net: Add functions to get skb->hash based on flow structures
[deliverable/linux.git] / include / net / ipv6.h
1 /*
2 * Linux INET6 implementation
3 *
4 * Authors:
5 * Pedro Roque <roque@di.fc.ul.pt>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13 #ifndef _NET_IPV6_H
14 #define _NET_IPV6_H
15
16 #include <linux/ipv6.h>
17 #include <linux/hardirq.h>
18 #include <linux/jhash.h>
19 #include <net/if_inet6.h>
20 #include <net/ndisc.h>
21 #include <net/flow.h>
22 #include <net/flow_dissector.h>
23 #include <net/snmp.h>
24
25 #define SIN6_LEN_RFC2133 24
26
27 #define IPV6_MAXPLEN 65535
28
29 /*
30 * NextHeader field of IPv6 header
31 */
32
33 #define NEXTHDR_HOP 0 /* Hop-by-hop option header. */
34 #define NEXTHDR_TCP 6 /* TCP segment. */
35 #define NEXTHDR_UDP 17 /* UDP message. */
36 #define NEXTHDR_IPV6 41 /* IPv6 in IPv6 */
37 #define NEXTHDR_ROUTING 43 /* Routing header. */
38 #define NEXTHDR_FRAGMENT 44 /* Fragmentation/reassembly header. */
39 #define NEXTHDR_GRE 47 /* GRE header. */
40 #define NEXTHDR_ESP 50 /* Encapsulating security payload. */
41 #define NEXTHDR_AUTH 51 /* Authentication header. */
42 #define NEXTHDR_ICMP 58 /* ICMP for IPv6. */
43 #define NEXTHDR_NONE 59 /* No next header */
44 #define NEXTHDR_DEST 60 /* Destination options header. */
45 #define NEXTHDR_SCTP 132 /* SCTP message. */
46 #define NEXTHDR_MOBILITY 135 /* Mobility header. */
47
48 #define NEXTHDR_MAX 255
49
50 #define IPV6_DEFAULT_HOPLIMIT 64
51 #define IPV6_DEFAULT_MCASTHOPS 1
52
53 /*
54 * Addr type
55 *
56 * type - unicast | multicast
57 * scope - local | site | global
58 * v4 - compat
59 * v4mapped
60 * any
61 * loopback
62 */
63
64 #define IPV6_ADDR_ANY 0x0000U
65
66 #define IPV6_ADDR_UNICAST 0x0001U
67 #define IPV6_ADDR_MULTICAST 0x0002U
68
69 #define IPV6_ADDR_LOOPBACK 0x0010U
70 #define IPV6_ADDR_LINKLOCAL 0x0020U
71 #define IPV6_ADDR_SITELOCAL 0x0040U
72
73 #define IPV6_ADDR_COMPATv4 0x0080U
74
75 #define IPV6_ADDR_SCOPE_MASK 0x00f0U
76
77 #define IPV6_ADDR_MAPPED 0x1000U
78
79 /*
80 * Addr scopes
81 */
82 #define IPV6_ADDR_MC_SCOPE(a) \
83 ((a)->s6_addr[1] & 0x0f) /* nonstandard */
84 #define __IPV6_ADDR_SCOPE_INVALID -1
85 #define IPV6_ADDR_SCOPE_NODELOCAL 0x01
86 #define IPV6_ADDR_SCOPE_LINKLOCAL 0x02
87 #define IPV6_ADDR_SCOPE_SITELOCAL 0x05
88 #define IPV6_ADDR_SCOPE_ORGLOCAL 0x08
89 #define IPV6_ADDR_SCOPE_GLOBAL 0x0e
90
91 /*
92 * Addr flags
93 */
94 #define IPV6_ADDR_MC_FLAG_TRANSIENT(a) \
95 ((a)->s6_addr[1] & 0x10)
96 #define IPV6_ADDR_MC_FLAG_PREFIX(a) \
97 ((a)->s6_addr[1] & 0x20)
98 #define IPV6_ADDR_MC_FLAG_RENDEZVOUS(a) \
99 ((a)->s6_addr[1] & 0x40)
100
101 /*
102 * fragmentation header
103 */
104
105 struct frag_hdr {
106 __u8 nexthdr;
107 __u8 reserved;
108 __be16 frag_off;
109 __be32 identification;
110 };
111
112 #define IP6_MF 0x0001
113 #define IP6_OFFSET 0xFFF8
114
115 #define IP6_REPLY_MARK(net, mark) \
116 ((net)->ipv6.sysctl.fwmark_reflect ? (mark) : 0)
117
118 #include <net/sock.h>
119
120 /* sysctls */
121 extern int sysctl_mld_max_msf;
122 extern int sysctl_mld_qrv;
123
