174dc1d7526b6ae4e3fdd2b585adf30f44927fc6
[deliverable/linux.git] / include / net / mac80211.h
1 /*
2 * mac80211 <-> driver interface
3 *
4 * Copyright 2002-2005, Devicescape Software, Inc.
5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
6 * Copyright 2007-2008 Johannes Berg <johannes@sipsolutions.net>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #ifndef MAC80211_H
14 #define MAC80211_H
15
16 #include <linux/kernel.h>
17 #include <linux/if_ether.h>
18 #include <linux/skbuff.h>
19 #include <linux/wireless.h>
20 #include <linux/device.h>
21 #include <linux/ieee80211.h>
22 #include <net/wireless.h>
23 #include <net/cfg80211.h>
24
25 /**
26 * DOC: Introduction
27 *
28 * mac80211 is the Linux stack for 802.11 hardware that implements
29 * only partial functionality in hard- or firmware. This document
30 * defines the interface between mac80211 and low-level hardware
31 * drivers.
32 */
33
34 /**
35 * DOC: Calling mac80211 from interrupts
36 *
37 * Only ieee80211_tx_status_irqsafe() and ieee80211_rx_irqsafe() can be
38 * called in hardware interrupt context. The low-level driver must not call any
39 * other functions in hardware interrupt context. If there is a need for such
40 * call, the low-level driver should first ACK the interrupt and perform the
41 * IEEE 802.11 code call after this, e.g. from a scheduled workqueue or even
42 * tasklet function.
43 *
44 * NOTE: If the driver opts to use the _irqsafe() functions, it may not also
45 * use the non-IRQ-safe functions!
46 */
47
48 /**
49 * DOC: Warning
50 *
51 * If you're reading this document and not the header file itself, it will
52 * be incomplete because not all documentation has been converted yet.
53 */
54
55 /**
56 * DOC: Frame format
57 *
58 * As a general rule, when frames are passed between mac80211 and the driver,
59 * they start with the IEEE 802.11 header and include the same octets that are
60 * sent over the air except for the FCS which should be calculated by the
61 * hardware.
62 *
63 * There are, however, various exceptions to this rule for advanced features:
64 *
65 * The first exception is for hardware encryption and decryption offload
66 * where the IV/ICV may or may not be generated in hardware.
67 *
68 * Secondly, when the hardware handles fragmentation, the frame handed to
69 * the driver from mac80211 is the MSDU, not the MPDU.
70 *
71 * Finally, for received frames, the driver is able to indicate that it has
72 * filled a radiotap header and put that in front of the frame; if it does
73 * not do so then mac80211 may add this under certain circumstances.
74 */
75
76 /**
77 * struct ieee80211_ht_bss_info - describing BSS's HT characteristics
78 *
79 * This structure describes most essential parameters needed
80 * to describe 802.11n HT characteristics in a BSS.
81 *
82 * @primary_channel: channel number of primery channel
83 * @bss_cap: 802.11n's general BSS capabilities (e.g. channel width)
84 * @bss_op_mode: 802.11n's BSS operation modes (e.g. HT protection)
85 */
86 struct ieee80211_ht_bss_info {
87 u8 primary_channel;
88 u8 bss_cap; /* use IEEE80211_HT_IE_CHA_ */
89 u8 bss_op_mode; /* use IEEE80211_HT_IE_ */
90 };
91
92 /**
93 * enum ieee80211_max_queues - maximum number of queues
94 *
95 * @IEEE80211_MAX_QUEUES: Maximum number of regular device queues.
96 * @IEEE80211_MAX_AMPDU_QUEUES: Maximum number of queues usable
97 * for A-MPDU operation.
98 */
99 enum ieee80211_max_queues {
100 IEEE80211_MAX_QUEUES = 4,
101 IEEE80211_MAX_AMPDU_QUEUES = 16,
102 };
103
104 /**
105 * struct ieee80211_tx_queue_params - transmit queue configuration
106 *
107 * The information provided in this structure is required for QoS
108 * transmit queue configuration. Cf. IEEE 802.11 7.3.2.29.
109 *
110 * @aifs: arbitration interframe space [0..255]
111 * @cw_min: minimum contention window [a value of the form
112 * 2^n-1 in the range 1..32767]
113 * @cw_max: maximum contention window [like @cw_min]
114 * @txop: maximum burst time in units of 32 usecs, 0 meaning disabled
115 */
116 struct ieee80211_tx_queue_params {
117 u16 txop;
118 u16 cw_min;
119 u16 cw_max;
120 u8 aifs;
121 };
122
123 /**
124 * struct ieee80211_tx_queue_stats - transmit queue statistics
125 *
126 * @len: number of packets in queue
127 * @limit: queue length limit
128 * @count: number of frames sent
129 */
130 struct ieee80211_tx_queue_stats {
131 unsigned int len;
132 unsigned int limit;
133 unsigned int count;
134 };
135
136 struct ieee80211_low_level_stats {
137 unsigned int dot11ACKFailureCount;
138 unsigned int dot11RTSFailureCount;
139 unsigned int dot11FCSErrorCount;
140 unsigned int dot11RTSSuccessCount;
141 };
142
143 /**
144 * enum ieee80211_bss_change - BSS change notification flags
145 *
146 * These flags are used with the bss_info_changed() callback
147 * to indicate which BSS parameter changed.
148 *
149 * @BSS_CHANGED_ASSOC: association status changed (associated/disassociated),
150 * also implies a change in the AID.
151 * @BSS_CHANGED_ERP_CTS_PROT: CTS protection changed
152 * @BSS_CHANGED_ERP_PREAMBLE: preamble changed
153 * @BSS_CHANGED_ERP_SLOT: slot timing changed
154 * @BSS_CHANGED_HT: 802.11n parameters changed
155 * @BSS_CHANGED_BASIC_RATES: Basic rateset changed
156 */
157 enum ieee80211_bss_change {
158 BSS_CHANGED_ASSOC = 1<<0,
159 BSS_CHANGED_ERP_CTS_PROT = 1<<1,
160 BSS_CHANGED_ERP_PREAMBLE = 1<<2,
161 BSS_CHANGED_ERP_SLOT = 1<<3,
162 BSS_CHANGED_HT = 1<<4,
163 BSS_CHANGED_BASIC_RATES = 1<<5,
164 };
165
166 /**
167 * struct ieee80211_bss_ht_conf - BSS's changing HT configuration
168 * @operation_mode: HT operation mode (like in &struct ieee80211_ht_info)
169 */
170 struct ieee80211_bss_ht_conf {
171 u16 operation_mode;
172 };
173
174 /**
175 * struct ieee80211_bss_conf - holds the BSS's changing parameters
176 *
177 * This structure keeps information about a BSS (and an association
178 * to that BSS) that can change during the lifetime of the BSS.
179 *
180 * @assoc: association status
181 * @aid: association ID number, valid only when @assoc is true
182 * @use_cts_prot: use CTS protection
183 * @use_short_preamble: use 802.11b short preamble;
184 * if the hardware cannot handle this it must set the
185 * IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE hardware flag
186 * @use_short_slot: use short slot time (only relevant for ERP);
187 * if the hardware cannot handle this it must set the
188 * IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE hardware flag
189 * @dtim_period: num of beacons before the next DTIM, for PSM
190 * @timestamp: beacon timestamp
191 * @beacon_int: beacon interval
192 * @assoc_capability: capabilities taken from assoc resp
193 * @ht: BSS's HT configuration
194 * @basic_rates: bitmap of basic rates, each bit stands for an
195 * index into the rate table configured by the driver in
196 * the current band.
197 */
198 struct ieee80211_bss_conf {
199 /* association related data */
200 bool assoc;
201 u16 aid;
202 /* erp related data */
203 bool use_cts_prot;
204 bool use_short_preamble;
205 bool use_short_slot;
206 u8 dtim_period;
207 u16 beacon_int;
208 u16 assoc_capability;
209 u64 timestamp;
210 u32 basic_rates;
211 struct ieee80211_bss_ht_conf ht;
212 };
213
214 /**
215 * enum mac80211_tx_control_flags - flags to describe transmission information/status
216 *
217 * These flags are used with the @flags member of &ieee80211_tx_info.
218 *
219 * @IEEE80211_TX_CTL_REQ_TX_STATUS: request TX status callback for this frame.
220 * @IEEE80211_TX_CTL_ASSIGN_SEQ: The driver has to assign a sequence
221 * number to this frame, taking care of not overwriting the fragment
222 * number and increasing the sequence number only when the
223 * IEEE80211_TX_CTL_FIRST_FRAGMENT flag is set. mac80211 will properly
224 * assign sequence numbers to QoS-data frames but cannot do so correctly
225 * for non-QoS-data and management frames because beacons need them from
226 * that counter as well and mac80211 cannot guarantee proper sequencing.
227 * If this flag is set, the driver should instruct the hardware to
228 * assign a sequence number to the frame or assign one itself. Cf. IEEE
229 * 802.11-2007 7.1.3.4.1 paragraph 3. This flag will always be set for
230 * beacons and always be clear for frames without a sequence number field.
231 * @IEEE80211_TX_CTL_NO_ACK: tell the low level not to wait for an ack
232 * @IEEE80211_TX_CTL_CLEAR_PS_FILT: clear powersave filter for destination
233 * station
234 * @IEEE80211_TX_CTL_FIRST_FRAGMENT: this is a first fragment of the frame
235 * @IEEE80211_TX_CTL_SEND_AFTER_DTIM: send this frame after DTIM beacon
236 * @IEEE80211_TX_CTL_AMPDU: this frame should be sent as part of an A-MPDU
237 * @IEEE80211_TX_CTL_INJECTED: Frame was injected, internal to mac80211.
238 * @IEEE80211_TX_STAT_TX_FILTERED: The frame was not transmitted
239 * because the destination STA was in powersave mode.
240 * @IEEE80211_TX_STAT_ACK: Frame was acknowledged
241 * @IEEE80211_TX_STAT_AMPDU: The frame was aggregated, so status
242 * is for the whole aggregation.
243 * @IEEE80211_TX_STAT_AMPDU_NO_BACK: no block ack was returned,
244 * so consider using block ack request (BAR).
245 * @IEEE80211_TX_CTL_RATE_CTRL_PROBE: internal to mac80211, can be
246 * set by rate control algorithms to indicate probe rate, will
247 * be cleared for fragmented frames (except on the last fragment)
248 */
249 enum mac80211_tx_control_flags {
250 IEEE80211_TX_CTL_REQ_TX_STATUS = BIT(0),
251 IEEE80211_TX_CTL_ASSIGN_SEQ = BIT(1),
252 IEEE80211_TX_CTL_NO_ACK = BIT(2),
253 IEEE80211_TX_CTL_CLEAR_PS_FILT = BIT(3),
254 IEEE80211_TX_CTL_FIRST_FRAGMENT = BIT(4),
255 IEEE80211_TX_CTL_SEND_AFTER_DTIM = BIT(5),
256 IEEE80211_TX_CTL_AMPDU = BIT(6),
257 IEEE80211_TX_CTL_INJECTED = BIT(7),
258 IEEE80211_TX_STAT_TX_FILTERED = BIT(8),
259 IEEE80211_TX_STAT_ACK = BIT(9),
260 IEEE80211_TX_STAT_AMPDU = BIT(10),
261 IEEE80211_TX_STAT_AMPDU_NO_BACK = BIT(11),
262 IEEE80211_TX_CTL_RATE_CTRL_PROBE = BIT(12),
263 };
264
265 /**
266 * enum mac80211_rate_control_flags - per-rate flags set by the
267 * Rate Control algorithm.
