net: wrap sock->sk_cgrp_prioidx and ->sk_classid inside a struct
[deliverable/linux.git] / include / net / sock.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h> /* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/page_counter.h>
58 #include <linux/memcontrol.h>
59 #include <linux/static_key.h>
60 #include <linux/sched.h>
61 #include <linux/wait.h>
62 #include <linux/cgroup-defs.h>
63
64 #include <linux/filter.h>
65 #include <linux/rculist_nulls.h>
66 #include <linux/poll.h>
67
68 #include <linux/atomic.h>
69 #include <net/dst.h>
70 #include <net/checksum.h>
71 #include <net/tcp_states.h>
72 #include <linux/net_tstamp.h>
73
74 struct cgroup;
75 struct cgroup_subsys;
76 #ifdef CONFIG_NET
77 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss);
78 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg);
79 #else
80 static inline
81 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
82 {
83 return 0;
84 }
85 static inline
86 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
87 {
88 }
89 #endif
90 /*
91 * This structure really needs to be cleaned up.
92 * Most of it is for TCP, and not used by any of
93 * the other protocols.
94 */
95
96 /* Define this to get the SOCK_DBG debugging facility. */
97 #define SOCK_DEBUGGING
98 #ifdef SOCK_DEBUGGING
99 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
100 printk(KERN_DEBUG msg); } while (0)
101 #else
102 /* Validate arguments and do nothing */
103 static inline __printf(2, 3)
104 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
105 {
106 }
107 #endif
108
109 /* This is the per-socket lock. The spinlock provides a synchronization
110 * between user contexts and software interrupt processing, whereas the
111 * mini-semaphore synchronizes multiple users amongst themselves.
112 */
113 typedef struct {
114 spinlock_t slock;
115 int owned;
116 wait_queue_head_t wq;
117 /*
118 * We express the mutex-alike socket_lock semantics
119 * to the lock validator by explicitly managing
120 * the slock as a lock variant (in addition to
121 * the slock itself):
122 */
123 #ifdef CONFIG_DEBUG_LOCK_ALLOC
124 struct lockdep_map dep_map;
125 #endif
126 } socket_lock_t;
127
128 struct sock;
129 struct proto;
130 struct net;
131
132 typedef __u32 __bitwise __portpair;
133 typedef __u64 __bitwise __addrpair;
134
135 /**
136 * struct sock_common - minimal network layer representation of sockets
137 * @skc_daddr: Foreign IPv4 addr
138 * @skc_rcv_saddr: Bound local IPv4 addr
139 * @skc_hash: hash value used with various protocol lookup tables
140 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
141 * @skc_dport: placeholder for inet_dport/tw_dport
142 * @skc_num: placeholder for inet_num/tw_num
143 * @skc_family: network address family
144 * @skc_state: Connection state
145 * @skc_reuse: %SO_REUSEADDR setting
146 * @skc_reuseport: %SO_REUSEPORT setting
147 * @skc_bound_dev_if: bound device index if != 0
148 * @skc_bind_node: bind hash linkage for various protocol lookup tables
149 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
150 * @skc_prot: protocol handlers inside a network family
151 * @skc_net: reference to the network namespace of this socket
152 * @skc_node: main hash linkage for various protocol lookup tables
153 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
154 * @skc_tx_queue_mapping: tx queue number for this connection
155 * @skc_flags: place holder for sk_flags
156 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
157 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
158 * @skc_incoming_cpu: record/match cpu processing incoming packets
159 * @skc_refcnt: reference count
160 *
161 * This is the minimal network layer representation of sockets, the header
162 * for struct sock and struct inet_timewait_sock.
163 */
164 struct sock_common {
165 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
166 * address on 64bit arches : cf INET_MATCH()
167 */
168 union {
169 __addrpair skc_addrpair;
170 struct {
171 __be32 skc_daddr;
172 __be32 skc_rcv_saddr;
173 };
174 };
175 union {
176 unsigned int skc_hash;
177 __u16 skc_u16hashes[2];
178 };
179 /* skc_dport && skc_num must be grouped as well */
180 union {
181 __portpair skc_portpair;
182 struct {
183 __be16 skc_dport;
184 __u16 skc_num;
185 };
186 };
187
188 unsigned short skc_family;
189 volatile unsigned char skc_state;
190 unsigned char skc_reuse:4;
191 unsigned char skc_reuseport:1;
192 unsigned char skc_ipv6only:1;
193 unsigned char skc_net_refcnt:1;
194 int skc_bound_dev_if;
195 union {
196 struct hlist_node skc_bind_node;
197 struct hlist_nulls_node skc_portaddr_node;
198 };
199 struct proto *skc_prot;
200 possible_net_t skc_net;
201
202 #if IS_ENABLED(CONFIG_IPV6)
203 struct in6_addr skc_v6_daddr;
204 struct in6_addr skc_v6_rcv_saddr;
205 #endif
206
207 atomic64_t skc_cookie;
208
209 /* following fields are padding to force
210 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
211 * assuming IPV6 is enabled. We use this padding differently
212 * for different kind of 'sockets'
213 */
214 union {
215 unsigned long skc_flags;
216 struct sock *skc_listener; /* request_sock */
217 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
218 };
219 /*
220 * fields between dontcopy_begin/dontcopy_end
221 * are not copied in sock_copy()
222 */
223 /* private: */
224 int skc_dontcopy_begin[0];
225 /* public: */
226 union {
227 struct hlist_node skc_node;
228 struct hlist_nulls_node skc_nulls_node;
229 };
230 int skc_tx_queue_mapping;
231 union {
232 int skc_incoming_cpu;
233 u32 skc_rcv_wnd;
234 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
235 };
236
237 atomic_t skc_refcnt;
238 /* private: */
239 int skc_dontcopy_end[0];
240 union {
241 u32 skc_rxhash;
242 u32 skc_window_clamp;
243 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
244 };
245 /* public: */
246 };
247
248 struct cg_proto;
249 /**
250 * struct sock - network layer representation of sockets
251 * @__sk_common: shared layout with inet_timewait_sock
252 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
253 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
254 * @sk_lock: synchronizer
255 * @sk_rcvbuf: size of receive buffer in bytes
256 * @sk_wq: sock wait queue and async head
257 * @sk_rx_dst: receive input route used by early demux
258 * @sk_dst_cache: destination cache
259 * @sk_policy: flow policy
260 * @sk_receive_queue: incoming packets
261 * @sk_wmem_alloc: transmit queue bytes committed
262 * @sk_write_queue: Packet sending queue
263 * @sk_omem_alloc: "o" is "option" or "other"
264 * @sk_wmem_queued: persistent queue size
265 * @sk_forward_alloc: space allocated forward
266 * @sk_napi_id: id of the last napi context to receive data for sk
267 * @sk_ll_usec: usecs to busypoll when there is no data
268 * @sk_allocation: allocation mode
269 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
270 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
271 * @sk_sndbuf: size of send buffer in bytes
272 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
273 * @sk_no_check_rx: allow zero checksum in RX packets
274 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
275 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
276 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
277 * @sk_gso_max_size: Maximum GSO segment size to build
278 * @sk_gso_max_segs: Maximum number of GSO segments
279 * @sk_lingertime: %SO_LINGER l_linger setting
280 * @sk_backlog: always used with the per-socket spinlock held
281 * @sk_callback_lock: used with the callbacks in the end of this struct
282 * @sk_error_queue: rarely used
283 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
284 * IPV6_ADDRFORM for instance)
285 * @sk_err: last error
286 * @sk_err_soft: errors that don't cause failure but are the cause of a
287 * persistent failure not just 'timed out'
288 * @sk_drops: raw/udp drops counter
289 * @sk_ack_backlog: current listen backlog
290 * @sk_max_ack_backlog: listen backlog set in listen()
