d4e09a06b4a20dc3967c0da32546b0add20a2b26
[deliverable/linux.git] / include / net / mac80211.h
1 /*
2 * mac80211 <-> driver interface
3 *
4 * Copyright 2002-2005, Devicescape Software, Inc.
5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
6 * Copyright 2007-2008 Johannes Berg <johannes@sipsolutions.net>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #ifndef MAC80211_H
14 #define MAC80211_H
15
16 #include <linux/kernel.h>
17 #include <linux/if_ether.h>
18 #include <linux/skbuff.h>
19 #include <linux/wireless.h>
20 #include <linux/device.h>
21 #include <linux/ieee80211.h>
22 #include <net/cfg80211.h>
23
24 /**
25 * DOC: Introduction
26 *
27 * mac80211 is the Linux stack for 802.11 hardware that implements
28 * only partial functionality in hard- or firmware. This document
29 * defines the interface between mac80211 and low-level hardware
30 * drivers.
31 */
32
33 /**
34 * DOC: Calling mac80211 from interrupts
35 *
36 * Only ieee80211_tx_status_irqsafe() and ieee80211_rx_irqsafe() can be
37 * called in hardware interrupt context. The low-level driver must not call any
38 * other functions in hardware interrupt context. If there is a need for such
39 * call, the low-level driver should first ACK the interrupt and perform the
40 * IEEE 802.11 code call after this, e.g. from a scheduled workqueue or even
41 * tasklet function.
42 *
43 * NOTE: If the driver opts to use the _irqsafe() functions, it may not also
44 * use the non-IRQ-safe functions!
45 */
46
47 /**
48 * DOC: Warning
49 *
50 * If you're reading this document and not the header file itself, it will
51 * be incomplete because not all documentation has been converted yet.
52 */
53
54 /**
55 * DOC: Frame format
56 *
57 * As a general rule, when frames are passed between mac80211 and the driver,
58 * they start with the IEEE 802.11 header and include the same octets that are
59 * sent over the air except for the FCS which should be calculated by the
60 * hardware.
61 *
62 * There are, however, various exceptions to this rule for advanced features:
63 *
64 * The first exception is for hardware encryption and decryption offload
65 * where the IV/ICV may or may not be generated in hardware.
66 *
67 * Secondly, when the hardware handles fragmentation, the frame handed to
68 * the driver from mac80211 is the MSDU, not the MPDU.
69 *
70 * Finally, for received frames, the driver is able to indicate that it has
71 * filled a radiotap header and put that in front of the frame; if it does
72 * not do so then mac80211 may add this under certain circumstances.
73 */
74
75 /**
76 * enum ieee80211_max_queues - maximum number of queues
77 *
78 * @IEEE80211_MAX_QUEUES: Maximum number of regular device queues.
79 */
80 enum ieee80211_max_queues {
81 IEEE80211_MAX_QUEUES = 4,
82 };
83
84 /**
85 * struct ieee80211_tx_queue_params - transmit queue configuration
86 *
87 * The information provided in this structure is required for QoS
88 * transmit queue configuration. Cf. IEEE 802.11 7.3.2.29.
89 *
90 * @aifs: arbitration interframe space [0..255]
91 * @cw_min: minimum contention window [a value of the form
92 * 2^n-1 in the range 1..32767]
93 * @cw_max: maximum contention window [like @cw_min]
94 * @txop: maximum burst time in units of 32 usecs, 0 meaning disabled
95 */
96 struct ieee80211_tx_queue_params {
97 u16 txop;
98 u16 cw_min;
99 u16 cw_max;
100 u8 aifs;
101 };
102
103 /**
104 * struct ieee80211_tx_queue_stats - transmit queue statistics
105 *
106 * @len: number of packets in queue
107 * @limit: queue length limit
108 * @count: number of frames sent
109 */
110 struct ieee80211_tx_queue_stats {
111 unsigned int len;
112 unsigned int limit;
113 unsigned int count;
114 };
115
116 struct ieee80211_low_level_stats {
117 unsigned int dot11ACKFailureCount;
118 unsigned int dot11RTSFailureCount;
119 unsigned int dot11FCSErrorCount;
120 unsigned int dot11RTSSuccessCount;
121 };
122
123 /**
124 * enum ieee80211_bss_change - BSS change notification flags
125 *
126 * These flags are used with the bss_info_changed() callback
127 * to indicate which BSS parameter changed.
128 *
129 * @BSS_CHANGED_ASSOC: association status changed (associated/disassociated),
130 * also implies a change in the AID.
131 * @BSS_CHANGED_ERP_CTS_PROT: CTS protection changed
132 * @BSS_CHANGED_ERP_PREAMBLE: preamble changed
133 * @BSS_CHANGED_ERP_SLOT: slot timing changed
134 * @BSS_CHANGED_HT: 802.11n parameters changed
135 * @BSS_CHANGED_BASIC_RATES: Basic rateset changed
136 * @BSS_CHANGED_BEACON_INT: Beacon interval changed
137 * @BSS_CHANGED_BSSID: BSSID changed, for whatever
138 * reason (IBSS and managed mode)
139 * @BSS_CHANGED_BEACON: Beacon data changed, retrieve
140 * new beacon (beaconing modes)
141 * @BSS_CHANGED_BEACON_ENABLED: Beaconing should be
142 * enabled/disabled (beaconing modes)
143 */
144 enum ieee80211_bss_change {
145 BSS_CHANGED_ASSOC = 1<<0,
146 BSS_CHANGED_ERP_CTS_PROT = 1<<1,
147 BSS_CHANGED_ERP_PREAMBLE = 1<<2,
148 BSS_CHANGED_ERP_SLOT = 1<<3,
149 BSS_CHANGED_HT = 1<<4,
150 BSS_CHANGED_BASIC_RATES = 1<<5,
151 BSS_CHANGED_BEACON_INT = 1<<6,
152 BSS_CHANGED_BSSID = 1<<7,
153 BSS_CHANGED_BEACON = 1<<8,
154 BSS_CHANGED_BEACON_ENABLED = 1<<9,
155 };
156
157 /**
158 * struct ieee80211_bss_conf - holds the BSS's changing parameters
159 *
160 * This structure keeps information about a BSS (and an association
161 * to that BSS) that can change during the lifetime of the BSS.
162 *
163 * @assoc: association status
164 * @aid: association ID number, valid only when @assoc is true
165 * @use_cts_prot: use CTS protection
166 * @use_short_preamble: use 802.11b short preamble;
167 * if the hardware cannot handle this it must set the
168 * IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE hardware flag
169 * @use_short_slot: use short slot time (only relevant for ERP);
170 * if the hardware cannot handle this it must set the
171 * IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE hardware flag
172 * @dtim_period: num of beacons before the next DTIM, for PSM
173 * @timestamp: beacon timestamp
174 * @beacon_int: beacon interval
175 * @assoc_capability: capabilities taken from assoc resp
176 * @basic_rates: bitmap of basic rates, each bit stands for an
177 * index into the rate table configured by the driver in
178 * the current band.
179 * @bssid: The BSSID for this BSS
180 * @enable_beacon: whether beaconing should be enabled or not
181 * @ht_operation_mode: HT operation mode (like in &struct ieee80211_ht_info).
182 * This field is only valid when the channel type is one of the HT types.
183 */
184 struct ieee80211_bss_conf {
185 const u8 *bssid;
186 /* association related data */
187 bool assoc;
188 u16 aid;
189 /* erp related data */
190 bool use_cts_prot;
191 bool use_short_preamble;
192 bool use_short_slot;
193 bool enable_beacon;
194 u8 dtim_period;
195 u16 beacon_int;
196 u16 assoc_capability;
197 u64 timestamp;
198 u32 basic_rates;
199 u16 ht_operation_mode;
200 };
201
202 /**
203 * enum mac80211_tx_control_flags - flags to describe transmission information/status
204 *
205 * These flags are used with the @flags member of &ieee80211_tx_info.
206 *
207 * @IEEE80211_TX_CTL_REQ_TX_STATUS: request TX status callback for this frame.
208 * @IEEE80211_TX_CTL_ASSIGN_SEQ: The driver has to assign a sequence
209 * number to this frame, taking care of not overwriting the fragment
210 * number and increasing the sequence number only when the
211 * IEEE80211_TX_CTL_FIRST_FRAGMENT flag is set. mac80211 will properly
212 * assign sequence numbers to QoS-data frames but cannot do so correctly
213 * for non-QoS-data and management frames because beacons need them from
214 * that counter as well and mac80211 cannot guarantee proper sequencing.
215 * If this flag is set, the driver should instruct the hardware to
216 * assign a sequence number to the frame or assign one itself. Cf. IEEE
217 * 802.11-2007 7.1.3.4.1 paragraph 3. This flag will always be set for
218 * beacons and always be clear for frames without a sequence number field.
219 * @IEEE80211_TX_CTL_NO_ACK: tell the low level not to wait for an ack
220 * @IEEE80211_TX_CTL_CLEAR_PS_FILT: clear powersave filter for destination
221 * station
222 * @IEEE80211_TX_CTL_FIRST_FRAGMENT: this is a first fragment of the frame
223 * @IEEE80211_TX_CTL_SEND_AFTER_DTIM: send this frame after DTIM beacon
224 * @IEEE80211_TX_CTL_AMPDU: this frame should be sent as part of an A-MPDU
225 * @IEEE80211_TX_CTL_INJECTED: Frame was injected, internal to mac80211.
226 * @IEEE80211_TX_STAT_TX_FILTERED: The frame was not transmitted
227 * because the destination STA was in powersave mode.
228 * @IEEE80211_TX_STAT_ACK: Frame was acknowledged
229 * @IEEE80211_TX_STAT_AMPDU: The frame was aggregated, so status
230 * is for the whole aggregation.
231 * @IEEE80211_TX_STAT_AMPDU_NO_BACK: no block ack was returned,
232 * so consider using block ack request (BAR).
233 * @IEEE80211_TX_CTL_RATE_CTRL_PROBE: internal to mac80211, can be
234 * set by rate control algorithms to indicate probe rate, will
235 * be cleared for fragmented frames (except on the last fragment)
236 * @IEEE80211_TX_INTFL_RCALGO: mac80211 internal flag, do not test or
237 * set this flag in the driver; indicates that the rate control
238 * algorithm was used and should be notified of TX status
239 * @IEEE80211_TX_INTFL_NEED_TXPROCESSING: completely internal to mac80211,
240 * used to indicate that a pending frame requires TX processing before
241 * it can be sent out.
242 * @IEEE80211_TX_INTFL_RETRIED: completely internal to mac80211,
243 * used to indicate that a frame was already retried due to PS
244 * @IEEE80211_TX_INTFL_DONT_ENCRYPT: completely internal to mac80211,
245 * used to indicate frame should not be encrypted
246 * @IEEE80211_TX_CTL_PSPOLL_RESPONSE: (internal?)
247 * This frame is a response to a PS-poll frame and should be sent
248 * although the station is in powersave mode.
249 */
250 enum mac80211_tx_control_flags {
251 IEEE80211_TX_CTL_REQ_TX_STATUS = BIT(0),
252 IEEE80211_TX_CTL_ASSIGN_SEQ = BIT(1),
253 IEEE80211_TX_CTL_NO_ACK = BIT(2),
254 IEEE80211_TX_CTL_CLEAR_PS_FILT = BIT(3),
255 IEEE80211_TX_CTL_FIRST_FRAGMENT = BIT(4),
256 IEEE80211_TX_CTL_SEND_AFTER_DTIM = BIT(5),
257 IEEE80211_TX_CTL_AMPDU = BIT(6),
258 IEEE80211_TX_CTL_INJECTED = BIT(7),
259 IEEE80211_TX_STAT_TX_FILTERED = BIT(8),
260 IEEE80211_TX_STAT_ACK = BIT(9),
261 IEEE80211_TX_STAT_AMPDU = BIT(10),
262 IEEE80211_TX_STAT_AMPDU_NO_BACK = BIT(11),
263 IEEE80211_TX_CTL_RATE_CTRL_PROBE = BIT(12),
264 IEEE80211_TX_INTFL_RCALGO = BIT(13),
265 IEEE80211_TX_INTFL_NEED_TXPROCESSING = BIT(14),
266 IEEE80211_TX_INTFL_RETRIED = BIT(15),
267 IEEE80211_TX_INTFL_DONT_ENCRYPT = BIT(16),
268 IEEE80211_TX_CTL_PSPOLL_RESPONSE = BIT(17),
269 };
270
271 /**
272 * enum mac80211_rate_control_flags - per-rate flags set by the
273 * Rate Control algorithm.