124 #define _DEVINC(net, statname, modifier, idev, field) \
125 ({ \
126 struct inet6_dev *_idev = (idev); \
127 if (likely(_idev != NULL)) \
128 SNMP_INC_STATS##modifier((_idev)->stats.statname, (field)); \
129 SNMP_INC_STATS##modifier((net)->mib.statname##_statistics, (field));\
130 })
131
132 /* per device counters are atomic_long_t */
133 #define _DEVINCATOMIC(net, statname, modifier, idev, field) \
134 ({ \
135 struct inet6_dev *_idev = (idev); \
136 if (likely(_idev != NULL)) \
137 SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \
138 SNMP_INC_STATS##modifier((net)->mib.statname##_statistics, (field));\
139 })
140
141 /* per device and per net counters are atomic_long_t */
142 #define _DEVINC_ATOMIC_ATOMIC(net, statname, idev, field) \
143 ({ \
144 struct inet6_dev *_idev = (idev); \
145 if (likely(_idev != NULL)) \
146 SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \
147 SNMP_INC_STATS_ATOMIC_LONG((net)->mib.statname##_statistics, (field));\
148 })
149
150 #define _DEVADD(net, statname, modifier, idev, field, val) \
151 ({ \
152 struct inet6_dev *_idev = (idev); \
153 if (likely(_idev != NULL)) \
154 SNMP_ADD_STATS##modifier((_idev)->stats.statname, (field), (val)); \
155 SNMP_ADD_STATS##modifier((net)->mib.statname##_statistics, (field), (val));\
156 })
157
158 #define _DEVUPD(net, statname, modifier, idev, field, val) \
159 ({ \
160 struct inet6_dev *_idev = (idev); \
161 if (likely(_idev != NULL)) \
162 SNMP_UPD_PO_STATS##modifier((_idev)->stats.statname, field, (val)); \
163 SNMP_UPD_PO_STATS##modifier((net)->mib.statname##_statistics, field, (val));\
164 })
165
166 /* MIBs */
167
168 #define IP6_INC_STATS(net, idev,field) \
169 _DEVINC(net, ipv6, 64, idev, field)
170 #define IP6_INC_STATS_BH(net, idev,field) \
171 _DEVINC(net, ipv6, 64_BH, idev, field)
172 #define IP6_ADD_STATS(net, idev,field,val) \
173 _DEVADD(net, ipv6, 64, idev, field, val)
174 #define IP6_ADD_STATS_BH(net, idev,field,val) \
175 _DEVADD(net, ipv6, 64_BH, idev, field, val)
176 #define IP6_UPD_PO_STATS(net, idev,field,val) \
177 _DEVUPD(net, ipv6, 64, idev, field, val)
178 #define IP6_UPD_PO_STATS_BH(net, idev,field,val) \
179 _DEVUPD(net, ipv6, 64_BH, idev, field, val)
180 #define ICMP6_INC_STATS(net, idev, field) \
181 _DEVINCATOMIC(net, icmpv6, , idev, field)
182 #define ICMP6_INC_STATS_BH(net, idev, field) \
183 _DEVINCATOMIC(net, icmpv6, _BH, idev, field)
184
185 #define ICMP6MSGOUT_INC_STATS(net, idev, field) \
186 _DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field +256)
187 #define ICMP6MSGOUT_INC_STATS_BH(net, idev, field) \
188 _DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field +256)
189 #define ICMP6MSGIN_INC_STATS_BH(net, idev, field) \
190 _DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field)
191
192 struct ip6_ra_chain {
193 struct ip6_ra_chain *next;
194 struct sock *sk;
195 int sel;
196 void (*destructor)(struct sock *);
197 };
198
199 extern struct ip6_ra_chain *ip6_ra_chain;
200 extern rwlock_t ip6_ra_lock;
201
202 /*
203 This structure is prepared by protocol, when parsing
204 ancillary data and passed to IPv6.