291 * @sk_priority: %SO_PRIORITY setting
292 * @sk_type: socket type (%SOCK_STREAM, etc)
293 * @sk_protocol: which protocol this socket belongs in this network family
294 * @sk_peer_pid: &struct pid for this socket's peer
295 * @sk_peer_cred: %SO_PEERCRED setting
296 * @sk_rcvlowat: %SO_RCVLOWAT setting
297 * @sk_rcvtimeo: %SO_RCVTIMEO setting
298 * @sk_sndtimeo: %SO_SNDTIMEO setting
299 * @sk_txhash: computed flow hash for use on transmit
300 * @sk_filter: socket filtering instructions
301 * @sk_timer: sock cleanup timer
302 * @sk_stamp: time stamp of last packet received
303 * @sk_tsflags: SO_TIMESTAMPING socket options
304 * @sk_tskey: counter to disambiguate concurrent tstamp requests
305 * @sk_socket: Identd and reporting IO signals
306 * @sk_user_data: RPC layer private data
307 * @sk_frag: cached page frag
308 * @sk_peek_off: current peek_offset value
309 * @sk_send_head: front of stuff to transmit
310 * @sk_security: used by security modules
311 * @sk_mark: generic packet mark
312 * @sk_cgrp_data: cgroup data for this cgroup
313 * @sk_cgrp: this socket's cgroup-specific proto data
314 * @sk_write_pending: a write to stream socket waits to start
315 * @sk_state_change: callback to indicate change in the state of the sock
316 * @sk_data_ready: callback to indicate there is data to be processed
317 * @sk_write_space: callback to indicate there is bf sending space available
318 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
319 * @sk_backlog_rcv: callback to process the backlog
320 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
321 */
322 struct sock {
323 /*
324 * Now struct inet_timewait_sock also uses sock_common, so please just
325 * don't add nothing before this first member (__sk_common) --acme
326 */
327 struct sock_common __sk_common;
328 #define sk_node __sk_common.skc_node
329 #define sk_nulls_node __sk_common.skc_nulls_node
330 #define sk_refcnt __sk_common.skc_refcnt
331 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
332
333 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
334 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
335 #define sk_hash __sk_common.skc_hash
336 #define sk_portpair __sk_common.skc_portpair
337 #define sk_num __sk_common.skc_num
338 #define sk_dport __sk_common.skc_dport
339 #define sk_addrpair __sk_common.skc_addrpair
340 #define sk_daddr __sk_common.skc_daddr
341 #define sk_rcv_saddr __sk_common.skc_rcv_saddr
342 #define sk_family __sk_common.skc_family
343 #define sk_state __sk_common.skc_state
344 #define sk_reuse __sk_common.skc_reuse
345 #define sk_reuseport __sk_common.skc_reuseport
346 #define sk_ipv6only __sk_common.skc_ipv6only
347 #define sk_net_refcnt __sk_common.skc_net_refcnt
348 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
349 #define sk_bind_node __sk_common.skc_bind_node
350 #define sk_prot __sk_common.skc_prot
351 #define sk_net __sk_common.skc_net
352 #define sk_v6_daddr __sk_common.skc_v6_daddr
353 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
354 #define sk_cookie __sk_common.skc_cookie
355 #define sk_incoming_cpu __sk_common.skc_incoming_cpu
356 #define sk_flags __sk_common.skc_flags
357 #define sk_rxhash __sk_common.skc_rxhash
358
359 socket_lock_t sk_lock;
360 struct sk_buff_head sk_receive_queue;
361 /*
362 * The backlog queue is special, it is always used with
363 * the per-socket spinlock held and requires low latency
364 * access. Therefore we special case it's implementation.
365 * Note : rmem_alloc is in this structure to fill a hole
366 * on 64bit arches, not because its logically part of
367 * backlog.
368 */
369 struct {
370 atomic_t rmem_alloc;
371 int len;
372 struct sk_buff *head;
373 struct sk_buff *tail;
374 } sk_backlog;
375 #define sk_rmem_alloc sk_backlog.rmem_alloc
376 int sk_forward_alloc;
377
378 __u32 sk_txhash;
379 #ifdef CONFIG_NET_RX_BUSY_POLL
380 unsigned int sk_napi_id;
381 unsigned int sk_ll_usec;
382 #endif
383 atomic_t sk_drops;
384 int sk_rcvbuf;
385
386 struct sk_filter __rcu *sk_filter;
387 union {
388 struct socket_wq __rcu *sk_wq;
389 struct socket_wq *sk_wq_raw;
390 };
391 #ifdef CONFIG_XFRM
392 struct xfrm_policy *sk_policy[2];
393 #endif
394 struct dst_entry *sk_rx_dst;
395 struct dst_entry __rcu *sk_dst_cache;
396 /* Note: 32bit hole on 64bit arches */
397 atomic_t sk_wmem_alloc;
398 atomic_t sk_omem_alloc;
399 int sk_sndbuf;
400 struct sk_buff_head sk_write_queue;
401 kmemcheck_bitfield_begin(flags);
402 unsigned int sk_shutdown : 2,
403 sk_no_check_tx : 1,
404 sk_no_check_rx : 1,
405 sk_userlocks : 4,
406 sk_protocol : 8,
407 sk_type : 16;
408 kmemcheck_bitfield_end(flags);
409 int sk_wmem_queued;
410 gfp_t sk_allocation;
411 u32 sk_pacing_rate; /* bytes per second */
412 u32 sk_max_pacing_rate;
413 netdev_features_t sk_route_caps;
414 netdev_features_t sk_route_nocaps;
415 int sk_gso_type;
416 unsigned int sk_gso_max_size;
417 u16 sk_gso_max_segs;
418 int sk_rcvlowat;
419 unsigned long sk_lingertime;
420 struct sk_buff_head sk_error_queue;
421 struct proto *sk_prot_creator;
422 rwlock_t sk_callback_lock;
423 int sk_err,
424 sk_err_soft;
425 u32 sk_ack_backlog;
426 u32 sk_max_ack_backlog;
427 __u32 sk_priority;
428 __u32 sk_mark;
429 struct pid *sk_peer_pid;
430 const struct cred *sk_peer_cred;
431 long sk_rcvtimeo;
432 long sk_sndtimeo;
433 struct timer_list sk_timer;
434 ktime_t sk_stamp;
435 u16 sk_tsflags;
436 u32 sk_tskey;
437 struct socket *sk_socket;
438 void *sk_user_data;
439 struct page_frag sk_frag;
440 struct sk_buff *sk_send_head;
441 __s32 sk_peek_off;
442 int sk_write_pending;
443 #ifdef CONFIG_SECURITY
444 void *sk_security;
445 #endif
446 struct sock_cgroup_data sk_cgrp_data;
447 struct cg_proto *sk_cgrp;
448 void (*sk_state_change)(struct sock *sk);
449 void (*sk_data_ready)(struct sock *sk);
450 void (*sk_write_space)(struct sock *sk);
451 void (*sk_error_report)(struct sock *sk);
452 int (*sk_backlog_rcv)(struct sock *sk,
453 struct sk_buff *skb);
454 void (*sk_destruct)(struct sock *sk);
455 };
456
457 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
458
459 #define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk)))
460 #define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr)
461
462 /*
463 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
464 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
465 * on a socket means that the socket will reuse everybody else's port
466 * without looking at the other's sk_reuse value.
467 */
468
469 #define SK_NO_REUSE 0
470 #define SK_CAN_REUSE 1
471 #define SK_FORCE_REUSE 2
472
473 static inline int sk_peek_offset(struct sock *sk, int flags)
474 {
475 if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
476 return sk->sk_peek_off;
477 else
478 return 0;
479 }
480
481 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
482 {
483 if (sk->sk_peek_off >= 0) {
484 if (sk->sk_peek_off >= val)
485 sk->sk_peek_off -= val;
486 else
487 sk->sk_peek_off = 0;
488 }
489 }
490
491 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
492 {
493 if (sk->sk_peek_off >= 0)
494 sk->sk_peek_off += val;
495 }
496
497 /*
498 * Hashed lists helper routines
499 */
500 static inline struct sock *sk_entry(const struct hlist_node *node)
501 {
502 return hlist_entry(node, struct sock, sk_node);
503 }
504
505 static inline struct sock *__sk_head(const struct hlist_head *head)
506 {
507 return hlist_entry(head->first, struct sock, sk_node);
508 }
509
510 static inline struct sock *sk_head(const struct hlist_head *head)
511 {
512 return hlist_empty(head) ? NULL : __sk_head(head);
513 }
514
515 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
516 {
517 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
518 }
519
520 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
521 {
522 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
523 }
524
525 static inline struct sock *sk_next(const struct sock *sk)
526 {
527 return sk->sk_node.next ?