274 *
275 * These flags are set by the Rate control algorithm for each rate during tx,
276 * in the @flags member of struct ieee80211_tx_rate.
277 *
278 * @IEEE80211_TX_RC_USE_RTS_CTS: Use RTS/CTS exchange for this rate.
279 * @IEEE80211_TX_RC_USE_CTS_PROTECT: CTS-to-self protection is required.
280 * This is set if the current BSS requires ERP protection.
281 * @IEEE80211_TX_RC_USE_SHORT_PREAMBLE: Use short preamble.
282 * @IEEE80211_TX_RC_MCS: HT rate.
283 * @IEEE80211_TX_RC_GREEN_FIELD: Indicates whether this rate should be used in
284 * Greenfield mode.
285 * @IEEE80211_TX_RC_40_MHZ_WIDTH: Indicates if the Channel Width should be 40 MHz.
286 * @IEEE80211_TX_RC_DUP_DATA: The frame should be transmitted on both of the
287 * adjacent 20 MHz channels, if the current channel type is
288 * NL80211_CHAN_HT40MINUS or NL80211_CHAN_HT40PLUS.
289 * @IEEE80211_TX_RC_SHORT_GI: Short Guard interval should be used for this rate.
290 */
291 enum mac80211_rate_control_flags {
292 IEEE80211_TX_RC_USE_RTS_CTS = BIT(0),
293 IEEE80211_TX_RC_USE_CTS_PROTECT = BIT(1),
294 IEEE80211_TX_RC_USE_SHORT_PREAMBLE = BIT(2),
295
296 /* rate index is an MCS rate number instead of an index */
297 IEEE80211_TX_RC_MCS = BIT(3),
298 IEEE80211_TX_RC_GREEN_FIELD = BIT(4),
299 IEEE80211_TX_RC_40_MHZ_WIDTH = BIT(5),
300 IEEE80211_TX_RC_DUP_DATA = BIT(6),
301 IEEE80211_TX_RC_SHORT_GI = BIT(7),
302 };
303
304
305 /* there are 40 bytes if you don't need the rateset to be kept */
306 #define IEEE80211_TX_INFO_DRIVER_DATA_SIZE 40
307
308 /* if you do need the rateset, then you have less space */
309 #define IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE 24
310
311 /* maximum number of rate stages */
312 #define IEEE80211_TX_MAX_RATES 5
313
314 /**
315 * struct ieee80211_tx_rate - rate selection/status
316 *
317 * @idx: rate index to attempt to send with
318 * @flags: rate control flags (&enum mac80211_rate_control_flags)
319 * @count: number of tries in this rate before going to the next rate
320 *
321 * A value of -1 for @idx indicates an invalid rate and, if used
322 * in an array of retry rates, that no more rates should be tried.
323 *
324 * When used for transmit status reporting, the driver should
325 * always report the rate along with the flags it used.
326 */
327 struct ieee80211_tx_rate {
328 s8 idx;
329 u8 count;
330 u8 flags;
331 } __attribute__((packed));
332
333 /**
334 * struct ieee80211_tx_info - skb transmit information
335 *
336 * This structure is placed in skb->cb for three uses:
337 * (1) mac80211 TX control - mac80211 tells the driver what to do
338 * (2) driver internal use (if applicable)
339 * (3) TX status information - driver tells mac80211 what happened
340 *
341 * The TX control's sta pointer is only valid during the ->tx call,
342 * it may be NULL.
343 *
344 * @flags: transmit info flags, defined above
345 * @band: the band to transmit on (use for checking for races)
346 * @antenna_sel_tx: antenna to use, 0 for automatic diversity
347 * @pad: padding, ignore
348 * @control: union for control data
349 * @status: union for status data
350 * @driver_data: array of driver_data pointers
351 * @ampdu_ack_len: number of aggregated frames.
352 * relevant only if IEEE80211_TX_STATUS_AMPDU was set.
353 * @ampdu_ack_map: block ack bit map for the aggregation.
354 * relevant only if IEEE80211_TX_STATUS_AMPDU was set.
355 * @ack_signal: signal strength of the ACK frame
356 */
357 struct ieee80211_tx_info {
358 /* common information */
359 u32 flags;
360 u8 band;
361
362 u8 antenna_sel_tx;
363
364 /* 2 byte hole */
365 u8 pad[2];
366
367 union {
368 struct {
369 union {
370 /* rate control */
371 struct {
372 struct ieee80211_tx_rate rates[
373 IEEE80211_TX_MAX_RATES];
374 s8 rts_cts_rate_idx;
375 };
376 /* only needed before rate control */
377 unsigned long jiffies;
378 };
379 /* NB: vif can be NULL for injected frames */
380 struct ieee80211_vif *vif;
381 struct ieee80211_key_conf *hw_key;
382 struct ieee80211_sta *sta;
383 } control;
384 struct {
385 struct ieee80211_tx_rate rates[IEEE80211_TX_MAX_RATES];
386 u8 ampdu_ack_len;
387 u64 ampdu_ack_map;
388 int ack_signal;
389 /* 8 bytes free */
390 } status;
391 struct {
392 struct ieee80211_tx_rate driver_rates[
393 IEEE80211_TX_MAX_RATES];
394 void *rate_driver_data[
395 IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE / sizeof(void *)];
396 };
397 void *driver_data[
398 IEEE80211_TX_INFO_DRIVER_DATA_SIZE / sizeof(void *)];
399 };
400 };
401
402 static inline struct ieee80211_tx_info *IEEE80211_SKB_CB(struct sk_buff *skb)
403 {
404 return (struct ieee80211_tx_info *)skb->cb;
405 }
406
407 static inline struct ieee80211_rx_status *IEEE80211_SKB_RXCB(struct sk_buff *skb)
408 {
409 return (struct ieee80211_rx_status *)skb->cb;
410 }
411
412 /**
413 * ieee80211_tx_info_clear_status - clear TX status
414 *
415 * @info: The &struct ieee80211_tx_info to be cleared.
416 *
417 * When the driver passes an skb back to mac80211, it must report
418 * a number of things in TX status. This function clears everything
419 * in the TX status but the rate control information (it does clear
420 * the count since you need to fill that in anyway).
421 *
422 * NOTE: You can only use this function if you do NOT use
423 * info->driver_data! Use info->rate_driver_data
424 * instead if you need only the less space that allows.
425 */
426 static inline void
427 ieee80211_tx_info_clear_status(struct ieee80211_tx_info *info)
428 {
429 int i;
430
431 BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) !=
432 offsetof(struct ieee80211_tx_info, control.rates));
433 BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) !=
434 offsetof(struct ieee80211_tx_info, driver_rates));
435 BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != 8);
436 /* clear the rate counts */
437 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++)
438 info->status.rates[i].count = 0;
439
440 BUILD_BUG_ON(
441 offsetof(struct ieee80211_tx_info, status.ampdu_ack_len) != 23);
442 memset(&info->status.ampdu_ack_len, 0,
443 sizeof(struct ieee80211_tx_info) -
444 offsetof(struct ieee80211_tx_info, status.ampdu_ack_len));
445 }
446
447
448 /**
449 * enum mac80211_rx_flags - receive flags
450 *
451 * These flags are used with the @flag member of &struct ieee80211_rx_status.
452 * @RX_FLAG_MMIC_ERROR: Michael MIC error was reported on this frame.
453 * Use together with %RX_FLAG_MMIC_STRIPPED.
454 * @RX_FLAG_DECRYPTED: This frame was decrypted in hardware.
455 * @RX_FLAG_RADIOTAP: This frame starts with a radiotap header.
456 * @RX_FLAG_MMIC_STRIPPED: the Michael MIC is stripped off this frame,
457 * verification has been done by the hardware.
458 * @RX_FLAG_IV_STRIPPED: The IV/ICV are stripped from this frame.
459 * If this flag is set, the stack cannot do any replay detection
460 * hence the driver or hardware will have to do that.
461 * @RX_FLAG_FAILED_FCS_CRC: Set this flag if the FCS check failed on
462 * the frame.
463 * @RX_FLAG_FAILED_PLCP_CRC: Set this flag if the PCLP check failed on
464 * the frame.
465 * @RX_FLAG_TSFT: The timestamp passed in the RX status (@mactime field)
466 * is valid. This is useful in monitor mode and necessary for beacon frames
467 * to enable IBSS merging.
468 * @RX_FLAG_SHORTPRE: Short preamble was used for this frame
469 * @RX_FLAG_HT: HT MCS was used and rate_idx is MCS index
470 * @RX_FLAG_40MHZ: HT40 (40 MHz) was used
471 * @RX_FLAG_SHORT_GI: Short guard interval was used
472 */
473 enum mac80211_rx_flags {
474 RX_FLAG_MMIC_ERROR = 1<<0,
475 RX_FLAG_DECRYPTED = 1<<1,
476 RX_FLAG_RADIOTAP = 1<<2,
477 RX_FLAG_MMIC_STRIPPED = 1<<3,
478 RX_FLAG_IV_STRIPPED = 1<<4,
479 RX_FLAG_FAILED_FCS_CRC = 1<<5,
480 RX_FLAG_FAILED_PLCP_CRC = 1<<6,
481 RX_FLAG_TSFT = 1<<7,
482 RX_FLAG_SHORTPRE = 1<<8,
483 RX_FLAG_HT = 1<<9,
484 RX_FLAG_40MHZ = 1<<10,
485 RX_FLAG_SHORT_GI = 1<<11,
486 };
487
488 /**
489 * struct ieee80211_rx_status - receive status
490 *
491 * The low-level driver should provide this information (the subset
492 * supported by hardware) to the 802.11 code with each received
493 * frame, in the skb's control buffer (cb).
494 *
495 * @mactime: value in microseconds of the 64-bit Time Synchronization Function
496 * (TSF) timer when the first data symbol (MPDU) arrived at the hardware.
497 * @band: the active band when this frame was received
498 * @freq: frequency the radio was tuned to when receiving this frame, in MHz
499 * @signal: signal strength when receiving this frame, either in dBm, in dB or
500 * unspecified depending on the hardware capabilities flags
501 * @IEEE80211_HW_SIGNAL_*
502 * @noise: noise when receiving this frame, in dBm.
503 * @qual: overall signal quality indication, in percent (0-100).
504 * @antenna: antenna used
505 * @rate_idx: index of data rate into band's supported rates or MCS index if
506 * HT rates are use (RX_FLAG_HT)
507 * @flag: %RX_FLAG_*
508 */
509 struct ieee80211_rx_status {
510 u64 mactime;
511 enum ieee80211_band band;
512 int freq;
513 int signal;
514 int noise;
515 int qual;
516 int antenna;
517 int rate_idx;
518 int flag;
519 };
520
521 /**
522 * enum ieee80211_conf_flags - configuration flags
523 *
524 * Flags to define PHY configuration options
525 *
526 * @IEEE80211_CONF_RADIOTAP: add radiotap header at receive time (if supported)
527 * @IEEE80211_CONF_PS: Enable 802.11 power save mode (managed mode only)
528 * @IEEE80211_CONF_IDLE: The device is running, but idle; if the flag is set
529 * the driver should be prepared to handle configuration requests but
530 * may turn the device off as much as possible. Typically, this flag will
531 * be set when an interface is set UP but not associated or scanning, but
532 * it can also be unset in that case when monitor interfaces are active.