205 */
206
207 struct ipv6_txoptions {
208 /* Length of this structure */
209 int tot_len;
210
211 /* length of extension headers */
212
213 __u16 opt_flen; /* after fragment hdr */
214 __u16 opt_nflen; /* before fragment hdr */
215
216 struct ipv6_opt_hdr *hopopt;
217 struct ipv6_opt_hdr *dst0opt;
218 struct ipv6_rt_hdr *srcrt; /* Routing Header */
219 struct ipv6_opt_hdr *dst1opt;
220
221 /* Option buffer, as read by IPV6_PKTOPTIONS, starts here. */
222 };
223
224 struct ip6_flowlabel {
225 struct ip6_flowlabel __rcu *next;
226 __be32 label;
227 atomic_t users;
228 struct in6_addr dst;
229 struct ipv6_txoptions *opt;
230 unsigned long linger;
231 struct rcu_head rcu;
232 u8 share;
233 union {
234 struct pid *pid;
235 kuid_t uid;
236 } owner;
237 unsigned long lastuse;
238 unsigned long expires;
239 struct net *fl_net;
240 };
241
242 #define IPV6_FLOWINFO_MASK cpu_to_be32(0x0FFFFFFF)
243 #define IPV6_FLOWLABEL_MASK cpu_to_be32(0x000FFFFF)
244 #define IPV6_FLOWLABEL_STATELESS_FLAG cpu_to_be32(0x00080000)
245
246 #define IPV6_TCLASS_MASK (IPV6_FLOWINFO_MASK & ~IPV6_FLOWLABEL_MASK)
247 #define IPV6_TCLASS_SHIFT 20
248
249 struct ipv6_fl_socklist {
250 struct ipv6_fl_socklist __rcu *next;
251 struct ip6_flowlabel *fl;
252 struct rcu_head rcu;
253 };
254
255 struct ip6_flowlabel *fl6_sock_lookup(struct sock *sk, __be32 label);
256 struct ipv6_txoptions *fl6_merge_options(struct ipv6_txoptions *opt_space,
257 struct ip6_flowlabel *fl,
258 struct ipv6_txoptions *fopt);
259 void fl6_free_socklist(struct sock *sk);
260 int ipv6_flowlabel_opt(struct sock *sk, char __user *optval, int optlen);
261 int ipv6_flowlabel_opt_get(struct sock *sk, struct in6_flowlabel_req *freq,
262 int flags);
263 int ip6_flowlabel_init(void);
264 void ip6_flowlabel_cleanup(void);
265
266 static inline void fl6_sock_release(struct ip6_flowlabel *fl)
267 {
268 if (fl)
269 atomic_dec(&fl->users);
270 }
271
272 void icmpv6_notify(struct sk_buff *skb, u8 type, u8 code, __be32 info);
273
274 int icmpv6_push_pending_frames(struct sock *sk, struct flowi6 *fl6,
275 struct icmp6hdr *thdr, int len);
276
277 int ip6_ra_control(struct sock *sk, int sel);
278
279 int ipv6_parse_hopopts(struct sk_buff *skb);
280
281 struct ipv6_txoptions *ipv6_dup_options(struct sock *sk,
282 struct ipv6_txoptions *opt);
283 struct ipv6_txoptions *ipv6_renew_options(struct sock *sk,
284 struct ipv6_txoptions *opt,
285 int newtype,
286 struct ipv6_opt_hdr __user *newopt,
287 int newoptlen);
288 struct ipv6_txoptions *ipv6_fixup_options(struct ipv6_txoptions *opt_space,
289 struct ipv6_txoptions *opt);
290
291 bool ipv6_opt_accepted(const struct sock *sk, const struct sk_buff *skb,
292 const struct inet6_skb_parm *opt);
293
294 static inline bool ipv6_accept_ra(struct inet6_dev *idev)
295 {
296 /* If forwarding is enabled, RA are not accepted unless the special
297 * hybrid mode (accept_ra=2) is enabled.
298 */
299 return idev->cnf.forwarding ? idev->cnf.accept_ra == 2 :
300 idev->cnf.accept_ra;
301 }
302
303 #if IS_ENABLED(CONFIG_IPV6)
304 static inline int ip6_frag_mem(struct net *net)
305 {
306 return sum_frag_mem_limit(&net->ipv6.frags);
307 }
308 #endif
309
310 #define IPV6_FRAG_HIGH_THRESH (4 * 1024*1024) /* 4194304 */
311 #define IPV6_FRAG_LOW_THRESH (3 * 1024*1024) /* 3145728 */
312 #define IPV6_FRAG_TIMEOUT (60 * HZ) /* 60 seconds */
313
314 int __ipv6_addr_type(const struct in6_addr *addr);
315 static inline int ipv6_addr_type(const struct in6_addr *addr)
316 {
317 return __ipv6_addr_type(addr) & 0xffff;
318 }
319
320 static inline int ipv6_addr_scope(const struct in6_addr *addr)
321 {
322 return __ipv6_addr_type(addr) & IPV6_ADDR_SCOPE_MASK;
323 }
324
