07822280d9536d2d0429f1784a599773c9081f73
[deliverable/linux.git] / include / net / sock.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42
43 #include <linux/kernel.h>
44 #include <linux/list.h>
45 #include <linux/list_nulls.h>
46 #include <linux/timer.h>
47 #include <linux/cache.h>
48 #include <linux/module.h>
49 #include <linux/lockdep.h>
50 #include <linux/netdevice.h>
51 #include <linux/skbuff.h> /* struct sk_buff */
52 #include <linux/mm.h>
53 #include <linux/security.h>
54 #include <linux/slab.h>
55
56 #include <linux/filter.h>
57 #include <linux/rculist_nulls.h>
58 #include <linux/poll.h>
59
60 #include <asm/atomic.h>
61 #include <net/dst.h>
62 #include <net/checksum.h>
63
64 /*
65 * This structure really needs to be cleaned up.
66 * Most of it is for TCP, and not used by any of
67 * the other protocols.
68 */
69
70 /* Define this to get the SOCK_DBG debugging facility. */
71 #define SOCK_DEBUGGING
72 #ifdef SOCK_DEBUGGING
73 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
74 printk(KERN_DEBUG msg); } while (0)
75 #else
76 /* Validate arguments and do nothing */
77 static void inline int __attribute__ ((format (printf, 2, 3)))
78 SOCK_DEBUG(struct sock *sk, const char *msg, ...)
79 {
80 }
81 #endif
82
83 /* This is the per-socket lock. The spinlock provides a synchronization
84 * between user contexts and software interrupt processing, whereas the
85 * mini-semaphore synchronizes multiple users amongst themselves.
86 */
87 typedef struct {
88 spinlock_t slock;
89 int owned;
90 wait_queue_head_t wq;
91 /*
92 * We express the mutex-alike socket_lock semantics
93 * to the lock validator by explicitly managing
94 * the slock as a lock variant (in addition to
95 * the slock itself):
96 */
97 #ifdef CONFIG_DEBUG_LOCK_ALLOC
98 struct lockdep_map dep_map;
99 #endif
100 } socket_lock_t;
101
102 struct sock;
103 struct proto;
104 struct net;
105
106 /**
107 * struct sock_common - minimal network layer representation of sockets
108 * @skc_node: main hash linkage for various protocol lookup tables
109 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
110 * @skc_refcnt: reference count
111 * @skc_tx_queue_mapping: tx queue number for this connection
112 * @skc_hash: hash value used with various protocol lookup tables
113 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
114 * @skc_family: network address family
115 * @skc_state: Connection state
116 * @skc_reuse: %SO_REUSEADDR setting
117 * @skc_bound_dev_if: bound device index if != 0
118 * @skc_bind_node: bind hash linkage for various protocol lookup tables
119 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
120 * @skc_prot: protocol handlers inside a network family
121 * @skc_net: reference to the network namespace of this socket
122 *
123 * This is the minimal network layer representation of sockets, the header
124 * for struct sock and struct inet_timewait_sock.
125 */
126 struct sock_common {
127 /*
128 * first fields are not copied in sock_copy()
129 */
130 union {
131 struct hlist_node skc_node;
132 struct hlist_nulls_node skc_nulls_node;
133 };
134 atomic_t skc_refcnt;
135 int skc_tx_queue_mapping;
136
137 union {
138 unsigned int skc_hash;
139 __u16 skc_u16hashes[2];
140 };
141 unsigned short skc_family;
142 volatile unsigned char skc_state;
143 unsigned char skc_reuse;
144 int skc_bound_dev_if;
145 union {
146 struct hlist_node skc_bind_node;
147 struct hlist_nulls_node skc_portaddr_node;
148 };
149 struct proto *skc_prot;
150 #ifdef CONFIG_NET_NS
151 struct net *skc_net;
152 #endif
153 };
154
155 /**
156 * struct sock - network layer representation of sockets
157 * @__sk_common: shared layout with inet_timewait_sock
158 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
159 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
160 * @sk_lock: synchronizer
161 * @sk_rcvbuf: size of receive buffer in bytes
162 * @sk_sleep: sock wait queue
163 * @sk_dst_cache: destination cache
164 * @sk_dst_lock: destination cache lock
165 * @sk_policy: flow policy
166 * @sk_rmem_alloc: receive queue bytes committed
167 * @sk_receive_queue: incoming packets
168 * @sk_wmem_alloc: transmit queue bytes committed
169 * @sk_write_queue: Packet sending queue
170 * @sk_async_wait_queue: DMA copied packets
171 * @sk_omem_alloc: "o" is "option" or "other"
172 * @sk_wmem_queued: persistent queue size
173 * @sk_forward_alloc: space allocated forward
174 * @sk_allocation: allocation mode
175 * @sk_sndbuf: size of send buffer in bytes
176 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
177 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
178 * @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
179 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
180 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
181 * @sk_gso_max_size: Maximum GSO segment size to build
182 * @sk_lingertime: %SO_LINGER l_linger setting
183 * @sk_backlog: always used with the per-socket spinlock held
184 * @sk_callback_lock: used with the callbacks in the end of this struct
185 * @sk_error_queue: rarely used
186 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
187 * IPV6_ADDRFORM for instance)
188 * @sk_err: last error
189 * @sk_err_soft: errors that don't cause failure but are the cause of a
190 * persistent failure not just 'timed out'
191 * @sk_drops: raw/udp drops counter
192 * @sk_ack_backlog: current listen backlog
193 * @sk_max_ack_backlog: listen backlog set in listen()
194 * @sk_priority: %SO_PRIORITY setting
195 * @sk_type: socket type (%SOCK_STREAM, etc)
196 * @sk_protocol: which protocol this socket belongs in this network family
197 * @sk_peercred: %SO_PEERCRED setting
198 * @sk_rcvlowat: %SO_RCVLOWAT setting
199 * @sk_rcvtimeo: %SO_RCVTIMEO setting
200 * @sk_sndtimeo: %SO_SNDTIMEO setting
201 * @sk_rxhash: flow hash received from netif layer
202 * @sk_filter: socket filtering instructions
203 * @sk_protinfo: private area, net family specific, when not using slab
204 * @sk_timer: sock cleanup timer
205 * @sk_stamp: time stamp of last packet received
206 * @sk_socket: Identd and reporting IO signals
207 * @sk_user_data: RPC layer private data
208 * @sk_sndmsg_page: cached page for sendmsg
209 * @sk_sndmsg_off: cached offset for sendmsg
210 * @sk_send_head: front of stuff to transmit
211 * @sk_security: used by security modules
212 * @sk_mark: generic packet mark
213 * @sk_write_pending: a write to stream socket waits to start
214 * @sk_state_change: callback to indicate change in the state of the sock
215 * @sk_data_ready: callback to indicate there is data to be processed
216 * @sk_write_space: callback to indicate there is bf sending space available
217 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
218 * @sk_backlog_rcv: callback to process the backlog
219 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
220 */
221 struct sock {
222 /*
223 * Now struct inet_timewait_sock also uses sock_common, so please just
224 * don't add nothing before this first member (__sk_common) --acme
225 */
226 struct sock_common __sk_common;
227 #define sk_node __sk_common.skc_node
228 #define sk_nulls_node __sk_common.skc_nulls_node
229 #define sk_refcnt __sk_common.skc_refcnt
230 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
231
232 #define sk_copy_start __sk_common.skc_hash
233 #define sk_hash __sk_common.skc_hash
234 #define sk_family __sk_common.skc_family
235 #define sk_state __sk_common.skc_state
236 #define sk_reuse __sk_common.skc_reuse
237 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
238 #define sk_bind_node __sk_common.skc_bind_node
239 #define sk_prot __sk_common.skc_prot
240 #define sk_net __sk_common.skc_net
241 kmemcheck_bitfield_begin(flags);
242 unsigned int sk_shutdown : 2,
243 sk_no_check : 2,
244 sk_userlocks : 4,
245 sk_protocol : 8,
246 sk_type : 16;
247 kmemcheck_bitfield_end(flags);
248 int sk_rcvbuf;
249 socket_lock_t sk_lock;
250 /*
251 * The backlog queue is special, it is always used with
252 * the per-socket spinlock held and requires low latency
253 * access. Therefore we special case it's implementation.
