwb_drp_avail - a radio controller's view of MAS usage
253 * @global: MAS unused by neighbors (excluding reservations targetted
254 * or owned by the local radio controller) or the beaon period
255 * @local: MAS unused by local established reservations
256 * @pending: MAS unused by local pending reservations
257 * @ie: DRP Availability IE to be included in the beacon
258 * @ie_valid: true iff @ie is valid and does not need to regenerated from
259 * @global and @local
260 *
261 * Each radio controller maintains a view of MAS usage or
262 * availability. MAS available for a new reservation are determined
263 * from the intersection of @global, @local, and @pending.
264 *
265 * The radio controller must transmit a DRP Availability IE that's the
266 * intersection of @global and @local.
267 *
268 * A set bit indicates the MAS is unused and available.
269 *
270 * rc->rsvs_mutex should be held before accessing this data structure.
271 *
272 * [ECMA-368] section 17.4.3.
273 */
274 struct uwb_drp_avail {
275 DECLARE_BITMAP(global, UWB_NUM_MAS);
276 DECLARE_BITMAP(local, UWB_NUM_MAS);
277 DECLARE_BITMAP(pending, UWB_NUM_MAS);
278 struct uwb_ie_drp_avail ie;
279 bool ie_valid;
280 };
281
282
283 const char *uwb_rsv_state_str(enum uwb_rsv_state state);
284 const char *uwb_rsv_type_str(enum uwb_drp_type type);
285
286 struct uwb_rsv *uwb_rsv_create(struct uwb_rc *rc, uwb_rsv_cb_f cb,
287 void *pal_priv);
288 void uwb_rsv_destroy(struct uwb_rsv *rsv);
289
290 int uwb_rsv_establish(struct uwb_rsv *rsv);
291 int uwb_rsv_modify(struct uwb_rsv *rsv,
292 int max_mas, int min_mas, int sparsity);
293 void uwb_rsv_terminate(struct uwb_rsv *rsv);
294
295 void uwb_rsv_accept(struct uwb_rsv *rsv, uwb_rsv_cb_f cb, void *pal_priv);
296
297 /**
298 * Radio Control Interface instance
299 *
300 *
301 * Life cycle rules: those of the UWB Device.
302 *
303 * @index: an index number for this radio controller, as used in the
304 * device name.
305 * @version: version of protocol supported by this device
306 * @priv: Backend implementation; rw with uwb_dev.dev.sem taken.
307 * @cmd: Backend implementation to execute commands; rw and call
308 * only with uwb_dev.dev.sem taken.
309 * @reset: Hardware reset of radio controller and any PAL controllers.
310 * @filter: Backend implementation to manipulate data to and from device
311 * to be compliant to specification assumed by driver (WHCI
312 * 0.95).
313 *
314 * uwb_dev.dev.mutex is used to execute commands and update
315 * the corresponding structures; can't use a spinlock
316 * because rc->cmd() can sleep.
317 * @ies: This is a dynamically allocated array cacheing the
318 * IEs (settable by the host) that the beacon of this
319 * radio controller is currently sending.
320 *
321 * In reality, we store here the full command we set to
322 * the radio controller (which is basically a command
323 * prefix followed by all the IEs the beacon currently
324 * contains). This way we don't have to realloc and
325 * memcpy when setting it.
326 *
327 * We set this up in uwb_rc_ie_setup(), where we alloc
328 * this struct, call get_ie() [so we know which IEs are
329 * currently being sent, if any].
330 *
331 * @ies_capacity:Amount of space (in bytes) allocated in @ies. The
332 * amount used is given by sizeof(*ies) plus ies->wIELength
333 * (which is a little endian quantity all the time).