528 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
529 }
530
531 static inline struct sock *sk_nulls_next(const struct sock *sk)
532 {
533 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
534 hlist_nulls_entry(sk->sk_nulls_node.next,
535 struct sock, sk_nulls_node) :
536 NULL;
537 }
538
539 static inline bool sk_unhashed(const struct sock *sk)
540 {
541 return hlist_unhashed(&sk->sk_node);
542 }
543
544 static inline bool sk_hashed(const struct sock *sk)
545 {
546 return !sk_unhashed(sk);
547 }
548
549 static inline void sk_node_init(struct hlist_node *node)
550 {
551 node->pprev = NULL;
552 }
553
554 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
555 {
556 node->pprev = NULL;
557 }
558
559 static inline void __sk_del_node(struct sock *sk)
560 {
561 __hlist_del(&sk->sk_node);
562 }
563
564 /* NB: equivalent to hlist_del_init_rcu */
565 static inline bool __sk_del_node_init(struct sock *sk)
566 {
567 if (sk_hashed(sk)) {
568 __sk_del_node(sk);
569 sk_node_init(&sk->sk_node);
570 return true;
571 }
572 return false;
573 }
574
575 /* Grab socket reference count. This operation is valid only
576 when sk is ALREADY grabbed f.e. it is found in hash table
577 or a list and the lookup is made under lock preventing hash table
578 modifications.
579 */
580
581 static inline void sock_hold(struct sock *sk)
582 {
583 atomic_inc(&sk->sk_refcnt);
584 }
585
586 /* Ungrab socket in the context, which assumes that socket refcnt
587 cannot hit zero, f.e. it is true in context of any socketcall.
588 */
589 static inline void __sock_put(struct sock *sk)
590 {
591 atomic_dec(&sk->sk_refcnt);
592 }
593
594 static inline bool sk_del_node_init(struct sock *sk)
595 {
596 bool rc = __sk_del_node_init(sk);
597
598 if (rc) {
599 /* paranoid for a while -acme */
600 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
601 __sock_put(sk);
602 }
603 return rc;
604 }
605 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
606
607 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
608 {
609 if (sk_hashed(sk)) {
610 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
611 return true;
612 }
613 return false;
614 }
615
616 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
617 {
618 bool rc = __sk_nulls_del_node_init_rcu(sk);
619
620 if (rc) {
621 /* paranoid for a while -acme */
622 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
623 __sock_put(sk);
624 }
625 return rc;
626 }
627
628 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
629 {
630 hlist_add_head(&sk->sk_node, list);
631 }
632
633 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
634 {
635 sock_hold(sk);
636 __sk_add_node(sk, list);
637 }
638
639 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
640 {
641 sock_hold(sk);
642 hlist_add_head_rcu(&sk->sk_node, list);
643 }
644
645 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
646 {
647 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
648 }
649
650 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
651 {
652 sock_hold(sk);
653 __sk_nulls_add_node_rcu(sk, list);
654 }
655
656 static inline void __sk_del_bind_node(struct sock *sk)
657 {
658 __hlist_del(&sk->sk_bind_node);
659 }
660
661 static inline void sk_add_bind_node(struct sock *sk,
662 struct hlist_head *list)
663 {
664 hlist_add_head(&sk->sk_bind_node, list);
665 }
666
667 #define sk_for_each(__sk, list) \
668 hlist_for_each_entry(__sk, list, sk_node)
669 #define sk_for_each_rcu(__sk, list) \
670 hlist_for_each_entry_rcu(__sk, list, sk_node)
671 #define sk_nulls_for_each(__sk, node, list) \
672 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
673 #define sk_nulls_for_each_rcu(__sk, node, list) \
674 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
675 #define sk_for_each_from(__sk) \
676 hlist_for_each_entry_from(__sk, sk_node)
677 #define sk_nulls_for_each_from(__sk, node) \
678 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
679 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
680 #define sk_for_each_safe(__sk, tmp, list) \
681 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
682 #define sk_for_each_bound(__sk, list) \
683 hlist_for_each_entry(__sk, list, sk_bind_node)
684
685 /**
686 * sk_nulls_for_each_entry_offset - iterate over a list at a given struct offset
687 * @tpos: the type * to use as a loop cursor.
688 * @pos: the &struct hlist_node to use as a loop cursor.
689 * @head: the head for your list.
690 * @offset: offset of hlist_node within the struct.
691 *
692 */
693 #define sk_nulls_for_each_entry_offset(tpos, pos, head, offset) \
694 for (pos = (head)->first; \
695 (!is_a_nulls(pos)) && \
696 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
697 pos = pos->next)
698
699 static inline struct user_namespace *sk_user_ns(struct sock *sk)
700 {
701 /* Careful only use this in a context where these parameters
702 * can not change and must all be valid, such as recvmsg from
703 * userspace.
704 */
705 return sk->sk_socket->file->f_cred->user_ns;
706 }
707
708 /* Sock flags */
709 enum sock_flags {
710 SOCK_DEAD,
711 SOCK_DONE,
712 SOCK_URGINLINE,
713 SOCK_KEEPOPEN,
714 SOCK_LINGER,
715 SOCK_DESTROY,
716 SOCK_BROADCAST,
717 SOCK_TIMESTAMP,
718 SOCK_ZAPPED,
719 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
720 SOCK_DBG, /* %SO_DEBUG setting */
721 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
722 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
723 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
724 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
725 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
726 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
727 SOCK_FASYNC, /* fasync() active */
728 SOCK_RXQ_OVFL,
729 SOCK_ZEROCOPY, /* buffers from userspace */
730 SOCK_WIFI_STATUS, /* push wifi status to userspace */
731 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
732 * Will use last 4 bytes of packet sent from
733 * user-space instead.
734 */
735 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
736 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
737 };
738
739 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
740 {
741 nsk->sk_flags = osk->sk_flags;
742 }
743
744 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
745 {
746 __set_bit(flag, &sk->sk_flags);
747 }
748
749 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
750 {
751 __clear_bit(flag, &sk->sk_flags);
752 }
753
754 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
755 {
756 return test_bit(flag, &sk->sk_flags);
757 }
758
759 #ifdef CONFIG_NET
760 extern struct static_key memalloc_socks;
761 static inline int sk_memalloc_socks(void)
762 {
763 return static_key_false(&memalloc_socks);
764 }
765 #else
766
767 static inline int sk_memalloc_socks(void)
768 {
769 return 0;
770 }
771
772 #endif
773
774 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
775 {
776 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
777 }
778
779 static inline void sk_acceptq_removed(struct sock *sk)
780 {
781 sk->sk_ack_backlog--;
782 }
783
784 static inline void sk_acceptq_added(struct sock *sk)
785 {
786 sk->sk_ack_backlog++;
787 }
788
789 static inline bool sk_acceptq_is_full(const struct sock *sk)
790 {
791 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
792 }
793
794 /*
795 * Compute minimal free write space needed to queue new packets.
796 */
797 static inline int sk_stream_min_wspace(const struct sock *sk)
798 {
799 return sk->sk_wmem_queued >> 1;
800 }
801
802 static inline int sk_stream_wspace(const struct sock *sk)
803 {
804 return sk->sk_sndbuf - sk->sk_wmem_queued;
805 }
806
807 void sk_stream_write_space(struct sock *sk);
808
809 /* OOB backlog add */
810 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
811 {
812 /* dont let skb dst not refcounted, we are going to leave rcu lock */
813 skb_dst_force(skb);
814
815 if (!sk->sk_backlog.tail)
816 sk->sk_backlog.head = skb;
817 else
818 sk->sk_backlog.tail->next = skb;
819
820 sk->sk_backlog.tail = skb;
821 skb->next = NULL;
822 }
823
824 /*
825 * Take into account size of receive queue and backlog queue
826 * Do not take into account this skb truesize,
827 * to allow even a single big packet to come.
