tg3: Fix advertisement handling
[deliverable/linux.git] / include / net / sock.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/lockdep.h>
50 #include <linux/netdevice.h>
51 #include <linux/skbuff.h> /* struct sk_buff */
52 #include <linux/mm.h>
53 #include <linux/security.h>
54 #include <linux/slab.h>
55 #include <linux/uaccess.h>
56
57 #include <linux/filter.h>
58 #include <linux/rculist_nulls.h>
59 #include <linux/poll.h>
60
61 #include <linux/atomic.h>
62 #include <net/dst.h>
63 #include <net/checksum.h>
64
65 /*
66 * This structure really needs to be cleaned up.
67 * Most of it is for TCP, and not used by any of
68 * the other protocols.
69 */
70
71 /* Define this to get the SOCK_DBG debugging facility. */
72 #define SOCK_DEBUGGING
73 #ifdef SOCK_DEBUGGING
74 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
75 printk(KERN_DEBUG msg); } while (0)
76 #else
77 /* Validate arguments and do nothing */
78 static inline __printf(2, 3)
79 void SOCK_DEBUG(struct sock *sk, const char *msg, ...)
80 {
81 }
82 #endif
83
84 /* This is the per-socket lock. The spinlock provides a synchronization
85 * between user contexts and software interrupt processing, whereas the
86 * mini-semaphore synchronizes multiple users amongst themselves.
87 */
88 typedef struct {
89 spinlock_t slock;
90 int owned;
91 wait_queue_head_t wq;
92 /*
93 * We express the mutex-alike socket_lock semantics
94 * to the lock validator by explicitly managing
95 * the slock as a lock variant (in addition to
96 * the slock itself):
97 */
98 #ifdef CONFIG_DEBUG_LOCK_ALLOC
99 struct lockdep_map dep_map;
100 #endif
101 } socket_lock_t;
102
103 struct sock;
104 struct proto;
105 struct net;
106
107 /**
108 * struct sock_common - minimal network layer representation of sockets
109 * @skc_daddr: Foreign IPv4 addr
110 * @skc_rcv_saddr: Bound local IPv4 addr
111 * @skc_hash: hash value used with various protocol lookup tables
112 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
113 * @skc_family: network address family
114 * @skc_state: Connection state
115 * @skc_reuse: %SO_REUSEADDR setting
116 * @skc_bound_dev_if: bound device index if != 0
117 * @skc_bind_node: bind hash linkage for various protocol lookup tables
118 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
119 * @skc_prot: protocol handlers inside a network family
120 * @skc_net: reference to the network namespace of this socket
121 * @skc_node: main hash linkage for various protocol lookup tables
122 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
123 * @skc_tx_queue_mapping: tx queue number for this connection
124 * @skc_refcnt: reference count
125 *
126 * This is the minimal network layer representation of sockets, the header
127 * for struct sock and struct inet_timewait_sock.
128 */
129 struct sock_common {
130 /* skc_daddr and skc_rcv_saddr must be grouped :
131 * cf INET_MATCH() and INET_TW_MATCH()
132 */
133 __be32 skc_daddr;
134 __be32 skc_rcv_saddr;
135
136 union {
137 unsigned int skc_hash;
138 __u16 skc_u16hashes[2];
139 };
140 unsigned short skc_family;
141 volatile unsigned char skc_state;
142 unsigned char skc_reuse;
143 int skc_bound_dev_if;
144 union {
145 struct hlist_node skc_bind_node;
146 struct hlist_nulls_node skc_portaddr_node;
147 };
148 struct proto *skc_prot;
149 #ifdef CONFIG_NET_NS
150 struct net *skc_net;
151 #endif
152 /*
153 * fields between dontcopy_begin/dontcopy_end
154 * are not copied in sock_copy()
155 */
156 /* private: */
157 int skc_dontcopy_begin[0];
158 /* public: */
159 union {
160 struct hlist_node skc_node;
161 struct hlist_nulls_node skc_nulls_node;
162 };
163 int skc_tx_queue_mapping;
164 atomic_t skc_refcnt;
165 /* private: */
166 int skc_dontcopy_end[0];
167 /* public: */
168 };
169
170 /**
171 * struct sock - network layer representation of sockets
172 * @__sk_common: shared layout with inet_timewait_sock
173 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
174 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
175 * @sk_lock: synchronizer
176 * @sk_rcvbuf: size of receive buffer in bytes
177 * @sk_wq: sock wait queue and async head
178 * @sk_dst_cache: destination cache
179 * @sk_dst_lock: destination cache lock
180 * @sk_policy: flow policy
181 * @sk_receive_queue: incoming packets
182 * @sk_wmem_alloc: transmit queue bytes committed
183 * @sk_write_queue: Packet sending queue
184 * @sk_async_wait_queue: DMA copied packets
185 * @sk_omem_alloc: "o" is "option" or "other"
186 * @sk_wmem_queued: persistent queue size
187 * @sk_forward_alloc: space allocated forward
188 * @sk_allocation: allocation mode
189 * @sk_sndbuf: size of send buffer in bytes
190 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
191 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
192 * @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
193 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
194 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
195 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
196 * @sk_gso_max_size: Maximum GSO segment size to build
197 * @sk_lingertime: %SO_LINGER l_linger setting
198 * @sk_backlog: always used with the per-socket spinlock held
199 * @sk_callback_lock: used with the callbacks in the end of this struct
200 * @sk_error_queue: rarely used
201 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
202 * IPV6_ADDRFORM for instance)
203 * @sk_err: last error
204 * @sk_err_soft: errors that don't cause failure but are the cause of a
205 * persistent failure not just 'timed out'
206 * @sk_drops: raw/udp drops counter
207 * @sk_ack_backlog: current listen backlog
208 * @sk_max_ack_backlog: listen backlog set in listen()
209 * @sk_priority: %SO_PRIORITY setting
210 * @sk_type: socket type (%SOCK_STREAM, etc)