268 *
269 * These flags are set by the Rate control algorithm for each rate during tx,
270 * in the @flags member of struct ieee80211_tx_rate.
271 *
272 * @IEEE80211_TX_RC_USE_RTS_CTS: Use RTS/CTS exchange for this rate.
273 * @IEEE80211_TX_RC_USE_CTS_PROTECT: CTS-to-self protection is required.
274 * This is set if the current BSS requires ERP protection.
275 * @IEEE80211_TX_RC_USE_SHORT_PREAMBLE: Use short preamble.
276 * @IEEE80211_TX_RC_MCS: HT rate.
277 * @IEEE80211_TX_RC_GREEN_FIELD: Indicates whether this rate should be used in
278 * Greenfield mode.
279 * @IEEE80211_TX_RC_40_MHZ_WIDTH: Indicates if the Channel Width should be 40 MHz.
280 * @IEEE80211_TX_RC_DUP_DATA: The frame should be transmitted on both of the
281 * adjacent 20 MHz channels, if the current channel type is
282 * NL80211_CHAN_HT40MINUS or NL80211_CHAN_HT40PLUS.
283 * @IEEE80211_TX_RC_SHORT_GI: Short Guard interval should be used for this rate.
284 */
285 enum mac80211_rate_control_flags {
286 IEEE80211_TX_RC_USE_RTS_CTS = BIT(0),
287 IEEE80211_TX_RC_USE_CTS_PROTECT = BIT(1),
288 IEEE80211_TX_RC_USE_SHORT_PREAMBLE = BIT(2),
289
290 /* rate index is an MCS rate number instead of an index */
291 IEEE80211_TX_RC_MCS = BIT(3),
292 IEEE80211_TX_RC_GREEN_FIELD = BIT(4),
293 IEEE80211_TX_RC_40_MHZ_WIDTH = BIT(5),
294 IEEE80211_TX_RC_DUP_DATA = BIT(6),
295 IEEE80211_TX_RC_SHORT_GI = BIT(7),
296 };
297
298
299 /* there are 40 bytes if you don't need the rateset to be kept */
300 #define IEEE80211_TX_INFO_DRIVER_DATA_SIZE 40
301
302 /* if you do need the rateset, then you have less space */
303 #define IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE 24
304
305 /* maximum number of rate stages */
306 #define IEEE80211_TX_MAX_RATES 5
307
308 /**
309 * struct ieee80211_tx_rate - rate selection/status
310 *
311 * @idx: rate index to attempt to send with
312 * @flags: rate control flags (&enum mac80211_rate_control_flags)
313 * @count: number of tries in this rate before going to the next rate
314 *
315 * A value of -1 for @idx indicates an invalid rate and, if used
316 * in an array of retry rates, that no more rates should be tried.
317 *
318 * When used for transmit status reporting, the driver should
319 * always report the rate along with the flags it used.
320 */
321 struct ieee80211_tx_rate {
322 s8 idx;
323 u8 count;
324 u8 flags;
325 } __attribute__((packed));
326
327 /**
328 * struct ieee80211_tx_info - skb transmit information
329 *
330 * This structure is placed in skb->cb for three uses:
331 * (1) mac80211 TX control - mac80211 tells the driver what to do
332 * (2) driver internal use (if applicable)
333 * (3) TX status information - driver tells mac80211 what happened
334 *
335 * The TX control's sta pointer is only valid during the ->tx call,
336 * it may be NULL.
337 *
338 * @flags: transmit info flags, defined above
339 * @band: the band to transmit on (use for checking for races)
340 * @antenna_sel_tx: antenna to use, 0 for automatic diversity
341 * @pad: padding, ignore
342 * @control: union for control data
343 * @status: union for status data
344 * @driver_data: array of driver_data pointers
345 * @ampdu_ack_len: number of aggregated frames.
346 * relevant only if IEEE80211_TX_STATUS_AMPDU was set.
347 * @ampdu_ack_map: block ack bit map for the aggregation.
348 * relevant only if IEEE80211_TX_STATUS_AMPDU was set.
349 * @ack_signal: signal strength of the ACK frame
350 */
351 struct ieee80211_tx_info {
352 /* common information */
353 u32 flags;
354 u8 band;
355
356 u8 antenna_sel_tx;
357
358 /* 2 byte hole */
359 u8 pad[2];
360
361 union {
362 struct {
363 union {
364 /* rate control */
365 struct {
366 struct ieee80211_tx_rate rates[
367 IEEE80211_TX_MAX_RATES];
368 s8 rts_cts_rate_idx;
369 };
370 /* only needed before rate control */
371 unsigned long jiffies;
372 };
373 /* NB: vif can be NULL for injected frames */
374 struct ieee80211_vif *vif;
375 struct ieee80211_key_conf *hw_key;
376 struct ieee80211_sta *sta;
377 } control;
378 struct {
379 struct ieee80211_tx_rate rates[IEEE80211_TX_MAX_RATES];
380 u8 ampdu_ack_len;
381 u64 ampdu_ack_map;
382 int ack_signal;
383 /* 8 bytes free */
384 } status;
385 struct {
386 struct ieee80211_tx_rate driver_rates[
387 IEEE80211_TX_MAX_RATES];
388 void *rate_driver_data[
389 IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE / sizeof(void *)];
390 };
391 void *driver_data[
392 IEEE80211_TX_INFO_DRIVER_DATA_SIZE / sizeof(void *)];
393 };
394 };
395
396 static inline struct ieee80211_tx_info *IEEE80211_SKB_CB(struct sk_buff *skb)
397 {
398 return (struct ieee80211_tx_info *)skb->cb;
399 }
400
401 /**
402 * ieee80211_tx_info_clear_status - clear TX status
403 *
404 * @info: The &struct ieee80211_tx_info to be cleared.
405 *
406 * When the driver passes an skb back to mac80211, it must report
407 * a number of things in TX status. This function clears everything
408 * in the TX status but the rate control information (it does clear
409 * the count since you need to fill that in anyway).
410 *
411 * NOTE: You can only use this function if you do NOT use
412 * info->driver_data! Use info->rate_driver_data
413 * instead if you need only the less space that allows.
414 */
415 static inline void
416 ieee80211_tx_info_clear_status(struct ieee80211_tx_info *info)
417 {
418 int i;
419
420 BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) !=
421 offsetof(struct ieee80211_tx_info, control.rates));
422 BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) !=
423 offsetof(struct ieee80211_tx_info, driver_rates));
424 BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != 8);
425 /* clear the rate counts */
426 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++)
427 info->status.rates[i].count = 0;
428
429 BUILD_BUG_ON(
430 offsetof(struct ieee80211_tx_info, status.ampdu_ack_len) != 23);
431 memset(&info->status.ampdu_ack_len, 0,
432 sizeof(struct ieee80211_tx_info) -
433 offsetof(struct ieee80211_tx_info, status.ampdu_ack_len));
434 }
435
436
437 /**
438 * enum mac80211_rx_flags - receive flags
439 *
440 * These flags are used with the @flag member of &struct ieee80211_rx_status.
441 * @RX_FLAG_MMIC_ERROR: Michael MIC error was reported on this frame.
442 * Use together with %RX_FLAG_MMIC_STRIPPED.
443 * @RX_FLAG_DECRYPTED: This frame was decrypted in hardware.
444 * @RX_FLAG_RADIOTAP: This frame starts with a radiotap header.
445 * @RX_FLAG_MMIC_STRIPPED: the Michael MIC is stripped off this frame,
446 * verification has been done by the hardware.
447 * @RX_FLAG_IV_STRIPPED: The IV/ICV are stripped from this frame.
448 * If this flag is set, the stack cannot do any replay detection
449 * hence the driver or hardware will have to do that.
450 * @RX_FLAG_FAILED_FCS_CRC: Set this flag if the FCS check failed on
451 * the frame.
452 * @RX_FLAG_FAILED_PLCP_CRC: Set this flag if the PCLP check failed on
453 * the frame.
454 * @RX_FLAG_TSFT: The timestamp passed in the RX status (@mactime field)
455 * is valid. This is useful in monitor mode and necessary for beacon frames
456 * to enable IBSS merging.
457 * @RX_FLAG_SHORTPRE: Short preamble was used for this frame
458 * @RX_FLAG_HT: HT MCS was used and rate_idx is MCS index
459 * @RX_FLAG_40MHZ: HT40 (40 MHz) was used
460 * @RX_FLAG_SHORT_GI: Short guard interval was used
461 */
462 enum mac80211_rx_flags {
463 RX_FLAG_MMIC_ERROR = 1<<0,
464 RX_FLAG_DECRYPTED = 1<<1,
465 RX_FLAG_RADIOTAP = 1<<2,
466 RX_FLAG_MMIC_STRIPPED = 1<<3,
467 RX_FLAG_IV_STRIPPED = 1<<4,
468 RX_FLAG_FAILED_FCS_CRC = 1<<5,
469 RX_FLAG_FAILED_PLCP_CRC = 1<<6,
470 RX_FLAG_TSFT = 1<<7,
471 RX_FLAG_SHORTPRE = 1<<8,
472 RX_FLAG_HT = 1<<9,
473 RX_FLAG_40MHZ = 1<<10,
474 RX_FLAG_SHORT_GI = 1<<11,
475 };
476
477 /**
478 * struct ieee80211_rx_status - receive status
479 *
480 * The low-level driver should provide this information (the subset
481 * supported by hardware) to the 802.11 code with each received
482 * frame.
483 *
484 * @mactime: value in microseconds of the 64-bit Time Synchronization Function
485 * (TSF) timer when the first data symbol (MPDU) arrived at the hardware.
486 * @band: the active band when this frame was received
487 * @freq: frequency the radio was tuned to when receiving this frame, in MHz
488 * @signal: signal strength when receiving this frame, either in dBm, in dB or
489 * unspecified depending on the hardware capabilities flags
490 * @IEEE80211_HW_SIGNAL_*
491 * @noise: noise when receiving this frame, in dBm.
492 * @qual: overall signal quality indication, in percent (0-100).