533 */
534 enum ieee80211_conf_flags {
535 IEEE80211_CONF_RADIOTAP = (1<<0),
536 IEEE80211_CONF_PS = (1<<1),
537 IEEE80211_CONF_IDLE = (1<<2),
538 };
539
540
541 /**
542 * enum ieee80211_conf_changed - denotes which configuration changed
543 *
544 * @_IEEE80211_CONF_CHANGE_RADIO_ENABLED: DEPRECATED
545 * @IEEE80211_CONF_CHANGE_LISTEN_INTERVAL: the listen interval changed
546 * @IEEE80211_CONF_CHANGE_RADIOTAP: the radiotap flag changed
547 * @IEEE80211_CONF_CHANGE_PS: the PS flag or dynamic PS timeout changed
548 * @IEEE80211_CONF_CHANGE_POWER: the TX power changed
549 * @IEEE80211_CONF_CHANGE_CHANNEL: the channel/channel_type changed
550 * @IEEE80211_CONF_CHANGE_RETRY_LIMITS: retry limits changed
551 * @IEEE80211_CONF_CHANGE_IDLE: Idle flag changed
552 */
553 enum ieee80211_conf_changed {
554 _IEEE80211_CONF_CHANGE_RADIO_ENABLED = BIT(0),
555 IEEE80211_CONF_CHANGE_LISTEN_INTERVAL = BIT(2),
556 IEEE80211_CONF_CHANGE_RADIOTAP = BIT(3),
557 IEEE80211_CONF_CHANGE_PS = BIT(4),
558 IEEE80211_CONF_CHANGE_POWER = BIT(5),
559 IEEE80211_CONF_CHANGE_CHANNEL = BIT(6),
560 IEEE80211_CONF_CHANGE_RETRY_LIMITS = BIT(7),
561 IEEE80211_CONF_CHANGE_IDLE = BIT(8),
562 };
563
564 static inline __deprecated enum ieee80211_conf_changed
565 __IEEE80211_CONF_CHANGE_RADIO_ENABLED(void)
566 {
567 return _IEEE80211_CONF_CHANGE_RADIO_ENABLED;
568 }
569 #define IEEE80211_CONF_CHANGE_RADIO_ENABLED \
570 __IEEE80211_CONF_CHANGE_RADIO_ENABLED()
571
572 /**
573 * struct ieee80211_conf - configuration of the device
574 *
575 * This struct indicates how the driver shall configure the hardware.
576 *
577 * @flags: configuration flags defined above
578 *
579 * @radio_enabled: when zero, driver is required to switch off the radio.
580 * @beacon_int: DEPRECATED, DO NOT USE
581 *
582 * @listen_interval: listen interval in units of beacon interval
583 * @max_sleep_period: the maximum number of beacon intervals to sleep for
584 * before checking the beacon for a TIM bit (managed mode only); this
585 * value will be only achievable between DTIM frames, the hardware
586 * needs to check for the multicast traffic bit in DTIM beacons.
587 * This variable is valid only when the CONF_PS flag is set.
588 * @dynamic_ps_timeout: The dynamic powersave timeout (in ms), see the
589 * powersave documentation below. This variable is valid only when
590 * the CONF_PS flag is set.
591 *
592 * @power_level: requested transmit power (in dBm)
593 *
594 * @channel: the channel to tune to
595 * @channel_type: the channel (HT) type
596 *
597 * @long_frame_max_tx_count: Maximum number of transmissions for a "long" frame
598 * (a frame not RTS protected), called "dot11LongRetryLimit" in 802.11,
599 * but actually means the number of transmissions not the number of retries
600 * @short_frame_max_tx_count: Maximum number of transmissions for a "short"
601 * frame, called "dot11ShortRetryLimit" in 802.11, but actually means the
602 * number of transmissions not the number of retries
603 */
604 struct ieee80211_conf {
605 int __deprecated beacon_int;
606 u32 flags;
607 int power_level, dynamic_ps_timeout;
608 int max_sleep_period;
609
610 u16 listen_interval;
611 bool __deprecated radio_enabled;
612
613 u8 long_frame_max_tx_count, short_frame_max_tx_count;
614
615 struct ieee80211_channel *channel;
616 enum nl80211_channel_type channel_type;
617 };
618
619 /**
620 * struct ieee80211_vif - per-interface data
621 *
622 * Data in this structure is continually present for driver
623 * use during the life of a virtual interface.
624 *
625 * @type: type of this virtual interface
626 * @bss_conf: BSS configuration for this interface, either our own
627 * or the BSS we're associated to
628 * @drv_priv: data area for driver use, will always be aligned to
629 * sizeof(void *).
630 */
631 struct ieee80211_vif {
632 enum nl80211_iftype type;
633 struct ieee80211_bss_conf bss_conf;
634 /* must be last */
635 u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *))));
636 };
637
638 static inline bool ieee80211_vif_is_mesh(struct ieee80211_vif *vif)
639 {
640 #ifdef CONFIG_MAC80211_MESH
641 return vif->type == NL80211_IFTYPE_MESH_POINT;
642 #endif
643 return false;
644 }
645
646 /**
647 * struct ieee80211_if_init_conf - initial configuration of an interface
648 *
649 * @vif: pointer to a driver-use per-interface structure. The pointer
650 * itself is also used for various functions including
651 * ieee80211_beacon_get() and ieee80211_get_buffered_bc().
652 * @type: one of &enum nl80211_iftype constants. Determines the type of
653 * added/removed interface.
654 * @mac_addr: pointer to MAC address of the interface. This pointer is valid
655 * until the interface is removed (i.e. it cannot be used after
656 * remove_interface() callback was called for this interface).
657 *
658 * This structure is used in add_interface() and remove_interface()
659 * callbacks of &struct ieee80211_hw.
660 *
661 * When you allow multiple interfaces to be added to your PHY, take care
662 * that the hardware can actually handle multiple MAC addresses. However,
663 * also take care that when there's no interface left with mac_addr != %NULL
664 * you remove the MAC address from the device to avoid acknowledging packets
665 * in pure monitor mode.
666 */
667 struct ieee80211_if_init_conf {
668 enum nl80211_iftype type;
669 struct ieee80211_vif *vif;
670 void *mac_addr;
671 };
672
673 /**
674 * enum ieee80211_key_alg - key algorithm
675 * @ALG_WEP: WEP40 or WEP104
676 * @ALG_TKIP: TKIP
677 * @ALG_CCMP: CCMP (AES)
678 * @ALG_AES_CMAC: AES-128-CMAC
679 */
680 enum ieee80211_key_alg {
681 ALG_WEP,
682 ALG_TKIP,
683 ALG_CCMP,
684 ALG_AES_CMAC,
685 };
686
687 /**
688 * enum ieee80211_key_flags - key flags
689 *
690 * These flags are used for communication about keys between the driver
691 * and mac80211, with the @flags parameter of &struct ieee80211_key_conf.
692 *
693 * @IEEE80211_KEY_FLAG_WMM_STA: Set by mac80211, this flag indicates
694 * that the STA this key will be used with could be using QoS.
695 * @IEEE80211_KEY_FLAG_GENERATE_IV: This flag should be set by the
696 * driver to indicate that it requires IV generation for this
697 * particular key.
698 * @IEEE80211_KEY_FLAG_GENERATE_MMIC: This flag should be set by
699 * the driver for a TKIP key if it requires Michael MIC
700 * generation in software.
701 * @IEEE80211_KEY_FLAG_PAIRWISE: Set by mac80211, this flag indicates
702 * that the key is pairwise rather then a shared key.
703 * @IEEE80211_KEY_FLAG_SW_MGMT: This flag should be set by the driver for a
704 * CCMP key if it requires CCMP encryption of management frames (MFP) to
705 * be done in software.
706 */
707 enum ieee80211_key_flags {
708 IEEE80211_KEY_FLAG_WMM_STA = 1<<0,
709 IEEE80211_KEY_FLAG_GENERATE_IV = 1<<1,
710 IEEE80211_KEY_FLAG_GENERATE_MMIC= 1<<2,
711 IEEE80211_KEY_FLAG_PAIRWISE = 1<<3,
712 IEEE80211_KEY_FLAG_SW_MGMT = 1<<4,
713 };
714
715 /**
716 * struct ieee80211_key_conf - key information
717 *
718 * This key information is given by mac80211 to the driver by
719 * the set_key() callback in &struct ieee80211_ops.
720 *
721 * @hw_key_idx: To be set by the driver, this is the key index the driver
722 * wants to be given when a frame is transmitted and needs to be
723 * encrypted in hardware.
724 * @alg: The key algorithm.
725 * @flags: key flags, see &enum ieee80211_key_flags.
726 * @keyidx: the key index (0-3)
727 * @keylen: key material length
728 * @key: key material. For ALG_TKIP the key is encoded as a 256-bit (32 byte)
729 * data block:
730 * - Temporal Encryption Key (128 bits)
731 * - Temporal Authenticator Tx MIC Key (64 bits)
732 * - Temporal Authenticator Rx MIC Key (64 bits)
733 * @icv_len: The ICV length for this key type
734 * @iv_len: The IV length for this key type
735 */
736 struct ieee80211_key_conf {
737 enum ieee80211_key_alg alg;
738 u8 icv_len;
739 u8 iv_len;
740 u8 hw_key_idx;
741 u8 flags;
742 s8 keyidx;
743 u8 keylen;
744 u8 key[0];
745 };
746
747 /**
748 * enum set_key_cmd - key command
749 *
750 * Used with the set_key() callback in &struct ieee80211_ops, this
751 * indicates whether a key is being removed or added.
752 *
753 * @SET_KEY: a key is set
754 * @DISABLE_KEY: a key must be disabled
755 */
756 enum set_key_cmd {
757 SET_KEY, DISABLE_KEY,
758 };
759
760 /**
761 * struct ieee80211_sta - station table entry
762 *
763 * A station table entry represents a station we are possibly
764 * communicating with. Since stations are RCU-managed in
765 * mac80211, any ieee80211_sta pointer you get access to must
766 * either be protected by rcu_read_lock() explicitly or implicitly,
767 * or you must take good care to not use such a pointer after a
768 * call to your sta_notify callback that removed it.
769 *
770 * @addr: MAC address
771 * @aid: AID we assigned to the station if we're an AP
772 * @supp_rates: Bitmap of supported rates (per band)
773 * @ht_cap: HT capabilities of this STA; restricted to our own TX capabilities
774 * @drv_priv: data area for driver use, will always be aligned to
775 * sizeof(void *), size is determined in hw information.
776 */
777 struct ieee80211_sta {
778 u32 supp_rates[IEEE80211_NUM_BANDS];
779 u8 addr[ETH_ALEN];
780 u16 aid;
781 struct ieee80211_sta_ht_cap ht_cap;
782
783 /* must be last */
784 u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *))));
785 };
786
787 /**
788 * enum sta_notify_cmd - sta notify command
789 *
790 * Used with the sta_notify() callback in &struct ieee80211_ops, this
791 * indicates addition and removal of a station to station table,
792 * or if a associated station made a power state transition.
793 *
794 * @STA_NOTIFY_ADD: a station was added to the station table
795 * @STA_NOTIFY_REMOVE: a station being removed from the station table
796 * @STA_NOTIFY_SLEEP: a station is now sleeping
797 * @STA_NOTIFY_AWAKE: a sleeping station woke up
798 */
799 enum sta_notify_cmd {
800 STA_NOTIFY_ADD, STA_NOTIFY_REMOVE,
801 STA_NOTIFY_SLEEP, STA_NOTIFY_AWAKE,
802 };
803
804 /**
805 * enum ieee80211_tkip_key_type - get tkip key
806 *
807 * Used by drivers which need to get a tkip key for skb. Some drivers need a
808 * phase 1 key, others need a phase 2 key. A single function allows the driver
809 * to get the key, this enum indicates what type of key is required.
810 *
811 * @IEEE80211_TKIP_P1_KEY: the driver needs a phase 1 key
812 * @IEEE80211_TKIP_P2_KEY: the driver needs a phase 2 key
813 */
814 enum ieee80211_tkip_key_type {
815 IEEE80211_TKIP_P1_KEY,
816 IEEE80211_TKIP_P2_KEY,
817 };
818
819 /**
820 * enum ieee80211_hw_flags - hardware flags
821 *
822 * These flags are used to indicate hardware capabilities to
823 * the stack. Generally, flags here should have their meaning
824 * done in a way that the simplest hardware doesn't need setting
825 * any particular flags. There are some exceptions to this rule,
826 * however, so you are advised to review these flags carefully.