211 * @sk_protocol: which protocol this socket belongs in this network family
212 * @sk_peer_pid: &struct pid for this socket's peer
213 * @sk_peer_cred: %SO_PEERCRED setting
214 * @sk_rcvlowat: %SO_RCVLOWAT setting
215 * @sk_rcvtimeo: %SO_RCVTIMEO setting
216 * @sk_sndtimeo: %SO_SNDTIMEO setting
217 * @sk_rxhash: flow hash received from netif layer
218 * @sk_filter: socket filtering instructions
219 * @sk_protinfo: private area, net family specific, when not using slab
220 * @sk_timer: sock cleanup timer
221 * @sk_stamp: time stamp of last packet received
222 * @sk_socket: Identd and reporting IO signals
223 * @sk_user_data: RPC layer private data
224 * @sk_sndmsg_page: cached page for sendmsg
225 * @sk_sndmsg_off: cached offset for sendmsg
226 * @sk_send_head: front of stuff to transmit
227 * @sk_security: used by security modules
228 * @sk_mark: generic packet mark
229 * @sk_classid: this socket's cgroup classid
230 * @sk_write_pending: a write to stream socket waits to start
231 * @sk_state_change: callback to indicate change in the state of the sock
232 * @sk_data_ready: callback to indicate there is data to be processed
233 * @sk_write_space: callback to indicate there is bf sending space available
234 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
235 * @sk_backlog_rcv: callback to process the backlog
236 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
237 */
238 struct sock {
239 /*
240 * Now struct inet_timewait_sock also uses sock_common, so please just
241 * don't add nothing before this first member (__sk_common) --acme
242 */
243 struct sock_common __sk_common;
244 #define sk_node __sk_common.skc_node
245 #define sk_nulls_node __sk_common.skc_nulls_node
246 #define sk_refcnt __sk_common.skc_refcnt
247 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
248
249 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
250 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
251 #define sk_hash __sk_common.skc_hash
252 #define sk_family __sk_common.skc_family
253 #define sk_state __sk_common.skc_state
254 #define sk_reuse __sk_common.skc_reuse
255 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
256 #define sk_bind_node __sk_common.skc_bind_node
257 #define sk_prot __sk_common.skc_prot
258 #define sk_net __sk_common.skc_net
259 socket_lock_t sk_lock;
260 struct sk_buff_head sk_receive_queue;
261 /*
262 * The backlog queue is special, it is always used with
263 * the per-socket spinlock held and requires low latency
264 * access. Therefore we special case it's implementation.
265 * Note : rmem_alloc is in this structure to fill a hole
266 * on 64bit arches, not because its logically part of
267 * backlog.
268 */
269 struct {
270 atomic_t rmem_alloc;
271 int len;
272 struct sk_buff *head;
273 struct sk_buff *tail;
274 } sk_backlog;
275 #define sk_rmem_alloc sk_backlog.rmem_alloc
276 int sk_forward_alloc;
277 #ifdef CONFIG_RPS
278 __u32 sk_rxhash;
279 #endif
280 atomic_t sk_drops;
281 int sk_rcvbuf;
282
283 struct sk_filter __rcu *sk_filter;
284 struct socket_wq __rcu *sk_wq;
285
286 #ifdef CONFIG_NET_DMA
287 struct sk_buff_head sk_async_wait_queue;
288 #endif
289
290 #ifdef CONFIG_XFRM
291 struct xfrm_policy *sk_policy[2];
292 #endif
293 unsigned long sk_flags;
294 struct dst_entry *sk_dst_cache;
295 spinlock_t sk_dst_lock;
296 atomic_t sk_wmem_alloc;
297 atomic_t sk_omem_alloc;
298 int sk_sndbuf;
299 struct sk_buff_head sk_write_queue;
300 kmemcheck_bitfield_begin(flags);
301 unsigned int sk_shutdown : 2,
302 sk_no_check : 2,
303 sk_userlocks : 4,
304 sk_protocol : 8,
305 sk_type : 16;
306 kmemcheck_bitfield_end(flags);
307 int sk_wmem_queued;
308 gfp_t sk_allocation;
309 netdev_features_t sk_route_caps;
310 netdev_features_t sk_route_nocaps;
311 int sk_gso_type;
312 unsigned int sk_gso_max_size;
313 int sk_rcvlowat;
314 unsigned long sk_lingertime;
315 struct sk_buff_head sk_error_queue;
316 struct proto *sk_prot_creator;
317 rwlock_t sk_callback_lock;
318 int sk_err,
319 sk_err_soft;
320 unsigned short sk_ack_backlog;
321 unsigned short sk_max_ack_backlog;
322 __u32 sk_priority;
323 struct pid *sk_peer_pid;
324 const struct cred *sk_peer_cred;
325 long sk_rcvtimeo;
326 long sk_sndtimeo;
327 void *sk_protinfo;
328 struct timer_list sk_timer;
329 ktime_t sk_stamp;
330 struct socket *sk_socket;
331 void *sk_user_data;
332 struct page *sk_sndmsg_page;
333 struct sk_buff *sk_send_head;
334 __u32 sk_sndmsg_off;
335 int sk_write_pending;
336 #ifdef CONFIG_SECURITY
337 void *sk_security;
338 #endif
339 __u32 sk_mark;
340 u32 sk_classid;
341 void (*sk_state_change)(struct sock *sk);
342 void (*sk_data_ready)(struct sock *sk, int bytes);
343 void (*sk_write_space)(struct sock *sk);
344 void (*sk_error_report)(struct sock *sk);
345 int (*sk_backlog_rcv)(struct sock *sk,
346 struct sk_buff *skb);
347 void (*sk_destruct)(struct sock *sk);
348 };
349
350 /*
351 * Hashed lists helper routines
352 */
353 static inline struct sock *sk_entry(const struct hlist_node *node)
354 {
355 return hlist_entry(node, struct sock, sk_node);
356 }
357
358 static inline struct sock *__sk_head(const struct hlist_head *head)
359 {
360 return hlist_entry(head->first, struct sock, sk_node);
361 }
362
363 static inline struct sock *sk_head(const struct hlist_head *head)
364 {
365 return hlist_empty(head) ? NULL : __sk_head(head);
366 }
367
368 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
369 {
370 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
371 }
372
373 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
374 {
375 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
376 }
377
378 static inline struct sock *sk_next(const struct sock *sk)
379 {
380 return sk->sk_node.next ?