828 */
829 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
830 {
831 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
832
833 return qsize > limit;
834 }
835
836 /* The per-socket spinlock must be held here. */
837 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
838 unsigned int limit)
839 {
840 if (sk_rcvqueues_full(sk, limit))
841 return -ENOBUFS;
842
843 /*
844 * If the skb was allocated from pfmemalloc reserves, only
845 * allow SOCK_MEMALLOC sockets to use it as this socket is
846 * helping free memory
847 */
848 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
849 return -ENOMEM;
850
851 __sk_add_backlog(sk, skb);
852 sk->sk_backlog.len += skb->truesize;
853 return 0;
854 }
855
856 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
857
858 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
859 {
860 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
861 return __sk_backlog_rcv(sk, skb);
862
863 return sk->sk_backlog_rcv(sk, skb);
864 }
865
866 static inline void sk_incoming_cpu_update(struct sock *sk)
867 {
868 sk->sk_incoming_cpu = raw_smp_processor_id();
869 }
870
871 static inline void sock_rps_record_flow_hash(__u32 hash)
872 {
873 #ifdef CONFIG_RPS
874 struct rps_sock_flow_table *sock_flow_table;
875
876 rcu_read_lock();
877 sock_flow_table = rcu_dereference(rps_sock_flow_table);
878 rps_record_sock_flow(sock_flow_table, hash);
879 rcu_read_unlock();
880 #endif
881 }
882
883 static inline void sock_rps_record_flow(const struct sock *sk)
884 {
885 #ifdef CONFIG_RPS
886 sock_rps_record_flow_hash(sk->sk_rxhash);
887 #endif
888 }
889
890 static inline void sock_rps_save_rxhash(struct sock *sk,
891 const struct sk_buff *skb)
892 {
893 #ifdef CONFIG_RPS
894 if (unlikely(sk->sk_rxhash != skb->hash))
895 sk->sk_rxhash = skb->hash;
896 #endif
897 }
898
899 static inline void sock_rps_reset_rxhash(struct sock *sk)
900 {
901 #ifdef CONFIG_RPS
902 sk->sk_rxhash = 0;
903 #endif
904 }
905
906 #define sk_wait_event(__sk, __timeo, __condition) \
907 ({ int __rc; \
908 release_sock(__sk); \
909 __rc = __condition; \
910 if (!__rc) { \
911 *(__timeo) = schedule_timeout(*(__timeo)); \
912 } \
913 sched_annotate_sleep(); \
914 lock_sock(__sk); \
915 __rc = __condition; \
916 __rc; \
917 })
918
919 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
920 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
921 void sk_stream_wait_close(struct sock *sk, long timeo_p);
922 int sk_stream_error(struct sock *sk, int flags, int err);
923 void sk_stream_kill_queues(struct sock *sk);
924 void sk_set_memalloc(struct sock *sk);
925 void sk_clear_memalloc(struct sock *sk);
926
927 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
928
929 struct request_sock_ops;
930 struct timewait_sock_ops;
931 struct inet_hashinfo;
932 struct raw_hashinfo;
933 struct module;
934
935 /*
936 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
937 * un-modified. Special care is taken when initializing object to zero.
938 */
939 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
940 {
941 if (offsetof(struct sock, sk_node.next) != 0)
942 memset(sk, 0, offsetof(struct sock, sk_node.next));
943 memset(&sk->sk_node.pprev, 0,
944 size - offsetof(struct sock, sk_node.pprev));
945 }
946
947 /* Networking protocol blocks we attach to sockets.
948 * socket layer -> transport layer interface
949 */
950 struct proto {
951 void (*close)(struct sock *sk,
952 long timeout);
953 int (*connect)(struct sock *sk,
954 struct sockaddr *uaddr,
955 int addr_len);
956 int (*disconnect)(struct sock *sk, int flags);
957
958 struct sock * (*accept)(struct sock *sk, int flags, int *err);
959
960 int (*ioctl)(struct sock *sk, int cmd,
961 unsigned long arg);
962 int (*init)(struct sock *sk);
963 void (*destroy)(struct sock *sk);
964 void (*shutdown)(struct sock *sk, int how);
965 int (*setsockopt)(struct sock *sk, int level,
966 int optname, char __user *optval,
967 unsigned int optlen);
968 int (*getsockopt)(struct sock *sk, int level,
969 int optname, char __user *optval,
970 int __user *option);
971 #ifdef CONFIG_COMPAT
972 int (*compat_setsockopt)(struct sock *sk,
973 int level,
974 int optname, char __user *optval,
975 unsigned int optlen);
976 int (*compat_getsockopt)(struct sock *sk,
977 int level,
978 int optname, char __user *optval,
979 int __user *option);
980 int (*compat_ioctl)(struct sock *sk,
981 unsigned int cmd, unsigned long arg);
982 #endif
983 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
984 size_t len);
985 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
986 size_t len, int noblock, int flags,
987 int *addr_len);
988 int (*sendpage)(struct sock *sk, struct page *page,
989 int offset, size_t size, int flags);
990 int (*bind)(struct sock *sk,
991 struct sockaddr *uaddr, int addr_len);
992
993 int (*backlog_rcv) (struct sock *sk,
994 struct sk_buff *skb);
995
996 void (*release_cb)(struct sock *sk);
997
998 /* Keeping track of sk's, looking them up, and port selection methods. */
999 void (*hash)(struct sock *sk);
1000 void (*unhash)(struct sock *sk);
1001 void (*rehash)(struct sock *sk);
1002 int (*get_port)(struct sock *sk, unsigned short snum);
1003 void (*clear_sk)(struct sock *sk, int size);
1004
1005 /* Keeping track of sockets in use */
1006 #ifdef CONFIG_PROC_FS
1007 unsigned int inuse_idx;
1008 #endif
1009
1010 bool (*stream_memory_free)(const struct sock *sk);
1011 /* Memory pressure */
1012 void (*enter_memory_pressure)(struct sock *sk);
1013 atomic_long_t *memory_allocated; /* Current allocated memory. */
1014 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1015 /*
1016 * Pressure flag: try to collapse.
1017 * Technical note: it is used by multiple contexts non atomically.
1018 * All the __sk_mem_schedule() is of this nature: accounting
1019 * is strict, actions are advisory and have some latency.
1020 */
1021 int *memory_pressure;
1022 long *sysctl_mem;
1023 int *sysctl_wmem;
1024 int *sysctl_rmem;
1025 int max_header;
1026 bool no_autobind;
1027
1028 struct kmem_cache *slab;
1029 unsigned int obj_size;
1030 int slab_flags;
1031
1032 struct percpu_counter *orphan_count;
1033
1034 struct request_sock_ops *rsk_prot;
1035 struct timewait_sock_ops *twsk_prot;
1036
1037 union {
1038 struct inet_hashinfo *hashinfo;
1039 struct udp_table *udp_table;
1040 struct raw_hashinfo *raw_hash;
1041 } h;
1042
1043 struct module *owner;
1044
1045 char name[32];
1046
1047 struct list_head node;
1048 #ifdef SOCK_REFCNT_DEBUG
1049 atomic_t socks;
1050 #endif
1051 #ifdef CONFIG_MEMCG_KMEM
1052 /*
1053 * cgroup specific init/deinit functions. Called once for all
1054 * protocols that implement it, from cgroups populate function.
1055 * This function has to setup any files the protocol want to
1056 * appear in the kmem cgroup filesystem.
1057 */
1058 int (*init_cgroup)(struct mem_cgroup *memcg,
1059 struct cgroup_subsys *ss);
1060 void (*destroy_cgroup)(struct mem_cgroup *memcg);
1061 struct cg_proto *(*proto_cgroup)(struct mem_cgroup *memcg);
1062 #endif
1063 };
1064
1065 int proto_register(struct proto *prot, int alloc_slab);
1066 void proto_unregister(struct proto *prot);
1067
1068 #ifdef SOCK_REFCNT_DEBUG
1069 static inline void sk_refcnt_debug_inc(struct sock *sk)
1070 {
1071 atomic_inc(&sk->sk_prot->socks);
1072 }
1073
1074 static inline void sk_refcnt_debug_dec(struct sock *sk)
1075 {
1076 atomic_dec(&sk->sk_prot->socks);
1077 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1078 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1079 }
1080
1081 static inline void sk_refcnt_debug_release(const struct sock *sk)
1082 {
1083 if (atomic_read(&sk->sk_refcnt) != 1)
1084 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1085 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1086 }
1087 #else /* SOCK_REFCNT_DEBUG */
1088 #define sk_refcnt_debug_inc(sk) do { } while (0)
1089 #define sk_refcnt_debug_dec(sk) do { } while (0)
1090 #define sk_refcnt_debug_release(sk) do { } while (0)
1091 #endif /* SOCK_REFCNT_DEBUG */
1092
1093 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET)
1094 extern struct static_key memcg_socket_limit_enabled;
1095 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1096 struct cg_proto *cg_proto)
1097 {
1098 return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
1099 }
1100 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
1101 #else
1102 #define mem_cgroup_sockets_enabled 0
1103 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1104 struct cg_proto *cg_proto)
1105 {
1106 return NULL;
1107 }
1108 #endif
1109
1110 static inline bool sk_stream_memory_free(const struct sock *sk)
1111 {
1112 if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1113 return false;
1114
1115 return sk->sk_prot->stream_memory_free ?