827 *
828 * @IEEE80211_HW_RX_INCLUDES_FCS:
829 * Indicates that received frames passed to the stack include
830 * the FCS at the end.
831 *
832 * @IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING:
833 * Some wireless LAN chipsets buffer broadcast/multicast frames
834 * for power saving stations in the hardware/firmware and others
835 * rely on the host system for such buffering. This option is used
836 * to configure the IEEE 802.11 upper layer to buffer broadcast and
837 * multicast frames when there are power saving stations so that
838 * the driver can fetch them with ieee80211_get_buffered_bc().
839 *
840 * @IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE:
841 * Hardware is not capable of short slot operation on the 2.4 GHz band.
842 *
843 * @IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE:
844 * Hardware is not capable of receiving frames with short preamble on
845 * the 2.4 GHz band.
846 *
847 * @IEEE80211_HW_SIGNAL_UNSPEC:
848 * Hardware can provide signal values but we don't know its units. We
849 * expect values between 0 and @max_signal.
850 * If possible please provide dB or dBm instead.
851 *
852 * @IEEE80211_HW_SIGNAL_DBM:
853 * Hardware gives signal values in dBm, decibel difference from
854 * one milliwatt. This is the preferred method since it is standardized
855 * between different devices. @max_signal does not need to be set.
856 *
857 * @IEEE80211_HW_NOISE_DBM:
858 * Hardware can provide noise (radio interference) values in units dBm,
859 * decibel difference from one milliwatt.
860 *
861 * @IEEE80211_HW_SPECTRUM_MGMT:
862 * Hardware supports spectrum management defined in 802.11h
863 * Measurement, Channel Switch, Quieting, TPC
864 *
865 * @IEEE80211_HW_AMPDU_AGGREGATION:
866 * Hardware supports 11n A-MPDU aggregation.
867 *
868 * @IEEE80211_HW_SUPPORTS_PS:
869 * Hardware has power save support (i.e. can go to sleep).
870 *
871 * @IEEE80211_HW_PS_NULLFUNC_STACK:
872 * Hardware requires nullfunc frame handling in stack, implies
873 * stack support for dynamic PS.
874 *
875 * @IEEE80211_HW_SUPPORTS_DYNAMIC_PS:
876 * Hardware has support for dynamic PS.
877 *
878 * @IEEE80211_HW_MFP_CAPABLE:
879 * Hardware supports management frame protection (MFP, IEEE 802.11w).
880 *
881 * @IEEE80211_HW_BEACON_FILTER:
882 * Hardware supports dropping of irrelevant beacon frames to
883 * avoid waking up cpu.
884 */
885 enum ieee80211_hw_flags {
886 IEEE80211_HW_RX_INCLUDES_FCS = 1<<1,
887 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING = 1<<2,
888 IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE = 1<<3,
889 IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE = 1<<4,
890 IEEE80211_HW_SIGNAL_UNSPEC = 1<<5,
891 IEEE80211_HW_SIGNAL_DBM = 1<<6,
892 IEEE80211_HW_NOISE_DBM = 1<<7,
893 IEEE80211_HW_SPECTRUM_MGMT = 1<<8,
894 IEEE80211_HW_AMPDU_AGGREGATION = 1<<9,
895 IEEE80211_HW_SUPPORTS_PS = 1<<10,
896 IEEE80211_HW_PS_NULLFUNC_STACK = 1<<11,
897 IEEE80211_HW_SUPPORTS_DYNAMIC_PS = 1<<12,
898 IEEE80211_HW_MFP_CAPABLE = 1<<13,
899 IEEE80211_HW_BEACON_FILTER = 1<<14,
900 };
901
902 /**
903 * struct ieee80211_hw - hardware information and state
904 *
905 * This structure contains the configuration and hardware
906 * information for an 802.11 PHY.
907 *
908 * @wiphy: This points to the &struct wiphy allocated for this
909 * 802.11 PHY. You must fill in the @perm_addr and @dev
910 * members of this structure using SET_IEEE80211_DEV()
911 * and SET_IEEE80211_PERM_ADDR(). Additionally, all supported
912 * bands (with channels, bitrates) are registered here.
913 *
914 * @conf: &struct ieee80211_conf, device configuration, don't use.
915 *
916 * @workqueue: single threaded workqueue available for driver use,
917 * allocated by mac80211 on registration and flushed when an
918 * interface is removed.
919 * NOTICE: All work performed on this workqueue must not
920 * acquire the RTNL lock.
921 *
922 * @priv: pointer to private area that was allocated for driver use
923 * along with this structure.
924 *
925 * @flags: hardware flags, see &enum ieee80211_hw_flags.
926 *
927 * @extra_tx_headroom: headroom to reserve in each transmit skb
928 * for use by the driver (e.g. for transmit headers.)
929 *
930 * @channel_change_time: time (in microseconds) it takes to change channels.
931 *
932 * @max_signal: Maximum value for signal (rssi) in RX information, used
933 * only when @IEEE80211_HW_SIGNAL_UNSPEC or @IEEE80211_HW_SIGNAL_DB
934 *
935 * @max_listen_interval: max listen interval in units of beacon interval
936 * that HW supports
937 *
938 * @queues: number of available hardware transmit queues for
939 * data packets. WMM/QoS requires at least four, these
940 * queues need to have configurable access parameters.
941 *
942 * @rate_control_algorithm: rate control algorithm for this hardware.
943 * If unset (NULL), the default algorithm will be used. Must be
944 * set before calling ieee80211_register_hw().
945 *
946 * @vif_data_size: size (in bytes) of the drv_priv data area
947 * within &struct ieee80211_vif.
948 * @sta_data_size: size (in bytes) of the drv_priv data area
949 * within &struct ieee80211_sta.
950 *
951 * @max_rates: maximum number of alternate rate retry stages
952 * @max_rate_tries: maximum number of tries for each stage
953 */
954 struct ieee80211_hw {
955 struct ieee80211_conf conf;
956 struct wiphy *wiphy;
957 struct workqueue_struct *workqueue;
958 const char *rate_control_algorithm;
959 void *priv;
960 u32 flags;
961 unsigned int extra_tx_headroom;
962 int channel_change_time;
963 int vif_data_size;
964 int sta_data_size;
965 u16 queues;
966 u16 max_listen_interval;
967 s8 max_signal;
968 u8 max_rates;
969 u8 max_rate_tries;
970 };
971
972 /**
973 * wiphy_to_ieee80211_hw - return a mac80211 driver hw struct from a wiphy
974 *
975 * @wiphy: the &struct wiphy which we want to query
976 *
977 * mac80211 drivers can use this to get to their respective
978 * &struct ieee80211_hw. Drivers wishing to get to their own private
979 * structure can then access it via hw->priv. Note that mac802111 drivers should
980 * not use wiphy_priv() to try to get their private driver structure as this
981 * is already used internally by mac80211.
982 */
983 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy);
984
985 /**
986 * SET_IEEE80211_DEV - set device for 802.11 hardware
987 *
988 * @hw: the &struct ieee80211_hw to set the device for
989 * @dev: the &struct device of this 802.11 device
990 */
991 static inline void SET_IEEE80211_DEV(struct ieee80211_hw *hw, struct device *dev)
992 {
993 set_wiphy_dev(hw->wiphy, dev);
994 }
995
996 /**
997 * SET_IEEE80211_PERM_ADDR - set the permanent MAC address for 802.11 hardware
998 *
999 * @hw: the &struct ieee80211_hw to set the MAC address for
1000 * @addr: the address to set
1001 */
1002 static inline void SET_IEEE80211_PERM_ADDR(struct ieee80211_hw *hw, u8 *addr)
1003 {
1004 memcpy(hw->wiphy->perm_addr, addr, ETH_ALEN);
1005 }
1006
1007 static inline struct ieee80211_rate *
1008 ieee80211_get_tx_rate(const struct ieee80211_hw *hw,
1009 const struct ieee80211_tx_info *c)
1010 {
1011 if (WARN_ON(c->control.rates[0].idx < 0))
1012 return NULL;
1013 return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[0].idx];
1014 }
1015
1016 static inline struct ieee80211_rate *
1017 ieee80211_get_rts_cts_rate(const struct ieee80211_hw *hw,
1018 const struct ieee80211_tx_info *c)
1019 {
1020 if (c->control.rts_cts_rate_idx < 0)
1021 return NULL;
1022 return &hw->wiphy->bands[c->band]->bitrates[c->control.rts_cts_rate_idx];
1023 }
1024
1025 static inline struct ieee80211_rate *
1026 ieee80211_get_alt_retry_rate(const struct ieee80211_hw *hw,
1027 const struct ieee80211_tx_info *c, int idx)
1028 {
1029 if (c->control.rates[idx + 1].idx < 0)
1030 return NULL;
1031 return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[idx + 1].idx];
1032 }
1033
1034 /**
1035 * DOC: Hardware crypto acceleration
1036 *
1037 * mac80211 is capable of taking advantage of many hardware
1038 * acceleration designs for encryption and decryption operations.
1039 *
1040 * The set_key() callback in the &struct ieee80211_ops for a given
1041 * device is called to enable hardware acceleration of encryption and
1042 * decryption. The callback takes a @sta parameter that will be NULL
1043 * for default keys or keys used for transmission only, or point to
1044 * the station information for the peer for individual keys.
1045 * Multiple transmission keys with the same key index may be used when
1046 * VLANs are configured for an access point.
1047 *
1048 * When transmitting, the TX control data will use the @hw_key_idx
1049 * selected by the driver by modifying the &struct ieee80211_key_conf
1050 * pointed to by the @key parameter to the set_key() function.
1051 *
1052 * The set_key() call for the %SET_KEY command should return 0 if
1053 * the key is now in use, -%EOPNOTSUPP or -%ENOSPC if it couldn't be
1054 * added; if you return 0 then hw_key_idx must be assigned to the
1055 * hardware key index, you are free to use the full u8 range.
1056 *
1057 * When the cmd is %DISABLE_KEY then it must succeed.
1058 *
1059 * Note that it is permissible to not decrypt a frame even if a key
1060 * for it has been uploaded to hardware, the stack will not make any
1061 * decision based on whether a key has been uploaded or not but rather
1062 * based on the receive flags.
1063 *
1064 * The &struct ieee80211_key_conf structure pointed to by the @key
1065 * parameter is guaranteed to be valid until another call to set_key()
1066 * removes it, but it can only be used as a cookie to differentiate
1067 * keys.
1068 *
1069 * In TKIP some HW need to be provided a phase 1 key, for RX decryption
1070 * acceleration (i.e. iwlwifi). Those drivers should provide update_tkip_key
1071 * handler.
1072 * The update_tkip_key() call updates the driver with the new phase 1 key.
1073 * This happens everytime the iv16 wraps around (every 65536 packets). The
1074 * set_key() call will happen only once for each key (unless the AP did
1075 * rekeying), it will not include a valid phase 1 key. The valid phase 1 key is
1076 * provided by update_tkip_key only. The trigger that makes mac80211 call this
1077 * handler is software decryption with wrap around of iv16.
1078 */
1079
1080 /**
1081 * DOC: Powersave support
1082 *
1083 * mac80211 has support for various powersave implementations.
1084 *
1085 * First, it can support hardware that handles all powersaving by
1086 * itself, such hardware should simply set the %IEEE80211_HW_SUPPORTS_PS
1087 * hardware flag. In that case, it will be told about the desired
1088 * powersave mode depending on the association status, and the driver
1089 * must take care of sending nullfunc frames when necessary, i.e. when
1090 * entering and leaving powersave mode. The driver is required to look at
1091 * the AID in beacons and signal to the AP that it woke up when it finds
1092 * traffic directed to it. This mode supports dynamic PS by simply
1093 * enabling/disabling PS.
1094 *
1095 * Additionally, such hardware may set the %IEEE80211_HW_SUPPORTS_DYNAMIC_PS
1096 * flag to indicate that it can support dynamic PS mode itself (see below).