325 static inline int __ipv6_addr_src_scope(int type)
326 {
327 return (type == IPV6_ADDR_ANY) ? __IPV6_ADDR_SCOPE_INVALID : (type >> 16);
328 }
329
330 static inline int ipv6_addr_src_scope(const struct in6_addr *addr)
331 {
332 return __ipv6_addr_src_scope(__ipv6_addr_type(addr));
333 }
334
335 static inline bool __ipv6_addr_needs_scope_id(int type)
336 {
337 return type & IPV6_ADDR_LINKLOCAL ||
338 (type & IPV6_ADDR_MULTICAST &&
339 (type & (IPV6_ADDR_LOOPBACK|IPV6_ADDR_LINKLOCAL)));
340 }
341
342 static inline __u32 ipv6_iface_scope_id(const struct in6_addr *addr, int iface)
343 {
344 return __ipv6_addr_needs_scope_id(__ipv6_addr_type(addr)) ? iface : 0;
345 }
346
347 static inline int ipv6_addr_cmp(const struct in6_addr *a1, const struct in6_addr *a2)
348 {
349 return memcmp(a1, a2, sizeof(struct in6_addr));
350 }
351
352 static inline bool
353 ipv6_masked_addr_cmp(const struct in6_addr *a1, const struct in6_addr *m,
354 const struct in6_addr *a2)
355 {
356 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
357 const unsigned long *ul1 = (const unsigned long *)a1;
358 const unsigned long *ulm = (const unsigned long *)m;
359 const unsigned long *ul2 = (const unsigned long *)a2;
360
361 return !!(((ul1[0] ^ ul2[0]) & ulm[0]) |
362 ((ul1[1] ^ ul2[1]) & ulm[1]));
363 #else
364 return !!(((a1->s6_addr32[0] ^ a2->s6_addr32[0]) & m->s6_addr32[0]) |
365 ((a1->s6_addr32[1] ^ a2->s6_addr32[1]) & m->s6_addr32[1]) |
366 ((a1->s6_addr32[2] ^ a2->s6_addr32[2]) & m->s6_addr32[2]) |
367 ((a1->s6_addr32[3] ^ a2->s6_addr32[3]) & m->s6_addr32[3]));
368 #endif
369 }
370
371 static inline void ipv6_addr_prefix(struct in6_addr *pfx,
372 const struct in6_addr *addr,
373 int plen)
374 {
375 /* caller must guarantee 0 <= plen <= 128 */
376 int o = plen >> 3,
377 b = plen & 0x7;
378
379 memset(pfx->s6_addr, 0, sizeof(pfx->s6_addr));
380 memcpy(pfx->s6_addr, addr, o);
381 if (b != 0)
382 pfx->s6_addr[o] = addr->s6_addr[o] & (0xff00 >> b);
383 }
384
385 static inline void __ipv6_addr_set_half(__be32 *addr,
386 __be32 wh, __be32 wl)
387 {
388 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
389 #if defined(__BIG_ENDIAN)
390 if (__builtin_constant_p(wh) && __builtin_constant_p(wl)) {
391 *(__force u64 *)addr = ((__force u64)(wh) << 32 | (__force u64)(wl));
392 return;
393 }
394 #elif defined(__LITTLE_ENDIAN)
395 if (__builtin_constant_p(wl) && __builtin_constant_p(wh)) {
396 *(__force u64 *)addr = ((__force u64)(wl) << 32 | (__force u64)(wh));
397 return;
398 }
399 #endif
400 #endif
401 addr[0] = wh;
402 addr[1] = wl;
403 }
404
405 static inline void ipv6_addr_set(struct in6_addr *addr,
406 __be32 w1, __be32 w2,
407 __be32 w3, __be32 w4)
408 {
409 __ipv6_addr_set_half(&addr->s6_addr32[0], w1, w2);
410 __ipv6_addr_set_half(&addr->s6_addr32[2], w3, w4);
411 }
412
413 static inline bool ipv6_addr_equal(const struct in6_addr *a1,
414 const struct in6_addr *a2)
415 {
416 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
417 const unsigned long *ul1 = (const unsigned long *)a1;
418 const unsigned long *ul2 = (const unsigned long *)a2;
419
420 return ((ul1[0] ^ ul2[0]) | (ul1[1] ^ ul2[1])) == 0UL;
421 #else
422 return ((a1->s6_addr32[0] ^ a2->s6_addr32[0]) |
423 (a1->s6_addr32[1] ^ a2->s6_addr32[1]) |
424 (a1->s6_addr32[2] ^ a2->s6_addr32[2]) |
425 (a1->s6_addr32[3] ^ a2->s6_addr32[3])) == 0;
426 #endif
427 }
428
429 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
430 static inline bool __ipv6_prefix_equal64_half(const __be64 *a1,
431 const __be64 *a2,
432 unsigned int len)
433 {
434 if (len && ((*a1 ^ *a2) & cpu_to_be64((~0UL) << (64 - len))))
435 return false;
436 return true;
437 }
438
439 static inline bool ipv6_prefix_equal(const struct in6_addr *addr1,