1116 sk->sk_prot->stream_memory_free(sk) : true;
1117 }
1118
1119 static inline bool sk_stream_is_writeable(const struct sock *sk)
1120 {
1121 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1122 sk_stream_memory_free(sk);
1123 }
1124
1125
1126 static inline bool sk_has_memory_pressure(const struct sock *sk)
1127 {
1128 return sk->sk_prot->memory_pressure != NULL;
1129 }
1130
1131 static inline bool sk_under_memory_pressure(const struct sock *sk)
1132 {
1133 if (!sk->sk_prot->memory_pressure)
1134 return false;
1135
1136 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1137 return !!sk->sk_cgrp->memory_pressure;
1138
1139 return !!*sk->sk_prot->memory_pressure;
1140 }
1141
1142 static inline void sk_leave_memory_pressure(struct sock *sk)
1143 {
1144 int *memory_pressure = sk->sk_prot->memory_pressure;
1145
1146 if (!memory_pressure)
1147 return;
1148
1149 if (*memory_pressure)
1150 *memory_pressure = 0;
1151
1152 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1153 struct cg_proto *cg_proto = sk->sk_cgrp;
1154 struct proto *prot = sk->sk_prot;
1155
1156 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1157 cg_proto->memory_pressure = 0;
1158 }
1159
1160 }
1161
1162 static inline void sk_enter_memory_pressure(struct sock *sk)
1163 {
1164 if (!sk->sk_prot->enter_memory_pressure)
1165 return;
1166
1167 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1168 struct cg_proto *cg_proto = sk->sk_cgrp;
1169 struct proto *prot = sk->sk_prot;
1170
1171 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1172 cg_proto->memory_pressure = 1;
1173 }
1174
1175 sk->sk_prot->enter_memory_pressure(sk);
1176 }
1177
1178 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1179 {
1180 long *prot = sk->sk_prot->sysctl_mem;
1181 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1182 prot = sk->sk_cgrp->sysctl_mem;
1183 return prot[index];
1184 }
1185
1186 static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1187 unsigned long amt,
1188 int *parent_status)
1189 {
1190 page_counter_charge(&prot->memory_allocated, amt);
1191
1192 if (page_counter_read(&prot->memory_allocated) >
1193 prot->memory_allocated.limit)
1194 *parent_status = OVER_LIMIT;
1195 }
1196
1197 static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1198 unsigned long amt)
1199 {
1200 page_counter_uncharge(&prot->memory_allocated, amt);
1201 }
1202
1203 static inline long
1204 sk_memory_allocated(const struct sock *sk)
1205 {
1206 struct proto *prot = sk->sk_prot;
1207
1208 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1209 return page_counter_read(&sk->sk_cgrp->memory_allocated);
1210
1211 return atomic_long_read(prot->memory_allocated);
1212 }
1213
1214 static inline long
1215 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1216 {
1217 struct proto *prot = sk->sk_prot;
1218
1219 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1220 memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1221 /* update the root cgroup regardless */
1222 atomic_long_add_return(amt, prot->memory_allocated);
1223 return page_counter_read(&sk->sk_cgrp->memory_allocated);
1224 }
1225
1226 return atomic_long_add_return(amt, prot->memory_allocated);
1227 }
1228
1229 static inline void
1230 sk_memory_allocated_sub(struct sock *sk, int amt)
1231 {
1232 struct proto *prot = sk->sk_prot;
1233
1234 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1235 memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1236
1237 atomic_long_sub(amt, prot->memory_allocated);
1238 }
1239
1240 static inline void sk_sockets_allocated_dec(struct sock *sk)
1241 {
1242 struct proto *prot = sk->sk_prot;
1243
1244 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1245 struct cg_proto *cg_proto = sk->sk_cgrp;
1246
1247 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1248 percpu_counter_dec(&cg_proto->sockets_allocated);
1249 }
1250
1251 percpu_counter_dec(prot->sockets_allocated);
1252 }
1253
1254 static inline void sk_sockets_allocated_inc(struct sock *sk)
1255 {
1256 struct proto *prot = sk->sk_prot;
1257
1258 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1259 struct cg_proto *cg_proto = sk->sk_cgrp;
1260
1261 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1262 percpu_counter_inc(&cg_proto->sockets_allocated);
1263 }
1264
1265 percpu_counter_inc(prot->sockets_allocated);
1266 }
1267
1268 static inline int
1269 sk_sockets_allocated_read_positive(struct sock *sk)
1270 {
1271 struct proto *prot = sk->sk_prot;
1272
1273 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1274 return percpu_counter_read_positive(&sk->sk_cgrp->sockets_allocated);
1275
1276 return percpu_counter_read_positive(prot->sockets_allocated);
1277 }
1278
1279 static inline int
1280 proto_sockets_allocated_sum_positive(struct proto *prot)
1281 {
1282 return percpu_counter_sum_positive(prot->sockets_allocated);
1283 }
1284
1285 static inline long
1286 proto_memory_allocated(struct proto *prot)
1287 {
1288 return atomic_long_read(prot->memory_allocated);
1289 }
1290
1291 static inline bool
1292 proto_memory_pressure(struct proto *prot)
1293 {
1294 if (!prot->memory_pressure)
1295 return false;
1296 return !!*prot->memory_pressure;
1297 }
1298
1299
1300 #ifdef CONFIG_PROC_FS
1301 /* Called with local bh disabled */
1302 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1303 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1304 #else
1305 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1306 int inc)
1307 {
1308 }
1309 #endif
1310
1311
1312 /* With per-bucket locks this operation is not-atomic, so that
1313 * this version is not worse.
1314 */
1315 static inline void __sk_prot_rehash(struct sock *sk)
1316 {
1317 sk->sk_prot->unhash(sk);
1318 sk->sk_prot->hash(sk);
1319 }
1320
1321 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1322
1323 /* About 10 seconds */
1324 #define SOCK_DESTROY_TIME (10*HZ)
1325
1326 /* Sockets 0-1023 can't be bound to unless you are superuser */
1327 #define PROT_SOCK 1024
1328
1329 #define SHUTDOWN_MASK 3
1330 #define RCV_SHUTDOWN 1
1331 #define SEND_SHUTDOWN 2
1332
1333 #define SOCK_SNDBUF_LOCK 1
1334 #define SOCK_RCVBUF_LOCK 2
1335 #define SOCK_BINDADDR_LOCK 4
1336 #define SOCK_BINDPORT_LOCK 8
1337
1338 struct socket_alloc {
1339 struct socket socket;
1340 struct inode vfs_inode;
1341 };
1342
1343 static inline struct socket *SOCKET_I(struct inode *inode)
1344 {
1345 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1346 }
1347
1348 static inline struct inode *SOCK_INODE(struct socket *socket)
1349 {
1350 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1351 }
1352
1353 /*
1354 * Functions for memory accounting
1355 */
1356 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1357 void __sk_mem_reclaim(struct sock *sk, int amount);
1358
1359 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1360 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1361 #define SK_MEM_SEND 0
1362 #define SK_MEM_RECV 1
1363
1364 static inline int sk_mem_pages(int amt)
1365 {
1366 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1367 }
1368
1369 static inline bool sk_has_account(struct sock *sk)
1370 {
1371 /* return true if protocol supports memory accounting */
1372 return !!sk->sk_prot->memory_allocated;
1373 }
1374
1375 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1376 {
1377 if (!sk_has_account(sk))
1378 return true;
1379 return size <= sk->sk_forward_alloc ||
1380 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1381 }
1382
1383 static inline bool
1384 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1385 {
1386 if (!sk_has_account(sk))
1387 return true;
1388 return size<= sk->sk_forward_alloc ||
1389 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1390 skb_pfmemalloc(skb);
1391 }
1392
1393 static inline void sk_mem_reclaim(struct sock *sk)
1394 {
1395 if (!sk_has_account(sk))
1396 return;
1397 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1398 __sk_mem_reclaim(sk, sk->sk_forward_alloc);
1399 }
1400
1401 static inline void sk_mem_reclaim_partial(struct sock *sk)
1402 {
1403 if (!sk_has_account(sk))
1404 return;
1405 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1406 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1407 }
1408
1409 static inline void sk_mem_charge(struct sock *sk, int size)
1410 {
1411 if (!sk_has_account(sk))
1412 return;
1413 sk->sk_forward_alloc -= size;
1414 }
1415
1416 static inline void sk_mem_uncharge(struct sock *sk, int size)
1417 {
1418 if (!sk_has_account(sk))
1419 return;
1420 sk->sk_forward_alloc += size;
1421 }
1422
1423 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1424 {
1425 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1426 sk->sk_wmem_queued -= skb->truesize;
1427 sk_mem_uncharge(sk, skb->truesize);
1428 __kfree_skb(skb);
1429 }
1430
1431 /* Used by processes to "lock" a socket state, so that
1432 * interrupts and bottom half handlers won't change it
1433 * from under us. It essentially blocks any incoming
1434 * packets, so that we won't get any new data or any
1435 * packets that change the state of the socket.