254 */
255 struct {
256 struct sk_buff *head;
257 struct sk_buff *tail;
258 int len;
259 int limit;
260 } sk_backlog;
261 wait_queue_head_t *sk_sleep;
262 struct dst_entry *sk_dst_cache;
263 #ifdef CONFIG_XFRM
264 struct xfrm_policy *sk_policy[2];
265 #endif
266 spinlock_t sk_dst_lock;
267 atomic_t sk_rmem_alloc;
268 atomic_t sk_wmem_alloc;
269 atomic_t sk_omem_alloc;
270 int sk_sndbuf;
271 struct sk_buff_head sk_receive_queue;
272 struct sk_buff_head sk_write_queue;
273 #ifdef CONFIG_NET_DMA
274 struct sk_buff_head sk_async_wait_queue;
275 #endif
276 int sk_wmem_queued;
277 int sk_forward_alloc;
278 gfp_t sk_allocation;
279 int sk_route_caps;
280 int sk_gso_type;
281 unsigned int sk_gso_max_size;
282 int sk_rcvlowat;
283 #ifdef CONFIG_RPS
284 __u32 sk_rxhash;
285 #endif
286 unsigned long sk_flags;
287 unsigned long sk_lingertime;
288 struct sk_buff_head sk_error_queue;
289 struct proto *sk_prot_creator;
290 rwlock_t sk_callback_lock;
291 int sk_err,
292 sk_err_soft;
293 atomic_t sk_drops;
294 unsigned short sk_ack_backlog;
295 unsigned short sk_max_ack_backlog;
296 __u32 sk_priority;
297 struct ucred sk_peercred;
298 long sk_rcvtimeo;
299 long sk_sndtimeo;
300 struct sk_filter *sk_filter;
301 void *sk_protinfo;
302 struct timer_list sk_timer;
303 ktime_t sk_stamp;
304 struct socket *sk_socket;
305 void *sk_user_data;
306 struct page *sk_sndmsg_page;
307 struct sk_buff *sk_send_head;
308 __u32 sk_sndmsg_off;
309 int sk_write_pending;
310 #ifdef CONFIG_SECURITY
311 void *sk_security;
312 #endif
313 __u32 sk_mark;
314 /* XXX 4 bytes hole on 64 bit */
315 void (*sk_state_change)(struct sock *sk);
316 void (*sk_data_ready)(struct sock *sk, int bytes);
317 void (*sk_write_space)(struct sock *sk);
318 void (*sk_error_report)(struct sock *sk);
319 int (*sk_backlog_rcv)(struct sock *sk,
320 struct sk_buff *skb);
321 void (*sk_destruct)(struct sock *sk);
322 };
323
324 /*
325 * Hashed lists helper routines
326 */
327 static inline struct sock *sk_entry(const struct hlist_node *node)
328 {
329 return hlist_entry(node, struct sock, sk_node);
330 }
331
332 static inline struct sock *__sk_head(const struct hlist_head *head)
333 {
334 return hlist_entry(head->first, struct sock, sk_node);
335 }
336
337 static inline struct sock *sk_head(const struct hlist_head *head)
338 {
339 return hlist_empty(head) ? NULL : __sk_head(head);
340 }
341
342 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
343 {
344 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
345 }
346
347 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
348 {
349 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
350 }
351
352 static inline struct sock *sk_next(const struct sock *sk)
353 {
354 return sk->sk_node.next ?
355 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
356 }
357
358 static inline struct sock *sk_nulls_next(const struct sock *sk)
359 {
360 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
361 hlist_nulls_entry(sk->sk_nulls_node.next,
362 struct sock, sk_nulls_node) :
363 NULL;
364 }
365
366 static inline int sk_unhashed(const struct sock *sk)
367 {
368 return hlist_unhashed(&sk->sk_node);
369 }
370
371 static inline int sk_hashed(const struct sock *sk)
372 {
373 return !sk_unhashed(sk);
374 }
375
376 static __inline__ void sk_node_init(struct hlist_node *node)
377 {
378 node->pprev = NULL;
379 }
380
381 static __inline__ void sk_nulls_node_init(struct hlist_nulls_node *node)
382 {
383 node->pprev = NULL;
384 }
385
386 static __inline__ void __sk_del_node(struct sock *sk)
387 {
388 __hlist_del(&sk->sk_node);
389 }
390
391 /* NB: equivalent to hlist_del_init_rcu */
392 static __inline__ int __sk_del_node_init(struct sock *sk)
393 {
394 if (sk_hashed(sk)) {
395 __sk_del_node(sk);
396 sk_node_init(&sk->sk_node);
397 return 1;
398 }
399 return 0;
400 }
401
402 /* Grab socket reference count. This operation is valid only
403 when sk is ALREADY grabbed f.e. it is found in hash table
404 or a list and the lookup is made under lock preventing hash table
405 modifications.
406 */
407
408 static inline void sock_hold(struct sock *sk)
409 {
410 atomic_inc(&sk->sk_refcnt);
411 }
412
413 /* Ungrab socket in the context, which assumes that socket refcnt
414 cannot hit zero, f.e. it is true in context of any socketcall.