381 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
382 }
383
384 static inline struct sock *sk_nulls_next(const struct sock *sk)
385 {
386 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
387 hlist_nulls_entry(sk->sk_nulls_node.next,
388 struct sock, sk_nulls_node) :
389 NULL;
390 }
391
392 static inline int sk_unhashed(const struct sock *sk)
393 {
394 return hlist_unhashed(&sk->sk_node);
395 }
396
397 static inline int sk_hashed(const struct sock *sk)
398 {
399 return !sk_unhashed(sk);
400 }
401
402 static __inline__ void sk_node_init(struct hlist_node *node)
403 {
404 node->pprev = NULL;
405 }
406
407 static __inline__ void sk_nulls_node_init(struct hlist_nulls_node *node)
408 {
409 node->pprev = NULL;
410 }
411
412 static __inline__ void __sk_del_node(struct sock *sk)
413 {
414 __hlist_del(&sk->sk_node);
415 }
416
417 /* NB: equivalent to hlist_del_init_rcu */
418 static __inline__ int __sk_del_node_init(struct sock *sk)
419 {
420 if (sk_hashed(sk)) {
421 __sk_del_node(sk);
422 sk_node_init(&sk->sk_node);
423 return 1;
424 }
425 return 0;
426 }
427
428 /* Grab socket reference count. This operation is valid only
429 when sk is ALREADY grabbed f.e. it is found in hash table
430 or a list and the lookup is made under lock preventing hash table
431 modifications.
432 */
433
434 static inline void sock_hold(struct sock *sk)
435 {
436 atomic_inc(&sk->sk_refcnt);
437 }
438
439 /* Ungrab socket in the context, which assumes that socket refcnt
440 cannot hit zero, f.e. it is true in context of any socketcall.
441 */
442 static inline void __sock_put(struct sock *sk)
443 {
444 atomic_dec(&sk->sk_refcnt);
445 }
446
447 static __inline__ int sk_del_node_init(struct sock *sk)
448 {
449 int rc = __sk_del_node_init(sk);
450
451 if (rc) {
452 /* paranoid for a while -acme */
453 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
454 __sock_put(sk);
455 }
456 return rc;
457 }
458 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
459
460 static __inline__ int __sk_nulls_del_node_init_rcu(struct sock *sk)
461 {
462 if (sk_hashed(sk)) {
463 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
464 return 1;
465 }
466 return 0;
467 }
468
469 static __inline__ int sk_nulls_del_node_init_rcu(struct sock *sk)
470 {
471 int rc = __sk_nulls_del_node_init_rcu(sk);
472
473 if (rc) {
474 /* paranoid for a while -acme */
475 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
476 __sock_put(sk);
477 }
478 return rc;
479 }
480
481 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list)
482 {
483 hlist_add_head(&sk->sk_node, list);
484 }
485
486 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list)
487 {
488 sock_hold(sk);
489 __sk_add_node(sk, list);
490 }
491
492 static __inline__ void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
493 {
494 sock_hold(sk);
495 hlist_add_head_rcu(&sk->sk_node, list);
496 }
497
498 static __inline__ void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
499 {
500 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
501 }
502
503 static __inline__ void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
504 {
505 sock_hold(sk);
506 __sk_nulls_add_node_rcu(sk, list);
507 }
508
509 static __inline__ void __sk_del_bind_node(struct sock *sk)
510 {
511 __hlist_del(&sk->sk_bind_node);
512 }
513
514 static __inline__ void sk_add_bind_node(struct sock *sk,
515 struct hlist_head *list)
516 {
517 hlist_add_head(&sk->sk_bind_node, list);
518 }
519
520 #define sk_for_each(__sk, node, list) \
521 hlist_for_each_entry(__sk, node, list, sk_node)
522 #define sk_for_each_rcu(__sk, node, list) \
523 hlist_for_each_entry_rcu(__sk, node, list, sk_node)
524 #define sk_nulls_for_each(__sk, node, list) \
525 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
526 #define sk_nulls_for_each_rcu(__sk, node, list) \
527 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
528 #define sk_for_each_from(__sk, node) \
529 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
530 hlist_for_each_entry_from(__sk, node, sk_node)
531 #define sk_nulls_for_each_from(__sk, node) \
532 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
533 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
534 #define sk_for_each_safe(__sk, node, tmp, list) \
535 hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
536 #define sk_for_each_bound(__sk, node, list) \
537 hlist_for_each_entry(__sk, node, list, sk_bind_node)
538
539 /* Sock flags */
540 enum sock_flags {
541 SOCK_DEAD,
542 SOCK_DONE,
543 SOCK_URGINLINE,
544 SOCK_KEEPOPEN,
545 SOCK_LINGER,
546 SOCK_DESTROY,
547 SOCK_BROADCAST,
548 SOCK_TIMESTAMP,
549 SOCK_ZAPPED,
550 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
551 SOCK_DBG, /* %SO_DEBUG setting */
552 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
553 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
554 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
555 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
556 SOCK_TIMESTAMPING_TX_HARDWARE, /* %SOF_TIMESTAMPING_TX_HARDWARE */
557 SOCK_TIMESTAMPING_TX_SOFTWARE, /* %SOF_TIMESTAMPING_TX_SOFTWARE */
558 SOCK_TIMESTAMPING_RX_HARDWARE, /* %SOF_TIMESTAMPING_RX_HARDWARE */
559 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
560 SOCK_TIMESTAMPING_SOFTWARE, /* %SOF_TIMESTAMPING_SOFTWARE */
561 SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
562 SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
563 SOCK_FASYNC, /* fasync() active */
564 SOCK_RXQ_OVFL,
565 SOCK_ZEROCOPY, /* buffers from userspace */
566 SOCK_WIFI_STATUS, /* push wifi status to userspace */
567 };
568
569 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
570 {
571 nsk->sk_flags = osk->sk_flags;
572 }
573
574 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
575 {
576 __set_bit(flag, &sk->sk_flags);
577 }
578
579 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
580 {
581 __clear_bit(flag, &sk->sk_flags);
582 }
583
584 static inline int sock_flag(struct sock *sk, enum sock_flags flag)
585 {
586 return test_bit(flag, &sk->sk_flags);
587 }
588
589 static inline void sk_acceptq_removed(struct sock *sk)
590 {
591 sk->sk_ack_backlog--;
592 }
593
594 static inline void sk_acceptq_added(struct sock *sk)
595 {
596 sk->sk_ack_backlog++;
597 }
598
599 static inline int sk_acceptq_is_full(struct sock *sk)
600 {
601 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
602 }
603
604 /*
605 * Compute minimal free write space needed to queue new packets.