1436 *
1437 * While locked, BH processing will add new packets to
1438 * the backlog queue. This queue is processed by the
1439 * owner of the socket lock right before it is released.
1440 *
1441 * Since ~2.3.5 it is also exclusive sleep lock serializing
1442 * accesses from user process context.
1443 */
1444 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
1445
1446 static inline void sock_release_ownership(struct sock *sk)
1447 {
1448 sk->sk_lock.owned = 0;
1449 }
1450
1451 /*
1452 * Macro so as to not evaluate some arguments when
1453 * lockdep is not enabled.
1454 *
1455 * Mark both the sk_lock and the sk_lock.slock as a
1456 * per-address-family lock class.
1457 */
1458 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1459 do { \
1460 sk->sk_lock.owned = 0; \
1461 init_waitqueue_head(&sk->sk_lock.wq); \
1462 spin_lock_init(&(sk)->sk_lock.slock); \
1463 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1464 sizeof((sk)->sk_lock)); \
1465 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1466 (skey), (sname)); \
1467 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1468 } while (0)
1469
1470 void lock_sock_nested(struct sock *sk, int subclass);
1471
1472 static inline void lock_sock(struct sock *sk)
1473 {
1474 lock_sock_nested(sk, 0);
1475 }
1476
1477 void release_sock(struct sock *sk);
1478
1479 /* BH context may only use the following locking interface. */
1480 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1481 #define bh_lock_sock_nested(__sk) \
1482 spin_lock_nested(&((__sk)->sk_lock.slock), \
1483 SINGLE_DEPTH_NESTING)
1484 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1485
1486 bool lock_sock_fast(struct sock *sk);
1487 /**
1488 * unlock_sock_fast - complement of lock_sock_fast
1489 * @sk: socket
1490 * @slow: slow mode
1491 *
1492 * fast unlock socket for user context.
1493 * If slow mode is on, we call regular release_sock()
1494 */
1495 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1496 {
1497 if (slow)
1498 release_sock(sk);
1499 else
1500 spin_unlock_bh(&sk->sk_lock.slock);
1501 }
1502
1503
1504 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1505 struct proto *prot, int kern);
1506 void sk_free(struct sock *sk);
1507 void sk_destruct(struct sock *sk);
1508 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1509
1510 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1511 gfp_t priority);
1512 void sock_wfree(struct sk_buff *skb);
1513 void skb_orphan_partial(struct sk_buff *skb);
1514 void sock_rfree(struct sk_buff *skb);
1515 void sock_efree(struct sk_buff *skb);
1516 #ifdef CONFIG_INET
1517 void sock_edemux(struct sk_buff *skb);
1518 #else
1519 #define sock_edemux(skb) sock_efree(skb)
1520 #endif
1521
1522 int sock_setsockopt(struct socket *sock, int level, int op,
1523 char __user *optval, unsigned int optlen);
1524
1525 int sock_getsockopt(struct socket *sock, int level, int op,
1526 char __user *optval, int __user *optlen);
1527 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1528 int noblock, int *errcode);
1529 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1530 unsigned long data_len, int noblock,
1531 int *errcode, int max_page_order);
1532 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1533 void sock_kfree_s(struct sock *sk, void *mem, int size);
1534 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1535 void sk_send_sigurg(struct sock *sk);
1536
1537 struct sockcm_cookie {
1538 u32 mark;
1539 };
1540
1541 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1542 struct sockcm_cookie *sockc);
1543
1544 /*
1545 * Functions to fill in entries in struct proto_ops when a protocol
1546 * does not implement a particular function.
1547 */
1548 int sock_no_bind(struct socket *, struct sockaddr *, int);
1549 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1550 int sock_no_socketpair(struct socket *, struct socket *);
1551 int sock_no_accept(struct socket *, struct socket *, int);
1552 int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1553 unsigned int sock_no_poll(struct file *, struct socket *,
1554 struct poll_table_struct *);
1555 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1556 int sock_no_listen(struct socket *, int);
1557 int sock_no_shutdown(struct socket *, int);
1558 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1559 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1560 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1561 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1562 int sock_no_mmap(struct file *file, struct socket *sock,
1563 struct vm_area_struct *vma);
1564 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1565 size_t size, int flags);
1566
1567 /*
1568 * Functions to fill in entries in struct proto_ops when a protocol
1569 * uses the inet style.
1570 */
1571 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1572 char __user *optval, int __user *optlen);
1573 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1574 int flags);
1575 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1576 char __user *optval, unsigned int optlen);
1577 int compat_sock_common_getsockopt(struct socket *sock, int level,
1578 int optname, char __user *optval, int __user *optlen);
1579 int compat_sock_common_setsockopt(struct socket *sock, int level,
1580 int optname, char __user *optval, unsigned int optlen);
1581
1582 void sk_common_release(struct sock *sk);
1583
1584 /*
1585 * Default socket callbacks and setup code
1586 */
1587
1588 /* Initialise core socket variables */
1589 void sock_init_data(struct socket *sock, struct sock *sk);
1590
1591 /*
1592 * Socket reference counting postulates.
1593 *
1594 * * Each user of socket SHOULD hold a reference count.
1595 * * Each access point to socket (an hash table bucket, reference from a list,
1596 * running timer, skb in flight MUST hold a reference count.
1597 * * When reference count hits 0, it means it will never increase back.
1598 * * When reference count hits 0, it means that no references from
1599 * outside exist to this socket and current process on current CPU
1600 * is last user and may/should destroy this socket.
1601 * * sk_free is called from any context: process, BH, IRQ. When
1602 * it is called, socket has no references from outside -> sk_free
1603 * may release descendant resources allocated by the socket, but
1604 * to the time when it is called, socket is NOT referenced by any
1605 * hash tables, lists etc.
1606 * * Packets, delivered from outside (from network or from another process)
1607 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1608 * when they sit in queue. Otherwise, packets will leak to hole, when
1609 * socket is looked up by one cpu and unhasing is made by another CPU.
1610 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1611 * (leak to backlog). Packet socket does all the processing inside
1612 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1613 * use separate SMP lock, so that they are prone too.
1614 */
1615
1616 /* Ungrab socket and destroy it, if it was the last reference. */
1617 static inline void sock_put(struct sock *sk)
1618 {
1619 if (atomic_dec_and_test(&sk->sk_refcnt))
1620 sk_free(sk);
1621 }
1622 /* Generic version of sock_put(), dealing with all sockets
1623 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1624 */
1625 void sock_gen_put(struct sock *sk);
1626
1627 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested);
1628
1629 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1630 {
1631 sk->sk_tx_queue_mapping = tx_queue;
1632 }
1633
1634 static inline void sk_tx_queue_clear(struct sock *sk)
1635 {
1636 sk->sk_tx_queue_mapping = -1;
1637 }
1638
1639 static inline int sk_tx_queue_get(const struct sock *sk)
1640 {
1641 return sk ? sk->sk_tx_queue_mapping : -1;
1642 }
1643
1644 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1645 {
1646 sk_tx_queue_clear(sk);
1647 sk->sk_socket = sock;
1648 }
1649
1650 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1651 {
1652 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1653 return &rcu_dereference_raw(sk->sk_wq)->wait;
1654 }
1655 /* Detach socket from process context.
1656 * Announce socket dead, detach it from wait queue and inode.
1657 * Note that parent inode held reference count on this struct sock,
1658 * we do not release it in this function, because protocol
1659 * probably wants some additional cleanups or even continuing
1660 * to work with this socket (TCP).