334 * @ies_mutex: protect the IE cache
335 * @dbg: information for the debug interface
336 */
337 struct uwb_rc {
338 struct uwb_dev uwb_dev;
339 int index;
340 u16 version;
341
342 struct module *owner;
343 void *priv;
344 int (*start)(struct uwb_rc *rc);
345 void (*stop)(struct uwb_rc *rc);
346 int (*cmd)(struct uwb_rc *, const struct uwb_rccb *, size_t);
347 int (*reset)(struct uwb_rc *rc);
348 int (*filter_cmd)(struct uwb_rc *, struct uwb_rccb **, size_t *);
349 int (*filter_event)(struct uwb_rc *, struct uwb_rceb **, const size_t,
350 size_t *, size_t *);
351
352 spinlock_t neh_lock; /* protects neh_* and ctx_* */
353 struct list_head neh_list; /* Open NE handles */
354 unsigned long ctx_bm[UWB_RC_CTX_MAX / 8 / sizeof(unsigned long)];
355 u8 ctx_roll;
356
357 int beaconing; /* Beaconing state [channel number] */
358 int scanning;
359 enum uwb_scan_type scan_type:3;
360 unsigned ready:1;
361 struct uwb_notifs_chain notifs_chain;
362 struct uwb_beca uwb_beca;
363
364 struct uwbd uwbd;
365
366 struct uwb_drp_avail drp_avail;
367 struct list_head reservations;
368 struct mutex rsvs_mutex;
369 struct workqueue_struct *rsv_workq;
370 struct work_struct rsv_update_work;
371
372 struct mutex ies_mutex;
373 struct uwb_rc_cmd_set_ie *ies;
374 size_t ies_capacity;
375
376 spinlock_t pal_lock;
377 struct list_head pals;
378
379 struct uwb_dbg *dbg;
380 };
381
382
383 /**
384 * struct uwb_pal - a UWB PAL
385 * @name: descriptive name for this PAL (wushc, wlp, etc.).
386 * @device: a device for the PAL. Used to link the PAL and the radio
387 * controller in sysfs.
388 * @new_rsv: called when a peer requests a reservation (may be NULL if
389 * the PAL cannot accept reservation requests).
390 *
391 * A Protocol Adaptation Layer (PAL) is a user of the WiMedia UWB
392 * radio platform (e.g., WUSB, WLP or Bluetooth UWB AMP).
393 *
394 * The PALs using a radio controller must register themselves to
395 * permit the UWB stack to coordinate usage of the radio between the
396 * various PALs or to allow PALs to response to certain requests from
397 * peers.
398 *
399 * A struct uwb_pal should be embedded in a containing structure
400 * belonging to the PAL and initialized with uwb_pal_init()). Fields
401 * should be set appropriately by the PAL before registering the PAL
402 * with uwb_pal_register().
403 */
404 struct uwb_pal {
405 struct list_head node;
406 const char *name;
407 struct device *device;
408 void (*new_rsv)(struct uwb_rsv *rsv);
409 };
410
411 void uwb_pal_init(struct uwb_pal *pal);
412 int uwb_pal_register(struct uwb_rc *rc, struct uwb_pal *pal);
413 void uwb_pal_unregister(struct uwb_rc *rc, struct uwb_pal *pal);
414
415 /*
416 * General public API
417 *
418 * This API can be used by UWB device drivers or by those implementing
419 * UWB Radio Controllers
420 */
421 struct uwb_dev *uwb_dev_get_by_devaddr(struct uwb_rc *rc,
422 const struct uwb_dev_addr *devaddr);
423 struct uwb_dev *uwb_dev_get_by_rc(struct uwb_dev *, struct uwb_rc *);
424 static inline void uwb_dev_get(struct uwb_dev *uwb_dev)
425 {
426 get_device(&uwb_dev->dev);
427 }
428 static inline void uwb_dev_put(struct uwb_dev *uwb_dev)
429 {
430 put_device(&uwb_dev->dev);
431 }
432 struct uwb_dev *uwb_dev_try_get(struct uwb_rc *rc, struct uwb_dev *uwb_dev);
433
434 /**
435 * Callback function for 'uwb_{dev,rc}_foreach()'.
436 *
437 * @dev: Linux device instance
438 * 'uwb_dev = container_of(dev, struct uwb_dev, dev)'
439 * @priv: Data passed by the caller to 'uwb_{dev,rc}_foreach()'.
440 *
441 * @returns: 0 to continue the iterations, any other val to stop
442 * iterating and return the value to the caller of
443 * _foreach().