606 */
607 static inline int sk_stream_min_wspace(struct sock *sk)
608 {
609 return sk->sk_wmem_queued >> 1;
610 }
611
612 static inline int sk_stream_wspace(struct sock *sk)
613 {
614 return sk->sk_sndbuf - sk->sk_wmem_queued;
615 }
616
617 extern void sk_stream_write_space(struct sock *sk);
618
619 static inline int sk_stream_memory_free(struct sock *sk)
620 {
621 return sk->sk_wmem_queued < sk->sk_sndbuf;
622 }
623
624 /* OOB backlog add */
625 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
626 {
627 /* dont let skb dst not refcounted, we are going to leave rcu lock */
628 skb_dst_force(skb);
629
630 if (!sk->sk_backlog.tail)
631 sk->sk_backlog.head = skb;
632 else
633 sk->sk_backlog.tail->next = skb;
634
635 sk->sk_backlog.tail = skb;
636 skb->next = NULL;
637 }
638
639 /*
640 * Take into account size of receive queue and backlog queue
641 */
642 static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb)
643 {
644 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
645
646 return qsize + skb->truesize > sk->sk_rcvbuf;
647 }
648
649 /* The per-socket spinlock must be held here. */
650 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb)
651 {
652 if (sk_rcvqueues_full(sk, skb))
653 return -ENOBUFS;
654
655 __sk_add_backlog(sk, skb);
656 sk->sk_backlog.len += skb->truesize;
657 return 0;
658 }
659
660 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
661 {
662 return sk->sk_backlog_rcv(sk, skb);
663 }
664
665 static inline void sock_rps_record_flow(const struct sock *sk)
666 {
667 #ifdef CONFIG_RPS
668 struct rps_sock_flow_table *sock_flow_table;
669
670 rcu_read_lock();
671 sock_flow_table = rcu_dereference(rps_sock_flow_table);
672 rps_record_sock_flow(sock_flow_table, sk->sk_rxhash);
673 rcu_read_unlock();
674 #endif
675 }
676
677 static inline void sock_rps_reset_flow(const struct sock *sk)
678 {
679 #ifdef CONFIG_RPS
680 struct rps_sock_flow_table *sock_flow_table;
681
682 rcu_read_lock();
683 sock_flow_table = rcu_dereference(rps_sock_flow_table);
684 rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash);
685 rcu_read_unlock();
686 #endif
687 }
688
689 static inline void sock_rps_save_rxhash(struct sock *sk,
690 const struct sk_buff *skb)
691 {
692 #ifdef CONFIG_RPS
693 if (unlikely(sk->sk_rxhash != skb->rxhash)) {
694 sock_rps_reset_flow(sk);
695 sk->sk_rxhash = skb->rxhash;
696 }
697 #endif
698 }
699
700 static inline void sock_rps_reset_rxhash(struct sock *sk)
701 {
702 #ifdef CONFIG_RPS
703 sock_rps_reset_flow(sk);
704 sk->sk_rxhash = 0;
705 #endif
706 }
707
708 #define sk_wait_event(__sk, __timeo, __condition) \
709 ({ int __rc; \
710 release_sock(__sk); \
711 __rc = __condition; \
712 if (!__rc) { \
713 *(__timeo) = schedule_timeout(*(__timeo)); \
714 } \
715 lock_sock(__sk); \
716 __rc = __condition; \
717 __rc; \
718 })
719
720 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
721 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
722 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
723 extern int sk_stream_error(struct sock *sk, int flags, int err);
724 extern void sk_stream_kill_queues(struct sock *sk);
725
726 extern int sk_wait_data(struct sock *sk, long *timeo);
727
728 struct request_sock_ops;
729 struct timewait_sock_ops;
730 struct inet_hashinfo;
731 struct raw_hashinfo;
732 struct module;
733
734 /* Networking protocol blocks we attach to sockets.
735 * socket layer -> transport layer interface
736 * transport -> network interface is defined by struct inet_proto
737 */
738 struct proto {
739 void (*close)(struct sock *sk,
740 long timeout);
741 int (*connect)(struct sock *sk,
742 struct sockaddr *uaddr,
743 int addr_len);
744 int (*disconnect)(struct sock *sk, int flags);
745
746 struct sock * (*accept) (struct sock *sk, int flags, int *err);
747
748 int (*ioctl)(struct sock *sk, int cmd,
749 unsigned long arg);
750 int (*init)(struct sock *sk);
751 void (*destroy)(struct sock *sk);
752 void (*shutdown)(struct sock *sk, int how);
753 int (*setsockopt)(struct sock *sk, int level,
754 int optname, char __user *optval,
755 unsigned int optlen);
756 int (*getsockopt)(struct sock *sk, int level,
757 int optname, char __user *optval,
758 int __user *option);
759 #ifdef CONFIG_COMPAT
760 int (*compat_setsockopt)(struct sock *sk,
761 int level,
762 int optname, char __user *optval,
763 unsigned int optlen);
764 int (*compat_getsockopt)(struct sock *sk,
765 int level,
766 int optname, char __user *optval,
767 int __user *option);
768 int (*compat_ioctl)(struct sock *sk,
769 unsigned int cmd, unsigned long arg);
770 #endif
771 int (*sendmsg)(struct kiocb *iocb, struct sock *sk,
772 struct msghdr *msg, size_t len);
773 int (*recvmsg)(struct kiocb *iocb, struct sock *sk,
774 struct msghdr *msg,
775 size_t len, int noblock, int flags,
776 int *addr_len);
777 int (*sendpage)(struct sock *sk, struct page *page,
778 int offset, size_t size, int flags);
779 int (*bind)(struct sock *sk,
780 struct sockaddr *uaddr, int addr_len);
781
782 int (*backlog_rcv) (struct sock *sk,
783 struct sk_buff *skb);
784
785 /* Keeping track of sk's, looking them up, and port selection methods. */
786 void (*hash)(struct sock *sk);
787 void (*unhash)(struct sock *sk);
788 void (*rehash)(struct sock *sk);
789 int (*get_port)(struct sock *sk, unsigned short snum);
790 void (*clear_sk)(struct sock *sk, int size);
791
792 /* Keeping track of sockets in use */
793 #ifdef CONFIG_PROC_FS
794 unsigned int inuse_idx;
795 #endif
796
797 /* Memory pressure */
798 void (*enter_memory_pressure)(struct sock *sk);
799 atomic_long_t *memory_allocated; /* Current allocated memory. */
800 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
801 /*
802 * Pressure flag: try to collapse.