1661 */
1662 static inline void sock_orphan(struct sock *sk)
1663 {
1664 write_lock_bh(&sk->sk_callback_lock);
1665 sock_set_flag(sk, SOCK_DEAD);
1666 sk_set_socket(sk, NULL);
1667 sk->sk_wq = NULL;
1668 write_unlock_bh(&sk->sk_callback_lock);
1669 }
1670
1671 static inline void sock_graft(struct sock *sk, struct socket *parent)
1672 {
1673 write_lock_bh(&sk->sk_callback_lock);
1674 sk->sk_wq = parent->wq;
1675 parent->sk = sk;
1676 sk_set_socket(sk, parent);
1677 security_sock_graft(sk, parent);
1678 write_unlock_bh(&sk->sk_callback_lock);
1679 }
1680
1681 kuid_t sock_i_uid(struct sock *sk);
1682 unsigned long sock_i_ino(struct sock *sk);
1683
1684 static inline u32 net_tx_rndhash(void)
1685 {
1686 u32 v = prandom_u32();
1687
1688 return v ?: 1;
1689 }
1690
1691 static inline void sk_set_txhash(struct sock *sk)
1692 {
1693 sk->sk_txhash = net_tx_rndhash();
1694 }
1695
1696 static inline void sk_rethink_txhash(struct sock *sk)
1697 {
1698 if (sk->sk_txhash)
1699 sk_set_txhash(sk);
1700 }
1701
1702 static inline struct dst_entry *
1703 __sk_dst_get(struct sock *sk)
1704 {
1705 return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1706 lockdep_is_held(&sk->sk_lock.slock));
1707 }
1708
1709 static inline struct dst_entry *
1710 sk_dst_get(struct sock *sk)
1711 {
1712 struct dst_entry *dst;
1713
1714 rcu_read_lock();
1715 dst = rcu_dereference(sk->sk_dst_cache);
1716 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1717 dst = NULL;
1718 rcu_read_unlock();
1719 return dst;
1720 }
1721
1722 static inline void dst_negative_advice(struct sock *sk)
1723 {
1724 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1725
1726 sk_rethink_txhash(sk);
1727
1728 if (dst && dst->ops->negative_advice) {
1729 ndst = dst->ops->negative_advice(dst);
1730
1731 if (ndst != dst) {
1732 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1733 sk_tx_queue_clear(sk);
1734 }
1735 }
1736 }
1737
1738 static inline void
1739 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1740 {
1741 struct dst_entry *old_dst;
1742
1743 sk_tx_queue_clear(sk);
1744 /*
1745 * This can be called while sk is owned by the caller only,
1746 * with no state that can be checked in a rcu_dereference_check() cond
1747 */
1748 old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1749 rcu_assign_pointer(sk->sk_dst_cache, dst);
1750 dst_release(old_dst);
1751 }
1752
1753 static inline void
1754 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1755 {
1756 struct dst_entry *old_dst;
1757
1758 sk_tx_queue_clear(sk);
1759 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1760 dst_release(old_dst);
1761 }
1762
1763 static inline void
1764 __sk_dst_reset(struct sock *sk)
1765 {
1766 __sk_dst_set(sk, NULL);
1767 }
1768
1769 static inline void
1770 sk_dst_reset(struct sock *sk)
1771 {
1772 sk_dst_set(sk, NULL);
1773 }
1774
1775 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1776
1777 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1778
1779 bool sk_mc_loop(struct sock *sk);
1780
1781 static inline bool sk_can_gso(const struct sock *sk)
1782 {
1783 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1784 }
1785
1786 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1787
1788 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1789 {
1790 sk->sk_route_nocaps |= flags;
1791 sk->sk_route_caps &= ~flags;
1792 }
1793
1794 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1795 struct iov_iter *from, char *to,
1796 int copy, int offset)
1797 {
1798 if (skb->ip_summed == CHECKSUM_NONE) {
1799 __wsum csum = 0;
1800 if (csum_and_copy_from_iter(to, copy, &csum, from) != copy)
1801 return -EFAULT;
1802 skb->csum = csum_block_add(skb->csum, csum, offset);
1803 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1804 if (copy_from_iter_nocache(to, copy, from) != copy)
1805 return -EFAULT;
1806 } else if (copy_from_iter(to, copy, from) != copy)
1807 return -EFAULT;
1808
1809 return 0;
1810 }
1811
1812 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1813 struct iov_iter *from, int copy)
1814 {
1815 int err, offset = skb->len;
1816
1817 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1818 copy, offset);
1819 if (err)
1820 __skb_trim(skb, offset);
1821
1822 return err;
1823 }
1824
1825 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1826 struct sk_buff *skb,
1827 struct page *page,
1828 int off, int copy)
1829 {
1830 int err;
1831
1832 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1833 copy, skb->len);
1834 if (err)
1835 return err;
1836
1837 skb->len += copy;
1838 skb->data_len += copy;
1839 skb->truesize += copy;
1840 sk->sk_wmem_queued += copy;
1841 sk_mem_charge(sk, copy);
1842 return 0;
1843 }
1844
1845 /**
1846 * sk_wmem_alloc_get - returns write allocations
1847 * @sk: socket
1848 *
1849 * Returns sk_wmem_alloc minus initial offset of one
1850 */
1851 static inline int sk_wmem_alloc_get(const struct sock *sk)
1852 {
1853 return atomic_read(&sk->sk_wmem_alloc) - 1;
1854 }
1855
1856 /**
1857 * sk_rmem_alloc_get - returns read allocations
1858 * @sk: socket
1859 *
1860 * Returns sk_rmem_alloc
1861 */
1862 static inline int sk_rmem_alloc_get(const struct sock *sk)
1863 {
1864 return atomic_read(&sk->sk_rmem_alloc);
1865 }
1866
1867 /**
1868 * sk_has_allocations - check if allocations are outstanding
1869 * @sk: socket
1870 *
1871 * Returns true if socket has write or read allocations
1872 */
1873 static inline bool sk_has_allocations(const struct sock *sk)
1874 {
1875 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1876 }
1877
1878 /**
1879 * skwq_has_sleeper - check if there are any waiting processes
1880 * @wq: struct socket_wq
1881 *
1882 * Returns true if socket_wq has waiting processes
1883 *
1884 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
1885 * barrier call. They were added due to the race found within the tcp code.
1886 *
1887 * Consider following tcp code paths:
1888 *
1889 * CPU1 CPU2
1890 *
1891 * sys_select receive packet
1892 * ... ...
1893 * __add_wait_queue update tp->rcv_nxt
1894 * ... ...
1895 * tp->rcv_nxt check sock_def_readable
1896 * ... {
1897 * schedule rcu_read_lock();
1898 * wq = rcu_dereference(sk->sk_wq);
1899 * if (wq && waitqueue_active(&wq->wait))
1900 * wake_up_interruptible(&wq->wait)
1901 * ...
1902 * }
1903 *
1904 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1905 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1906 * could then endup calling schedule and sleep forever if there are no more
1907 * data on the socket.
1908 *
1909 */
1910 static inline bool skwq_has_sleeper(struct socket_wq *wq)
1911 {
1912 return wq && wq_has_sleeper(&wq->wait);
1913 }
1914
1915 /**
1916 * sock_poll_wait - place memory barrier behind the poll_wait call.
1917 * @filp: file
1918 * @wait_address: socket wait queue
1919 * @p: poll_table
1920 *
1921 * See the comments in the wq_has_sleeper function.
1922 */
1923 static inline void sock_poll_wait(struct file *filp,
1924 wait_queue_head_t *wait_address, poll_table *p)
1925 {
1926 if (!poll_does_not_wait(p) && wait_address) {
1927 poll_wait(filp, wait_address, p);
1928 /* We need to be sure we are in sync with the
1929 * socket flags modification.
1930 *
1931 * This memory barrier is paired in the wq_has_sleeper.
1932 */
1933 smp_mb();
1934 }
1935 }
1936
1937 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
1938 {
1939 if (sk->sk_txhash) {
1940 skb->l4_hash = 1;
1941 skb->hash = sk->sk_txhash;
1942 }
1943 }
1944
1945 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
1946
1947 /*
1948 * Queue a received datagram if it will fit. Stream and sequenced
1949 * protocols can't normally use this as they need to fit buffers in
1950 * and play with them.
1951 *
1952 * Inlined as it's very short and called for pretty much every
1953 * packet ever received.