493 * @antenna: antenna used
494 * @rate_idx: index of data rate into band's supported rates or MCS index if
495 * HT rates are use (RX_FLAG_HT)
496 * @flag: %RX_FLAG_*
497 */
498 struct ieee80211_rx_status {
499 u64 mactime;
500 enum ieee80211_band band;
501 int freq;
502 int signal;
503 int noise;
504 int qual;
505 int antenna;
506 int rate_idx;
507 int flag;
508 };
509
510 /**
511 * enum ieee80211_conf_flags - configuration flags
512 *
513 * Flags to define PHY configuration options
514 *
515 * @IEEE80211_CONF_RADIOTAP: add radiotap header at receive time (if supported)
516 * @IEEE80211_CONF_PS: Enable 802.11 power save mode
517 */
518 enum ieee80211_conf_flags {
519 IEEE80211_CONF_RADIOTAP = (1<<0),
520 IEEE80211_CONF_PS = (1<<1),
521 };
522
523
524 /**
525 * enum ieee80211_conf_changed - denotes which configuration changed
526 *
527 * @IEEE80211_CONF_CHANGE_RADIO_ENABLED: the value of radio_enabled changed
528 * @IEEE80211_CONF_CHANGE_BEACON_INTERVAL: the beacon interval changed
529 * @IEEE80211_CONF_CHANGE_LISTEN_INTERVAL: the listen interval changed
530 * @IEEE80211_CONF_CHANGE_RADIOTAP: the radiotap flag changed
531 * @IEEE80211_CONF_CHANGE_PS: the PS flag changed
532 * @IEEE80211_CONF_CHANGE_DYNPS_TIMEOUT: the dynamic PS timeout changed
533 * @IEEE80211_CONF_CHANGE_POWER: the TX power changed
534 * @IEEE80211_CONF_CHANGE_CHANNEL: the channel/channel_type changed
535 * @IEEE80211_CONF_CHANGE_RETRY_LIMITS: retry limits changed
536 */
537 enum ieee80211_conf_changed {
538 IEEE80211_CONF_CHANGE_RADIO_ENABLED = BIT(0),
539 IEEE80211_CONF_CHANGE_BEACON_INTERVAL = BIT(1),
540 IEEE80211_CONF_CHANGE_LISTEN_INTERVAL = BIT(2),
541 IEEE80211_CONF_CHANGE_RADIOTAP = BIT(3),
542 IEEE80211_CONF_CHANGE_PS = BIT(4),
543 IEEE80211_CONF_CHANGE_DYNPS_TIMEOUT = BIT(5),
544 IEEE80211_CONF_CHANGE_POWER = BIT(6),
545 IEEE80211_CONF_CHANGE_CHANNEL = BIT(7),
546 IEEE80211_CONF_CHANGE_RETRY_LIMITS = BIT(8),
547 };
548
549 /**
550 * struct ieee80211_conf - configuration of the device
551 *
552 * This struct indicates how the driver shall configure the hardware.
553 *
554 * @radio_enabled: when zero, driver is required to switch off the radio.
555 * @beacon_int: beacon interval (TODO make interface config)
556 * @listen_interval: listen interval in units of beacon interval
557 * @flags: configuration flags defined above
558 * @power_level: requested transmit power (in dBm)
559 * @dynamic_ps_timeout: dynamic powersave timeout (in ms)
560 * @channel: the channel to tune to
561 * @channel_type: the channel (HT) type
562 * @long_frame_max_tx_count: Maximum number of transmissions for a "long" frame
563 * (a frame not RTS protected), called "dot11LongRetryLimit" in 802.11,
564 * but actually means the number of transmissions not the number of retries
565 * @short_frame_max_tx_count: Maximum number of transmissions for a "short"
566 * frame, called "dot11ShortRetryLimit" in 802.11, but actually means the
567 * number of transmissions not the number of retries
568 */
569 struct ieee80211_conf {
570 int beacon_int;
571 u32 flags;
572 int power_level, dynamic_ps_timeout;
573
574 u16 listen_interval;
575 bool radio_enabled;
576
577 u8 long_frame_max_tx_count, short_frame_max_tx_count;
578
579 struct ieee80211_channel *channel;
580 enum nl80211_channel_type channel_type;
581 };
582
583 /**
584 * struct ieee80211_vif - per-interface data
585 *
586 * Data in this structure is continually present for driver
587 * use during the life of a virtual interface.
588 *
589 * @type: type of this virtual interface
590 * @bss_conf: BSS configuration for this interface, either our own
591 * or the BSS we're associated to
592 * @drv_priv: data area for driver use, will always be aligned to
593 * sizeof(void *).
594 */
595 struct ieee80211_vif {
596 enum nl80211_iftype type;
597 struct ieee80211_bss_conf bss_conf;
598 /* must be last */
599 u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *))));
600 };
601
602 static inline bool ieee80211_vif_is_mesh(struct ieee80211_vif *vif)
603 {
604 #ifdef CONFIG_MAC80211_MESH
605 return vif->type == NL80211_IFTYPE_MESH_POINT;
606 #endif
607 return false;
608 }
609
610 /**
611 * struct ieee80211_if_init_conf - initial configuration of an interface
612 *
613 * @vif: pointer to a driver-use per-interface structure. The pointer
614 * itself is also used for various functions including
615 * ieee80211_beacon_get() and ieee80211_get_buffered_bc().
616 * @type: one of &enum nl80211_iftype constants. Determines the type of
617 * added/removed interface.
618 * @mac_addr: pointer to MAC address of the interface. This pointer is valid
619 * until the interface is removed (i.e. it cannot be used after
620 * remove_interface() callback was called for this interface).
621 *
622 * This structure is used in add_interface() and remove_interface()
623 * callbacks of &struct ieee80211_hw.
624 *
625 * When you allow multiple interfaces to be added to your PHY, take care
626 * that the hardware can actually handle multiple MAC addresses. However,
627 * also take care that when there's no interface left with mac_addr != %NULL
628 * you remove the MAC address from the device to avoid acknowledging packets
629 * in pure monitor mode.
630 */
631 struct ieee80211_if_init_conf {
632 enum nl80211_iftype type;
633 struct ieee80211_vif *vif;
634 void *mac_addr;
635 };
636
637 /**
638 * enum ieee80211_if_conf_change - interface config change flags
639 *
640 * @IEEE80211_IFCC_BSSID: The BSSID changed.
641 * @IEEE80211_IFCC_BEACON: The beacon for this interface changed
642 * (currently AP and MESH only), use ieee80211_beacon_get().
643 * @IEEE80211_IFCC_BEACON_ENABLED: The enable_beacon value changed.
644 */
645 enum ieee80211_if_conf_change {
646 IEEE80211_IFCC_BSSID = BIT(0),
647 IEEE80211_IFCC_BEACON = BIT(1),
648 IEEE80211_IFCC_BEACON_ENABLED = BIT(2),
649 };
650
651 /**
652 * struct ieee80211_if_conf - configuration of an interface
653 *
654 * @changed: parameters that have changed, see &enum ieee80211_if_conf_change.
655 * @bssid: BSSID of the network we are associated to/creating.
656 * @enable_beacon: Indicates whether beacons can be sent.
657 * This is valid only for AP/IBSS/MESH modes.
658 *
659 * This structure is passed to the config_interface() callback of
660 * &struct ieee80211_hw.
661 */
662 struct ieee80211_if_conf {
663 u32 changed;
664 const u8 *bssid;
665 bool enable_beacon;
666 };
667
668 /**
669 * enum ieee80211_key_alg - key algorithm
670 * @ALG_WEP: WEP40 or WEP104
671 * @ALG_TKIP: TKIP
672 * @ALG_CCMP: CCMP (AES)
673 * @ALG_AES_CMAC: AES-128-CMAC
674 */
675 enum ieee80211_key_alg {
676 ALG_WEP,
677 ALG_TKIP,
678 ALG_CCMP,
679 ALG_AES_CMAC,
680 };
681
682 /**
683 * enum ieee80211_key_len - key length
684 * @LEN_WEP40: WEP 5-byte long key
685 * @LEN_WEP104: WEP 13-byte long key
686 */
687 enum ieee80211_key_len {
688 LEN_WEP40 = 5,
689 LEN_WEP104 = 13,
690 };
691
692 /**
693 * enum ieee80211_key_flags - key flags
694 *
695 * These flags are used for communication about keys between the driver
696 * and mac80211, with the @flags parameter of &struct ieee80211_key_conf.
697 *
698 * @IEEE80211_KEY_FLAG_WMM_STA: Set by mac80211, this flag indicates
699 * that the STA this key will be used with could be using QoS.
700 * @IEEE80211_KEY_FLAG_GENERATE_IV: This flag should be set by the
701 * driver to indicate that it requires IV generation for this
702 * particular key.
703 * @IEEE80211_KEY_FLAG_GENERATE_MMIC: This flag should be set by
704 * the driver for a TKIP key if it requires Michael MIC
705 * generation in software.
706 * @IEEE80211_KEY_FLAG_PAIRWISE: Set by mac80211, this flag indicates
707 * that the key is pairwise rather then a shared key.
708 * @IEEE80211_KEY_FLAG_SW_MGMT: This flag should be set by the driver for a
709 * CCMP key if it requires CCMP encryption of management frames (MFP) to
710 * be done in software.
711 */
712 enum ieee80211_key_flags {
713 IEEE80211_KEY_FLAG_WMM_STA = 1<<0,
714 IEEE80211_KEY_FLAG_GENERATE_IV = 1<<1,
715 IEEE80211_KEY_FLAG_GENERATE_MMIC= 1<<2,
716 IEEE80211_KEY_FLAG_PAIRWISE = 1<<3,
717 IEEE80211_KEY_FLAG_SW_MGMT = 1<<4,
718 };
719
720 /**
721 * struct ieee80211_key_conf - key information
722 *
723 * This key information is given by mac80211 to the driver by
724 * the set_key() callback in &struct ieee80211_ops.
725 *
726 * @hw_key_idx: To be set by the driver, this is the key index the driver
727 * wants to be given when a frame is transmitted and needs to be
728 * encrypted in hardware.
729 * @alg: The key algorithm.
730 * @flags: key flags, see &enum ieee80211_key_flags.
731 * @keyidx: the key index (0-3)
732 * @keylen: key material length
733 * @key: key material. For ALG_TKIP the key is encoded as a 256-bit (32 byte)
734 * data block:
735 * - Temporal Encryption Key (128 bits)
736 * - Temporal Authenticator Tx MIC Key (64 bits)
737 * - Temporal Authenticator Rx MIC Key (64 bits)
738 * @icv_len: The ICV length for this key type
739 * @iv_len: The IV length for this key type
740 */
741 struct ieee80211_key_conf {
742 enum ieee80211_key_alg alg;
743 u8 icv_len;
744 u8 iv_len;
745 u8 hw_key_idx;
746 u8 flags;
747 s8 keyidx;
748 u8 keylen;
749 u8 key[0];
750 };
751
752 /**
753 * enum set_key_cmd - key command
754 *
755 * Used with the set_key() callback in &struct ieee80211_ops, this
756 * indicates whether a key is being removed or added.
757 *
758 * @SET_KEY: a key is set
759 * @DISABLE_KEY: a key must be disabled
760 */
761 enum set_key_cmd {
762 SET_KEY, DISABLE_KEY,
763 };
764
765 /**
766 * struct ieee80211_sta - station table entry
767 *
768 * A station table entry represents a station we are possibly
769 * communicating with. Since stations are RCU-managed in
770 * mac80211, any ieee80211_sta pointer you get access to must
771 * either be protected by rcu_read_lock() explicitly or implicitly,
772 * or you must take good care to not use such a pointer after a
773 * call to your sta_notify callback that removed it.
774 *
775 * @addr: MAC address
776 * @aid: AID we assigned to the station if we're an AP
777 * @supp_rates: Bitmap of supported rates (per band)
778 * @ht_cap: HT capabilities of this STA; restricted to our own TX capabilities
779 * @drv_priv: data area for driver use, will always be aligned to
780 * sizeof(void *), size is determined in hw information.
781 */
782 struct ieee80211_sta {
783 u32 supp_rates[IEEE80211_NUM_BANDS];
784 u8 addr[ETH_ALEN];
785 u16 aid;
786 struct ieee80211_sta_ht_cap ht_cap;
787
788 /* must be last */
789 u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *))));
790 };
791
792 /**
793 * enum sta_notify_cmd - sta notify command
794 *
795 * Used with the sta_notify() callback in &struct ieee80211_ops, this
796 * indicates addition and removal of a station to station table,
797 * or if a associated station made a power state transition.