440 const struct in6_addr *addr2,
441 unsigned int prefixlen)
442 {
443 const __be64 *a1 = (const __be64 *)addr1;
444 const __be64 *a2 = (const __be64 *)addr2;
445
446 if (prefixlen >= 64) {
447 if (a1[0] ^ a2[0])
448 return false;
449 return __ipv6_prefix_equal64_half(a1 + 1, a2 + 1, prefixlen - 64);
450 }
451 return __ipv6_prefix_equal64_half(a1, a2, prefixlen);
452 }
453 #else
454 static inline bool ipv6_prefix_equal(const struct in6_addr *addr1,
455 const struct in6_addr *addr2,
456 unsigned int prefixlen)
457 {
458 const __be32 *a1 = addr1->s6_addr32;
459 const __be32 *a2 = addr2->s6_addr32;
460 unsigned int pdw, pbi;
461
462 /* check complete u32 in prefix */
463 pdw = prefixlen >> 5;
464 if (pdw && memcmp(a1, a2, pdw << 2))
465 return false;
466
467 /* check incomplete u32 in prefix */
468 pbi = prefixlen & 0x1f;
469 if (pbi && ((a1[pdw] ^ a2[pdw]) & htonl((0xffffffff) << (32 - pbi))))
470 return false;
471
472 return true;
473 }
474 #endif
475
476 struct inet_frag_queue;
477
478 enum ip6_defrag_users {
479 IP6_DEFRAG_LOCAL_DELIVER,
480 IP6_DEFRAG_CONNTRACK_IN,
481 __IP6_DEFRAG_CONNTRACK_IN = IP6_DEFRAG_CONNTRACK_IN + USHRT_MAX,
482 IP6_DEFRAG_CONNTRACK_OUT,
483 __IP6_DEFRAG_CONNTRACK_OUT = IP6_DEFRAG_CONNTRACK_OUT + USHRT_MAX,
484 IP6_DEFRAG_CONNTRACK_BRIDGE_IN,
485 __IP6_DEFRAG_CONNTRACK_BRIDGE_IN = IP6_DEFRAG_CONNTRACK_BRIDGE_IN + USHRT_MAX,
486 };
487
488 struct ip6_create_arg {
489 __be32 id;
490 u32 user;
491 const struct in6_addr *src;
492 const struct in6_addr *dst;
493 u8 ecn;
494 };
495
496 void ip6_frag_init(struct inet_frag_queue *q, const void *a);
497 bool ip6_frag_match(const struct inet_frag_queue *q, const void *a);
498
499 /*
500 * Equivalent of ipv4 struct ip
501 */
502 struct frag_queue {
503 struct inet_frag_queue q;
504
505 __be32 id; /* fragment id */
506 u32 user;
507 struct in6_addr saddr;
508 struct in6_addr daddr;
509
510 int iif;
511 unsigned int csum;
512 __u16 nhoffset;
513 u8 ecn;
514 };
515
516 void ip6_expire_frag_queue(struct net *net, struct frag_queue *fq,
517 struct inet_frags *frags);
518
519 static inline bool ipv6_addr_any(const struct in6_addr *a)
520 {
521 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
522 const unsigned long *ul = (const unsigned long *)a;
523
524 return (ul[0] | ul[1]) == 0UL;
525 #else
526 return (a->s6_addr32[0] | a->s6_addr32[1] |
527 a->s6_addr32[2] | a->s6_addr32[3]) == 0;
528 #endif
529 }
530
531 static inline u32 ipv6_addr_hash(const struct in6_addr *a)
532 {
533 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
534 const unsigned long *ul = (const unsigned long *)a;
535 unsigned long x = ul[0] ^ ul[1];
536
537 return (u32)(x ^ (x >> 32));
538 #else
539 return (__force u32)(a->s6_addr32[0] ^ a->s6_addr32[1] ^
540 a->s6_addr32[2] ^ a->s6_addr32[3]);
541 #endif
542 }
543
544 /* more secured version of ipv6_addr_hash() */
545 static inline u32 __ipv6_addr_jhash(const struct in6_addr *a, const u32 initval)
546 {
547 u32 v = (__force u32)a->s6_addr32[0] ^ (__force u32)a->s6_addr32[1];
548
549 return jhash_3words(v,
550 (__force u32)a->s6_addr32[2],
551 (__force u32)a->s6_addr32[3],
552 initval);
553 }
554
555 static inline bool ipv6_addr_loopback(const struct in6_addr *a)
556 {
557 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
558 const __be64 *be = (const __be64 *)a;
559
560 return (be[0] | (be[1] ^ cpu_to_be64(1))) == 0UL;
561 #else
562 return (a->s6_addr32[0] | a->s6_addr32[1] |
563 a->s6_addr32[2] | (a->s6_addr32[3] ^ cpu_to_be32(1))) == 0;
564 #endif
565 }
566
567 /*
568 * Note that we must __force cast these to unsigned long to make sparse happy,
569 * since all of the endian-annotated types are fixed size regardless of arch.