1954 */
1955 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1956 {
1957 skb_orphan(skb);
1958 skb->sk = sk;
1959 skb->destructor = sock_rfree;
1960 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1961 sk_mem_charge(sk, skb->truesize);
1962 }
1963
1964 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
1965 unsigned long expires);
1966
1967 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
1968
1969 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1970
1971 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1972 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
1973
1974 /*
1975 * Recover an error report and clear atomically
1976 */
1977
1978 static inline int sock_error(struct sock *sk)
1979 {
1980 int err;
1981 if (likely(!sk->sk_err))
1982 return 0;
1983 err = xchg(&sk->sk_err, 0);
1984 return -err;
1985 }
1986
1987 static inline unsigned long sock_wspace(struct sock *sk)
1988 {
1989 int amt = 0;
1990
1991 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1992 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1993 if (amt < 0)
1994 amt = 0;
1995 }
1996 return amt;
1997 }
1998
1999 /* Note:
2000 * We use sk->sk_wq_raw, from contexts knowing this
2001 * pointer is not NULL and cannot disappear/change.
2002 */
2003 static inline void sk_set_bit(int nr, struct sock *sk)
2004 {
2005 set_bit(nr, &sk->sk_wq_raw->flags);
2006 }
2007
2008 static inline void sk_clear_bit(int nr, struct sock *sk)
2009 {
2010 clear_bit(nr, &sk->sk_wq_raw->flags);
2011 }
2012
2013 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2014 {
2015 if (sock_flag(sk, SOCK_FASYNC)) {
2016 rcu_read_lock();
2017 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2018 rcu_read_unlock();
2019 }
2020 }
2021
2022 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2023 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2024 * Note: for send buffers, TCP works better if we can build two skbs at
2025 * minimum.
2026 */
2027 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2028
2029 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2030 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2031
2032 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2033 {
2034 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2035 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2036 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2037 }
2038 }
2039
2040 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2041 bool force_schedule);
2042
2043 /**
2044 * sk_page_frag - return an appropriate page_frag
2045 * @sk: socket
2046 *
2047 * If socket allocation mode allows current thread to sleep, it means its
2048 * safe to use the per task page_frag instead of the per socket one.
2049 */
2050 static inline struct page_frag *sk_page_frag(struct sock *sk)
2051 {
2052 if (gfpflags_allow_blocking(sk->sk_allocation))
2053 return &current->task_frag;
2054
2055 return &sk->sk_frag;
2056 }
2057
2058 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2059
2060 /*
2061 * Default write policy as shown to user space via poll/select/SIGIO
2062 */
2063 static inline bool sock_writeable(const struct sock *sk)
2064 {
2065 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2066 }
2067
2068 static inline gfp_t gfp_any(void)
2069 {
2070 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2071 }
2072
2073 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2074 {
2075 return noblock ? 0 : sk->sk_rcvtimeo;
2076 }
2077
2078 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2079 {
2080 return noblock ? 0 : sk->sk_sndtimeo;
2081 }
2082
2083 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2084 {
2085 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2086 }
2087
2088 /* Alas, with timeout socket operations are not restartable.
2089 * Compare this to poll().
2090 */
2091 static inline int sock_intr_errno(long timeo)
2092 {
2093 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2094 }
2095
2096 struct sock_skb_cb {
2097 u32 dropcount;
2098 };
2099
2100 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2101 * using skb->cb[] would keep using it directly and utilize its
2102 * alignement guarantee.
2103 */
2104 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2105 sizeof(struct sock_skb_cb)))
2106
2107 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2108 SOCK_SKB_CB_OFFSET))
2109
2110 #define sock_skb_cb_check_size(size) \
2111 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2112
2113 static inline void
2114 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2115 {
2116 SOCK_SKB_CB(skb)->dropcount = atomic_read(&sk->sk_drops);
2117 }
2118
2119 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2120 struct sk_buff *skb);
2121 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2122 struct sk_buff *skb);
2123
2124 static inline void
2125 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2126 {
2127 ktime_t kt = skb->tstamp;
2128 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2129
2130 /*
2131 * generate control messages if
2132 * - receive time stamping in software requested
2133 * - software time stamp available and wanted
2134 * - hardware time stamps available and wanted
2135 */
2136 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2137 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2138 (kt.tv64 && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2139 (hwtstamps->hwtstamp.tv64 &&
2140 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2141 __sock_recv_timestamp(msg, sk, skb);
2142 else
2143 sk->sk_stamp = kt;
2144
2145 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2146 __sock_recv_wifi_status(msg, sk, skb);
2147 }
2148
2149 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2150 struct sk_buff *skb);
2151
2152 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2153 struct sk_buff *skb)
2154 {
2155 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2156 (1UL << SOCK_RCVTSTAMP))
2157 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2158 SOF_TIMESTAMPING_RAW_HARDWARE)
2159
2160 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2161 __sock_recv_ts_and_drops(msg, sk, skb);
2162 else
2163 sk->sk_stamp = skb->tstamp;
2164 }
2165
2166 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags);
2167
2168 /**
2169 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2170 * @sk: socket sending this packet
2171 * @tx_flags: completed with instructions for time stamping
2172 *
2173 * Note : callers should take care of initial *tx_flags value (usually 0)
2174 */
2175 static inline void sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
2176 {
2177 if (unlikely(sk->sk_tsflags))
2178 __sock_tx_timestamp(sk, tx_flags);
2179 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2180 *tx_flags |= SKBTX_WIFI_STATUS;
2181 }
2182
2183 /**
2184 * sk_eat_skb - Release a skb if it is no longer needed
2185 * @sk: socket to eat this skb from
2186 * @skb: socket buffer to eat
2187 *
2188 * This routine must be called with interrupts disabled or with the socket
2189 * locked so that the sk_buff queue operation is ok.
2190 */
2191 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2192 {
2193 __skb_unlink(skb, &sk->sk_receive_queue);
2194 __kfree_skb(skb);
2195 }
2196
2197 static inline
2198 struct net *sock_net(const struct sock *sk)
2199 {
2200 return read_pnet(&sk->sk_net);
2201 }
2202
2203 static inline
2204 void sock_net_set(struct sock *sk, struct net *net)
2205 {
2206 write_pnet(&sk->sk_net, net);
2207 }
2208
2209 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2210 {
2211 if (skb->sk) {
2212 struct sock *sk = skb->sk;
2213
2214 skb->destructor = NULL;
2215 skb->sk = NULL;
2216 return sk;
2217 }
2218 return NULL;
2219 }
2220
2221 /* This helper checks if a socket is a full socket,
2222 * ie _not_ a timewait or request socket.
2223 */
2224 static inline bool sk_fullsock(const struct sock *sk)
2225 {
2226 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2227 }
2228
2229 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2230 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2231 */
2232 static inline bool sk_listener(const struct sock *sk)
2233 {
2234 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2235 }
2236
2237 /**
2238 * sk_state_load - read sk->sk_state for lockless contexts
2239 * @sk: socket pointer
2240 *
2241 * Paired with sk_state_store(). Used in places we do not hold socket lock :
2242 * tcp_diag_get_info(), tcp_get_info(), tcp_poll(), get_tcp4_sock() ...
2243 */
2244 static inline int sk_state_load(const struct sock *sk)
2245 {
2246 return smp_load_acquire(&sk->sk_state);
2247 }
2248
2249 /**
2250 * sk_state_store - update sk->sk_state
2251 * @sk: socket pointer
2252 * @newstate: new state
2253 *
2254 * Paired with sk_state_load(). Should be used in contexts where
2255 * state change might impact lockless readers.
2256 */
2257 static inline void sk_state_store(struct sock *sk, int newstate)
2258 {
2259 smp_store_release(&sk->sk_state, newstate);
2260 }
2261
2262 void sock_enable_timestamp(struct sock *sk, int flag);
2263 int sock_get_timestamp(struct sock *, struct timeval __user *);
2264 int sock_get_timestampns(struct sock *, struct timespec __user *);
2265 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2266 int type);
2267
2268 bool sk_ns_capable(const struct sock *sk,
2269 struct user_namespace *user_ns, int cap);
2270 bool sk_capable(const struct sock *sk, int cap);
2271 bool sk_net_capable(const struct sock *sk, int cap);
2272
2273 extern __u32 sysctl_wmem_max;
2274 extern __u32 sysctl_rmem_max;
2275
2276 extern int sysctl_tstamp_allow_data;
2277 extern int sysctl_optmem_max;
2278
2279 extern __u32 sysctl_wmem_default;
2280 extern __u32 sysctl_rmem_default;
2281
2282 #endif /* _SOCK_H */
This page took 0.081942 seconds and 5 git commands to generate.