798 *
799 * @STA_NOTIFY_ADD: a station was added to the station table
800 * @STA_NOTIFY_REMOVE: a station being removed from the station table
801 * @STA_NOTIFY_SLEEP: a station is now sleeping
802 * @STA_NOTIFY_AWAKE: a sleeping station woke up
803 */
804 enum sta_notify_cmd {
805 STA_NOTIFY_ADD, STA_NOTIFY_REMOVE,
806 STA_NOTIFY_SLEEP, STA_NOTIFY_AWAKE,
807 };
808
809 /**
810 * enum ieee80211_tkip_key_type - get tkip key
811 *
812 * Used by drivers which need to get a tkip key for skb. Some drivers need a
813 * phase 1 key, others need a phase 2 key. A single function allows the driver
814 * to get the key, this enum indicates what type of key is required.
815 *
816 * @IEEE80211_TKIP_P1_KEY: the driver needs a phase 1 key
817 * @IEEE80211_TKIP_P2_KEY: the driver needs a phase 2 key
818 */
819 enum ieee80211_tkip_key_type {
820 IEEE80211_TKIP_P1_KEY,
821 IEEE80211_TKIP_P2_KEY,
822 };
823
824 /**
825 * enum ieee80211_hw_flags - hardware flags
826 *
827 * These flags are used to indicate hardware capabilities to
828 * the stack. Generally, flags here should have their meaning
829 * done in a way that the simplest hardware doesn't need setting
830 * any particular flags. There are some exceptions to this rule,
831 * however, so you are advised to review these flags carefully.
832 *
833 * @IEEE80211_HW_RX_INCLUDES_FCS:
834 * Indicates that received frames passed to the stack include
835 * the FCS at the end.
836 *
837 * @IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING:
838 * Some wireless LAN chipsets buffer broadcast/multicast frames
839 * for power saving stations in the hardware/firmware and others
840 * rely on the host system for such buffering. This option is used
841 * to configure the IEEE 802.11 upper layer to buffer broadcast and
842 * multicast frames when there are power saving stations so that
843 * the driver can fetch them with ieee80211_get_buffered_bc().
844 *
845 * @IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE:
846 * Hardware is not capable of short slot operation on the 2.4 GHz band.
847 *
848 * @IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE:
849 * Hardware is not capable of receiving frames with short preamble on
850 * the 2.4 GHz band.
851 *
852 * @IEEE80211_HW_SIGNAL_UNSPEC:
853 * Hardware can provide signal values but we don't know its units. We
854 * expect values between 0 and @max_signal.
855 * If possible please provide dB or dBm instead.
856 *
857 * @IEEE80211_HW_SIGNAL_DBM:
858 * Hardware gives signal values in dBm, decibel difference from
859 * one milliwatt. This is the preferred method since it is standardized
860 * between different devices. @max_signal does not need to be set.
861 *
862 * @IEEE80211_HW_NOISE_DBM:
863 * Hardware can provide noise (radio interference) values in units dBm,
864 * decibel difference from one milliwatt.
865 *
866 * @IEEE80211_HW_SPECTRUM_MGMT:
867 * Hardware supports spectrum management defined in 802.11h
868 * Measurement, Channel Switch, Quieting, TPC
869 *
870 * @IEEE80211_HW_AMPDU_AGGREGATION:
871 * Hardware supports 11n A-MPDU aggregation.
872 *
873 * @IEEE80211_HW_SUPPORTS_PS:
874 * Hardware has power save support (i.e. can go to sleep).
875 *
876 * @IEEE80211_HW_PS_NULLFUNC_STACK:
877 * Hardware requires nullfunc frame handling in stack, implies
878 * stack support for dynamic PS.
879 *
880 * @IEEE80211_HW_SUPPORTS_DYNAMIC_PS:
881 * Hardware has support for dynamic PS.
882 *
883 * @IEEE80211_HW_MFP_CAPABLE:
884 * Hardware supports management frame protection (MFP, IEEE 802.11w).
885 */
886 enum ieee80211_hw_flags {
887 IEEE80211_HW_RX_INCLUDES_FCS = 1<<1,
888 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING = 1<<2,
889 IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE = 1<<3,
890 IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE = 1<<4,
891 IEEE80211_HW_SIGNAL_UNSPEC = 1<<5,
892 IEEE80211_HW_SIGNAL_DBM = 1<<6,
893 IEEE80211_HW_NOISE_DBM = 1<<7,
894 IEEE80211_HW_SPECTRUM_MGMT = 1<<8,
895 IEEE80211_HW_AMPDU_AGGREGATION = 1<<9,
896 IEEE80211_HW_SUPPORTS_PS = 1<<10,
897 IEEE80211_HW_PS_NULLFUNC_STACK = 1<<11,
898 IEEE80211_HW_SUPPORTS_DYNAMIC_PS = 1<<12,
899 IEEE80211_HW_MFP_CAPABLE = 1<<13,
900 };
901
902 /**
903 * struct ieee80211_hw - hardware information and state
904 *
905 * This structure contains the configuration and hardware
906 * information for an 802.11 PHY.
907 *
908 * @wiphy: This points to the &struct wiphy allocated for this
909 * 802.11 PHY. You must fill in the @perm_addr and @dev
910 * members of this structure using SET_IEEE80211_DEV()
911 * and SET_IEEE80211_PERM_ADDR(). Additionally, all supported
912 * bands (with channels, bitrates) are registered here.
913 *
914 * @conf: &struct ieee80211_conf, device configuration, don't use.
915 *
916 * @workqueue: single threaded workqueue available for driver use,
917 * allocated by mac80211 on registration and flushed when an
918 * interface is removed.
919 * NOTICE: All work performed on this workqueue must not
920 * acquire the RTNL lock.
921 *
922 * @priv: pointer to private area that was allocated for driver use
923 * along with this structure.
924 *
925 * @flags: hardware flags, see &enum ieee80211_hw_flags.
926 *
927 * @extra_tx_headroom: headroom to reserve in each transmit skb
928 * for use by the driver (e.g. for transmit headers.)
929 *
930 * @channel_change_time: time (in microseconds) it takes to change channels.
931 *
932 * @max_signal: Maximum value for signal (rssi) in RX information, used
933 * only when @IEEE80211_HW_SIGNAL_UNSPEC or @IEEE80211_HW_SIGNAL_DB
934 *
935 * @max_listen_interval: max listen interval in units of beacon interval
936 * that HW supports
937 *
938 * @queues: number of available hardware transmit queues for
939 * data packets. WMM/QoS requires at least four, these
940 * queues need to have configurable access parameters.
941 *
942 * @ampdu_queues: number of available hardware transmit queues
943 * for A-MPDU packets, these have no access parameters
944 * because they're used only for A-MPDU frames. Note that
945 * mac80211 will not currently use any of the regular queues
946 * for aggregation.
947 *
948 * @rate_control_algorithm: rate control algorithm for this hardware.
949 * If unset (NULL), the default algorithm will be used. Must be
950 * set before calling ieee80211_register_hw().
951 *
952 * @vif_data_size: size (in bytes) of the drv_priv data area
953 * within &struct ieee80211_vif.
954 * @sta_data_size: size (in bytes) of the drv_priv data area
955 * within &struct ieee80211_sta.
956 *
957 * @max_rates: maximum number of alternate rate retry stages
958 * @max_rate_tries: maximum number of tries for each stage
959 */
960 struct ieee80211_hw {
961 struct ieee80211_conf conf;
962 struct wiphy *wiphy;
963 struct workqueue_struct *workqueue;
964 const char *rate_control_algorithm;
965 void *priv;
966 u32 flags;
967 unsigned int extra_tx_headroom;
968 int channel_change_time;
969 int vif_data_size;
970 int sta_data_size;
971 u16 queues;
972 u16 ampdu_queues;
973 u16 max_listen_interval;
974 s8 max_signal;
975 u8 max_rates;
976 u8 max_rate_tries;
977 };
978
979 /**
980 * wiphy_to_ieee80211_hw - return a mac80211 driver hw struct from a wiphy
981 *
982 * @wiphy: the &struct wiphy which we want to query
983 *
984 * mac80211 drivers can use this to get to their respective
985 * &struct ieee80211_hw. Drivers wishing to get to their own private
986 * structure can then access it via hw->priv. Note that mac802111 drivers should
987 * not use wiphy_priv() to try to get their private driver structure as this
988 * is already used internally by mac80211.
989 */
990 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy);
991
992 /**
993 * SET_IEEE80211_DEV - set device for 802.11 hardware
994 *
995 * @hw: the &struct ieee80211_hw to set the device for
996 * @dev: the &struct device of this 802.11 device
997 */
998 static inline void SET_IEEE80211_DEV(struct ieee80211_hw *hw, struct device *dev)
999 {
1000 set_wiphy_dev(hw->wiphy, dev);
1001 }
1002
1003 /**
1004 * SET_IEEE80211_PERM_ADDR - set the permanent MAC address for 802.11 hardware
1005 *
1006 * @hw: the &struct ieee80211_hw to set the MAC address for
1007 * @addr: the address to set
1008 */
1009 static inline void SET_IEEE80211_PERM_ADDR(struct ieee80211_hw *hw, u8 *addr)
1010 {
1011 memcpy(hw->wiphy->perm_addr, addr, ETH_ALEN);
1012 }
1013
1014 static inline struct ieee80211_rate *
1015 ieee80211_get_tx_rate(const struct ieee80211_hw *hw,
1016 const struct ieee80211_tx_info *c)
1017 {
1018 if (WARN_ON(c->control.rates[0].idx < 0))
1019 return NULL;
1020 return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[0].idx];
1021 }
1022
1023 static inline struct ieee80211_rate *
1024 ieee80211_get_rts_cts_rate(const struct ieee80211_hw *hw,
1025 const struct ieee80211_tx_info *c)
1026 {
1027 if (c->control.rts_cts_rate_idx < 0)
1028 return NULL;
1029 return &hw->wiphy->bands[c->band]->bitrates[c->control.rts_cts_rate_idx];
1030 }
1031
1032 static inline struct ieee80211_rate *
1033 ieee80211_get_alt_retry_rate(const struct ieee80211_hw *hw,
1034 const struct ieee80211_tx_info *c, int idx)
1035 {
1036 if (c->control.rates[idx + 1].idx < 0)
1037 return NULL;
1038 return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[idx + 1].idx];
1039 }
1040
1041 /**
1042 * DOC: Hardware crypto acceleration
1043 *
1044 * mac80211 is capable of taking advantage of many hardware
1045 * acceleration designs for encryption and decryption operations.
1046 *
1047 * The set_key() callback in the &struct ieee80211_ops for a given
1048 * device is called to enable hardware acceleration of encryption and
1049 * decryption. The callback takes a @sta parameter that will be NULL
1050 * for default keys or keys used for transmission only, or point to
1051 * the station information for the peer for individual keys.
1052 * Multiple transmission keys with the same key index may be used when
1053 * VLANs are configured for an access point.
1054 *
1055 * When transmitting, the TX control data will use the @hw_key_idx
1056 * selected by the driver by modifying the &struct ieee80211_key_conf
1057 * pointed to by the @key parameter to the set_key() function.
1058 *
1059 * The set_key() call for the %SET_KEY command should return 0 if
1060 * the key is now in use, -%EOPNOTSUPP or -%ENOSPC if it couldn't be
1061 * added; if you return 0 then hw_key_idx must be assigned to the
1062 * hardware key index, you are free to use the full u8 range.
1063 *
1064 * When the cmd is %DISABLE_KEY then it must succeed.