415 */
416 static inline void __sock_put(struct sock *sk)
417 {
418 atomic_dec(&sk->sk_refcnt);
419 }
420
421 static __inline__ int sk_del_node_init(struct sock *sk)
422 {
423 int rc = __sk_del_node_init(sk);
424
425 if (rc) {
426 /* paranoid for a while -acme */
427 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
428 __sock_put(sk);
429 }
430 return rc;
431 }
432 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
433
434 static __inline__ int __sk_nulls_del_node_init_rcu(struct sock *sk)
435 {
436 if (sk_hashed(sk)) {
437 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
438 return 1;
439 }
440 return 0;
441 }
442
443 static __inline__ int sk_nulls_del_node_init_rcu(struct sock *sk)
444 {
445 int rc = __sk_nulls_del_node_init_rcu(sk);
446
447 if (rc) {
448 /* paranoid for a while -acme */
449 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
450 __sock_put(sk);
451 }
452 return rc;
453 }
454
455 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list)
456 {
457 hlist_add_head(&sk->sk_node, list);
458 }
459
460 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list)
461 {
462 sock_hold(sk);
463 __sk_add_node(sk, list);
464 }
465
466 static __inline__ void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
467 {
468 sock_hold(sk);
469 hlist_add_head_rcu(&sk->sk_node, list);
470 }
471
472 static __inline__ void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
473 {
474 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
475 }
476
477 static __inline__ void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
478 {
479 sock_hold(sk);
480 __sk_nulls_add_node_rcu(sk, list);
481 }
482
483 static __inline__ void __sk_del_bind_node(struct sock *sk)
484 {
485 __hlist_del(&sk->sk_bind_node);
486 }
487
488 static __inline__ void sk_add_bind_node(struct sock *sk,
489 struct hlist_head *list)
490 {
491 hlist_add_head(&sk->sk_bind_node, list);
492 }
493
494 #define sk_for_each(__sk, node, list) \
495 hlist_for_each_entry(__sk, node, list, sk_node)
496 #define sk_for_each_rcu(__sk, node, list) \
497 hlist_for_each_entry_rcu(__sk, node, list, sk_node)
498 #define sk_nulls_for_each(__sk, node, list) \
499 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
500 #define sk_nulls_for_each_rcu(__sk, node, list) \
501 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
502 #define sk_for_each_from(__sk, node) \
503 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
504 hlist_for_each_entry_from(__sk, node, sk_node)
505 #define sk_nulls_for_each_from(__sk, node) \
506 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
507 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
508 #define sk_for_each_continue(__sk, node) \
509 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
510 hlist_for_each_entry_continue(__sk, node, sk_node)
511 #define sk_for_each_safe(__sk, node, tmp, list) \
512 hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
513 #define sk_for_each_bound(__sk, node, list) \
514 hlist_for_each_entry(__sk, node, list, sk_bind_node)
515
516 /* Sock flags */
517 enum sock_flags {
518 SOCK_DEAD,
519 SOCK_DONE,
520 SOCK_URGINLINE,
521 SOCK_KEEPOPEN,
522 SOCK_LINGER,
523 SOCK_DESTROY,
524 SOCK_BROADCAST,
525 SOCK_TIMESTAMP,
526 SOCK_ZAPPED,
527 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
528 SOCK_DBG, /* %SO_DEBUG setting */
529 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
530 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
531 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
532 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
533 SOCK_TIMESTAMPING_TX_HARDWARE, /* %SOF_TIMESTAMPING_TX_HARDWARE */
534 SOCK_TIMESTAMPING_TX_SOFTWARE, /* %SOF_TIMESTAMPING_TX_SOFTWARE */
535 SOCK_TIMESTAMPING_RX_HARDWARE, /* %SOF_TIMESTAMPING_RX_HARDWARE */
536 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
537 SOCK_TIMESTAMPING_SOFTWARE, /* %SOF_TIMESTAMPING_SOFTWARE */
538 SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
539 SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
540 SOCK_FASYNC, /* fasync() active */
541 SOCK_RXQ_OVFL,
542 };
543
544 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
545 {
546 nsk->sk_flags = osk->sk_flags;
547 }
548
549 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
550 {
551 __set_bit(flag, &sk->sk_flags);
552 }
553
554 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
555 {
556 __clear_bit(flag, &sk->sk_flags);
557 }
558
559 static inline int sock_flag(struct sock *sk, enum sock_flags flag)
560 {
561 return test_bit(flag, &sk->sk_flags);
562 }
563
564 static inline void sk_acceptq_removed(struct sock *sk)
565 {
566 sk->sk_ack_backlog--;
567 }
568
569 static inline void sk_acceptq_added(struct sock *sk)
570 {
571 sk->sk_ack_backlog++;
572 }
573
574 static inline int sk_acceptq_is_full(struct sock *sk)
575 {
576 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
577 }
578
579 /*
580 * Compute minimal free write space needed to queue new packets.
581 */
582 static inline int sk_stream_min_wspace(struct sock *sk)
583 {
584 return sk->sk_wmem_queued >> 1;
585 }
586
587 static inline int sk_stream_wspace(struct sock *sk)
588 {
589 return sk->sk_sndbuf - sk->sk_wmem_queued;
590 }
591
592 extern void sk_stream_write_space(struct sock *sk);
593
594 static inline int sk_stream_memory_free(struct sock *sk)
595 {
596 return sk->sk_wmem_queued < sk->sk_sndbuf;
597 }
598
599 /* OOB backlog add */
600 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
601 {
602 if (!sk->sk_backlog.tail) {
603 sk->sk_backlog.head = sk->sk_backlog.tail = skb;
604 } else {
605 sk->sk_backlog.tail->next = skb;
606 sk->sk_backlog.tail = skb;
607 }
608 skb->next = NULL;
609 }
610
611 /* The per-socket spinlock must be held here. */
612 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb)
613 {
614 if (sk->sk_backlog.len >= max(sk->sk_backlog.limit, sk->sk_rcvbuf << 1))
615 return -ENOBUFS;
616
617 __sk_add_backlog(sk, skb);
618 sk->sk_backlog.len += skb->truesize;
619 return 0;
620 }
621
622 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
623 {
624 return sk->sk_backlog_rcv(sk, skb);
625 }
626
627 static inline void sock_rps_record_flow(const struct sock *sk)
628 {
629 #ifdef CONFIG_RPS
630 struct rps_sock_flow_table *sock_flow_table;
631
632 rcu_read_lock();
633 sock_flow_table = rcu_dereference(rps_sock_flow_table);
634 rps_record_sock_flow(sock_flow_table, sk->sk_rxhash);
635 rcu_read_unlock();
636 #endif
637 }
638
639 static inline void sock_rps_reset_flow(const struct sock *sk)
640 {
641 #ifdef CONFIG_RPS
642 struct rps_sock_flow_table *sock_flow_table;
643
644 rcu_read_lock();
645 sock_flow_table = rcu_dereference(rps_sock_flow_table);
646 rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash);
647 rcu_read_unlock();
648 #endif
649 }
650
651 static inline void sock_rps_save_rxhash(struct sock *sk, u32 rxhash)
652 {
653 #ifdef CONFIG_RPS
654 if (unlikely(sk->sk_rxhash != rxhash)) {
655 sock_rps_reset_flow(sk);
656 sk->sk_rxhash = rxhash;
657 }
658 #endif
659 }
660
661 #define sk_wait_event(__sk, __timeo, __condition) \
662 ({ int __rc; \
663 release_sock(__sk); \
664 __rc = __condition; \
665 if (!__rc) { \
666 *(__timeo) = schedule_timeout(*(__timeo)); \
667 } \
668 lock_sock(__sk); \
669 __rc = __condition; \
670 __rc; \
671 })
672
673 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
674 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
675 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
676 extern int sk_stream_error(struct sock *sk, int flags, int err);
677 extern void sk_stream_kill_queues(struct sock *sk);
678
679 extern int sk_wait_data(struct sock *sk, long *timeo);
680
681 struct request_sock_ops;
682 struct timewait_sock_ops;
683 struct inet_hashinfo;
684 struct raw_hashinfo;
685
686 /* Networking protocol blocks we attach to sockets.