803 * Technical note: it is used by multiple contexts non atomically.
804 * All the __sk_mem_schedule() is of this nature: accounting
805 * is strict, actions are advisory and have some latency.
806 */
807 int *memory_pressure;
808 long *sysctl_mem;
809 int *sysctl_wmem;
810 int *sysctl_rmem;
811 int max_header;
812 bool no_autobind;
813
814 struct kmem_cache *slab;
815 unsigned int obj_size;
816 int slab_flags;
817
818 struct percpu_counter *orphan_count;
819
820 struct request_sock_ops *rsk_prot;
821 struct timewait_sock_ops *twsk_prot;
822
823 union {
824 struct inet_hashinfo *hashinfo;
825 struct udp_table *udp_table;
826 struct raw_hashinfo *raw_hash;
827 } h;
828
829 struct module *owner;
830
831 char name[32];
832
833 struct list_head node;
834 #ifdef SOCK_REFCNT_DEBUG
835 atomic_t socks;
836 #endif
837 };
838
839 extern int proto_register(struct proto *prot, int alloc_slab);
840 extern void proto_unregister(struct proto *prot);
841
842 #ifdef SOCK_REFCNT_DEBUG
843 static inline void sk_refcnt_debug_inc(struct sock *sk)
844 {
845 atomic_inc(&sk->sk_prot->socks);
846 }
847
848 static inline void sk_refcnt_debug_dec(struct sock *sk)
849 {
850 atomic_dec(&sk->sk_prot->socks);
851 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
852 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
853 }
854
855 static inline void sk_refcnt_debug_release(const struct sock *sk)
856 {
857 if (atomic_read(&sk->sk_refcnt) != 1)
858 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
859 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
860 }
861 #else /* SOCK_REFCNT_DEBUG */
862 #define sk_refcnt_debug_inc(sk) do { } while (0)
863 #define sk_refcnt_debug_dec(sk) do { } while (0)
864 #define sk_refcnt_debug_release(sk) do { } while (0)
865 #endif /* SOCK_REFCNT_DEBUG */
866
867
868 #ifdef CONFIG_PROC_FS
869 /* Called with local bh disabled */
870 extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
871 extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
872 #else
873 static void inline sock_prot_inuse_add(struct net *net, struct proto *prot,
874 int inc)
875 {
876 }
877 #endif
878
879
880 /* With per-bucket locks this operation is not-atomic, so that
881 * this version is not worse.
882 */
883 static inline void __sk_prot_rehash(struct sock *sk)
884 {
885 sk->sk_prot->unhash(sk);
886 sk->sk_prot->hash(sk);
887 }
888
889 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
890
891 /* About 10 seconds */
892 #define SOCK_DESTROY_TIME (10*HZ)
893
894 /* Sockets 0-1023 can't be bound to unless you are superuser */
895 #define PROT_SOCK 1024
896
897 #define SHUTDOWN_MASK 3
898 #define RCV_SHUTDOWN 1
899 #define SEND_SHUTDOWN 2
900
901 #define SOCK_SNDBUF_LOCK 1
902 #define SOCK_RCVBUF_LOCK 2
903 #define SOCK_BINDADDR_LOCK 4
904 #define SOCK_BINDPORT_LOCK 8
905
906 /* sock_iocb: used to kick off async processing of socket ios */
907 struct sock_iocb {
908 struct list_head list;
909
910 int flags;
911 int size;
912 struct socket *sock;
913 struct sock *sk;
914 struct scm_cookie *scm;
915 struct msghdr *msg, async_msg;
916 struct kiocb *kiocb;
917 };
918
919 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
920 {
921 return (struct sock_iocb *)iocb->private;
922 }
923
924 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
925 {
926 return si->kiocb;
927 }
928
929 struct socket_alloc {
930 struct socket socket;
931 struct inode vfs_inode;
932 };
933
934 static inline struct socket *SOCKET_I(struct inode *inode)
935 {
936 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
937 }
938
939 static inline struct inode *SOCK_INODE(struct socket *socket)
940 {
941 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
942 }
943
944 /*
945 * Functions for memory accounting
946 */
947 extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
948 extern void __sk_mem_reclaim(struct sock *sk);
949
950 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
951 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
952 #define SK_MEM_SEND 0
953 #define SK_MEM_RECV 1
954
955 static inline int sk_mem_pages(int amt)
956 {
957 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
958 }
959
960 static inline int sk_has_account(struct sock *sk)
961 {
962 /* return true if protocol supports memory accounting */
963 return !!sk->sk_prot->memory_allocated;
964 }
965
966 static inline int sk_wmem_schedule(struct sock *sk, int size)
967 {
968 if (!sk_has_account(sk))
969 return 1;
970 return size <= sk->sk_forward_alloc ||
971 __sk_mem_schedule(sk, size, SK_MEM_SEND);
972 }
973
974 static inline int sk_rmem_schedule(struct sock *sk, int size)
975 {
976 if (!sk_has_account(sk))
977 return 1;
978 return size <= sk->sk_forward_alloc ||
979 __sk_mem_schedule(sk, size, SK_MEM_RECV);
980 }
981
982 static inline void sk_mem_reclaim(struct sock *sk)
983 {
984 if (!sk_has_account(sk))
985 return;
986 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
987 __sk_mem_reclaim(sk);
988 }
989
990 static inline void sk_mem_reclaim_partial(struct sock *sk)
991 {
992 if (!sk_has_account(sk))
993 return;
994 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
995 __sk_mem_reclaim(sk);
996 }
997
998 static inline void sk_mem_charge(struct sock *sk, int size)
999 {
1000 if (!sk_has_account(sk))
1001 return;
1002 sk->sk_forward_alloc -= size;
1003 }
1004
1005 static inline void sk_mem_uncharge(struct sock *sk, int size)
1006 {
1007 if (!sk_has_account(sk))
1008 return;
1009 sk->sk_forward_alloc += size;
1010 }
1011
1012 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1013 {
1014 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1015 sk->sk_wmem_queued -= skb->truesize;
1016 sk_mem_uncharge(sk, skb->truesize);
1017 __kfree_skb(skb);
1018 }
1019
1020 /* Used by processes to "lock" a socket state, so that
1021 * interrupts and bottom half handlers won't change it
1022 * from under us. It essentially blocks any incoming
1023 * packets, so that we won't get any new data or any
1024 * packets that change the state of the socket.