1065 *
1066 * Note that it is permissible to not decrypt a frame even if a key
1067 * for it has been uploaded to hardware, the stack will not make any
1068 * decision based on whether a key has been uploaded or not but rather
1069 * based on the receive flags.
1070 *
1071 * The &struct ieee80211_key_conf structure pointed to by the @key
1072 * parameter is guaranteed to be valid until another call to set_key()
1073 * removes it, but it can only be used as a cookie to differentiate
1074 * keys.
1075 *
1076 * In TKIP some HW need to be provided a phase 1 key, for RX decryption
1077 * acceleration (i.e. iwlwifi). Those drivers should provide update_tkip_key
1078 * handler.
1079 * The update_tkip_key() call updates the driver with the new phase 1 key.
1080 * This happens everytime the iv16 wraps around (every 65536 packets). The
1081 * set_key() call will happen only once for each key (unless the AP did
1082 * rekeying), it will not include a valid phase 1 key. The valid phase 1 key is
1083 * provided by update_tkip_key only. The trigger that makes mac80211 call this
1084 * handler is software decryption with wrap around of iv16.
1085 */
1086
1087 /**
1088 * DOC: Powersave support
1089 *
1090 * mac80211 has support for various powersave implementations.
1091 *
1092 * First, it can support hardware that handles all powersaving by
1093 * itself, such hardware should simply set the %IEEE80211_HW_SUPPORTS_PS
1094 * hardware flag. In that case, it will be told about the desired
1095 * powersave mode depending on the association status, and the driver
1096 * must take care of sending nullfunc frames when necessary, i.e. when
1097 * entering and leaving powersave mode. The driver is required to look at
1098 * the AID in beacons and signal to the AP that it woke up when it finds
1099 * traffic directed to it. This mode supports dynamic PS by simply
1100 * enabling/disabling PS.
1101 *
1102 * Additionally, such hardware may set the %IEEE80211_HW_SUPPORTS_DYNAMIC_PS
1103 * flag to indicate that it can support dynamic PS mode itself (see below).
1104 *
1105 * Other hardware designs cannot send nullfunc frames by themselves and also
1106 * need software support for parsing the TIM bitmap. This is also supported
1107 * by mac80211 by combining the %IEEE80211_HW_SUPPORTS_PS and
1108 * %IEEE80211_HW_PS_NULLFUNC_STACK flags. The hardware is of course still
1109 * required to pass up beacons. Additionally, in this case, mac80211 will
1110 * wake up the hardware when multicast traffic is announced in the beacon.
1111 *
1112 * FIXME: I don't think we can be fast enough in software when we want to
1113 * receive multicast traffic?
1114 *
1115 * Dynamic powersave mode is an extension to normal powersave mode in which
1116 * the hardware stays awake for a user-specified period of time after sending
1117 * a frame so that reply frames need not be buffered and therefore delayed
1118 * to the next wakeup. This can either be supported by hardware, in which case
1119 * the driver needs to look at the @dynamic_ps_timeout hardware configuration
1120 * value, or by the stack if all nullfunc handling is in the stack.
1121 */
1122
1123 /**
1124 * DOC: Frame filtering
1125 *
1126 * mac80211 requires to see many management frames for proper
1127 * operation, and users may want to see many more frames when
1128 * in monitor mode. However, for best CPU usage and power consumption,
1129 * having as few frames as possible percolate through the stack is
1130 * desirable. Hence, the hardware should filter as much as possible.
1131 *
1132 * To achieve this, mac80211 uses filter flags (see below) to tell
1133 * the driver's configure_filter() function which frames should be
1134 * passed to mac80211 and which should be filtered out.
1135 *
1136 * The configure_filter() callback is invoked with the parameters
1137 * @mc_count and @mc_list for the combined multicast address list
1138 * of all virtual interfaces, @changed_flags telling which flags
1139 * were changed and @total_flags with the new flag states.
1140 *
1141 * If your device has no multicast address filters your driver will
1142 * need to check both the %FIF_ALLMULTI flag and the @mc_count
1143 * parameter to see whether multicast frames should be accepted
1144 * or dropped.
1145 *
1146 * All unsupported flags in @total_flags must be cleared.
1147 * Hardware does not support a flag if it is incapable of _passing_
1148 * the frame to the stack. Otherwise the driver must ignore
1149 * the flag, but not clear it.
1150 * You must _only_ clear the flag (announce no support for the
1151 * flag to mac80211) if you are not able to pass the packet type
1152 * to the stack (so the hardware always filters it).
1153 * So for example, you should clear @FIF_CONTROL, if your hardware
1154 * always filters control frames. If your hardware always passes
1155 * control frames to the kernel and is incapable of filtering them,
1156 * you do _not_ clear the @FIF_CONTROL flag.
1157 * This rule applies to all other FIF flags as well.
1158 */
1159
1160 /**
1161 * enum ieee80211_filter_flags - hardware filter flags
1162 *
1163 * These flags determine what the filter in hardware should be
1164 * programmed to let through and what should not be passed to the
1165 * stack. It is always safe to pass more frames than requested,
1166 * but this has negative impact on power consumption.
1167 *
1168 * @FIF_PROMISC_IN_BSS: promiscuous mode within your BSS,
1169 * think of the BSS as your network segment and then this corresponds
1170 * to the regular ethernet device promiscuous mode.
1171 *
1172 * @FIF_ALLMULTI: pass all multicast frames, this is used if requested
1173 * by the user or if the hardware is not capable of filtering by
1174 * multicast address.
1175 *
1176 * @FIF_FCSFAIL: pass frames with failed FCS (but you need to set the
1177 * %RX_FLAG_FAILED_FCS_CRC for them)
1178 *
1179 * @FIF_PLCPFAIL: pass frames with failed PLCP CRC (but you need to set
1180 * the %RX_FLAG_FAILED_PLCP_CRC for them
1181 *
1182 * @FIF_BCN_PRBRESP_PROMISC: This flag is set during scanning to indicate
1183 * to the hardware that it should not filter beacons or probe responses
1184 * by BSSID. Filtering them can greatly reduce the amount of processing
1185 * mac80211 needs to do and the amount of CPU wakeups, so you should
1186 * honour this flag if possible.
1187 *
1188 * @FIF_CONTROL: pass control frames, if PROMISC_IN_BSS is not set then
1189 * only those addressed to this station
1190 *
1191 * @FIF_OTHER_BSS: pass frames destined to other BSSes
1192 */
1193 enum ieee80211_filter_flags {
1194 FIF_PROMISC_IN_BSS = 1<<0,
1195 FIF_ALLMULTI = 1<<1,
1196 FIF_FCSFAIL = 1<<2,
1197 FIF_PLCPFAIL = 1<<3,
1198 FIF_BCN_PRBRESP_PROMISC = 1<<4,
1199 FIF_CONTROL = 1<<5,
1200 FIF_OTHER_BSS = 1<<6,
1201 };
1202
1203 /**
1204 * enum ieee80211_ampdu_mlme_action - A-MPDU actions
1205 *
1206 * These flags are used with the ampdu_action() callback in
1207 * &struct ieee80211_ops to indicate which action is needed.
1208 * @IEEE80211_AMPDU_RX_START: start Rx aggregation
1209 * @IEEE80211_AMPDU_RX_STOP: stop Rx aggregation
1210 * @IEEE80211_AMPDU_TX_START: start Tx aggregation
1211 * @IEEE80211_AMPDU_TX_STOP: stop Tx aggregation
1212 * @IEEE80211_AMPDU_TX_RESUME: resume TX aggregation
1213 */
1214 enum ieee80211_ampdu_mlme_action {
1215 IEEE80211_AMPDU_RX_START,
1216 IEEE80211_AMPDU_RX_STOP,
1217 IEEE80211_AMPDU_TX_START,
1218 IEEE80211_AMPDU_TX_STOP,
1219 IEEE80211_AMPDU_TX_RESUME,
1220 };
1221
1222 /**
1223 * struct ieee80211_ops - callbacks from mac80211 to the driver
1224 *
1225 * This structure contains various callbacks that the driver may
1226 * handle or, in some cases, must handle, for example to configure
1227 * the hardware to a new channel or to transmit a frame.
1228 *
1229 * @tx: Handler that 802.11 module calls for each transmitted frame.
1230 * skb contains the buffer starting from the IEEE 802.11 header.
1231 * The low-level driver should send the frame out based on
1232 * configuration in the TX control data. This handler should,
1233 * preferably, never fail and stop queues appropriately, more
1234 * importantly, however, it must never fail for A-MPDU-queues.
1235 * This function should return NETDEV_TX_OK except in very
1236 * limited cases.
1237 * Must be implemented and atomic.
1238 *
1239 * @start: Called before the first netdevice attached to the hardware
1240 * is enabled. This should turn on the hardware and must turn on
1241 * frame reception (for possibly enabled monitor interfaces.)
1242 * Returns negative error codes, these may be seen in userspace,
1243 * or zero.
1244 * When the device is started it should not have a MAC address
1245 * to avoid acknowledging frames before a non-monitor device
1246 * is added.
1247 * Must be implemented.
1248 *
1249 * @stop: Called after last netdevice attached to the hardware
1250 * is disabled. This should turn off the hardware (at least
1251 * it must turn off frame reception.)
1252 * May be called right after add_interface if that rejects
1253 * an interface.
1254 * Must be implemented.
1255 *
1256 * @add_interface: Called when a netdevice attached to the hardware is
1257 * enabled. Because it is not called for monitor mode devices, @start
1258 * and @stop must be implemented.
1259 * The driver should perform any initialization it needs before
1260 * the device can be enabled. The initial configuration for the
1261 * interface is given in the conf parameter.
1262 * The callback may refuse to add an interface by returning a
1263 * negative error code (which will be seen in userspace.)
1264 * Must be implemented.
1265 *
1266 * @remove_interface: Notifies a driver that an interface is going down.
1267 * The @stop callback is called after this if it is the last interface
1268 * and no monitor interfaces are present.
1269 * When all interfaces are removed, the MAC address in the hardware
1270 * must be cleared so the device no longer acknowledges packets,
1271 * the mac_addr member of the conf structure is, however, set to the
1272 * MAC address of the device going away.
1273 * Hence, this callback must be implemented.
1274 *
1275 * @config: Handler for configuration requests. IEEE 802.11 code calls this
1276 * function to change hardware configuration, e.g., channel.
1277 * This function should never fail but returns a negative error code
1278 * if it does.
1279 *
1280 * @config_interface: Handler for configuration requests related to interfaces
1281 * (e.g. BSSID changes.)
1282 * Returns a negative error code which will be seen in userspace.
1283 *
1284 * @bss_info_changed: Handler for configuration requests related to BSS
1285 * parameters that may vary during BSS's lifespan, and may affect low
1286 * level driver (e.g. assoc/disassoc status, erp parameters).
1287 * This function should not be used if no BSS has been set, unless
1288 * for association indication. The @changed parameter indicates which
1289 * of the bss parameters has changed when a call is made.
1290 *
1291 * @configure_filter: Configure the device's RX filter.
1292 * See the section "Frame filtering" for more information.
1293 * This callback must be implemented and atomic.
1294 *
1295 * @set_tim: Set TIM bit. mac80211 calls this function when a TIM bit
1296 * must be set or cleared for a given STA. Must be atomic.
1297 *
1298 * @set_key: See the section "Hardware crypto acceleration"
1299 * This callback can sleep, and is only called between add_interface
1300 * and remove_interface calls, i.e. while the given virtual interface
1301 * is enabled.
1302 * Returns a negative error code if the key can't be added.