687 * socket layer -> transport layer interface
688 * transport -> network interface is defined by struct inet_proto
689 */
690 struct proto {
691 void (*close)(struct sock *sk,
692 long timeout);
693 int (*connect)(struct sock *sk,
694 struct sockaddr *uaddr,
695 int addr_len);
696 int (*disconnect)(struct sock *sk, int flags);
697
698 struct sock * (*accept) (struct sock *sk, int flags, int *err);
699
700 int (*ioctl)(struct sock *sk, int cmd,
701 unsigned long arg);
702 int (*init)(struct sock *sk);
703 void (*destroy)(struct sock *sk);
704 void (*shutdown)(struct sock *sk, int how);
705 int (*setsockopt)(struct sock *sk, int level,
706 int optname, char __user *optval,
707 unsigned int optlen);
708 int (*getsockopt)(struct sock *sk, int level,
709 int optname, char __user *optval,
710 int __user *option);
711 #ifdef CONFIG_COMPAT
712 int (*compat_setsockopt)(struct sock *sk,
713 int level,
714 int optname, char __user *optval,
715 unsigned int optlen);
716 int (*compat_getsockopt)(struct sock *sk,
717 int level,
718 int optname, char __user *optval,
719 int __user *option);
720 #endif
721 int (*sendmsg)(struct kiocb *iocb, struct sock *sk,
722 struct msghdr *msg, size_t len);
723 int (*recvmsg)(struct kiocb *iocb, struct sock *sk,
724 struct msghdr *msg,
725 size_t len, int noblock, int flags,
726 int *addr_len);
727 int (*sendpage)(struct sock *sk, struct page *page,
728 int offset, size_t size, int flags);
729 int (*bind)(struct sock *sk,
730 struct sockaddr *uaddr, int addr_len);
731
732 int (*backlog_rcv) (struct sock *sk,
733 struct sk_buff *skb);
734
735 /* Keeping track of sk's, looking them up, and port selection methods. */
736 void (*hash)(struct sock *sk);
737 void (*unhash)(struct sock *sk);
738 int (*get_port)(struct sock *sk, unsigned short snum);
739
740 /* Keeping track of sockets in use */
741 #ifdef CONFIG_PROC_FS
742 unsigned int inuse_idx;
743 #endif
744
745 /* Memory pressure */
746 void (*enter_memory_pressure)(struct sock *sk);
747 atomic_t *memory_allocated; /* Current allocated memory. */
748 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
749 /*
750 * Pressure flag: try to collapse.
751 * Technical note: it is used by multiple contexts non atomically.
752 * All the __sk_mem_schedule() is of this nature: accounting
753 * is strict, actions are advisory and have some latency.
754 */
755 int *memory_pressure;
756 int *sysctl_mem;
757 int *sysctl_wmem;
758 int *sysctl_rmem;
759 int max_header;
760
761 struct kmem_cache *slab;
762 unsigned int obj_size;
763 int slab_flags;
764
765 struct percpu_counter *orphan_count;
766
767 struct request_sock_ops *rsk_prot;
768 struct timewait_sock_ops *twsk_prot;
769
770 union {
771 struct inet_hashinfo *hashinfo;
772 struct udp_table *udp_table;
773 struct raw_hashinfo *raw_hash;
774 } h;
775
776 struct module *owner;
777
778 char name[32];
779
780 struct list_head node;
781 #ifdef SOCK_REFCNT_DEBUG
782 atomic_t socks;
783 #endif
784 };
785
786 extern int proto_register(struct proto *prot, int alloc_slab);
787 extern void proto_unregister(struct proto *prot);
788
789 #ifdef SOCK_REFCNT_DEBUG
790 static inline void sk_refcnt_debug_inc(struct sock *sk)
791 {
792 atomic_inc(&sk->sk_prot->socks);
793 }
794
795 static inline void sk_refcnt_debug_dec(struct sock *sk)
796 {
797 atomic_dec(&sk->sk_prot->socks);
798 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
799 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
800 }
801
802 static inline void sk_refcnt_debug_release(const struct sock *sk)
803 {
804 if (atomic_read(&sk->sk_refcnt) != 1)
805 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
806 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
807 }
808 #else /* SOCK_REFCNT_DEBUG */
809 #define sk_refcnt_debug_inc(sk) do { } while (0)
810 #define sk_refcnt_debug_dec(sk) do { } while (0)
811 #define sk_refcnt_debug_release(sk) do { } while (0)
812 #endif /* SOCK_REFCNT_DEBUG */
813
814
815 #ifdef CONFIG_PROC_FS
816 /* Called with local bh disabled */
817 extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
818 extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
819 #else
820 static void inline sock_prot_inuse_add(struct net *net, struct proto *prot,
821 int inc)
822 {
823 }
824 #endif
825
826
827 /* With per-bucket locks this operation is not-atomic, so that
828 * this version is not worse.