1025 *
1026 * While locked, BH processing will add new packets to
1027 * the backlog queue. This queue is processed by the
1028 * owner of the socket lock right before it is released.
1029 *
1030 * Since ~2.3.5 it is also exclusive sleep lock serializing
1031 * accesses from user process context.
1032 */
1033 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
1034
1035 /*
1036 * Macro so as to not evaluate some arguments when
1037 * lockdep is not enabled.
1038 *
1039 * Mark both the sk_lock and the sk_lock.slock as a
1040 * per-address-family lock class.
1041 */
1042 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1043 do { \
1044 sk->sk_lock.owned = 0; \
1045 init_waitqueue_head(&sk->sk_lock.wq); \
1046 spin_lock_init(&(sk)->sk_lock.slock); \
1047 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1048 sizeof((sk)->sk_lock)); \
1049 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1050 (skey), (sname)); \
1051 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1052 } while (0)
1053
1054 extern void lock_sock_nested(struct sock *sk, int subclass);
1055
1056 static inline void lock_sock(struct sock *sk)
1057 {
1058 lock_sock_nested(sk, 0);
1059 }
1060
1061 extern void release_sock(struct sock *sk);
1062
1063 /* BH context may only use the following locking interface. */
1064 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1065 #define bh_lock_sock_nested(__sk) \
1066 spin_lock_nested(&((__sk)->sk_lock.slock), \
1067 SINGLE_DEPTH_NESTING)
1068 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1069
1070 extern bool lock_sock_fast(struct sock *sk);
1071 /**
1072 * unlock_sock_fast - complement of lock_sock_fast
1073 * @sk: socket
1074 * @slow: slow mode
1075 *
1076 * fast unlock socket for user context.
1077 * If slow mode is on, we call regular release_sock()
1078 */
1079 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1080 {
1081 if (slow)
1082 release_sock(sk);
1083 else
1084 spin_unlock_bh(&sk->sk_lock.slock);
1085 }
1086
1087
1088 extern struct sock *sk_alloc(struct net *net, int family,
1089 gfp_t priority,
1090 struct proto *prot);
1091 extern void sk_free(struct sock *sk);
1092 extern void sk_release_kernel(struct sock *sk);
1093 extern struct sock *sk_clone_lock(const struct sock *sk,
1094 const gfp_t priority);
1095
1096 extern struct sk_buff *sock_wmalloc(struct sock *sk,
1097 unsigned long size, int force,
1098 gfp_t priority);
1099 extern struct sk_buff *sock_rmalloc(struct sock *sk,
1100 unsigned long size, int force,
1101 gfp_t priority);
1102 extern void sock_wfree(struct sk_buff *skb);
1103 extern void sock_rfree(struct sk_buff *skb);
1104
1105 extern int sock_setsockopt(struct socket *sock, int level,
1106 int op, char __user *optval,
1107 unsigned int optlen);
1108
1109 extern int sock_getsockopt(struct socket *sock, int level,
1110 int op, char __user *optval,
1111 int __user *optlen);
1112 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1113 unsigned long size,
1114 int noblock,
1115 int *errcode);
1116 extern struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1117 unsigned long header_len,
1118 unsigned long data_len,
1119 int noblock,
1120 int *errcode);
1121 extern void *sock_kmalloc(struct sock *sk, int size,
1122 gfp_t priority);
1123 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
1124 extern void sk_send_sigurg(struct sock *sk);
1125
1126 #ifdef CONFIG_CGROUPS
1127 extern void sock_update_classid(struct sock *sk);
1128 #else
1129 static inline void sock_update_classid(struct sock *sk)
1130 {
1131 }
1132 #endif
1133
1134 /*
1135 * Functions to fill in entries in struct proto_ops when a protocol
1136 * does not implement a particular function.
1137 */
1138 extern int sock_no_bind(struct socket *,
1139 struct sockaddr *, int);
1140 extern int sock_no_connect(struct socket *,
1141 struct sockaddr *, int, int);
1142 extern int sock_no_socketpair(struct socket *,
1143 struct socket *);
1144 extern int sock_no_accept(struct socket *,
1145 struct socket *, int);
1146 extern int sock_no_getname(struct socket *,
1147 struct sockaddr *, int *, int);
1148 extern unsigned int sock_no_poll(struct file *, struct socket *,
1149 struct poll_table_struct *);
1150 extern int sock_no_ioctl(struct socket *, unsigned int,
1151 unsigned long);
1152 extern int sock_no_listen(struct socket *, int);
1153 extern int sock_no_shutdown(struct socket *, int);
1154 extern int sock_no_getsockopt(struct socket *, int , int,
1155 char __user *, int __user *);
1156 extern int sock_no_setsockopt(struct socket *, int, int,
1157 char __user *, unsigned int);
1158 extern int sock_no_sendmsg(struct kiocb *, struct socket *,
1159 struct msghdr *, size_t);
1160 extern int sock_no_recvmsg(struct kiocb *, struct socket *,
1161 struct msghdr *, size_t, int);
1162 extern int sock_no_mmap(struct file *file,
1163 struct socket *sock,
1164 struct vm_area_struct *vma);
1165 extern ssize_t sock_no_sendpage(struct socket *sock,
1166 struct page *page,
1167 int offset, size_t size,
1168 int flags);
1169
1170 /*
1171 * Functions to fill in entries in struct proto_ops when a protocol
1172 * uses the inet style.
1173 */
1174 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1175 char __user *optval, int __user *optlen);
1176 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1177 struct msghdr *msg, size_t size, int flags);
1178 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1179 char __user *optval, unsigned int optlen);
1180 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1181 int optname, char __user *optval, int __user *optlen);
1182 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1183 int optname, char __user *optval, unsigned int optlen);
1184
1185 extern void sk_common_release(struct sock *sk);
1186
1187 /*
1188 * Default socket callbacks and setup code
1189 */
1190
1191 /* Initialise core socket variables */
1192 extern void sock_init_data(struct socket *sock, struct sock *sk);
1193
1194 extern void sk_filter_release_rcu(struct rcu_head *rcu);
1195
1196 /**
1197 * sk_filter_release - release a socket filter
1198 * @fp: filter to remove
1199 *
1200 * Remove a filter from a socket and release its resources.