570 */
571 static inline bool ipv6_addr_v4mapped(const struct in6_addr *a)
572 {
573 return (
574 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
575 *(unsigned long *)a |
576 #else
577 (__force unsigned long)(a->s6_addr32[0] | a->s6_addr32[1]) |
578 #endif
579 (__force unsigned long)(a->s6_addr32[2] ^
580 cpu_to_be32(0x0000ffff))) == 0UL;
581 }
582
583 /*
584 * Check for a RFC 4843 ORCHID address
585 * (Overlay Routable Cryptographic Hash Identifiers)
586 */
587 static inline bool ipv6_addr_orchid(const struct in6_addr *a)
588 {
589 return (a->s6_addr32[0] & htonl(0xfffffff0)) == htonl(0x20010010);
590 }
591
592 static inline bool ipv6_addr_is_multicast(const struct in6_addr *addr)
593 {
594 return (addr->s6_addr32[0] & htonl(0xFF000000)) == htonl(0xFF000000);
595 }
596
597 static inline void ipv6_addr_set_v4mapped(const __be32 addr,
598 struct in6_addr *v4mapped)
599 {
600 ipv6_addr_set(v4mapped,
601 0, 0,
602 htonl(0x0000FFFF),
603 addr);
604 }
605
606 /*
607 * find the first different bit between two addresses
608 * length of address must be a multiple of 32bits
609 */
610 static inline int __ipv6_addr_diff32(const void *token1, const void *token2, int addrlen)
611 {
612 const __be32 *a1 = token1, *a2 = token2;
613 int i;
614
615 addrlen >>= 2;
616
617 for (i = 0; i < addrlen; i++) {
618 __be32 xb = a1[i] ^ a2[i];
619 if (xb)
620 return i * 32 + 31 - __fls(ntohl(xb));
621 }
622
623 /*
624 * we should *never* get to this point since that
625 * would mean the addrs are equal
626 *
627 * However, we do get to it 8) And exacly, when
628 * addresses are equal 8)
629 *
630 * ip route add 1111::/128 via ...
631 * ip route add 1111::/64 via ...
632 * and we are here.
633 *
634 * Ideally, this function should stop comparison
635 * at prefix length. It does not, but it is still OK,
636 * if returned value is greater than prefix length.
637 * --ANK (980803)
638 */
639 return addrlen << 5;
640 }
641
642 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
643 static inline int __ipv6_addr_diff64(const void *token1, const void *token2, int addrlen)
644 {
645 const __be64 *a1 = token1, *a2 = token2;
646 int i;
647
648 addrlen >>= 3;
649
650 for (i = 0; i < addrlen; i++) {
651 __be64 xb = a1[i] ^ a2[i];
652 if (xb)
653 return i * 64 + 63 - __fls(be64_to_cpu(xb));
654 }
655
656 return addrlen << 6;
657 }
658 #endif
659
660 static inline int __ipv6_addr_diff(const void *token1, const void *token2, int addrlen)
661 {
662 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
663 if (__builtin_constant_p(addrlen) && !(addrlen & 7))
664 return __ipv6_addr_diff64(token1, token2, addrlen);
665 #endif
666 return __ipv6_addr_diff32(token1, token2, addrlen);
667 }
668
669 static inline int ipv6_addr_diff(const struct in6_addr *a1, const struct in6_addr *a2)
670 {
671 return __ipv6_addr_diff(a1, a2, sizeof(struct in6_addr));
672 }
673
674 __be32 ipv6_select_ident(struct net *net,
675 const struct in6_addr *daddr,
676 const struct in6_addr *saddr);
677 void ipv6_proxy_select_ident(struct net *net, struct sk_buff *skb);
678
679 int ip6_dst_hoplimit(struct dst_entry *dst);
680
681 static inline int ip6_sk_dst_hoplimit(struct ipv6_pinfo *np, struct flowi6 *fl6,
682 struct dst_entry *dst)
683 {
684 int hlimit;
685
686 if (ipv6_addr_is_multicast(&fl6->daddr))
687 hlimit = np->mcast_hops;
688 else
689 hlimit = np->hop_limit;
690 if (hlimit < 0)
691 hlimit = ip6_dst_hoplimit(dst);
692 return hlimit;
693 }
694
695 /* copy IPv6 saddr & daddr to flow_keys, possibly using 64bit load/store
696 * Equivalent to : flow->v6addrs.src = iph->saddr;
697 * flow->v6addrs.dst = iph->daddr;
698 */
699 static inline void iph_to_flow_copy_v6addrs(struct flow_keys *flow,
700 const struct ipv6hdr *iph)
701 {
702 BUILD_BUG_ON(offsetof(typeof(flow->addrs), v6addrs.dst) !=
703 offsetof(typeof(flow->addrs), v6addrs.src) +
704 sizeof(flow->addrs.v6addrs.src));
705 memcpy(&flow->addrs.v6addrs, &iph->saddr, sizeof(flow->addrs.v6addrs));
706 flow->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
707 }
708
709 #if IS_ENABLED(CONFIG_IPV6)
710 static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb,
711 __be32 flowlabel, bool autolabel)
712 {
713 if (!flowlabel && (autolabel || net->ipv6.sysctl.auto_flowlabels)) {
714 u32 hash;
715
716 hash = skb_get_hash(skb);
717
718 /* Since this is being sent on the wire obfuscate hash a bit
719 * to minimize possbility that any useful information to an
720 * attacker is leaked. Only lower 20 bits are relevant.