829 */
830 static inline void __sk_prot_rehash(struct sock *sk)
831 {
832 sk->sk_prot->unhash(sk);
833 sk->sk_prot->hash(sk);
834 }
835
836 /* About 10 seconds */
837 #define SOCK_DESTROY_TIME (10*HZ)
838
839 /* Sockets 0-1023 can't be bound to unless you are superuser */
840 #define PROT_SOCK 1024
841
842 #define SHUTDOWN_MASK 3
843 #define RCV_SHUTDOWN 1
844 #define SEND_SHUTDOWN 2
845
846 #define SOCK_SNDBUF_LOCK 1
847 #define SOCK_RCVBUF_LOCK 2
848 #define SOCK_BINDADDR_LOCK 4
849 #define SOCK_BINDPORT_LOCK 8
850
851 /* sock_iocb: used to kick off async processing of socket ios */
852 struct sock_iocb {
853 struct list_head list;
854
855 int flags;
856 int size;
857 struct socket *sock;
858 struct sock *sk;
859 struct scm_cookie *scm;
860 struct msghdr *msg, async_msg;
861 struct kiocb *kiocb;
862 };
863
864 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
865 {
866 return (struct sock_iocb *)iocb->private;
867 }
868
869 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
870 {
871 return si->kiocb;
872 }
873
874 struct socket_alloc {
875 struct socket socket;
876 struct inode vfs_inode;
877 };
878
879 static inline struct socket *SOCKET_I(struct inode *inode)
880 {
881 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
882 }
883
884 static inline struct inode *SOCK_INODE(struct socket *socket)
885 {
886 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
887 }
888
889 /*
890 * Functions for memory accounting
891 */
892 extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
893 extern void __sk_mem_reclaim(struct sock *sk);
894
895 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
896 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
897 #define SK_MEM_SEND 0
898 #define SK_MEM_RECV 1
899
900 static inline int sk_mem_pages(int amt)
901 {
902 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
903 }
904
905 static inline int sk_has_account(struct sock *sk)
906 {
907 /* return true if protocol supports memory accounting */
908 return !!sk->sk_prot->memory_allocated;
909 }
910
911 static inline int sk_wmem_schedule(struct sock *sk, int size)
912 {
913 if (!sk_has_account(sk))
914 return 1;
915 return size <= sk->sk_forward_alloc ||
916 __sk_mem_schedule(sk, size, SK_MEM_SEND);
917 }
918
919 static inline int sk_rmem_schedule(struct sock *sk, int size)
920 {
921 if (!sk_has_account(sk))
922 return 1;
923 return size <= sk->sk_forward_alloc ||
924 __sk_mem_schedule(sk, size, SK_MEM_RECV);
925 }
926
927 static inline void sk_mem_reclaim(struct sock *sk)
928 {
929 if (!sk_has_account(sk))
930 return;
931 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
932 __sk_mem_reclaim(sk);
933 }
934
935 static inline void sk_mem_reclaim_partial(struct sock *sk)
936 {
937 if (!sk_has_account(sk))
938 return;
939 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
940 __sk_mem_reclaim(sk);
941 }
942
943 static inline void sk_mem_charge(struct sock *sk, int size)
944 {
945 if (!sk_has_account(sk))
946 return;
947 sk->sk_forward_alloc -= size;
948 }
949
950 static inline void sk_mem_uncharge(struct sock *sk, int size)
951 {
952 if (!sk_has_account(sk))
953 return;
954 sk->sk_forward_alloc += size;
955 }
956
957 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
958 {
959 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
960 sk->sk_wmem_queued -= skb->truesize;
961 sk_mem_uncharge(sk, skb->truesize);
962 __kfree_skb(skb);
963 }
964
965 /* Used by processes to "lock" a socket state, so that
966 * interrupts and bottom half handlers won't change it
967 * from under us. It essentially blocks any incoming
968 * packets, so that we won't get any new data or any
969 * packets that change the state of the socket.
970 *
971 * While locked, BH processing will add new packets to
972 * the backlog queue. This queue is processed by the
973 * owner of the socket lock right before it is released.
974 *
975 * Since ~2.3.5 it is also exclusive sleep lock serializing
976 * accesses from user process context.
977 */
978 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
979
980 /*
981 * Macro so as to not evaluate some arguments when
982 * lockdep is not enabled.
983 *
984 * Mark both the sk_lock and the sk_lock.slock as a
985 * per-address-family lock class.
986 */
987 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
988 do { \
989 sk->sk_lock.owned = 0; \
990 init_waitqueue_head(&sk->sk_lock.wq); \
991 spin_lock_init(&(sk)->sk_lock.slock); \
992 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
993 sizeof((sk)->sk_lock)); \
994 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
995 (skey), (sname)); \
996 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
997 } while (0)
998
999 extern void lock_sock_nested(struct sock *sk, int subclass);
1000
1001 static inline void lock_sock(struct sock *sk)
1002 {
1003 lock_sock_nested(sk, 0);
1004 }
1005
1006 extern void release_sock(struct sock *sk);
1007
1008 /* BH context may only use the following locking interface. */
1009 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1010 #define bh_lock_sock_nested(__sk) \
1011 spin_lock_nested(&((__sk)->sk_lock.slock), \
1012 SINGLE_DEPTH_NESTING)
1013 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1014
1015 extern struct sock *sk_alloc(struct net *net, int family,
1016 gfp_t priority,
1017 struct proto *prot);
1018 extern void sk_free(struct sock *sk);
1019 extern void sk_release_kernel(struct sock *sk);
1020 extern struct sock *sk_clone(const struct sock *sk,
1021 const gfp_t priority);
1022
1023 extern struct sk_buff *sock_wmalloc(struct sock *sk,
1024 unsigned long size, int force,
1025 gfp_t priority);
1026 extern struct sk_buff *sock_rmalloc(struct sock *sk,
1027 unsigned long size, int force,
1028 gfp_t priority);
1029 extern void sock_wfree(struct sk_buff *skb);
1030 extern void sock_rfree(struct sk_buff *skb);
1031
1032 extern int sock_setsockopt(struct socket *sock, int level,
1033 int op, char __user *optval,
1034 unsigned int optlen);
1035
1036 extern int sock_getsockopt(struct socket *sock, int level,
1037 int op, char __user *optval,
1038 int __user *optlen);
1039 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1040 unsigned long size,
1041 int noblock,
1042 int *errcode);
1043 extern struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1044 unsigned long header_len,
1045 unsigned long data_len,
1046 int noblock,
1047 int *errcode);
1048 extern void *sock_kmalloc(struct sock *sk, int size,
1049 gfp_t priority);
1050 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
1051 extern void sk_send_sigurg(struct sock *sk);
1052
1053 /*
1054 * Functions to fill in entries in struct proto_ops when a protocol
1055 * does not implement a particular function.