444 */
445 typedef int (*uwb_dev_for_each_f)(struct device *dev, void *priv);
446 int uwb_dev_for_each(struct uwb_rc *rc, uwb_dev_for_each_f func, void *priv);
447
448 struct uwb_rc *uwb_rc_alloc(void);
449 struct uwb_rc *uwb_rc_get_by_dev(const struct uwb_dev_addr *);
450 struct uwb_rc *uwb_rc_get_by_grandpa(const struct device *);
451 void uwb_rc_put(struct uwb_rc *rc);
452
453 typedef void (*uwb_rc_cmd_cb_f)(struct uwb_rc *rc, void *arg,
454 struct uwb_rceb *reply, ssize_t reply_size);
455
456 int uwb_rc_cmd_async(struct uwb_rc *rc, const char *cmd_name,
457 struct uwb_rccb *cmd, size_t cmd_size,
458 u8 expected_type, u16 expected_event,
459 uwb_rc_cmd_cb_f cb, void *arg);
460 ssize_t uwb_rc_cmd(struct uwb_rc *rc, const char *cmd_name,
461 struct uwb_rccb *cmd, size_t cmd_size,
462 struct uwb_rceb *reply, size_t reply_size);
463 ssize_t uwb_rc_vcmd(struct uwb_rc *rc, const char *cmd_name,
464 struct uwb_rccb *cmd, size_t cmd_size,
465 u8 expected_type, u16 expected_event,
466 struct uwb_rceb **preply);
467 int uwb_bg_joined(struct uwb_rc *rc);
468
469 size_t __uwb_addr_print(char *, size_t, const unsigned char *, int);
470
471 int uwb_rc_dev_addr_set(struct uwb_rc *, const struct uwb_dev_addr *);
472 int uwb_rc_dev_addr_get(struct uwb_rc *, struct uwb_dev_addr *);
473 int uwb_rc_mac_addr_set(struct uwb_rc *, const struct uwb_mac_addr *);
474 int uwb_rc_mac_addr_get(struct uwb_rc *, struct uwb_mac_addr *);
475 int __uwb_mac_addr_assigned_check(struct device *, void *);
476 int __uwb_dev_addr_assigned_check(struct device *, void *);
477
478 /* Print in @buf a pretty repr of @addr */
479 static inline size_t uwb_dev_addr_print(char *buf, size_t buf_size,
480 const struct uwb_dev_addr *addr)
481 {
482 return __uwb_addr_print(buf, buf_size, addr->data, 0);
483 }
484
485 /* Print in @buf a pretty repr of @addr */
486 static inline size_t uwb_mac_addr_print(char *buf, size_t buf_size,
487 const struct uwb_mac_addr *addr)
488 {
489 return __uwb_addr_print(buf, buf_size, addr->data, 1);
490 }
491
492 /* @returns 0 if device addresses @addr2 and @addr1 are equal */
493 static inline int uwb_dev_addr_cmp(const struct uwb_dev_addr *addr1,
494 const struct uwb_dev_addr *addr2)
495 {
496 return memcmp(addr1, addr2, sizeof(*addr1));
497 }
498
499 /* @returns 0 if MAC addresses @addr2 and @addr1 are equal */
500 static inline int uwb_mac_addr_cmp(const struct uwb_mac_addr *addr1,
501 const struct uwb_mac_addr *addr2)
502 {
503 return memcmp(addr1, addr2, sizeof(*addr1));
504 }
505
506 /* @returns !0 if a MAC @addr is a broadcast address */
507 static inline int uwb_mac_addr_bcast(const struct uwb_mac_addr *addr)
508 {
509 struct uwb_mac_addr bcast = {
510 .data = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }
511 };
512 return !uwb_mac_addr_cmp(addr, &bcast);
513 }
514
515 /* @returns !0 if a MAC @addr is all zeroes*/
516 static inline int uwb_mac_addr_unset(const struct uwb_mac_addr *addr)
517 {
518 struct uwb_mac_addr unset = {
519 .data = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }
520 };
521 return !uwb_mac_addr_cmp(addr, &unset);
522 }
523
524 /* @returns !0 if the address is in use. */
525 static inline unsigned __uwb_dev_addr_assigned(struct uwb_rc *rc,
526 struct uwb_dev_addr *addr)
527 {
528 return uwb_dev_for_each(rc, __uwb_dev_addr_assigned_check, addr);
529 }
530
531 /*
532 * UWB Radio Controller API
533 *
534 * This API is used (in addition to the general API) to implement UWB
535 * Radio Controllers.