1201 */
1202
1203 static inline void sk_filter_release(struct sk_filter *fp)
1204 {
1205 if (atomic_dec_and_test(&fp->refcnt))
1206 call_rcu(&fp->rcu, sk_filter_release_rcu);
1207 }
1208
1209 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1210 {
1211 unsigned int size = sk_filter_len(fp);
1212
1213 atomic_sub(size, &sk->sk_omem_alloc);
1214 sk_filter_release(fp);
1215 }
1216
1217 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1218 {
1219 atomic_inc(&fp->refcnt);
1220 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1221 }
1222
1223 /*
1224 * Socket reference counting postulates.
1225 *
1226 * * Each user of socket SHOULD hold a reference count.
1227 * * Each access point to socket (an hash table bucket, reference from a list,
1228 * running timer, skb in flight MUST hold a reference count.
1229 * * When reference count hits 0, it means it will never increase back.
1230 * * When reference count hits 0, it means that no references from
1231 * outside exist to this socket and current process on current CPU
1232 * is last user and may/should destroy this socket.
1233 * * sk_free is called from any context: process, BH, IRQ. When
1234 * it is called, socket has no references from outside -> sk_free
1235 * may release descendant resources allocated by the socket, but
1236 * to the time when it is called, socket is NOT referenced by any
1237 * hash tables, lists etc.
1238 * * Packets, delivered from outside (from network or from another process)
1239 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1240 * when they sit in queue. Otherwise, packets will leak to hole, when
1241 * socket is looked up by one cpu and unhasing is made by another CPU.
1242 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1243 * (leak to backlog). Packet socket does all the processing inside
1244 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1245 * use separate SMP lock, so that they are prone too.
1246 */
1247
1248 /* Ungrab socket and destroy it, if it was the last reference. */
1249 static inline void sock_put(struct sock *sk)
1250 {
1251 if (atomic_dec_and_test(&sk->sk_refcnt))
1252 sk_free(sk);
1253 }
1254
1255 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1256 const int nested);
1257
1258 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1259 {
1260 sk->sk_tx_queue_mapping = tx_queue;
1261 }
1262
1263 static inline void sk_tx_queue_clear(struct sock *sk)
1264 {
1265 sk->sk_tx_queue_mapping = -1;
1266 }
1267
1268 static inline int sk_tx_queue_get(const struct sock *sk)
1269 {
1270 return sk ? sk->sk_tx_queue_mapping : -1;
1271 }
1272
1273 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1274 {
1275 sk_tx_queue_clear(sk);
1276 sk->sk_socket = sock;
1277 }
1278
1279 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1280 {
1281 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1282 return &rcu_dereference_raw(sk->sk_wq)->wait;
1283 }
1284 /* Detach socket from process context.
1285 * Announce socket dead, detach it from wait queue and inode.
1286 * Note that parent inode held reference count on this struct sock,
1287 * we do not release it in this function, because protocol
1288 * probably wants some additional cleanups or even continuing
1289 * to work with this socket (TCP).
1290 */
1291 static inline void sock_orphan(struct sock *sk)
1292 {
1293 write_lock_bh(&sk->sk_callback_lock);
1294 sock_set_flag(sk, SOCK_DEAD);
1295 sk_set_socket(sk, NULL);
1296 sk->sk_wq = NULL;
1297 write_unlock_bh(&sk->sk_callback_lock);
1298 }
1299
1300 static inline void sock_graft(struct sock *sk, struct socket *parent)
1301 {
1302 write_lock_bh(&sk->sk_callback_lock);
1303 sk->sk_wq = parent->wq;
1304 parent->sk = sk;
1305 sk_set_socket(sk, parent);
1306 security_sock_graft(sk, parent);
1307 write_unlock_bh(&sk->sk_callback_lock);
1308 }
1309
1310 extern int sock_i_uid(struct sock *sk);
1311 extern unsigned long sock_i_ino(struct sock *sk);
1312
1313 static inline struct dst_entry *
1314 __sk_dst_get(struct sock *sk)
1315 {
1316 return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1317 lockdep_is_held(&sk->sk_lock.slock));
1318 }
1319
1320 static inline struct dst_entry *
1321 sk_dst_get(struct sock *sk)
1322 {
1323 struct dst_entry *dst;
1324
1325 rcu_read_lock();
1326 dst = rcu_dereference(sk->sk_dst_cache);
1327 if (dst)
1328 dst_hold(dst);
1329 rcu_read_unlock();
1330 return dst;
1331 }
1332
1333 extern void sk_reset_txq(struct sock *sk);
1334
1335 static inline void dst_negative_advice(struct sock *sk)
1336 {
1337 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1338
1339 if (dst && dst->ops->negative_advice) {
1340 ndst = dst->ops->negative_advice(dst);
1341
1342 if (ndst != dst) {
1343 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1344 sk_reset_txq(sk);
1345 }
1346 }
1347 }
1348
1349 static inline void
1350 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1351 {
1352 struct dst_entry *old_dst;
1353
1354 sk_tx_queue_clear(sk);
1355 /*
1356 * This can be called while sk is owned by the caller only,
1357 * with no state that can be checked in a rcu_dereference_check() cond
1358 */
1359 old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1360 rcu_assign_pointer(sk->sk_dst_cache, dst);
1361 dst_release(old_dst);
1362 }
1363
1364 static inline void
1365 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1366 {
1367 spin_lock(&sk->sk_dst_lock);
1368 __sk_dst_set(sk, dst);
1369 spin_unlock(&sk->sk_dst_lock);
1370 }
1371
1372 static inline void
1373 __sk_dst_reset(struct sock *sk)
1374 {
1375 __sk_dst_set(sk, NULL);
1376 }
1377
1378 static inline void
1379 sk_dst_reset(struct sock *sk)
1380 {
1381 spin_lock(&sk->sk_dst_lock);
1382 __sk_dst_reset(sk);
1383 spin_unlock(&sk->sk_dst_lock);
1384 }
1385
1386 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1387
1388 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1389
1390 static inline int sk_can_gso(const struct sock *sk)
1391 {
1392 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1393 }
1394
1395 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1396
1397 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1398 {
1399 sk->sk_route_nocaps |= flags;
1400 sk->sk_route_caps &= ~flags;