1303 *
1304 * @update_tkip_key: See the section "Hardware crypto acceleration"
1305 * This callback will be called in the context of Rx. Called for drivers
1306 * which set IEEE80211_KEY_FLAG_TKIP_REQ_RX_P1_KEY.
1307 *
1308 * @hw_scan: Ask the hardware to service the scan request, no need to start
1309 * the scan state machine in stack. The scan must honour the channel
1310 * configuration done by the regulatory agent in the wiphy's
1311 * registered bands. The hardware (or the driver) needs to make sure
1312 * that power save is disabled. When the scan finishes,
1313 * ieee80211_scan_completed() must be called; note that it also must
1314 * be called when the scan cannot finish because the hardware is
1315 * turned off! Anything else is a bug! Returns a negative error code
1316 * which will be seen in userspace.
1317 *
1318 * @sw_scan_start: Notifier function that is called just before a software scan
1319 * is started. Can be NULL, if the driver doesn't need this notification.
1320 *
1321 * @sw_scan_complete: Notifier function that is called just after a software scan
1322 * finished. Can be NULL, if the driver doesn't need this notification.
1323 *
1324 * @get_stats: Return low-level statistics.
1325 * Returns zero if statistics are available.
1326 *
1327 * @get_tkip_seq: If your device implements TKIP encryption in hardware this
1328 * callback should be provided to read the TKIP transmit IVs (both IV32
1329 * and IV16) for the given key from hardware.
1330 *
1331 * @set_rts_threshold: Configuration of RTS threshold (if device needs it)
1332 *
1333 * @sta_notify: Notifies low level driver about addition, removal or power
1334 * state transition of an associated station, AP, IBSS/WDS/mesh peer etc.
1335 * Must be atomic.
1336 *
1337 * @conf_tx: Configure TX queue parameters (EDCF (aifs, cw_min, cw_max),
1338 * bursting) for a hardware TX queue.
1339 * Returns a negative error code on failure.
1340 *
1341 * @get_tx_stats: Get statistics of the current TX queue status. This is used
1342 * to get number of currently queued packets (queue length), maximum queue
1343 * size (limit), and total number of packets sent using each TX queue
1344 * (count). The 'stats' pointer points to an array that has hw->queues +
1345 * hw->ampdu_queues items.
1346 *
1347 * @get_tsf: Get the current TSF timer value from firmware/hardware. Currently,
1348 * this is only used for IBSS mode BSSID merging and debugging. Is not a
1349 * required function.
1350 *
1351 * @set_tsf: Set the TSF timer to the specified value in the firmware/hardware.
1352 * Currently, this is only used for IBSS mode debugging. Is not a
1353 * required function.
1354 *
1355 * @reset_tsf: Reset the TSF timer and allow firmware/hardware to synchronize
1356 * with other STAs in the IBSS. This is only used in IBSS mode. This
1357 * function is optional if the firmware/hardware takes full care of
1358 * TSF synchronization.
1359 *
1360 * @tx_last_beacon: Determine whether the last IBSS beacon was sent by us.
1361 * This is needed only for IBSS mode and the result of this function is
1362 * used to determine whether to reply to Probe Requests.
1363 * Returns non-zero if this device sent the last beacon.
1364 *
1365 * @ampdu_action: Perform a certain A-MPDU action
1366 * The RA/TID combination determines the destination and TID we want
1367 * the ampdu action to be performed for. The action is defined through
1368 * ieee80211_ampdu_mlme_action. Starting sequence number (@ssn)
1369 * is the first frame we expect to perform the action on. Notice
1370 * that TX/RX_STOP can pass NULL for this parameter.
1371 * Returns a negative error code on failure.
1372 */
1373 struct ieee80211_ops {
1374 int (*tx)(struct ieee80211_hw *hw, struct sk_buff *skb);
1375 int (*start)(struct ieee80211_hw *hw);
1376 void (*stop)(struct ieee80211_hw *hw);
1377 int (*add_interface)(struct ieee80211_hw *hw,
1378 struct ieee80211_if_init_conf *conf);
1379 void (*remove_interface)(struct ieee80211_hw *hw,
1380 struct ieee80211_if_init_conf *conf);
1381 int (*config)(struct ieee80211_hw *hw, u32 changed);
1382 int (*config_interface)(struct ieee80211_hw *hw,
1383 struct ieee80211_vif *vif,
1384 struct ieee80211_if_conf *conf);
1385 void (*bss_info_changed)(struct ieee80211_hw *hw,
1386 struct ieee80211_vif *vif,
1387 struct ieee80211_bss_conf *info,
1388 u32 changed);
1389 void (*configure_filter)(struct ieee80211_hw *hw,
1390 unsigned int changed_flags,
1391 unsigned int *total_flags,
1392 int mc_count, struct dev_addr_list *mc_list);
1393 int (*set_tim)(struct ieee80211_hw *hw, struct ieee80211_sta *sta,
1394 bool set);
1395 int (*set_key)(struct ieee80211_hw *hw, enum set_key_cmd cmd,
1396 struct ieee80211_vif *vif, struct ieee80211_sta *sta,
1397 struct ieee80211_key_conf *key);
1398 void (*update_tkip_key)(struct ieee80211_hw *hw,
1399 struct ieee80211_key_conf *conf, const u8 *address,
1400 u32 iv32, u16 *phase1key);
1401 int (*hw_scan)(struct ieee80211_hw *hw,
1402 struct cfg80211_scan_request *req);
1403 void (*sw_scan_start)(struct ieee80211_hw *hw);
1404 void (*sw_scan_complete)(struct ieee80211_hw *hw);
1405 int (*get_stats)(struct ieee80211_hw *hw,
1406 struct ieee80211_low_level_stats *stats);
1407 void (*get_tkip_seq)(struct ieee80211_hw *hw, u8 hw_key_idx,
1408 u32 *iv32, u16 *iv16);
1409 int (*set_rts_threshold)(struct ieee80211_hw *hw, u32 value);
1410 void (*sta_notify)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1411 enum sta_notify_cmd, struct ieee80211_sta *sta);
1412 int (*conf_tx)(struct ieee80211_hw *hw, u16 queue,
1413 const struct ieee80211_tx_queue_params *params);
1414 int (*get_tx_stats)(struct ieee80211_hw *hw,
1415 struct ieee80211_tx_queue_stats *stats);
1416 u64 (*get_tsf)(struct ieee80211_hw *hw);
1417 void (*set_tsf)(struct ieee80211_hw *hw, u64 tsf);
1418 void (*reset_tsf)(struct ieee80211_hw *hw);
1419 int (*tx_last_beacon)(struct ieee80211_hw *hw);
1420 int (*ampdu_action)(struct ieee80211_hw *hw,
1421 enum ieee80211_ampdu_mlme_action action,
1422 struct ieee80211_sta *sta, u16 tid, u16 *ssn);
1423 };
1424
1425 /**
1426 * ieee80211_alloc_hw - Allocate a new hardware device
1427 *
1428 * This must be called once for each hardware device. The returned pointer
1429 * must be used to refer to this device when calling other functions.
1430 * mac80211 allocates a private data area for the driver pointed to by
1431 * @priv in &struct ieee80211_hw, the size of this area is given as
1432 * @priv_data_len.
1433 *
1434 * @priv_data_len: length of private data
1435 * @ops: callbacks for this device
1436 */
1437 struct ieee80211_hw *ieee80211_alloc_hw(size_t priv_data_len,
1438 const struct ieee80211_ops *ops);
1439
1440 /**
1441 * ieee80211_register_hw - Register hardware device
1442 *
1443 * You must call this function before any other functions in
1444 * mac80211. Note that before a hardware can be registered, you
1445 * need to fill the contained wiphy's information.
1446 *
1447 * @hw: the device to register as returned by ieee80211_alloc_hw()
1448 */
1449 int ieee80211_register_hw(struct ieee80211_hw *hw);
1450
1451 #ifdef CONFIG_MAC80211_LEDS
1452 extern char *__ieee80211_get_tx_led_name(struct ieee80211_hw *hw);
1453 extern char *__ieee80211_get_rx_led_name(struct ieee80211_hw *hw);
1454 extern char *__ieee80211_get_assoc_led_name(struct ieee80211_hw *hw);
1455 extern char *__ieee80211_get_radio_led_name(struct ieee80211_hw *hw);
1456 #endif
1457 /**
1458 * ieee80211_get_tx_led_name - get name of TX LED
1459 *
1460 * mac80211 creates a transmit LED trigger for each wireless hardware
1461 * that can be used to drive LEDs if your driver registers a LED device.
1462 * This function returns the name (or %NULL if not configured for LEDs)
1463 * of the trigger so you can automatically link the LED device.
1464 *
1465 * @hw: the hardware to get the LED trigger name for
1466 */
1467 static inline char *ieee80211_get_tx_led_name(struct ieee80211_hw *hw)
1468 {
1469 #ifdef CONFIG_MAC80211_LEDS
1470 return __ieee80211_get_tx_led_name(hw);
1471 #else
1472 return NULL;
1473 #endif
1474 }
1475
1476 /**
1477 * ieee80211_get_rx_led_name - get name of RX LED
1478 *
1479 * mac80211 creates a receive LED trigger for each wireless hardware
1480 * that can be used to drive LEDs if your driver registers a LED device.
1481 * This function returns the name (or %NULL if not configured for LEDs)
1482 * of the trigger so you can automatically link the LED device.
1483 *
1484 * @hw: the hardware to get the LED trigger name for
1485 */
1486 static inline char *ieee80211_get_rx_led_name(struct ieee80211_hw *hw)
1487 {
1488 #ifdef CONFIG_MAC80211_LEDS
1489 return __ieee80211_get_rx_led_name(hw);
1490 #else
1491 return NULL;
1492 #endif
1493 }
1494
1495 /**
1496 * ieee80211_get_assoc_led_name - get name of association LED
1497 *
1498 * mac80211 creates a association LED trigger for each wireless hardware
1499 * that can be used to drive LEDs if your driver registers a LED device.
1500 * This function returns the name (or %NULL if not configured for LEDs)
1501 * of the trigger so you can automatically link the LED device.
1502 *
1503 * @hw: the hardware to get the LED trigger name for
1504 */
1505 static inline char *ieee80211_get_assoc_led_name(struct ieee80211_hw *hw)
1506 {
1507 #ifdef CONFIG_MAC80211_LEDS
1508 return __ieee80211_get_assoc_led_name(hw);
1509 #else
1510 return NULL;
1511 #endif
1512 }
1513
1514 /**
1515 * ieee80211_get_radio_led_name - get name of radio LED
1516 *
1517 * mac80211 creates a radio change LED trigger for each wireless hardware
1518 * that can be used to drive LEDs if your driver registers a LED device.
1519 * This function returns the name (or %NULL if not configured for LEDs)
1520 * of the trigger so you can automatically link the LED device.
1521 *
1522 * @hw: the hardware to get the LED trigger name for
1523 */
1524 static inline char *ieee80211_get_radio_led_name(struct ieee80211_hw *hw)
1525 {
1526 #ifdef CONFIG_MAC80211_LEDS
1527 return __ieee80211_get_radio_led_name(hw);
1528 #else
1529 return NULL;
1530 #endif
1531 }
1532
1533 /**
1534 * ieee80211_unregister_hw - Unregister a hardware device
1535 *
1536 * This function instructs mac80211 to free allocated resources
1537 * and unregister netdevices from the networking subsystem.