536 */
537 void uwb_rc_init(struct uwb_rc *);
538 int uwb_rc_add(struct uwb_rc *, struct device *dev, void *rc_priv);
539 void uwb_rc_rm(struct uwb_rc *);
540 void uwb_rc_neh_grok(struct uwb_rc *, void *, size_t);
541 void uwb_rc_neh_error(struct uwb_rc *, int);
542 void uwb_rc_reset_all(struct uwb_rc *rc);
543
544 /**
545 * uwb_rsv_is_owner - is the owner of this reservation the RC?
546 * @rsv: the reservation
547 */
548 static inline bool uwb_rsv_is_owner(struct uwb_rsv *rsv)
549 {
550 return rsv->owner == &rsv->rc->uwb_dev;
551 }
552
553 /**
554 * Events generated by UWB that can be passed to any listeners
555 *
556 * Higher layers can register callback functions with the radio
557 * controller using uwb_notifs_register(). The radio controller
558 * maintains a list of all registered handlers and will notify all
559 * nodes when an event occurs.
560 */
561 enum uwb_notifs {
562 UWB_NOTIF_BG_JOIN = 0, /* radio controller joined a beacon group */
563 UWB_NOTIF_BG_LEAVE = 1, /* radio controller left a beacon group */
564 UWB_NOTIF_ONAIR,
565 UWB_NOTIF_OFFAIR,
566 };
567
568 /* Callback function registered with UWB */
569 struct uwb_notifs_handler {
570 struct list_head list_node;
571 void (*cb)(void *, struct uwb_dev *, enum uwb_notifs);
572 void *data;
573 };
574
575 int uwb_notifs_register(struct uwb_rc *, struct uwb_notifs_handler *);
576 int uwb_notifs_deregister(struct uwb_rc *, struct uwb_notifs_handler *);
577
578
579 /**
580 * UWB radio controller Event Size Entry (for creating entry tables)
581 *
582 * WUSB and WHCI define events and notifications, and they might have
583 * fixed or variable size.
584 *
585 * Each event/notification has a size which is not necessarily known
586 * in advance based on the event code. As well, vendor specific
587 * events/notifications will have a size impossible to determine
588 * unless we know about the device's specific details.
589 *
590 * It was way too smart of the spec writers not to think that it would
591 * be impossible for a generic driver to skip over vendor specific
592 * events/notifications if there are no LENGTH fields in the HEADER of
593 * each message...the transaction size cannot be counted on as the
594 * spec does not forbid to pack more than one event in a single
595 * transaction.
596 *
597 * Thus, we guess sizes with tables (or for events, when you know the
598 * size ahead of time you can use uwb_rc_neh_extra_size*()). We
599 * register tables with the known events and their sizes, and then we
600 * traverse those tables. For those with variable length, we provide a
601 * way to lookup the size inside the event/notification's
602 * payload. This allows device-specific event size tables to be
603 * registered.
604 *
605 * @size: Size of the payload
606 *
607 * @offset: if != 0, at offset @offset-1 starts a field with a length
608 * that has to be added to @size. The format of the field is
609 * given by @type.
610 *
611 * @type: Type and length of the offset field. Most common is LE 16
612 * bits (that's why that is zero); others are there mostly to
613 * cover for bugs and weirdos.
614 */
615 struct uwb_est_entry {
616 size_t size;
617 unsigned offset;
618 enum { UWB_EST_16 = 0, UWB_EST_8 = 1 } type;
619 };
620
621 int uwb_est_register(u8 type, u8 code_high, u16 vendor, u16 product,
622 const struct uwb_est_entry *, size_t entries);
623 int uwb_est_unregister(u8 type, u8 code_high, u16 vendor, u16 product,
624 const struct uwb_est_entry *, size_t entries);
625 ssize_t uwb_est_find_size(struct uwb_rc *rc, const struct uwb_rceb *rceb,
626 size_t len);
627
628 /* -- Misc */
629
630 enum {
631 EDC_MAX_ERRORS = 10,
632 EDC_ERROR_TIMEFRAME = HZ,
633 };
634
635 /* error density counter */
636 struct edc {
637 unsigned long timestart;
638 u16 errorcount;
639 };
640
641 static inline
642 void edc_init(struct edc *edc)
643 {
644 edc->timestart = jiffies;
645 }
646
647 /* Called when an error occured.