1097 *
1098 * Other hardware designs cannot send nullfunc frames by themselves and also
1099 * need software support for parsing the TIM bitmap. This is also supported
1100 * by mac80211 by combining the %IEEE80211_HW_SUPPORTS_PS and
1101 * %IEEE80211_HW_PS_NULLFUNC_STACK flags. The hardware is of course still
1102 * required to pass up beacons. The hardware is still required to handle
1103 * waking up for multicast traffic; if it cannot the driver must handle that
1104 * as best as it can, mac80211 is too slow.
1105 *
1106 * Dynamic powersave mode is an extension to normal powersave mode in which
1107 * the hardware stays awake for a user-specified period of time after sending
1108 * a frame so that reply frames need not be buffered and therefore delayed
1109 * to the next wakeup. This can either be supported by hardware, in which case
1110 * the driver needs to look at the @dynamic_ps_timeout hardware configuration
1111 * value, or by the stack if all nullfunc handling is in the stack.
1112 */
1113
1114 /**
1115 * DOC: Beacon filter support
1116 *
1117 * Some hardware have beacon filter support to reduce host cpu wakeups
1118 * which will reduce system power consumption. It usuallly works so that
1119 * the firmware creates a checksum of the beacon but omits all constantly
1120 * changing elements (TSF, TIM etc). Whenever the checksum changes the
1121 * beacon is forwarded to the host, otherwise it will be just dropped. That
1122 * way the host will only receive beacons where some relevant information
1123 * (for example ERP protection or WMM settings) have changed.
1124 *
1125 * Beacon filter support is advertised with the %IEEE80211_HW_BEACON_FILTER
1126 * hardware capability. The driver needs to enable beacon filter support
1127 * whenever power save is enabled, that is %IEEE80211_CONF_PS is set. When
1128 * power save is enabled, the stack will not check for beacon loss and the
1129 * driver needs to notify about loss of beacons with ieee80211_beacon_loss().
1130 *
1131 * The time (or number of beacons missed) until the firmware notifies the
1132 * driver of a beacon loss event (which in turn causes the driver to call
1133 * ieee80211_beacon_loss()) should be configurable and will be controlled
1134 * by mac80211 and the roaming algorithm in the future.
1135 *
1136 * Since there may be constantly changing information elements that nothing
1137 * in the software stack cares about, we will, in the future, have mac80211
1138 * tell the driver which information elements are interesting in the sense
1139 * that we want to see changes in them. This will include
1140 * - a list of information element IDs
1141 * - a list of OUIs for the vendor information element
1142 *
1143 * Ideally, the hardware would filter out any beacons without changes in the
1144 * requested elements, but if it cannot support that it may, at the expense
1145 * of some efficiency, filter out only a subset. For example, if the device
1146 * doesn't support checking for OUIs it should pass up all changes in all
1147 * vendor information elements.
1148 *
1149 * Note that change, for the sake of simplification, also includes information
1150 * elements appearing or disappearing from the beacon.
1151 *
1152 * Some hardware supports an "ignore list" instead, just make sure nothing
1153 * that was requested is on the ignore list, and include commonly changing
1154 * information element IDs in the ignore list, for example 11 (BSS load) and
1155 * the various vendor-assigned IEs with unknown contents (128, 129, 133-136,
1156 * 149, 150, 155, 156, 173, 176, 178, 179, 219); for forward compatibility
1157 * it could also include some currently unused IDs.
1158 *
1159 *
1160 * In addition to these capabilities, hardware should support notifying the
1161 * host of changes in the beacon RSSI. This is relevant to implement roaming
1162 * when no traffic is flowing (when traffic is flowing we see the RSSI of
1163 * the received data packets). This can consist in notifying the host when
1164 * the RSSI changes significantly or when it drops below or rises above
1165 * configurable thresholds. In the future these thresholds will also be
1166 * configured by mac80211 (which gets them from userspace) to implement
1167 * them as the roaming algorithm requires.
1168 *
1169 * If the hardware cannot implement this, the driver should ask it to
1170 * periodically pass beacon frames to the host so that software can do the
1171 * signal strength threshold checking.
1172 */
1173
1174 /**
1175 * DOC: Frame filtering
1176 *
1177 * mac80211 requires to see many management frames for proper
1178 * operation, and users may want to see many more frames when
1179 * in monitor mode. However, for best CPU usage and power consumption,
1180 * having as few frames as possible percolate through the stack is
1181 * desirable. Hence, the hardware should filter as much as possible.
1182 *
1183 * To achieve this, mac80211 uses filter flags (see below) to tell
1184 * the driver's configure_filter() function which frames should be
1185 * passed to mac80211 and which should be filtered out.
1186 *
1187 * The configure_filter() callback is invoked with the parameters
1188 * @mc_count and @mc_list for the combined multicast address list
1189 * of all virtual interfaces, @changed_flags telling which flags
1190 * were changed and @total_flags with the new flag states.
1191 *
1192 * If your device has no multicast address filters your driver will
1193 * need to check both the %FIF_ALLMULTI flag and the @mc_count
1194 * parameter to see whether multicast frames should be accepted
1195 * or dropped.
1196 *
1197 * All unsupported flags in @total_flags must be cleared.
1198 * Hardware does not support a flag if it is incapable of _passing_
1199 * the frame to the stack. Otherwise the driver must ignore
1200 * the flag, but not clear it.
1201 * You must _only_ clear the flag (announce no support for the
1202 * flag to mac80211) if you are not able to pass the packet type
1203 * to the stack (so the hardware always filters it).
1204 * So for example, you should clear @FIF_CONTROL, if your hardware
1205 * always filters control frames. If your hardware always passes
1206 * control frames to the kernel and is incapable of filtering them,
1207 * you do _not_ clear the @FIF_CONTROL flag.
1208 * This rule applies to all other FIF flags as well.
1209 */
1210
1211 /**
1212 * enum ieee80211_filter_flags - hardware filter flags
1213 *
1214 * These flags determine what the filter in hardware should be
1215 * programmed to let through and what should not be passed to the
1216 * stack. It is always safe to pass more frames than requested,
1217 * but this has negative impact on power consumption.
1218 *
1219 * @FIF_PROMISC_IN_BSS: promiscuous mode within your BSS,
1220 * think of the BSS as your network segment and then this corresponds
1221 * to the regular ethernet device promiscuous mode.
1222 *
1223 * @FIF_ALLMULTI: pass all multicast frames, this is used if requested
1224 * by the user or if the hardware is not capable of filtering by
1225 * multicast address.
1226 *
1227 * @FIF_FCSFAIL: pass frames with failed FCS (but you need to set the
1228 * %RX_FLAG_FAILED_FCS_CRC for them)
1229 *
1230 * @FIF_PLCPFAIL: pass frames with failed PLCP CRC (but you need to set
1231 * the %RX_FLAG_FAILED_PLCP_CRC for them
1232 *
1233 * @FIF_BCN_PRBRESP_PROMISC: This flag is set during scanning to indicate
1234 * to the hardware that it should not filter beacons or probe responses
1235 * by BSSID. Filtering them can greatly reduce the amount of processing
1236 * mac80211 needs to do and the amount of CPU wakeups, so you should
1237 * honour this flag if possible.
1238 *
1239 * @FIF_CONTROL: pass control frames, if PROMISC_IN_BSS is not set then
1240 * only those addressed to this station
1241 *
1242 * @FIF_OTHER_BSS: pass frames destined to other BSSes
1243 */
1244 enum ieee80211_filter_flags {
1245 FIF_PROMISC_IN_BSS = 1<<0,
1246 FIF_ALLMULTI = 1<<1,
1247 FIF_FCSFAIL = 1<<2,
1248 FIF_PLCPFAIL = 1<<3,
1249 FIF_BCN_PRBRESP_PROMISC = 1<<4,
1250 FIF_CONTROL = 1<<5,
1251 FIF_OTHER_BSS = 1<<6,
1252 };
1253
1254 /**
1255 * enum ieee80211_ampdu_mlme_action - A-MPDU actions
1256 *
1257 * These flags are used with the ampdu_action() callback in
1258 * &struct ieee80211_ops to indicate which action is needed.
1259 * @IEEE80211_AMPDU_RX_START: start Rx aggregation
1260 * @IEEE80211_AMPDU_RX_STOP: stop Rx aggregation
1261 * @IEEE80211_AMPDU_TX_START: start Tx aggregation
1262 * @IEEE80211_AMPDU_TX_STOP: stop Tx aggregation
1263 * @IEEE80211_AMPDU_TX_OPERATIONAL: TX aggregation has become operational
1264 */
1265 enum ieee80211_ampdu_mlme_action {
1266 IEEE80211_AMPDU_RX_START,
1267 IEEE80211_AMPDU_RX_STOP,
1268 IEEE80211_AMPDU_TX_START,
1269 IEEE80211_AMPDU_TX_STOP,
1270 IEEE80211_AMPDU_TX_OPERATIONAL,
1271 };
1272
1273 /**
1274 * struct ieee80211_ops - callbacks from mac80211 to the driver
1275 *
1276 * This structure contains various callbacks that the driver may
1277 * handle or, in some cases, must handle, for example to configure
1278 * the hardware to a new channel or to transmit a frame.
1279 *
1280 * @tx: Handler that 802.11 module calls for each transmitted frame.
1281 * skb contains the buffer starting from the IEEE 802.11 header.
1282 * The low-level driver should send the frame out based on
1283 * configuration in the TX control data. This handler should,
1284 * preferably, never fail and stop queues appropriately, more
1285 * importantly, however, it must never fail for A-MPDU-queues.
1286 * This function should return NETDEV_TX_OK except in very
1287 * limited cases.
1288 * Must be implemented and atomic.
1289 *
1290 * @start: Called before the first netdevice attached to the hardware
1291 * is enabled. This should turn on the hardware and must turn on
1292 * frame reception (for possibly enabled monitor interfaces.)
1293 * Returns negative error codes, these may be seen in userspace,
1294 * or zero.
1295 * When the device is started it should not have a MAC address
1296 * to avoid acknowledging frames before a non-monitor device
1297 * is added.
1298 * Must be implemented.
1299 *
1300 * @stop: Called after last netdevice attached to the hardware
1301 * is disabled. This should turn off the hardware (at least
1302 * it must turn off frame reception.)
1303 * May be called right after add_interface if that rejects
1304 * an interface.
1305 * Must be implemented.
1306 *
1307 * @add_interface: Called when a netdevice attached to the hardware is
1308 * enabled. Because it is not called for monitor mode devices, @start
1309 * and @stop must be implemented.
1310 * The driver should perform any initialization it needs before
1311 * the device can be enabled. The initial configuration for the
1312 * interface is given in the conf parameter.
1313 * The callback may refuse to add an interface by returning a
1314 * negative error code (which will be seen in userspace.)
1315 * Must be implemented.
1316 *
1317 * @remove_interface: Notifies a driver that an interface is going down.
1318 * The @stop callback is called after this if it is the last interface
1319 * and no monitor interfaces are present.
1320 * When all interfaces are removed, the MAC address in the hardware
1321 * must be cleared so the device no longer acknowledges packets,
1322 * the mac_addr member of the conf structure is, however, set to the
1323 * MAC address of the device going away.
1324 * Hence, this callback must be implemented.
1325 *
1326 * @config: Handler for configuration requests. IEEE 802.11 code calls this
1327 * function to change hardware configuration, e.g., channel.
1328 * This function should never fail but returns a negative error code
1329 * if it does.
1330 *
1331 * @bss_info_changed: Handler for configuration requests related to BSS
1332 * parameters that may vary during BSS's lifespan, and may affect low
1333 * level driver (e.g. assoc/disassoc status, erp parameters).
1334 * This function should not be used if no BSS has been set, unless
1335 * for association indication. The @changed parameter indicates which
1336 * of the bss parameters has changed when a call is made.
1337 *
1338 * @configure_filter: Configure the device's RX filter.
1339 * See the section "Frame filtering" for more information.
1340 * This callback must be implemented and atomic.
1341 *
1342 * @set_tim: Set TIM bit. mac80211 calls this function when a TIM bit
1343 * must be set or cleared for a given STA. Must be atomic.
1344 *
1345 * @set_key: See the section "Hardware crypto acceleration"
1346 * This callback can sleep, and is only called between add_interface
1347 * and remove_interface calls, i.e. while the given virtual interface
1348 * is enabled.