721 */
722 hash ^= hash >> 12;
723
724 flowlabel = (__force __be32)hash & IPV6_FLOWLABEL_MASK;
725
726 if (net->ipv6.sysctl.flowlabel_state_ranges)
727 flowlabel |= IPV6_FLOWLABEL_STATELESS_FLAG;
728 }
729
730 return flowlabel;
731 }
732 #else
733 static inline void ip6_set_txhash(struct sock *sk) { }
734 static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb,
735 __be32 flowlabel, bool autolabel)
736 {
737 return flowlabel;
738 }
739 #endif
740
741
742 /*
743 * Header manipulation
744 */
745 static inline void ip6_flow_hdr(struct ipv6hdr *hdr, unsigned int tclass,
746 __be32 flowlabel)
747 {
748 *(__be32 *)hdr = htonl(0x60000000 | (tclass << 20)) | flowlabel;
749 }
750
751 static inline __be32 ip6_flowinfo(const struct ipv6hdr *hdr)
752 {
753 return *(__be32 *)hdr & IPV6_FLOWINFO_MASK;
754 }
755
756 static inline __be32 ip6_flowlabel(const struct ipv6hdr *hdr)
757 {
758 return *(__be32 *)hdr & IPV6_FLOWLABEL_MASK;
759 }
760
761 static inline u8 ip6_tclass(__be32 flowinfo)
762 {
763 return ntohl(flowinfo & IPV6_TCLASS_MASK) >> IPV6_TCLASS_SHIFT;
764 }
765 /*
766 * Prototypes exported by ipv6
767 */
768
769 /*
770 * rcv function (called from netdevice level)
771 */
772
773 int ipv6_rcv(struct sk_buff *skb, struct net_device *dev,
774 struct packet_type *pt, struct net_device *orig_dev);
775
776 int ip6_rcv_finish(struct sock *sk, struct sk_buff *skb);
777
778 /*
779 * upper-layer output functions
780 */
781 int ip6_xmit(struct sock *sk, struct sk_buff *skb, struct flowi6 *fl6,
782 struct ipv6_txoptions *opt, int tclass);
783
784 int ip6_find_1stfragopt(struct sk_buff *skb, u8 **nexthdr);
785
786 int ip6_append_data(struct sock *sk,
787 int getfrag(void *from, char *to, int offset, int len,
788 int odd, struct sk_buff *skb),
789 void *from, int length, int transhdrlen, int hlimit,
790 int tclass, struct ipv6_txoptions *opt, struct flowi6 *fl6,
791 struct rt6_info *rt, unsigned int flags, int dontfrag);
792
793 int ip6_push_pending_frames(struct sock *sk);
794
795 void ip6_flush_pending_frames(struct sock *sk);
796
797 int ip6_send_skb(struct sk_buff *skb);
798
799 struct sk_buff *__ip6_make_skb(struct sock *sk, struct sk_buff_head *queue,
800 struct inet_cork_full *cork,
801 struct inet6_cork *v6_cork);
802 struct sk_buff *ip6_make_skb(struct sock *sk,
803 int getfrag(void *from, char *to, int offset,
804 int len, int odd, struct sk_buff *skb),
805 void *from, int length, int transhdrlen,
806 int hlimit, int tclass, struct ipv6_txoptions *opt,
807 struct flowi6 *fl6, struct rt6_info *rt,
808 unsigned int flags, int dontfrag);
809
810 static inline struct sk_buff *ip6_finish_skb(struct sock *sk)
811 {
812 return __ip6_make_skb(sk, &sk->sk_write_queue, &inet_sk(sk)->cork,
813 &inet6_sk(sk)->cork);
814 }
815
816 int ip6_dst_lookup(struct net *net, struct sock *sk, struct dst_entry **dst,
817 struct flowi6 *fl6);
818 struct dst_entry *ip6_dst_lookup_flow(struct sock *sk, struct flowi6 *fl6,
819 const struct in6_addr *final_dst);
820 struct dst_entry *ip6_sk_dst_lookup_flow(struct sock *sk, struct flowi6 *fl6,
821 const struct in6_addr *final_dst);
822 struct dst_entry *ip6_blackhole_route(struct net *net,
823 struct dst_entry *orig_dst);
824
825 /*
826 * skb processing functions
827 */
828
829 int ip6_output(struct sock *sk, struct sk_buff *skb);
830 int ip6_forward(struct sk_buff *skb);
831 int ip6_input(struct sk_buff *skb);
832 int ip6_mc_input(struct sk_buff *skb);
833
834 int __ip6_local_out(struct sk_buff *skb);
835 int ip6_local_out_sk(struct sock *sk, struct sk_buff *skb);
836 int ip6_local_out(struct sk_buff *skb);
837
838 /*
839 * Extension header (options) processing
840 */
841
842 void ipv6_push_nfrag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt,
843 u8 *proto, struct in6_addr **daddr_p);
844 void ipv6_push_frag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt,
845 u8 *proto);
846
847 int ipv6_skip_exthdr(const struct sk_buff *, int start, u8 *nexthdrp,
848 __be16 *frag_offp);
849
850 bool ipv6_ext_hdr(u8 nexthdr);