1056 */
1057 extern int sock_no_bind(struct socket *,
1058 struct sockaddr *, int);
1059 extern int sock_no_connect(struct socket *,
1060 struct sockaddr *, int, int);
1061 extern int sock_no_socketpair(struct socket *,
1062 struct socket *);
1063 extern int sock_no_accept(struct socket *,
1064 struct socket *, int);
1065 extern int sock_no_getname(struct socket *,
1066 struct sockaddr *, int *, int);
1067 extern unsigned int sock_no_poll(struct file *, struct socket *,
1068 struct poll_table_struct *);
1069 extern int sock_no_ioctl(struct socket *, unsigned int,
1070 unsigned long);
1071 extern int sock_no_listen(struct socket *, int);
1072 extern int sock_no_shutdown(struct socket *, int);
1073 extern int sock_no_getsockopt(struct socket *, int , int,
1074 char __user *, int __user *);
1075 extern int sock_no_setsockopt(struct socket *, int, int,
1076 char __user *, unsigned int);
1077 extern int sock_no_sendmsg(struct kiocb *, struct socket *,
1078 struct msghdr *, size_t);
1079 extern int sock_no_recvmsg(struct kiocb *, struct socket *,
1080 struct msghdr *, size_t, int);
1081 extern int sock_no_mmap(struct file *file,
1082 struct socket *sock,
1083 struct vm_area_struct *vma);
1084 extern ssize_t sock_no_sendpage(struct socket *sock,
1085 struct page *page,
1086 int offset, size_t size,
1087 int flags);
1088
1089 /*
1090 * Functions to fill in entries in struct proto_ops when a protocol
1091 * uses the inet style.
1092 */
1093 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1094 char __user *optval, int __user *optlen);
1095 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1096 struct msghdr *msg, size_t size, int flags);
1097 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1098 char __user *optval, unsigned int optlen);
1099 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1100 int optname, char __user *optval, int __user *optlen);
1101 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1102 int optname, char __user *optval, unsigned int optlen);
1103
1104 extern void sk_common_release(struct sock *sk);
1105
1106 /*
1107 * Default socket callbacks and setup code
1108 */
1109
1110 /* Initialise core socket variables */
1111 extern void sock_init_data(struct socket *sock, struct sock *sk);
1112
1113 /**
1114 * sk_filter_release - release a socket filter
1115 * @fp: filter to remove
1116 *
1117 * Remove a filter from a socket and release its resources.
1118 */
1119
1120 static inline void sk_filter_release(struct sk_filter *fp)
1121 {
1122 if (atomic_dec_and_test(&fp->refcnt))
1123 kfree(fp);
1124 }
1125
1126 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1127 {
1128 unsigned int size = sk_filter_len(fp);
1129
1130 atomic_sub(size, &sk->sk_omem_alloc);
1131 sk_filter_release(fp);
1132 }
1133
1134 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1135 {
1136 atomic_inc(&fp->refcnt);
1137 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1138 }
1139
1140 /*
1141 * Socket reference counting postulates.
1142 *
1143 * * Each user of socket SHOULD hold a reference count.
1144 * * Each access point to socket (an hash table bucket, reference from a list,
1145 * running timer, skb in flight MUST hold a reference count.
1146 * * When reference count hits 0, it means it will never increase back.
1147 * * When reference count hits 0, it means that no references from
1148 * outside exist to this socket and current process on current CPU
1149 * is last user and may/should destroy this socket.
1150 * * sk_free is called from any context: process, BH, IRQ. When
1151 * it is called, socket has no references from outside -> sk_free
1152 * may release descendant resources allocated by the socket, but
1153 * to the time when it is called, socket is NOT referenced by any
1154 * hash tables, lists etc.
1155 * * Packets, delivered from outside (from network or from another process)
1156 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1157 * when they sit in queue. Otherwise, packets will leak to hole, when
1158 * socket is looked up by one cpu and unhasing is made by another CPU.
1159 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1160 * (leak to backlog). Packet socket does all the processing inside
1161 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1162 * use separate SMP lock, so that they are prone too.
1163 */
1164
1165 /* Ungrab socket and destroy it, if it was the last reference. */
1166 static inline void sock_put(struct sock *sk)
1167 {
1168 if (atomic_dec_and_test(&sk->sk_refcnt))
1169 sk_free(sk);
1170 }
1171
1172 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1173 const int nested);
1174
1175 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1176 {
1177 sk->sk_tx_queue_mapping = tx_queue;
1178 }
1179
1180 static inline void sk_tx_queue_clear(struct sock *sk)
1181 {
1182 sk->sk_tx_queue_mapping = -1;
1183 }
1184
1185 static inline int sk_tx_queue_get(const struct sock *sk)
1186 {
1187 return sk->sk_tx_queue_mapping;
1188 }
1189
1190 static inline bool sk_tx_queue_recorded(const struct sock *sk)
1191 {
1192 return (sk && sk->sk_tx_queue_mapping >= 0);
1193 }
1194
1195 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1196 {
1197 sk_tx_queue_clear(sk);
1198 sk->sk_socket = sock;
1199 }
1200
1201 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1202 {
1203 return sk->sk_sleep;
1204 }
1205 /* Detach socket from process context.
1206 * Announce socket dead, detach it from wait queue and inode.
1207 * Note that parent inode held reference count on this struct sock,
1208 * we do not release it in this function, because protocol
1209 * probably wants some additional cleanups or even continuing
1210 * to work with this socket (TCP).