1349 * Returns a negative error code if the key can't be added.
1350 *
1351 * @update_tkip_key: See the section "Hardware crypto acceleration"
1352 * This callback will be called in the context of Rx. Called for drivers
1353 * which set IEEE80211_KEY_FLAG_TKIP_REQ_RX_P1_KEY.
1354 *
1355 * @hw_scan: Ask the hardware to service the scan request, no need to start
1356 * the scan state machine in stack. The scan must honour the channel
1357 * configuration done by the regulatory agent in the wiphy's
1358 * registered bands. The hardware (or the driver) needs to make sure
1359 * that power save is disabled.
1360 * The @req ie/ie_len members are rewritten by mac80211 to contain the
1361 * entire IEs after the SSID, so that drivers need not look at these
1362 * at all but just send them after the SSID -- mac80211 includes the
1363 * (extended) supported rates and HT information (where applicable).
1364 * When the scan finishes, ieee80211_scan_completed() must be called;
1365 * note that it also must be called when the scan cannot finish due to
1366 * any error unless this callback returned a negative error code.
1367 *
1368 * @sw_scan_start: Notifier function that is called just before a software scan
1369 * is started. Can be NULL, if the driver doesn't need this notification.
1370 *
1371 * @sw_scan_complete: Notifier function that is called just after a software scan
1372 * finished. Can be NULL, if the driver doesn't need this notification.
1373 *
1374 * @get_stats: Return low-level statistics.
1375 * Returns zero if statistics are available.
1376 *
1377 * @get_tkip_seq: If your device implements TKIP encryption in hardware this
1378 * callback should be provided to read the TKIP transmit IVs (both IV32
1379 * and IV16) for the given key from hardware.
1380 *
1381 * @set_rts_threshold: Configuration of RTS threshold (if device needs it)
1382 *
1383 * @sta_notify: Notifies low level driver about addition, removal or power
1384 * state transition of an associated station, AP, IBSS/WDS/mesh peer etc.
1385 * Must be atomic.
1386 *
1387 * @conf_tx: Configure TX queue parameters (EDCF (aifs, cw_min, cw_max),
1388 * bursting) for a hardware TX queue.
1389 * Returns a negative error code on failure.
1390 *
1391 * @get_tx_stats: Get statistics of the current TX queue status. This is used
1392 * to get number of currently queued packets (queue length), maximum queue
1393 * size (limit), and total number of packets sent using each TX queue
1394 * (count). The 'stats' pointer points to an array that has hw->queues
1395 * items.
1396 *
1397 * @get_tsf: Get the current TSF timer value from firmware/hardware. Currently,
1398 * this is only used for IBSS mode BSSID merging and debugging. Is not a
1399 * required function.
1400 *
1401 * @set_tsf: Set the TSF timer to the specified value in the firmware/hardware.
1402 * Currently, this is only used for IBSS mode debugging. Is not a
1403 * required function.
1404 *
1405 * @reset_tsf: Reset the TSF timer and allow firmware/hardware to synchronize
1406 * with other STAs in the IBSS. This is only used in IBSS mode. This
1407 * function is optional if the firmware/hardware takes full care of
1408 * TSF synchronization.
1409 *
1410 * @tx_last_beacon: Determine whether the last IBSS beacon was sent by us.
1411 * This is needed only for IBSS mode and the result of this function is
1412 * used to determine whether to reply to Probe Requests.
1413 * Returns non-zero if this device sent the last beacon.
1414 *
1415 * @ampdu_action: Perform a certain A-MPDU action
1416 * The RA/TID combination determines the destination and TID we want
1417 * the ampdu action to be performed for. The action is defined through
1418 * ieee80211_ampdu_mlme_action. Starting sequence number (@ssn)
1419 * is the first frame we expect to perform the action on. Notice
1420 * that TX/RX_STOP can pass NULL for this parameter.
1421 * Returns a negative error code on failure.
1422 *
1423 * @rfkill_poll: Poll rfkill hardware state. If you need this, you also
1424 * need to set wiphy->rfkill_poll to %true before registration,
1425 * and need to call wiphy_rfkill_set_hw_state() in the callback.
1426 *
1427 * @testmode_cmd: Implement a cfg80211 test mode command.
1428 */
1429 struct ieee80211_ops {
1430 int (*tx)(struct ieee80211_hw *hw, struct sk_buff *skb);
1431 int (*start)(struct ieee80211_hw *hw);
1432 void (*stop)(struct ieee80211_hw *hw);
1433 int (*add_interface)(struct ieee80211_hw *hw,
1434 struct ieee80211_if_init_conf *conf);
1435 void (*remove_interface)(struct ieee80211_hw *hw,
1436 struct ieee80211_if_init_conf *conf);
1437 int (*config)(struct ieee80211_hw *hw, u32 changed);
1438 void (*bss_info_changed)(struct ieee80211_hw *hw,
1439 struct ieee80211_vif *vif,
1440 struct ieee80211_bss_conf *info,
1441 u32 changed);
1442 void (*configure_filter)(struct ieee80211_hw *hw,
1443 unsigned int changed_flags,
1444 unsigned int *total_flags,
1445 int mc_count, struct dev_addr_list *mc_list);
1446 int (*set_tim)(struct ieee80211_hw *hw, struct ieee80211_sta *sta,
1447 bool set);
1448 int (*set_key)(struct ieee80211_hw *hw, enum set_key_cmd cmd,
1449 struct ieee80211_vif *vif, struct ieee80211_sta *sta,
1450 struct ieee80211_key_conf *key);
1451 void (*update_tkip_key)(struct ieee80211_hw *hw,
1452 struct ieee80211_key_conf *conf, const u8 *address,
1453 u32 iv32, u16 *phase1key);
1454 int (*hw_scan)(struct ieee80211_hw *hw,
1455 struct cfg80211_scan_request *req);
1456 void (*sw_scan_start)(struct ieee80211_hw *hw);
1457 void (*sw_scan_complete)(struct ieee80211_hw *hw);
1458 int (*get_stats)(struct ieee80211_hw *hw,
1459 struct ieee80211_low_level_stats *stats);
1460 void (*get_tkip_seq)(struct ieee80211_hw *hw, u8 hw_key_idx,
1461 u32 *iv32, u16 *iv16);
1462 int (*set_rts_threshold)(struct ieee80211_hw *hw, u32 value);
1463 void (*sta_notify)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1464 enum sta_notify_cmd, struct ieee80211_sta *sta);
1465 int (*conf_tx)(struct ieee80211_hw *hw, u16 queue,
1466 const struct ieee80211_tx_queue_params *params);
1467 int (*get_tx_stats)(struct ieee80211_hw *hw,
1468 struct ieee80211_tx_queue_stats *stats);
1469 u64 (*get_tsf)(struct ieee80211_hw *hw);
1470 void (*set_tsf)(struct ieee80211_hw *hw, u64 tsf);
1471 void (*reset_tsf)(struct ieee80211_hw *hw);
1472 int (*tx_last_beacon)(struct ieee80211_hw *hw);
1473 int (*ampdu_action)(struct ieee80211_hw *hw,
1474 enum ieee80211_ampdu_mlme_action action,
1475 struct ieee80211_sta *sta, u16 tid, u16 *ssn);
1476
1477 void (*rfkill_poll)(struct ieee80211_hw *hw);
1478 #ifdef CONFIG_NL80211_TESTMODE
1479 int (*testmode_cmd)(struct ieee80211_hw *hw, void *data, int len);
1480 #endif
1481 };
1482
1483 /**
1484 * ieee80211_alloc_hw - Allocate a new hardware device
1485 *
1486 * This must be called once for each hardware device. The returned pointer
1487 * must be used to refer to this device when calling other functions.
1488 * mac80211 allocates a private data area for the driver pointed to by
1489 * @priv in &struct ieee80211_hw, the size of this area is given as
1490 * @priv_data_len.
1491 *
1492 * @priv_data_len: length of private data
1493 * @ops: callbacks for this device
1494 */
1495 struct ieee80211_hw *ieee80211_alloc_hw(size_t priv_data_len,
1496 const struct ieee80211_ops *ops);
1497
1498 /**
1499 * ieee80211_register_hw - Register hardware device
1500 *
1501 * You must call this function before any other functions in
1502 * mac80211. Note that before a hardware can be registered, you
1503 * need to fill the contained wiphy's information.
1504 *
1505 * @hw: the device to register as returned by ieee80211_alloc_hw()
1506 */
1507 int ieee80211_register_hw(struct ieee80211_hw *hw);
1508
1509 #ifdef CONFIG_MAC80211_LEDS
1510 extern char *__ieee80211_get_tx_led_name(struct ieee80211_hw *hw);
1511 extern char *__ieee80211_get_rx_led_name(struct ieee80211_hw *hw);
1512 extern char *__ieee80211_get_assoc_led_name(struct ieee80211_hw *hw);
1513 extern char *__ieee80211_get_radio_led_name(struct ieee80211_hw *hw);
1514 #endif
1515 /**
1516 * ieee80211_get_tx_led_name - get name of TX LED
1517 *
1518 * mac80211 creates a transmit LED trigger for each wireless hardware
1519 * that can be used to drive LEDs if your driver registers a LED device.
1520 * This function returns the name (or %NULL if not configured for LEDs)
1521 * of the trigger so you can automatically link the LED device.
1522 *
1523 * @hw: the hardware to get the LED trigger name for
1524 */
1525 static inline char *ieee80211_get_tx_led_name(struct ieee80211_hw *hw)
1526 {
1527 #ifdef CONFIG_MAC80211_LEDS
1528 return __ieee80211_get_tx_led_name(hw);
1529 #else
1530 return NULL;
1531 #endif
1532 }
1533
1534 /**
1535 * ieee80211_get_rx_led_name - get name of RX LED
1536 *
1537 * mac80211 creates a receive LED trigger for each wireless hardware
1538 * that can be used to drive LEDs if your driver registers a LED device.
1539 * This function returns the name (or %NULL if not configured for LEDs)
1540 * of the trigger so you can automatically link the LED device.
1541 *
1542 * @hw: the hardware to get the LED trigger name for
1543 */
1544 static inline char *ieee80211_get_rx_led_name(struct ieee80211_hw *hw)
1545 {
1546 #ifdef CONFIG_MAC80211_LEDS
1547 return __ieee80211_get_rx_led_name(hw);
1548 #else
1549 return NULL;
1550 #endif
1551 }
1552
1553 /**
1554 * ieee80211_get_assoc_led_name - get name of association LED
1555 *
1556 * mac80211 creates a association LED trigger for each wireless hardware
1557 * that can be used to drive LEDs if your driver registers a LED device.
1558 * This function returns the name (or %NULL if not configured for LEDs)
1559 * of the trigger so you can automatically link the LED device.
1560 *
1561 * @hw: the hardware to get the LED trigger name for
1562 */
1563 static inline char *ieee80211_get_assoc_led_name(struct ieee80211_hw *hw)
1564 {
1565 #ifdef CONFIG_MAC80211_LEDS
1566 return __ieee80211_get_assoc_led_name(hw);
1567 #else
1568 return NULL;
1569 #endif
1570 }
1571
1572 /**
1573 * ieee80211_get_radio_led_name - get name of radio LED
1574 *
1575 * mac80211 creates a radio change LED trigger for each wireless hardware
1576 * that can be used to drive LEDs if your driver registers a LED device.
1577 * This function returns the name (or %NULL if not configured for LEDs)
1578 * of the trigger so you can automatically link the LED device.
1579 *
1580 * @hw: the hardware to get the LED trigger name for
1581 */
1582 static inline char *ieee80211_get_radio_led_name(struct ieee80211_hw *hw)
1583 {
1584 #ifdef CONFIG_MAC80211_LEDS
1585 return __ieee80211_get_radio_led_name(hw);
1586 #else
1587 return NULL;
1588 #endif
1589 }
1590
1591 /**
1592 * ieee80211_unregister_hw - Unregister a hardware device
1593 *
1594 * This function instructs mac80211 to free allocated resources
1595 * and unregister netdevices from the networking subsystem.