851
852 enum {
853 IP6_FH_F_FRAG = (1 << 0),
854 IP6_FH_F_AUTH = (1 << 1),
855 IP6_FH_F_SKIP_RH = (1 << 2),
856 };
857
858 /* find specified header and get offset to it */
859 int ipv6_find_hdr(const struct sk_buff *skb, unsigned int *offset, int target,
860 unsigned short *fragoff, int *fragflg);
861
862 int ipv6_find_tlv(struct sk_buff *skb, int offset, int type);
863
864 struct in6_addr *fl6_update_dst(struct flowi6 *fl6,
865 const struct ipv6_txoptions *opt,
866 struct in6_addr *orig);
867
868 /*
869 * socket options (ipv6_sockglue.c)
870 */
871
872 int ipv6_setsockopt(struct sock *sk, int level, int optname,
873 char __user *optval, unsigned int optlen);
874 int ipv6_getsockopt(struct sock *sk, int level, int optname,
875 char __user *optval, int __user *optlen);
876 int compat_ipv6_setsockopt(struct sock *sk, int level, int optname,
877 char __user *optval, unsigned int optlen);
878 int compat_ipv6_getsockopt(struct sock *sk, int level, int optname,
879 char __user *optval, int __user *optlen);
880
881 int ip6_datagram_connect(struct sock *sk, struct sockaddr *addr, int addr_len);
882 int ip6_datagram_connect_v6_only(struct sock *sk, struct sockaddr *addr,
883 int addr_len);
884
885 int ipv6_recv_error(struct sock *sk, struct msghdr *msg, int len,
886 int *addr_len);
887 int ipv6_recv_rxpmtu(struct sock *sk, struct msghdr *msg, int len,
888 int *addr_len);
889 void ipv6_icmp_error(struct sock *sk, struct sk_buff *skb, int err, __be16 port,
890 u32 info, u8 *payload);
891 void ipv6_local_error(struct sock *sk, int err, struct flowi6 *fl6, u32 info);
892 void ipv6_local_rxpmtu(struct sock *sk, struct flowi6 *fl6, u32 mtu);
893
894 int inet6_release(struct socket *sock);
895 int inet6_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len);
896 int inet6_getname(struct socket *sock, struct sockaddr *uaddr, int *uaddr_len,
897 int peer);
898 int inet6_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg);
899
900 int inet6_hash_connect(struct inet_timewait_death_row *death_row,
901 struct sock *sk);
902
903 /*
904 * reassembly.c
905 */
906 extern const struct proto_ops inet6_stream_ops;
907 extern const struct proto_ops inet6_dgram_ops;
908
909 struct group_source_req;
910 struct group_filter;
911
912 int ip6_mc_source(int add, int omode, struct sock *sk,
913 struct group_source_req *pgsr);
914 int ip6_mc_msfilter(struct sock *sk, struct group_filter *gsf);
915 int ip6_mc_msfget(struct sock *sk, struct group_filter *gsf,
916 struct group_filter __user *optval, int __user *optlen);
917
918 #ifdef CONFIG_PROC_FS
919 int ac6_proc_init(struct net *net);
920 void ac6_proc_exit(struct net *net);
921 int raw6_proc_init(void);
922 void raw6_proc_exit(void);
923 int tcp6_proc_init(struct net *net);
924 void tcp6_proc_exit(struct net *net);
925 int udp6_proc_init(struct net *net);
926 void udp6_proc_exit(struct net *net);
927 int udplite6_proc_init(void);
928 void udplite6_proc_exit(void);
929 int ipv6_misc_proc_init(void);
930 void ipv6_misc_proc_exit(void);
931 int snmp6_register_dev(struct inet6_dev *idev);
932 int snmp6_unregister_dev(struct inet6_dev *idev);
933
934 #else
935 static inline int ac6_proc_init(struct net *net) { return 0; }
936 static inline void ac6_proc_exit(struct net *net) { }
937 static inline int snmp6_register_dev(struct inet6_dev *idev) { return 0; }
938 static inline int snmp6_unregister_dev(struct inet6_dev *idev) { return 0; }
939 #endif
940
941 #ifdef CONFIG_SYSCTL
942 extern struct ctl_table ipv6_route_table_template[];
943
944 struct ctl_table *ipv6_icmp_sysctl_init(struct net *net);
945 struct ctl_table *ipv6_route_sysctl_init(struct net *net);
946 int ipv6_sysctl_register(void);
947 void ipv6_sysctl_unregister(void);
948 #endif
949
950 int ipv6_sock_mc_join(struct sock *sk, int ifindex,
951 const struct in6_addr *addr);
952 int ipv6_sock_mc_drop(struct sock *sk, int ifindex,
953 const struct in6_addr *addr);
954 #endif /* _NET_IPV6_H */
This page took 0.048722 seconds and 6 git commands to generate.