648 * This is way to determine if the number of acceptable errors per time
649 * period has been exceeded. It is not accurate as there are cases in which
650 * this scheme will not work, for example if there are periodic occurences
651 * of errors that straddle updates to the start time. This scheme is
652 * sufficient for our usage.
653 *
654 * @returns 1 if maximum acceptable errors per timeframe has been exceeded.
655 */
656 static inline int edc_inc(struct edc *err_hist, u16 max_err, u16 timeframe)
657 {
658 unsigned long now;
659
660 now = jiffies;
661 if (now - err_hist->timestart > timeframe) {
662 err_hist->errorcount = 1;
663 err_hist->timestart = now;
664 } else if (++err_hist->errorcount > max_err) {
665 err_hist->errorcount = 0;
666 err_hist->timestart = now;
667 return 1;
668 }
669 return 0;
670 }
671
672
673 /* Information Element handling */
674
675 struct uwb_ie_hdr *uwb_ie_next(void **ptr, size_t *len);
676 int uwb_rc_ie_add(struct uwb_rc *uwb_rc, const struct uwb_ie_hdr *ies, size_t size);
677 int uwb_rc_ie_rm(struct uwb_rc *uwb_rc, enum uwb_ie element_id);
678
679 /*
680 * Transmission statistics
681 *
682 * UWB uses LQI and RSSI (one byte values) for reporting radio signal
683 * strength and line quality indication. We do quick and dirty
684 * averages of those. They are signed values, btw.
685 *
686 * For 8 bit quantities, we keep the min, the max, an accumulator
687 * (@sigma) and a # of samples. When @samples gets to 255, we compute
688 * the average (@sigma / @samples), place it in @sigma and reset
689 * @samples to 1 (so we use it as the first sample).
690 *
691 * Now, statistically speaking, probably I am kicking the kidneys of
692 * some books I have in my shelves collecting dust, but I just want to
693 * get an approx, not the Nobel.
694 *
695 * LOCKING: there is no locking per se, but we try to keep a lockless
696 * schema. Only _add_samples() modifies the values--as long as you
697 * have other locking on top that makes sure that no two calls of
698 * _add_sample() happen at the same time, then we are fine. Now, for
699 * resetting the values we just set @samples to 0 and that makes the
700 * next _add_sample() to start with defaults. Reading the values in
701 * _show() currently can race, so you need to make sure the calls are
702 * under the same lock that protects calls to _add_sample(). FIXME:
703 * currently unlocked (It is not ultraprecise but does the trick. Bite
704 * me).
705 */
706 struct stats {
707 s8 min, max;
708 s16 sigma;
709 atomic_t samples;
710 };
711
712 static inline
713 void stats_init(struct stats *stats)
714 {
715 atomic_set(&stats->samples, 0);
716 wmb();
717 }
718
719 static inline
720 void stats_add_sample(struct stats *stats, s8 sample)
721 {
722 s8 min, max;
723 s16 sigma;
724 unsigned samples = atomic_read(&stats->samples);
725 if (samples == 0) { /* it was zero before, so we initialize */
726 min = 127;
727 max = -128;
728 sigma = 0;
729 } else {
730 min = stats->min;
731 max = stats->max;
732 sigma = stats->sigma;
733 }
734
735 if (sample < min) /* compute new values */
736 min = sample;
737 else if (sample > max)
738 max = sample;
739 sigma += sample;
740
741 stats->min = min; /* commit */
742 stats->max = max;
743 stats->sigma = sigma;
744 if (atomic_add_return(1, &stats->samples) > 255) {
745 /* wrapped around! reset */
746 stats->sigma = sigma / 256;
747 atomic_set(&stats->samples, 1);
748 }
749 }
750
751 static inline ssize_t stats_show(struct stats *stats, char *buf)
752 {
753 int min, max, avg;
754 int samples = atomic_read(&stats->samples);
755 if (samples == 0)
756 min = max = avg = 0;
757 else {
758 min = stats->min;
759 max = stats->max;
760 avg = stats->sigma / samples;
761 }
762 return scnprintf(buf, PAGE_SIZE, "%d %d %d\n", min, max, avg);
763 }
764
765 static inline ssize_t stats_store(struct stats *stats, const char *buf,
766 size_t size)
767 {
768 stats_init(stats);
769 return size;
770 }
771
772 #endif /* #ifndef __LINUX__UWB_H__ */
This page took 0.07 seconds and 5 git commands to generate.