1596 *
1597 * @hw: the hardware to unregister
1598 */
1599 void ieee80211_unregister_hw(struct ieee80211_hw *hw);
1600
1601 /**
1602 * ieee80211_free_hw - free hardware descriptor
1603 *
1604 * This function frees everything that was allocated, including the
1605 * private data for the driver. You must call ieee80211_unregister_hw()
1606 * before calling this function.
1607 *
1608 * @hw: the hardware to free
1609 */
1610 void ieee80211_free_hw(struct ieee80211_hw *hw);
1611
1612 /**
1613 * ieee80211_restart_hw - restart hardware completely
1614 *
1615 * Call this function when the hardware was restarted for some reason
1616 * (hardware error, ...) and the driver is unable to restore its state
1617 * by itself. mac80211 assumes that at this point the driver/hardware
1618 * is completely uninitialised and stopped, it starts the process by
1619 * calling the ->start() operation. The driver will need to reset all
1620 * internal state that it has prior to calling this function.
1621 *
1622 * @hw: the hardware to restart
1623 */
1624 void ieee80211_restart_hw(struct ieee80211_hw *hw);
1625
1626 /*
1627 * trick to avoid symbol clashes with the ieee80211 subsystem,
1628 * use the inline below instead
1629 */
1630 void __ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb);
1631
1632 /**
1633 * ieee80211_rx - receive frame
1634 *
1635 * Use this function to hand received frames to mac80211. The receive
1636 * buffer in @skb must start with an IEEE 802.11 header or a radiotap
1637 * header if %RX_FLAG_RADIOTAP is set in the @status flags.
1638 *
1639 * This function may not be called in IRQ context. Calls to this function
1640 * for a single hardware must be synchronized against each other. Calls
1641 * to this function and ieee80211_rx_irqsafe() may not be mixed for a
1642 * single hardware.
1643 *
1644 * @hw: the hardware this frame came in on
1645 * @skb: the buffer to receive, owned by mac80211 after this call
1646 */
1647 static inline void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
1648 {
1649 __ieee80211_rx(hw, skb);
1650 }
1651
1652 /**
1653 * ieee80211_rx_irqsafe - receive frame
1654 *
1655 * Like ieee80211_rx() but can be called in IRQ context
1656 * (internally defers to a tasklet.)
1657 *
1658 * Calls to this function and ieee80211_rx() may not be mixed for a
1659 * single hardware.
1660 *
1661 * @hw: the hardware this frame came in on
1662 * @skb: the buffer to receive, owned by mac80211 after this call
1663 */
1664 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb);
1665
1666 /**
1667 * ieee80211_tx_status - transmit status callback
1668 *
1669 * Call this function for all transmitted frames after they have been
1670 * transmitted. It is permissible to not call this function for
1671 * multicast frames but this can affect statistics.
1672 *
1673 * This function may not be called in IRQ context. Calls to this function
1674 * for a single hardware must be synchronized against each other. Calls
1675 * to this function and ieee80211_tx_status_irqsafe() may not be mixed
1676 * for a single hardware.
1677 *
1678 * @hw: the hardware the frame was transmitted by
1679 * @skb: the frame that was transmitted, owned by mac80211 after this call
1680 */
1681 void ieee80211_tx_status(struct ieee80211_hw *hw,
1682 struct sk_buff *skb);
1683
1684 /**
1685 * ieee80211_tx_status_irqsafe - IRQ-safe transmit status callback
1686 *
1687 * Like ieee80211_tx_status() but can be called in IRQ context
1688 * (internally defers to a tasklet.)
1689 *
1690 * Calls to this function and ieee80211_tx_status() may not be mixed for a
1691 * single hardware.
1692 *
1693 * @hw: the hardware the frame was transmitted by
1694 * @skb: the frame that was transmitted, owned by mac80211 after this call
1695 */
1696 void ieee80211_tx_status_irqsafe(struct ieee80211_hw *hw,
1697 struct sk_buff *skb);
1698
1699 /**
1700 * ieee80211_beacon_get - beacon generation function
1701 * @hw: pointer obtained from ieee80211_alloc_hw().
1702 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1703 *
1704 * If the beacon frames are generated by the host system (i.e., not in
1705 * hardware/firmware), the low-level driver uses this function to receive
1706 * the next beacon frame from the 802.11 code. The low-level is responsible
1707 * for calling this function before beacon data is needed (e.g., based on
1708 * hardware interrupt). Returned skb is used only once and low-level driver
1709 * is responsible for freeing it.
1710 */
1711 struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw,
1712 struct ieee80211_vif *vif);
1713
1714 /**
1715 * ieee80211_rts_get - RTS frame generation function
1716 * @hw: pointer obtained from ieee80211_alloc_hw().
1717 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1718 * @frame: pointer to the frame that is going to be protected by the RTS.
1719 * @frame_len: the frame length (in octets).
1720 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1721 * @rts: The buffer where to store the RTS frame.
1722 *
1723 * If the RTS frames are generated by the host system (i.e., not in
1724 * hardware/firmware), the low-level driver uses this function to receive
1725 * the next RTS frame from the 802.11 code. The low-level is responsible
1726 * for calling this function before and RTS frame is needed.
1727 */
1728 void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1729 const void *frame, size_t frame_len,
1730 const struct ieee80211_tx_info *frame_txctl,
1731 struct ieee80211_rts *rts);
1732
1733 /**
1734 * ieee80211_rts_duration - Get the duration field for an RTS frame
1735 * @hw: pointer obtained from ieee80211_alloc_hw().
1736 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1737 * @frame_len: the length of the frame that is going to be protected by the RTS.
1738 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1739 *
1740 * If the RTS is generated in firmware, but the host system must provide
1741 * the duration field, the low-level driver uses this function to receive
1742 * the duration field value in little-endian byteorder.
1743 */
1744 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw,
1745 struct ieee80211_vif *vif, size_t frame_len,
1746 const struct ieee80211_tx_info *frame_txctl);
1747
1748 /**
1749 * ieee80211_ctstoself_get - CTS-to-self frame generation function
1750 * @hw: pointer obtained from ieee80211_alloc_hw().
1751 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1752 * @frame: pointer to the frame that is going to be protected by the CTS-to-self.
1753 * @frame_len: the frame length (in octets).
1754 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1755 * @cts: The buffer where to store the CTS-to-self frame.
1756 *
1757 * If the CTS-to-self frames are generated by the host system (i.e., not in
1758 * hardware/firmware), the low-level driver uses this function to receive
1759 * the next CTS-to-self frame from the 802.11 code. The low-level is responsible
1760 * for calling this function before and CTS-to-self frame is needed.
1761 */
1762 void ieee80211_ctstoself_get(struct ieee80211_hw *hw,
1763 struct ieee80211_vif *vif,
1764 const void *frame, size_t frame_len,
1765 const struct ieee80211_tx_info *frame_txctl,
1766 struct ieee80211_cts *cts);
1767
1768 /**
1769 * ieee80211_ctstoself_duration - Get the duration field for a CTS-to-self frame
1770 * @hw: pointer obtained from ieee80211_alloc_hw().
1771 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1772 * @frame_len: the length of the frame that is going to be protected by the CTS-to-self.
1773 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1774 *
1775 * If the CTS-to-self is generated in firmware, but the host system must provide
1776 * the duration field, the low-level driver uses this function to receive
1777 * the duration field value in little-endian byteorder.
1778 */
1779 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw,
1780 struct ieee80211_vif *vif,
1781 size_t frame_len,
1782 const struct ieee80211_tx_info *frame_txctl);
1783
1784 /**
1785 * ieee80211_generic_frame_duration - Calculate the duration field for a frame
1786 * @hw: pointer obtained from ieee80211_alloc_hw().
1787 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1788 * @frame_len: the length of the frame.
1789 * @rate: the rate at which the frame is going to be transmitted.
1790 *
1791 * Calculate the duration field of some generic frame, given its
1792 * length and transmission rate (in 100kbps).
1793 */
1794 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw,
1795 struct ieee80211_vif *vif,
1796 size_t frame_len,
1797 struct ieee80211_rate *rate);
1798
1799 /**
1800 * ieee80211_get_buffered_bc - accessing buffered broadcast and multicast frames
1801 * @hw: pointer as obtained from ieee80211_alloc_hw().
1802 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1803 *
1804 * Function for accessing buffered broadcast and multicast frames. If
1805 * hardware/firmware does not implement buffering of broadcast/multicast
1806 * frames when power saving is used, 802.11 code buffers them in the host
1807 * memory. The low-level driver uses this function to fetch next buffered
1808 * frame. In most cases, this is used when generating beacon frame. This
1809 * function returns a pointer to the next buffered skb or NULL if no more
1810 * buffered frames are available.
1811 *
1812 * Note: buffered frames are returned only after DTIM beacon frame was
1813 * generated with ieee80211_beacon_get() and the low-level driver must thus
1814 * call ieee80211_beacon_get() first. ieee80211_get_buffered_bc() returns
1815 * NULL if the previous generated beacon was not DTIM, so the low-level driver
1816 * does not need to check for DTIM beacons separately and should be able to
1817 * use common code for all beacons.
1818 */
1819 struct sk_buff *
1820 ieee80211_get_buffered_bc(struct ieee80211_hw *hw, struct ieee80211_vif *vif);
1821
1822 /**
1823 * ieee80211_get_tkip_key - get a TKIP rc4 for skb
1824 *
1825 * This function computes a TKIP rc4 key for an skb. It computes
1826 * a phase 1 key if needed (iv16 wraps around). This function is to
1827 * be used by drivers which can do HW encryption but need to compute
1828 * to phase 1/2 key in SW.
1829 *
1830 * @keyconf: the parameter passed with the set key
1831 * @skb: the skb for which the key is needed
1832 * @type: TBD
1833 * @key: a buffer to which the key will be written
1834 */
1835 void ieee80211_get_tkip_key(struct ieee80211_key_conf *keyconf,
1836 struct sk_buff *skb,
1837 enum ieee80211_tkip_key_type type, u8 *key);
1838 /**
1839 * ieee80211_wake_queue - wake specific queue
1840 * @hw: pointer as obtained from ieee80211_alloc_hw().
1841 * @queue: queue number (counted from zero).
1842 *
1843 * Drivers should use this function instead of netif_wake_queue.
1844 */
1845 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue);
1846
1847 /**
1848 * ieee80211_stop_queue - stop specific queue
1849 * @hw: pointer as obtained from ieee80211_alloc_hw().
1850 * @queue: queue number (counted from zero).
1851 *
1852 * Drivers should use this function instead of netif_stop_queue.
1853 */
1854 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue);
1855
1856 /**
1857 * ieee80211_queue_stopped - test status of the queue
1858 * @hw: pointer as obtained from ieee80211_alloc_hw().
1859 * @queue: queue number (counted from zero).
1860 *
1861 * Drivers should use this function instead of netif_stop_queue.
1862 */
1863
1864 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue);
1865
1866 /**
1867 * ieee80211_stop_queues - stop all queues
1868 * @hw: pointer as obtained from ieee80211_alloc_hw().
1869 *
1870 * Drivers should use this function instead of netif_stop_queue.
1871 */
1872 void ieee80211_stop_queues(struct ieee80211_hw *hw);
1873
1874 /**
1875 * ieee80211_wake_queues - wake all queues
1876 * @hw: pointer as obtained from ieee80211_alloc_hw().
1877 *
1878 * Drivers should use this function instead of netif_wake_queue.
1879 */
1880 void ieee80211_wake_queues(struct ieee80211_hw *hw);
1881
1882 /**
1883 * ieee80211_scan_completed - completed hardware scan
1884 *
1885 * When hardware scan offload is used (i.e. the hw_scan() callback is
1886 * assigned) this function needs to be called by the driver to notify
1887 * mac80211 that the scan finished.
1888 *
1889 * @hw: the hardware that finished the scan
1890 * @aborted: set to true if scan was aborted
1891 */
1892 void ieee80211_scan_completed(struct ieee80211_hw *hw, bool aborted);
1893
1894 /**
1895 * ieee80211_iterate_active_interfaces - iterate active interfaces
1896 *
1897 * This function iterates over the interfaces associated with a given
1898 * hardware that are currently active and calls the callback for them.