1211 */
1212 static inline void sock_orphan(struct sock *sk)
1213 {
1214 write_lock_bh(&sk->sk_callback_lock);
1215 sock_set_flag(sk, SOCK_DEAD);
1216 sk_set_socket(sk, NULL);
1217 sk->sk_sleep = NULL;
1218 write_unlock_bh(&sk->sk_callback_lock);
1219 }
1220
1221 static inline void sock_graft(struct sock *sk, struct socket *parent)
1222 {
1223 write_lock_bh(&sk->sk_callback_lock);
1224 sk->sk_sleep = &parent->wait;
1225 parent->sk = sk;
1226 sk_set_socket(sk, parent);
1227 security_sock_graft(sk, parent);
1228 write_unlock_bh(&sk->sk_callback_lock);
1229 }
1230
1231 extern int sock_i_uid(struct sock *sk);
1232 extern unsigned long sock_i_ino(struct sock *sk);
1233
1234 static inline struct dst_entry *
1235 __sk_dst_get(struct sock *sk)
1236 {
1237 return rcu_dereference_check(sk->sk_dst_cache, rcu_read_lock_held() ||
1238 sock_owned_by_user(sk) ||
1239 lockdep_is_held(&sk->sk_lock.slock));
1240 }
1241
1242 static inline struct dst_entry *
1243 sk_dst_get(struct sock *sk)
1244 {
1245 struct dst_entry *dst;
1246
1247 rcu_read_lock();
1248 dst = rcu_dereference(sk->sk_dst_cache);
1249 if (dst)
1250 dst_hold(dst);
1251 rcu_read_unlock();
1252 return dst;
1253 }
1254
1255 extern void sk_reset_txq(struct sock *sk);
1256
1257 static inline void dst_negative_advice(struct sock *sk)
1258 {
1259 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1260
1261 if (dst && dst->ops->negative_advice) {
1262 ndst = dst->ops->negative_advice(dst);
1263
1264 if (ndst != dst) {
1265 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1266 sk_reset_txq(sk);
1267 }
1268 }
1269 }
1270
1271 static inline void
1272 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1273 {
1274 struct dst_entry *old_dst;
1275
1276 sk_tx_queue_clear(sk);
1277 /*
1278 * This can be called while sk is owned by the caller only,
1279 * with no state that can be checked in a rcu_dereference_check() cond
1280 */
1281 old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1282 rcu_assign_pointer(sk->sk_dst_cache, dst);
1283 dst_release(old_dst);
1284 }
1285
1286 static inline void
1287 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1288 {
1289 spin_lock(&sk->sk_dst_lock);
1290 __sk_dst_set(sk, dst);
1291 spin_unlock(&sk->sk_dst_lock);
1292 }
1293
1294 static inline void
1295 __sk_dst_reset(struct sock *sk)
1296 {
1297 __sk_dst_set(sk, NULL);
1298 }
1299
1300 static inline void
1301 sk_dst_reset(struct sock *sk)
1302 {
1303 spin_lock(&sk->sk_dst_lock);
1304 __sk_dst_reset(sk);
1305 spin_unlock(&sk->sk_dst_lock);
1306 }
1307
1308 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1309
1310 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1311
1312 static inline int sk_can_gso(const struct sock *sk)
1313 {
1314 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1315 }
1316
1317 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1318
1319 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1320 struct sk_buff *skb, struct page *page,
1321 int off, int copy)
1322 {
1323 if (skb->ip_summed == CHECKSUM_NONE) {
1324 int err = 0;
1325 __wsum csum = csum_and_copy_from_user(from,
1326 page_address(page) + off,
1327 copy, 0, &err);
1328 if (err)
1329 return err;
1330 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1331 } else if (copy_from_user(page_address(page) + off, from, copy))
1332 return -EFAULT;
1333
1334 skb->len += copy;
1335 skb->data_len += copy;
1336 skb->truesize += copy;
1337 sk->sk_wmem_queued += copy;
1338 sk_mem_charge(sk, copy);
1339 return 0;
1340 }
1341
1342 /**
1343 * sk_wmem_alloc_get - returns write allocations
1344 * @sk: socket
1345 *
1346 * Returns sk_wmem_alloc minus initial offset of one
1347 */
1348 static inline int sk_wmem_alloc_get(const struct sock *sk)
1349 {
1350 return atomic_read(&sk->sk_wmem_alloc) - 1;
1351 }
1352
1353 /**
1354 * sk_rmem_alloc_get - returns read allocations
1355 * @sk: socket
1356 *
1357 * Returns sk_rmem_alloc
1358 */
1359 static inline int sk_rmem_alloc_get(const struct sock *sk)
1360 {
1361 return atomic_read(&sk->sk_rmem_alloc);
1362 }
1363
1364 /**
1365 * sk_has_allocations - check if allocations are outstanding
1366 * @sk: socket
1367 *
1368 * Returns true if socket has write or read allocations
1369 */
1370 static inline int sk_has_allocations(const struct sock *sk)
1371 {
1372 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1373 }
1374
1375 /**
1376 * sk_has_sleeper - check if there are any waiting processes
1377 * @sk: socket
1378 *
1379 * Returns true if socket has waiting processes
1380 *
1381 * The purpose of the sk_has_sleeper and sock_poll_wait is to wrap the memory
1382 * barrier call. They were added due to the race found within the tcp code.
1383 *
1384 * Consider following tcp code paths:
1385 *
1386 * CPU1 CPU2
1387 *
1388 * sys_select receive packet
1389 * ... ...
1390 * __add_wait_queue update tp->rcv_nxt
1391 * ... ...
1392 * tp->rcv_nxt check sock_def_readable
1393 * ... {
1394 * schedule ...
1395 * if (sk_sleep(sk) && waitqueue_active(sk_sleep(sk)))
1396 * wake_up_interruptible(sk_sleep(sk))
1397 * ...
1398 * }
1399 *
1400 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1401 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1402 * could then endup calling schedule and sleep forever if there are no more
1403 * data on the socket.
1404 *
1405 * The sk_has_sleeper is always called right after a call to read_lock, so we
1406 * can use smp_mb__after_lock barrier.
1407 */
1408 static inline int sk_has_sleeper(struct sock *sk)
1409 {
1410 /*
1411 * We need to be sure we are in sync with the
1412 * add_wait_queue modifications to the wait queue.
1413 *
1414 * This memory barrier is paired in the sock_poll_wait.
1415 */
1416 smp_mb__after_lock();
1417 return sk_sleep(sk) && waitqueue_active(sk_sleep(sk));
1418 }
1419
1420 /**
1421 * sock_poll_wait - place memory barrier behind the poll_wait call.
1422 * @filp: file
1423 * @wait_address: socket wait queue
1424 * @p: poll_table
1425 *
1426 * See the comments in the sk_has_sleeper function.
1427 */
1428 static inline void sock_poll_wait(struct file *filp,
1429 wait_queue_head_t *wait_address, poll_table *p)
1430 {
1431 if (p && wait_address) {
1432 poll_wait(filp, wait_address, p);
1433 /*
1434 * We need to be sure we are in sync with the
1435 * socket flags modification.
1436 *
1437 * This memory barrier is paired in the sk_has_sleeper.
1438 */
1439 smp_mb();
1440 }
1441 }
1442
1443 /*
1444 * Queue a received datagram if it will fit. Stream and sequenced
1445 * protocols can't normally use this as they need to fit buffers in
1446 * and play with them.
1447 *
1448 * Inlined as it's very short and called for pretty much every
1449 * packet ever received.