1538 *
1539 * @hw: the hardware to unregister
1540 */
1541 void ieee80211_unregister_hw(struct ieee80211_hw *hw);
1542
1543 /**
1544 * ieee80211_free_hw - free hardware descriptor
1545 *
1546 * This function frees everything that was allocated, including the
1547 * private data for the driver. You must call ieee80211_unregister_hw()
1548 * before calling this function.
1549 *
1550 * @hw: the hardware to free
1551 */
1552 void ieee80211_free_hw(struct ieee80211_hw *hw);
1553
1554 /* trick to avoid symbol clashes with the ieee80211 subsystem */
1555 void __ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb,
1556 struct ieee80211_rx_status *status);
1557
1558 /**
1559 * ieee80211_rx - receive frame
1560 *
1561 * Use this function to hand received frames to mac80211. The receive
1562 * buffer in @skb must start with an IEEE 802.11 header or a radiotap
1563 * header if %RX_FLAG_RADIOTAP is set in the @status flags.
1564 *
1565 * This function may not be called in IRQ context. Calls to this function
1566 * for a single hardware must be synchronized against each other. Calls
1567 * to this function and ieee80211_rx_irqsafe() may not be mixed for a
1568 * single hardware.
1569 *
1570 * @hw: the hardware this frame came in on
1571 * @skb: the buffer to receive, owned by mac80211 after this call
1572 * @status: status of this frame; the status pointer need not be valid
1573 * after this function returns
1574 */
1575 static inline void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb,
1576 struct ieee80211_rx_status *status)
1577 {
1578 __ieee80211_rx(hw, skb, status);
1579 }
1580
1581 /**
1582 * ieee80211_rx_irqsafe - receive frame
1583 *
1584 * Like ieee80211_rx() but can be called in IRQ context
1585 * (internally defers to a tasklet.)
1586 *
1587 * Calls to this function and ieee80211_rx() may not be mixed for a
1588 * single hardware.
1589 *
1590 * @hw: the hardware this frame came in on
1591 * @skb: the buffer to receive, owned by mac80211 after this call
1592 * @status: status of this frame; the status pointer need not be valid
1593 * after this function returns and is not freed by mac80211,
1594 * it is recommended that it points to a stack area
1595 */
1596 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw,
1597 struct sk_buff *skb,
1598 struct ieee80211_rx_status *status);
1599
1600 /**
1601 * ieee80211_tx_status - transmit status callback
1602 *
1603 * Call this function for all transmitted frames after they have been
1604 * transmitted. It is permissible to not call this function for
1605 * multicast frames but this can affect statistics.
1606 *
1607 * This function may not be called in IRQ context. Calls to this function
1608 * for a single hardware must be synchronized against each other. Calls
1609 * to this function and ieee80211_tx_status_irqsafe() may not be mixed
1610 * for a single hardware.
1611 *
1612 * @hw: the hardware the frame was transmitted by
1613 * @skb: the frame that was transmitted, owned by mac80211 after this call
1614 */
1615 void ieee80211_tx_status(struct ieee80211_hw *hw,
1616 struct sk_buff *skb);
1617
1618 /**
1619 * ieee80211_tx_status_irqsafe - IRQ-safe transmit status callback
1620 *
1621 * Like ieee80211_tx_status() but can be called in IRQ context
1622 * (internally defers to a tasklet.)
1623 *
1624 * Calls to this function and ieee80211_tx_status() may not be mixed for a
1625 * single hardware.
1626 *
1627 * @hw: the hardware the frame was transmitted by
1628 * @skb: the frame that was transmitted, owned by mac80211 after this call
1629 */
1630 void ieee80211_tx_status_irqsafe(struct ieee80211_hw *hw,
1631 struct sk_buff *skb);
1632
1633 /**
1634 * ieee80211_beacon_get - beacon generation function
1635 * @hw: pointer obtained from ieee80211_alloc_hw().
1636 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1637 *
1638 * If the beacon frames are generated by the host system (i.e., not in
1639 * hardware/firmware), the low-level driver uses this function to receive
1640 * the next beacon frame from the 802.11 code. The low-level is responsible
1641 * for calling this function before beacon data is needed (e.g., based on
1642 * hardware interrupt). Returned skb is used only once and low-level driver
1643 * is responsible for freeing it.
1644 */
1645 struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw,
1646 struct ieee80211_vif *vif);
1647
1648 /**
1649 * ieee80211_rts_get - RTS frame generation function
1650 * @hw: pointer obtained from ieee80211_alloc_hw().
1651 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1652 * @frame: pointer to the frame that is going to be protected by the RTS.
1653 * @frame_len: the frame length (in octets).
1654 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1655 * @rts: The buffer where to store the RTS frame.
1656 *
1657 * If the RTS frames are generated by the host system (i.e., not in
1658 * hardware/firmware), the low-level driver uses this function to receive
1659 * the next RTS frame from the 802.11 code. The low-level is responsible
1660 * for calling this function before and RTS frame is needed.
1661 */
1662 void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1663 const void *frame, size_t frame_len,
1664 const struct ieee80211_tx_info *frame_txctl,
1665 struct ieee80211_rts *rts);
1666
1667 /**
1668 * ieee80211_rts_duration - Get the duration field for an RTS frame
1669 * @hw: pointer obtained from ieee80211_alloc_hw().
1670 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1671 * @frame_len: the length of the frame that is going to be protected by the RTS.
1672 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1673 *
1674 * If the RTS is generated in firmware, but the host system must provide
1675 * the duration field, the low-level driver uses this function to receive
1676 * the duration field value in little-endian byteorder.
1677 */
1678 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw,
1679 struct ieee80211_vif *vif, size_t frame_len,
1680 const struct ieee80211_tx_info *frame_txctl);
1681
1682 /**
1683 * ieee80211_ctstoself_get - CTS-to-self frame generation function
1684 * @hw: pointer obtained from ieee80211_alloc_hw().
1685 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1686 * @frame: pointer to the frame that is going to be protected by the CTS-to-self.
1687 * @frame_len: the frame length (in octets).
1688 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1689 * @cts: The buffer where to store the CTS-to-self frame.
1690 *
1691 * If the CTS-to-self frames are generated by the host system (i.e., not in
1692 * hardware/firmware), the low-level driver uses this function to receive
1693 * the next CTS-to-self frame from the 802.11 code. The low-level is responsible
1694 * for calling this function before and CTS-to-self frame is needed.
1695 */
1696 void ieee80211_ctstoself_get(struct ieee80211_hw *hw,
1697 struct ieee80211_vif *vif,
1698 const void *frame, size_t frame_len,
1699 const struct ieee80211_tx_info *frame_txctl,
1700 struct ieee80211_cts *cts);
1701
1702 /**
1703 * ieee80211_ctstoself_duration - Get the duration field for a CTS-to-self frame
1704 * @hw: pointer obtained from ieee80211_alloc_hw().
1705 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1706 * @frame_len: the length of the frame that is going to be protected by the CTS-to-self.
1707 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1708 *
1709 * If the CTS-to-self is generated in firmware, but the host system must provide
1710 * the duration field, the low-level driver uses this function to receive
1711 * the duration field value in little-endian byteorder.
1712 */
1713 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw,
1714 struct ieee80211_vif *vif,
1715 size_t frame_len,
1716 const struct ieee80211_tx_info *frame_txctl);
1717
1718 /**
1719 * ieee80211_generic_frame_duration - Calculate the duration field for a frame
1720 * @hw: pointer obtained from ieee80211_alloc_hw().
1721 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1722 * @frame_len: the length of the frame.
1723 * @rate: the rate at which the frame is going to be transmitted.
1724 *
1725 * Calculate the duration field of some generic frame, given its
1726 * length and transmission rate (in 100kbps).
1727 */
1728 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw,
1729 struct ieee80211_vif *vif,
1730 size_t frame_len,
1731 struct ieee80211_rate *rate);
1732
1733 /**
1734 * ieee80211_get_buffered_bc - accessing buffered broadcast and multicast frames
1735 * @hw: pointer as obtained from ieee80211_alloc_hw().
1736 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1737 *
1738 * Function for accessing buffered broadcast and multicast frames. If
1739 * hardware/firmware does not implement buffering of broadcast/multicast
1740 * frames when power saving is used, 802.11 code buffers them in the host
1741 * memory. The low-level driver uses this function to fetch next buffered
1742 * frame. In most cases, this is used when generating beacon frame. This
1743 * function returns a pointer to the next buffered skb or NULL if no more
1744 * buffered frames are available.
1745 *
1746 * Note: buffered frames are returned only after DTIM beacon frame was
1747 * generated with ieee80211_beacon_get() and the low-level driver must thus
1748 * call ieee80211_beacon_get() first. ieee80211_get_buffered_bc() returns
1749 * NULL if the previous generated beacon was not DTIM, so the low-level driver
1750 * does not need to check for DTIM beacons separately and should be able to
1751 * use common code for all beacons.
1752 */
1753 struct sk_buff *
1754 ieee80211_get_buffered_bc(struct ieee80211_hw *hw, struct ieee80211_vif *vif);
1755
1756 /**
1757 * ieee80211_get_hdrlen_from_skb - get header length from data
1758 *
1759 * Given an skb with a raw 802.11 header at the data pointer this function
1760 * returns the 802.11 header length in bytes (not including encryption
1761 * headers). If the data in the sk_buff is too short to contain a valid 802.11
1762 * header the function returns 0.
1763 *
1764 * @skb: the frame
1765 */
1766 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb);
1767
1768 /**
1769 * ieee80211_hdrlen - get header length in bytes from frame control
1770 * @fc: frame control field in little-endian format
1771 */
1772 unsigned int ieee80211_hdrlen(__le16 fc);
1773
1774 /**
1775 * ieee80211_get_tkip_key - get a TKIP rc4 for skb
1776 *
1777 * This function computes a TKIP rc4 key for an skb. It computes
1778 * a phase 1 key if needed (iv16 wraps around). This function is to
1779 * be used by drivers which can do HW encryption but need to compute
1780 * to phase 1/2 key in SW.
1781 *
1782 * @keyconf: the parameter passed with the set key
1783 * @skb: the skb for which the key is needed
1784 * @type: TBD
1785 * @key: a buffer to which the key will be written
1786 */
1787 void ieee80211_get_tkip_key(struct ieee80211_key_conf *keyconf,
1788 struct sk_buff *skb,
1789 enum ieee80211_tkip_key_type type, u8 *key);
1790 /**
1791 * ieee80211_wake_queue - wake specific queue
1792 * @hw: pointer as obtained from ieee80211_alloc_hw().
1793 * @queue: queue number (counted from zero).
1794 *
1795 * Drivers should use this function instead of netif_wake_queue.
1796 */
1797 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue);
1798
1799 /**
1800 * ieee80211_stop_queue - stop specific queue
1801 * @hw: pointer as obtained from ieee80211_alloc_hw().
1802 * @queue: queue number (counted from zero).
1803 *
1804 * Drivers should use this function instead of netif_stop_queue.
1805 */
1806 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue);
1807
1808 /**
1809 * ieee80211_queue_stopped - test status of the queue
1810 * @hw: pointer as obtained from ieee80211_alloc_hw().
1811 * @queue: queue number (counted from zero).
1812 *
1813 * Drivers should use this function instead of netif_stop_queue.
1814 */
1815
1816 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue);
1817
1818 /**
1819 * ieee80211_stop_queues - stop all queues
1820 * @hw: pointer as obtained from ieee80211_alloc_hw().