1899 * This function allows the iterator function to sleep, when the iterator
1900 * function is atomic @ieee80211_iterate_active_interfaces_atomic can
1901 * be used.
1902 *
1903 * @hw: the hardware struct of which the interfaces should be iterated over
1904 * @iterator: the iterator function to call
1905 * @data: first argument of the iterator function
1906 */
1907 void ieee80211_iterate_active_interfaces(struct ieee80211_hw *hw,
1908 void (*iterator)(void *data, u8 *mac,
1909 struct ieee80211_vif *vif),
1910 void *data);
1911
1912 /**
1913 * ieee80211_iterate_active_interfaces_atomic - iterate active interfaces
1914 *
1915 * This function iterates over the interfaces associated with a given
1916 * hardware that are currently active and calls the callback for them.
1917 * This function requires the iterator callback function to be atomic,
1918 * if that is not desired, use @ieee80211_iterate_active_interfaces instead.
1919 *
1920 * @hw: the hardware struct of which the interfaces should be iterated over
1921 * @iterator: the iterator function to call, cannot sleep
1922 * @data: first argument of the iterator function
1923 */
1924 void ieee80211_iterate_active_interfaces_atomic(struct ieee80211_hw *hw,
1925 void (*iterator)(void *data,
1926 u8 *mac,
1927 struct ieee80211_vif *vif),
1928 void *data);
1929
1930 /**
1931 * ieee80211_start_tx_ba_session - Start a tx Block Ack session.
1932 * @hw: pointer as obtained from ieee80211_alloc_hw().
1933 * @ra: receiver address of the BA session recipient
1934 * @tid: the TID to BA on.
1935 *
1936 * Return: success if addBA request was sent, failure otherwise
1937 *
1938 * Although mac80211/low level driver/user space application can estimate
1939 * the need to start aggregation on a certain RA/TID, the session level
1940 * will be managed by the mac80211.
1941 */
1942 int ieee80211_start_tx_ba_session(struct ieee80211_hw *hw, u8 *ra, u16 tid);
1943
1944 /**
1945 * ieee80211_start_tx_ba_cb - low level driver ready to aggregate.
1946 * @hw: pointer as obtained from ieee80211_alloc_hw().
1947 * @ra: receiver address of the BA session recipient.
1948 * @tid: the TID to BA on.
1949 *
1950 * This function must be called by low level driver once it has
1951 * finished with preparations for the BA session.
1952 */
1953 void ieee80211_start_tx_ba_cb(struct ieee80211_hw *hw, u8 *ra, u16 tid);
1954
1955 /**
1956 * ieee80211_start_tx_ba_cb_irqsafe - low level driver ready to aggregate.
1957 * @hw: pointer as obtained from ieee80211_alloc_hw().
1958 * @ra: receiver address of the BA session recipient.
1959 * @tid: the TID to BA on.
1960 *
1961 * This function must be called by low level driver once it has
1962 * finished with preparations for the BA session.
1963 * This version of the function is IRQ-safe.
1964 */
1965 void ieee80211_start_tx_ba_cb_irqsafe(struct ieee80211_hw *hw, const u8 *ra,
1966 u16 tid);
1967
1968 /**
1969 * ieee80211_stop_tx_ba_session - Stop a Block Ack session.
1970 * @hw: pointer as obtained from ieee80211_alloc_hw().
1971 * @ra: receiver address of the BA session recipient
1972 * @tid: the TID to stop BA.
1973 * @initiator: if indicates initiator DELBA frame will be sent.
1974 *
1975 * Return: error if no sta with matching da found, success otherwise
1976 *
1977 * Although mac80211/low level driver/user space application can estimate
1978 * the need to stop aggregation on a certain RA/TID, the session level
1979 * will be managed by the mac80211.
1980 */
1981 int ieee80211_stop_tx_ba_session(struct ieee80211_hw *hw,
1982 u8 *ra, u16 tid,
1983 enum ieee80211_back_parties initiator);
1984
1985 /**
1986 * ieee80211_stop_tx_ba_cb - low level driver ready to stop aggregate.
1987 * @hw: pointer as obtained from ieee80211_alloc_hw().
1988 * @ra: receiver address of the BA session recipient.
1989 * @tid: the desired TID to BA on.
1990 *
1991 * This function must be called by low level driver once it has
1992 * finished with preparations for the BA session tear down.
1993 */
1994 void ieee80211_stop_tx_ba_cb(struct ieee80211_hw *hw, u8 *ra, u8 tid);
1995
1996 /**
1997 * ieee80211_stop_tx_ba_cb_irqsafe - low level driver ready to stop aggregate.
1998 * @hw: pointer as obtained from ieee80211_alloc_hw().
1999 * @ra: receiver address of the BA session recipient.
2000 * @tid: the desired TID to BA on.
2001 *
2002 * This function must be called by low level driver once it has
2003 * finished with preparations for the BA session tear down.
2004 * This version of the function is IRQ-safe.
2005 */
2006 void ieee80211_stop_tx_ba_cb_irqsafe(struct ieee80211_hw *hw, const u8 *ra,
2007 u16 tid);
2008
2009 /**
2010 * ieee80211_find_sta - find a station
2011 *
2012 * @hw: pointer as obtained from ieee80211_alloc_hw()
2013 * @addr: station's address
2014 *
2015 * This function must be called under RCU lock and the
2016 * resulting pointer is only valid under RCU lock as well.
2017 */
2018 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_hw *hw,
2019 const u8 *addr);
2020
2021 /**
2022 * ieee80211_beacon_loss - inform hardware does not receive beacons
2023 *
2024 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
2025 *
2026 * When beacon filtering is enabled with IEEE80211_HW_BEACON_FILTERING and
2027 * IEEE80211_CONF_PS is set, the driver needs to inform whenever the
2028 * hardware is not receiving beacons with this function.
2029 */
2030 void ieee80211_beacon_loss(struct ieee80211_vif *vif);
2031
2032 /* Rate control API */
2033
2034 /**
2035 * enum rate_control_changed - flags to indicate which parameter changed
2036 *
2037 * @IEEE80211_RC_HT_CHANGED: The HT parameters of the operating channel have
2038 * changed, rate control algorithm can update its internal state if needed.
2039 */
2040 enum rate_control_changed {
2041 IEEE80211_RC_HT_CHANGED = BIT(0)
2042 };
2043
2044 /**
2045 * struct ieee80211_tx_rate_control - rate control information for/from RC algo
2046 *
2047 * @hw: The hardware the algorithm is invoked for.
2048 * @sband: The band this frame is being transmitted on.
2049 * @bss_conf: the current BSS configuration
2050 * @reported_rate: The rate control algorithm can fill this in to indicate
2051 * which rate should be reported to userspace as the current rate and
2052 * used for rate calculations in the mesh network.
2053 * @rts: whether RTS will be used for this frame because it is longer than the
2054 * RTS threshold
2055 * @short_preamble: whether mac80211 will request short-preamble transmission
2056 * if the selected rate supports it
2057 * @max_rate_idx: user-requested maximum rate (not MCS for now)
2058 * @skb: the skb that will be transmitted, the control information in it needs
2059 * to be filled in
2060 */
2061 struct ieee80211_tx_rate_control {
2062 struct ieee80211_hw *hw;
2063 struct ieee80211_supported_band *sband;
2064 struct ieee80211_bss_conf *bss_conf;
2065 struct sk_buff *skb;
2066 struct ieee80211_tx_rate reported_rate;
2067 bool rts, short_preamble;
2068 u8 max_rate_idx;
2069 };
2070
2071 struct rate_control_ops {
2072 struct module *module;
2073 const char *name;
2074 void *(*alloc)(struct ieee80211_hw *hw, struct dentry *debugfsdir);
2075 void (*free)(void *priv);
2076
2077 void *(*alloc_sta)(void *priv, struct ieee80211_sta *sta, gfp_t gfp);
2078 void (*rate_init)(void *priv, struct ieee80211_supported_band *sband,
2079 struct ieee80211_sta *sta, void *priv_sta);
2080 void (*rate_update)(void *priv, struct ieee80211_supported_band *sband,
2081 struct ieee80211_sta *sta,
2082 void *priv_sta, u32 changed);
2083 void (*free_sta)(void *priv, struct ieee80211_sta *sta,
2084 void *priv_sta);
2085
2086 void (*tx_status)(void *priv, struct ieee80211_supported_band *sband,
2087 struct ieee80211_sta *sta, void *priv_sta,
2088 struct sk_buff *skb);
2089 void (*get_rate)(void *priv, struct ieee80211_sta *sta, void *priv_sta,
2090 struct ieee80211_tx_rate_control *txrc);
2091
2092 void (*add_sta_debugfs)(void *priv, void *priv_sta,
2093 struct dentry *dir);
2094 void (*remove_sta_debugfs)(void *priv, void *priv_sta);
2095 };
2096
2097 static inline int rate_supported(struct ieee80211_sta *sta,
2098 enum ieee80211_band band,
2099 int index)
2100 {
2101 return (sta == NULL || sta->supp_rates[band] & BIT(index));
2102 }
2103
2104 /**
2105 * rate_control_send_low - helper for drivers for management/no-ack frames
2106 *
2107 * Rate control algorithms that agree to use the lowest rate to
2108 * send management frames and NO_ACK data with the respective hw
2109 * retries should use this in the beginning of their mac80211 get_rate
2110 * callback. If true is returned the rate control can simply return.
2111 * If false is returned we guarantee that sta and sta and priv_sta is
2112 * not null.
2113 *
2114 * Rate control algorithms wishing to do more intelligent selection of
2115 * rate for multicast/broadcast frames may choose to not use this.
2116 *
2117 * @sta: &struct ieee80211_sta pointer to the target destination. Note
2118 * that this may be null.
2119 * @priv_sta: private rate control structure. This may be null.
2120 * @txrc: rate control information we sholud populate for mac80211.
2121 */
2122 bool rate_control_send_low(struct ieee80211_sta *sta,
2123 void *priv_sta,
2124 struct ieee80211_tx_rate_control *txrc);
2125
2126
2127 static inline s8
2128 rate_lowest_index(struct ieee80211_supported_band *sband,
2129 struct ieee80211_sta *sta)
2130 {
2131 int i;
2132
2133 for (i = 0; i < sband->n_bitrates; i++)
2134 if (rate_supported(sta, sband->band, i))
2135 return i;
2136
2137 /* warn when we cannot find a rate. */
2138 WARN_ON(1);
2139
2140 return 0;
2141 }
2142
2143 static inline
2144 bool rate_usable_index_exists(struct ieee80211_supported_band *sband,
2145 struct ieee80211_sta *sta)
2146 {
2147 unsigned int i;
2148
2149 for (i = 0; i < sband->n_bitrates; i++)
2150 if (rate_supported(sta, sband->band, i))
2151 return true;
2152 return false;
2153 }
2154
2155 int ieee80211_rate_control_register(struct rate_control_ops *ops);
2156 void ieee80211_rate_control_unregister(struct rate_control_ops *ops);
2157
2158 static inline bool
2159 conf_is_ht20(struct ieee80211_conf *conf)
2160 {
2161 return conf->channel_type == NL80211_CHAN_HT20;
2162 }
2163
2164 static inline bool
2165 conf_is_ht40_minus(struct ieee80211_conf *conf)
2166 {
2167 return conf->channel_type == NL80211_CHAN_HT40MINUS;
2168 }
2169
2170 static inline bool
2171 conf_is_ht40_plus(struct ieee80211_conf *conf)
2172 {
2173 return conf->channel_type == NL80211_CHAN_HT40PLUS;
2174 }
2175
2176 static inline bool
2177 conf_is_ht40(struct ieee80211_conf *conf)
2178 {
2179 return conf_is_ht40_minus(conf) || conf_is_ht40_plus(conf);
2180 }
2181
2182 static inline bool
2183 conf_is_ht(struct ieee80211_conf *conf)
2184 {
2185 return conf->channel_type != NL80211_CHAN_NO_HT;
2186 }
2187
2188 #endif /* MAC80211_H */
This page took 0.085677 seconds and 4 git commands to generate.