1450 */
1451
1452 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1453 {
1454 skb_orphan(skb);
1455 skb->sk = sk;
1456 skb->destructor = sock_wfree;
1457 /*
1458 * We used to take a refcount on sk, but following operation
1459 * is enough to guarantee sk_free() wont free this sock until
1460 * all in-flight packets are completed
1461 */
1462 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1463 }
1464
1465 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1466 {
1467 skb_orphan(skb);
1468 skb->sk = sk;
1469 skb->destructor = sock_rfree;
1470 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1471 sk_mem_charge(sk, skb->truesize);
1472 }
1473
1474 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1475 unsigned long expires);
1476
1477 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer);
1478
1479 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1480
1481 static inline int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
1482 {
1483 /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
1484 number of warnings when compiling with -W --ANK
1485 */
1486 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
1487 (unsigned)sk->sk_rcvbuf)
1488 return -ENOMEM;
1489 skb_set_owner_r(skb, sk);
1490 skb_queue_tail(&sk->sk_error_queue, skb);
1491 if (!sock_flag(sk, SOCK_DEAD))
1492 sk->sk_data_ready(sk, skb->len);
1493 return 0;
1494 }
1495
1496 /*
1497 * Recover an error report and clear atomically
1498 */
1499
1500 static inline int sock_error(struct sock *sk)
1501 {
1502 int err;
1503 if (likely(!sk->sk_err))
1504 return 0;
1505 err = xchg(&sk->sk_err, 0);
1506 return -err;
1507 }
1508
1509 static inline unsigned long sock_wspace(struct sock *sk)
1510 {
1511 int amt = 0;
1512
1513 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1514 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1515 if (amt < 0)
1516 amt = 0;
1517 }
1518 return amt;
1519 }
1520
1521 static inline void sk_wake_async(struct sock *sk, int how, int band)
1522 {
1523 if (sock_flag(sk, SOCK_FASYNC))
1524 sock_wake_async(sk->sk_socket, how, band);
1525 }
1526
1527 #define SOCK_MIN_SNDBUF 2048
1528 #define SOCK_MIN_RCVBUF 256
1529
1530 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1531 {
1532 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1533 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
1534 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1535 }
1536 }
1537
1538 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
1539
1540 static inline struct page *sk_stream_alloc_page(struct sock *sk)
1541 {
1542 struct page *page = NULL;
1543
1544 page = alloc_pages(sk->sk_allocation, 0);
1545 if (!page) {
1546 sk->sk_prot->enter_memory_pressure(sk);
1547 sk_stream_moderate_sndbuf(sk);
1548 }
1549 return page;
1550 }
1551
1552 /*
1553 * Default write policy as shown to user space via poll/select/SIGIO
1554 */
1555 static inline int sock_writeable(const struct sock *sk)
1556 {
1557 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
1558 }
1559
1560 static inline gfp_t gfp_any(void)
1561 {
1562 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
1563 }
1564
1565 static inline long sock_rcvtimeo(const struct sock *sk, int noblock)
1566 {
1567 return noblock ? 0 : sk->sk_rcvtimeo;
1568 }
1569
1570 static inline long sock_sndtimeo(const struct sock *sk, int noblock)
1571 {
1572 return noblock ? 0 : sk->sk_sndtimeo;
1573 }
1574
1575 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
1576 {
1577 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
1578 }
1579
1580 /* Alas, with timeout socket operations are not restartable.
1581 * Compare this to poll().
1582 */
1583 static inline int sock_intr_errno(long timeo)
1584 {
1585 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
1586 }
1587
1588 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
1589 struct sk_buff *skb);
1590
1591 static __inline__ void
1592 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
1593 {
1594 ktime_t kt = skb->tstamp;
1595 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
1596
1597 /*
1598 * generate control messages if
1599 * - receive time stamping in software requested (SOCK_RCVTSTAMP
1600 * or SOCK_TIMESTAMPING_RX_SOFTWARE)
1601 * - software time stamp available and wanted
1602 * (SOCK_TIMESTAMPING_SOFTWARE)
1603 * - hardware time stamps available and wanted
1604 * (SOCK_TIMESTAMPING_SYS_HARDWARE or
1605 * SOCK_TIMESTAMPING_RAW_HARDWARE)
1606 */
1607 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
1608 sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
1609 (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
1610 (hwtstamps->hwtstamp.tv64 &&
1611 sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
1612 (hwtstamps->syststamp.tv64 &&
1613 sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
1614 __sock_recv_timestamp(msg, sk, skb);
1615 else
1616 sk->sk_stamp = kt;
1617 }
1618
1619 extern void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, struct sk_buff *skb);
1620
1621 /**
1622 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
1623 * @msg: outgoing packet
1624 * @sk: socket sending this packet
1625 * @shtx: filled with instructions for time stamping
1626 *
1627 * Currently only depends on SOCK_TIMESTAMPING* flags. Returns error code if
1628 * parameters are invalid.
1629 */
1630 extern int sock_tx_timestamp(struct msghdr *msg,
1631 struct sock *sk,
1632 union skb_shared_tx *shtx);
1633
1634
1635 /**
1636 * sk_eat_skb - Release a skb if it is no longer needed
1637 * @sk: socket to eat this skb from
1638 * @skb: socket buffer to eat
1639 * @copied_early: flag indicating whether DMA operations copied this data early
1640 *
1641 * This routine must be called with interrupts disabled or with the socket
1642 * locked so that the sk_buff queue operation is ok.
1643 */
1644 #ifdef CONFIG_NET_DMA
1645 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1646 {
1647 __skb_unlink(skb, &sk->sk_receive_queue);
1648 if (!copied_early)
1649 __kfree_skb(skb);
1650 else
1651 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
1652 }
1653 #else
1654 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1655 {
1656 __skb_unlink(skb, &sk->sk_receive_queue);
1657 __kfree_skb(skb);
1658 }
1659 #endif
1660
1661 static inline
1662 struct net *sock_net(const struct sock *sk)
1663 {
1664 #ifdef CONFIG_NET_NS
1665 return sk->sk_net;
1666 #else
1667 return &init_net;
1668 #endif
1669 }
1670
1671 static inline
1672 void sock_net_set(struct sock *sk, struct net *net)
1673 {
1674 #ifdef CONFIG_NET_NS
1675 sk->sk_net = net;
1676 #endif
1677 }
1678
1679 /*
1680 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
1681 * They should not hold a referrence to a namespace in order to allow
1682 * to stop it.
1683 * Sockets after sk_change_net should be released using sk_release_kernel
1684 */
1685 static inline void sk_change_net(struct sock *sk, struct net *net)
1686 {
1687 put_net(sock_net(sk));
1688 sock_net_set(sk, hold_net(net));
1689 }
1690
1691 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
1692 {
1693 if (unlikely(skb->sk)) {
1694 struct sock *sk = skb->sk;
1695
1696 skb->destructor = NULL;
1697 skb->sk = NULL;
1698 return sk;
1699 }
1700 return NULL;
1701 }
1702
1703 extern void sock_enable_timestamp(struct sock *sk, int flag);
1704 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
1705 extern int sock_get_timestampns(struct sock *, struct timespec __user *);
1706
1707 /*
1708 * Enable debug/info messages
1709 */
1710 extern int net_msg_warn;
1711 #define NETDEBUG(fmt, args...) \
1712 do { if (net_msg_warn) printk(fmt,##args); } while (0)
1713
1714 #define LIMIT_NETDEBUG(fmt, args...) \
1715 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
1716
1717 extern __u32 sysctl_wmem_max;
1718 extern __u32 sysctl_rmem_max;
1719
1720 extern void sk_init(void);
1721
1722 extern int sysctl_optmem_max;
1723
1724 extern __u32 sysctl_wmem_default;
1725 extern __u32 sysctl_rmem_default;
1726
1727 #endif /* _SOCK_H */
This page took 0.086052 seconds and 4 git commands to generate.