1821 *
1822 * Drivers should use this function instead of netif_stop_queue.
1823 */
1824 void ieee80211_stop_queues(struct ieee80211_hw *hw);
1825
1826 /**
1827 * ieee80211_wake_queues - wake all queues
1828 * @hw: pointer as obtained from ieee80211_alloc_hw().
1829 *
1830 * Drivers should use this function instead of netif_wake_queue.
1831 */
1832 void ieee80211_wake_queues(struct ieee80211_hw *hw);
1833
1834 /**
1835 * ieee80211_scan_completed - completed hardware scan
1836 *
1837 * When hardware scan offload is used (i.e. the hw_scan() callback is
1838 * assigned) this function needs to be called by the driver to notify
1839 * mac80211 that the scan finished.
1840 *
1841 * @hw: the hardware that finished the scan
1842 * @aborted: set to true if scan was aborted
1843 */
1844 void ieee80211_scan_completed(struct ieee80211_hw *hw, bool aborted);
1845
1846 /**
1847 * ieee80211_iterate_active_interfaces - iterate active interfaces
1848 *
1849 * This function iterates over the interfaces associated with a given
1850 * hardware that are currently active and calls the callback for them.
1851 * This function allows the iterator function to sleep, when the iterator
1852 * function is atomic @ieee80211_iterate_active_interfaces_atomic can
1853 * be used.
1854 *
1855 * @hw: the hardware struct of which the interfaces should be iterated over
1856 * @iterator: the iterator function to call
1857 * @data: first argument of the iterator function
1858 */
1859 void ieee80211_iterate_active_interfaces(struct ieee80211_hw *hw,
1860 void (*iterator)(void *data, u8 *mac,
1861 struct ieee80211_vif *vif),
1862 void *data);
1863
1864 /**
1865 * ieee80211_iterate_active_interfaces_atomic - iterate active interfaces
1866 *
1867 * This function iterates over the interfaces associated with a given
1868 * hardware that are currently active and calls the callback for them.
1869 * This function requires the iterator callback function to be atomic,
1870 * if that is not desired, use @ieee80211_iterate_active_interfaces instead.
1871 *
1872 * @hw: the hardware struct of which the interfaces should be iterated over
1873 * @iterator: the iterator function to call, cannot sleep
1874 * @data: first argument of the iterator function
1875 */
1876 void ieee80211_iterate_active_interfaces_atomic(struct ieee80211_hw *hw,
1877 void (*iterator)(void *data,
1878 u8 *mac,
1879 struct ieee80211_vif *vif),
1880 void *data);
1881
1882 /**
1883 * ieee80211_start_tx_ba_session - Start a tx Block Ack session.
1884 * @hw: pointer as obtained from ieee80211_alloc_hw().
1885 * @ra: receiver address of the BA session recipient
1886 * @tid: the TID to BA on.
1887 *
1888 * Return: success if addBA request was sent, failure otherwise
1889 *
1890 * Although mac80211/low level driver/user space application can estimate
1891 * the need to start aggregation on a certain RA/TID, the session level
1892 * will be managed by the mac80211.
1893 */
1894 int ieee80211_start_tx_ba_session(struct ieee80211_hw *hw, u8 *ra, u16 tid);
1895
1896 /**
1897 * ieee80211_start_tx_ba_cb - low level driver ready to aggregate.
1898 * @hw: pointer as obtained from ieee80211_alloc_hw().
1899 * @ra: receiver address of the BA session recipient.
1900 * @tid: the TID to BA on.
1901 *
1902 * This function must be called by low level driver once it has
1903 * finished with preparations for the BA session.
1904 */
1905 void ieee80211_start_tx_ba_cb(struct ieee80211_hw *hw, u8 *ra, u16 tid);
1906
1907 /**
1908 * ieee80211_start_tx_ba_cb_irqsafe - low level driver ready to aggregate.
1909 * @hw: pointer as obtained from ieee80211_alloc_hw().
1910 * @ra: receiver address of the BA session recipient.
1911 * @tid: the TID to BA on.
1912 *
1913 * This function must be called by low level driver once it has
1914 * finished with preparations for the BA session.
1915 * This version of the function is IRQ-safe.
1916 */
1917 void ieee80211_start_tx_ba_cb_irqsafe(struct ieee80211_hw *hw, const u8 *ra,
1918 u16 tid);
1919
1920 /**
1921 * ieee80211_stop_tx_ba_session - Stop a Block Ack session.
1922 * @hw: pointer as obtained from ieee80211_alloc_hw().
1923 * @ra: receiver address of the BA session recipient
1924 * @tid: the TID to stop BA.
1925 * @initiator: if indicates initiator DELBA frame will be sent.
1926 *
1927 * Return: error if no sta with matching da found, success otherwise
1928 *
1929 * Although mac80211/low level driver/user space application can estimate
1930 * the need to stop aggregation on a certain RA/TID, the session level
1931 * will be managed by the mac80211.
1932 */
1933 int ieee80211_stop_tx_ba_session(struct ieee80211_hw *hw,
1934 u8 *ra, u16 tid,
1935 enum ieee80211_back_parties initiator);
1936
1937 /**
1938 * ieee80211_stop_tx_ba_cb - low level driver ready to stop aggregate.
1939 * @hw: pointer as obtained from ieee80211_alloc_hw().
1940 * @ra: receiver address of the BA session recipient.
1941 * @tid: the desired TID to BA on.
1942 *
1943 * This function must be called by low level driver once it has
1944 * finished with preparations for the BA session tear down.
1945 */
1946 void ieee80211_stop_tx_ba_cb(struct ieee80211_hw *hw, u8 *ra, u8 tid);
1947
1948 /**
1949 * ieee80211_stop_tx_ba_cb_irqsafe - low level driver ready to stop aggregate.
1950 * @hw: pointer as obtained from ieee80211_alloc_hw().
1951 * @ra: receiver address of the BA session recipient.
1952 * @tid: the desired TID to BA on.
1953 *
1954 * This function must be called by low level driver once it has
1955 * finished with preparations for the BA session tear down.
1956 * This version of the function is IRQ-safe.
1957 */
1958 void ieee80211_stop_tx_ba_cb_irqsafe(struct ieee80211_hw *hw, const u8 *ra,
1959 u16 tid);
1960
1961 /**
1962 * ieee80211_find_sta - find a station
1963 *
1964 * @hw: pointer as obtained from ieee80211_alloc_hw()
1965 * @addr: station's address
1966 *
1967 * This function must be called under RCU lock and the
1968 * resulting pointer is only valid under RCU lock as well.
1969 */
1970 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_hw *hw,
1971 const u8 *addr);
1972
1973
1974 /* Rate control API */
1975
1976 /**
1977 * enum rate_control_changed - flags to indicate which parameter changed
1978 *
1979 * @IEEE80211_RC_HT_CHANGED: The HT parameters of the operating channel have
1980 * changed, rate control algorithm can update its internal state if needed.
1981 */
1982 enum rate_control_changed {
1983 IEEE80211_RC_HT_CHANGED = BIT(0)
1984 };
1985
1986 /**
1987 * struct ieee80211_tx_rate_control - rate control information for/from RC algo
1988 *
1989 * @hw: The hardware the algorithm is invoked for.
1990 * @sband: The band this frame is being transmitted on.
1991 * @bss_conf: the current BSS configuration
1992 * @reported_rate: The rate control algorithm can fill this in to indicate
1993 * which rate should be reported to userspace as the current rate and
1994 * used for rate calculations in the mesh network.
1995 * @rts: whether RTS will be used for this frame because it is longer than the
1996 * RTS threshold
1997 * @short_preamble: whether mac80211 will request short-preamble transmission
1998 * if the selected rate supports it
1999 * @max_rate_idx: user-requested maximum rate (not MCS for now)
2000 * @skb: the skb that will be transmitted, the control information in it needs
2001 * to be filled in
2002 */
2003 struct ieee80211_tx_rate_control {
2004 struct ieee80211_hw *hw;
2005 struct ieee80211_supported_band *sband;
2006 struct ieee80211_bss_conf *bss_conf;
2007 struct sk_buff *skb;
2008 struct ieee80211_tx_rate reported_rate;
2009 bool rts, short_preamble;
2010 u8 max_rate_idx;
2011 };
2012
2013 struct rate_control_ops {
2014 struct module *module;
2015 const char *name;
2016 void *(*alloc)(struct ieee80211_hw *hw, struct dentry *debugfsdir);
2017 void (*free)(void *priv);
2018
2019 void *(*alloc_sta)(void *priv, struct ieee80211_sta *sta, gfp_t gfp);
2020 void (*rate_init)(void *priv, struct ieee80211_supported_band *sband,
2021 struct ieee80211_sta *sta, void *priv_sta);
2022 void (*rate_update)(void *priv, struct ieee80211_supported_band *sband,
2023 struct ieee80211_sta *sta,
2024 void *priv_sta, u32 changed);
2025 void (*free_sta)(void *priv, struct ieee80211_sta *sta,
2026 void *priv_sta);
2027
2028 void (*tx_status)(void *priv, struct ieee80211_supported_band *sband,
2029 struct ieee80211_sta *sta, void *priv_sta,
2030 struct sk_buff *skb);
2031 void (*get_rate)(void *priv, struct ieee80211_sta *sta, void *priv_sta,
2032 struct ieee80211_tx_rate_control *txrc);
2033
2034 void (*add_sta_debugfs)(void *priv, void *priv_sta,
2035 struct dentry *dir);
2036 void (*remove_sta_debugfs)(void *priv, void *priv_sta);
2037 };
2038
2039 static inline int rate_supported(struct ieee80211_sta *sta,
2040 enum ieee80211_band band,
2041 int index)
2042 {
2043 return (sta == NULL || sta->supp_rates[band] & BIT(index));
2044 }
2045
2046 static inline s8
2047 rate_lowest_index(struct ieee80211_supported_band *sband,
2048 struct ieee80211_sta *sta)
2049 {
2050 int i;
2051
2052 for (i = 0; i < sband->n_bitrates; i++)
2053 if (rate_supported(sta, sband->band, i))
2054 return i;
2055
2056 /* warn when we cannot find a rate. */
2057 WARN_ON(1);
2058
2059 return 0;
2060 }
2061
2062
2063 int ieee80211_rate_control_register(struct rate_control_ops *ops);
2064 void ieee80211_rate_control_unregister(struct rate_control_ops *ops);
2065
2066 static inline bool
2067 conf_is_ht20(struct ieee80211_conf *conf)
2068 {
2069 return conf->channel_type == NL80211_CHAN_HT20;
2070 }
2071
2072 static inline bool
2073 conf_is_ht40_minus(struct ieee80211_conf *conf)
2074 {
2075 return conf->channel_type == NL80211_CHAN_HT40MINUS;
2076 }
2077
2078 static inline bool
2079 conf_is_ht40_plus(struct ieee80211_conf *conf)
2080 {
2081 return conf->channel_type == NL80211_CHAN_HT40PLUS;
2082 }
2083
2084 static inline bool
2085 conf_is_ht40(struct ieee80211_conf *conf)
2086 {
2087 return conf_is_ht40_minus(conf) || conf_is_ht40_plus(conf);
2088 }
2089
2090 static inline bool
2091 conf_is_ht(struct ieee80211_conf *conf)
2092 {
2093 return conf->channel_type != NL80211_CHAN_NO_HT;
2094 }
2095
2096 #endif /* MAC80211_H */
This page took 0.156153 seconds and 5 git commands to generate.