1401 }
1402
1403 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1404 char __user *from, char *to,
1405 int copy, int offset)
1406 {
1407 if (skb->ip_summed == CHECKSUM_NONE) {
1408 int err = 0;
1409 __wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err);
1410 if (err)
1411 return err;
1412 skb->csum = csum_block_add(skb->csum, csum, offset);
1413 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1414 if (!access_ok(VERIFY_READ, from, copy) ||
1415 __copy_from_user_nocache(to, from, copy))
1416 return -EFAULT;
1417 } else if (copy_from_user(to, from, copy))
1418 return -EFAULT;
1419
1420 return 0;
1421 }
1422
1423 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1424 char __user *from, int copy)
1425 {
1426 int err, offset = skb->len;
1427
1428 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1429 copy, offset);
1430 if (err)
1431 __skb_trim(skb, offset);
1432
1433 return err;
1434 }
1435
1436 static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from,
1437 struct sk_buff *skb,
1438 struct page *page,
1439 int off, int copy)
1440 {
1441 int err;
1442
1443 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1444 copy, skb->len);
1445 if (err)
1446 return err;
1447
1448 skb->len += copy;
1449 skb->data_len += copy;
1450 skb->truesize += copy;
1451 sk->sk_wmem_queued += copy;
1452 sk_mem_charge(sk, copy);
1453 return 0;
1454 }
1455
1456 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1457 struct sk_buff *skb, struct page *page,
1458 int off, int copy)
1459 {
1460 if (skb->ip_summed == CHECKSUM_NONE) {
1461 int err = 0;
1462 __wsum csum = csum_and_copy_from_user(from,
1463 page_address(page) + off,
1464 copy, 0, &err);
1465 if (err)
1466 return err;
1467 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1468 } else if (copy_from_user(page_address(page) + off, from, copy))
1469 return -EFAULT;
1470
1471 skb->len += copy;
1472 skb->data_len += copy;
1473 skb->truesize += copy;
1474 sk->sk_wmem_queued += copy;
1475 sk_mem_charge(sk, copy);
1476 return 0;
1477 }
1478
1479 /**
1480 * sk_wmem_alloc_get - returns write allocations
1481 * @sk: socket
1482 *
1483 * Returns sk_wmem_alloc minus initial offset of one
1484 */
1485 static inline int sk_wmem_alloc_get(const struct sock *sk)
1486 {
1487 return atomic_read(&sk->sk_wmem_alloc) - 1;
1488 }
1489
1490 /**
1491 * sk_rmem_alloc_get - returns read allocations
1492 * @sk: socket
1493 *
1494 * Returns sk_rmem_alloc
1495 */
1496 static inline int sk_rmem_alloc_get(const struct sock *sk)
1497 {
1498 return atomic_read(&sk->sk_rmem_alloc);
1499 }
1500
1501 /**
1502 * sk_has_allocations - check if allocations are outstanding
1503 * @sk: socket
1504 *
1505 * Returns true if socket has write or read allocations
1506 */
1507 static inline int sk_has_allocations(const struct sock *sk)
1508 {
1509 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1510 }
1511
1512 /**
1513 * wq_has_sleeper - check if there are any waiting processes
1514 * @wq: struct socket_wq
1515 *
1516 * Returns true if socket_wq has waiting processes
1517 *
1518 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1519 * barrier call. They were added due to the race found within the tcp code.
1520 *
1521 * Consider following tcp code paths:
1522 *
1523 * CPU1 CPU2
1524 *
1525 * sys_select receive packet
1526 * ... ...
1527 * __add_wait_queue update tp->rcv_nxt
1528 * ... ...
1529 * tp->rcv_nxt check sock_def_readable
1530 * ... {
1531 * schedule rcu_read_lock();
1532 * wq = rcu_dereference(sk->sk_wq);
1533 * if (wq && waitqueue_active(&wq->wait))
1534 * wake_up_interruptible(&wq->wait)
1535 * ...
1536 * }
1537 *
1538 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1539 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1540 * could then endup calling schedule and sleep forever if there are no more
1541 * data on the socket.
1542 *
1543 */
1544 static inline bool wq_has_sleeper(struct socket_wq *wq)
1545 {
1546
1547 /*
1548 * We need to be sure we are in sync with the
1549 * add_wait_queue modifications to the wait queue.
1550 *
1551 * This memory barrier is paired in the sock_poll_wait.
1552 */
1553 smp_mb();
1554 return wq && waitqueue_active(&wq->wait);
1555 }
1556
1557 /**
1558 * sock_poll_wait - place memory barrier behind the poll_wait call.
1559 * @filp: file
1560 * @wait_address: socket wait queue
1561 * @p: poll_table
1562 *
1563 * See the comments in the wq_has_sleeper function.
1564 */
1565 static inline void sock_poll_wait(struct file *filp,
1566 wait_queue_head_t *wait_address, poll_table *p)
1567 {
1568 if (p && wait_address) {
1569 poll_wait(filp, wait_address, p);
1570 /*
1571 * We need to be sure we are in sync with the
1572 * socket flags modification.
1573 *
1574 * This memory barrier is paired in the wq_has_sleeper.
1575 */
1576 smp_mb();
1577 }
1578 }
1579
1580 /*
1581 * Queue a received datagram if it will fit. Stream and sequenced
1582 * protocols can't normally use this as they need to fit buffers in
1583 * and play with them.
1584 *
1585 * Inlined as it's very short and called for pretty much every
1586 * packet ever received.
1587 */
1588
1589 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1590 {
1591 skb_orphan(skb);
1592 skb->sk = sk;
1593 skb->destructor = sock_wfree;
1594 /*
1595 * We used to take a refcount on sk, but following operation
1596 * is enough to guarantee sk_free() wont free this sock until
1597 * all in-flight packets are completed
1598 */
1599 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1600 }
1601
1602 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1603 {
1604 skb_orphan(skb);
1605 skb->sk = sk;
1606 skb->destructor = sock_rfree;
1607 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1608 sk_mem_charge(sk, skb->truesize);
1609 }
1610
1611 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1612 unsigned long expires);
1613
1614 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer);
1615
1616 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1617
1618 extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1619
1620 /*
1621 * Recover an error report and clear atomically
1622 */
1623
1624 static inline int sock_error(struct sock *sk)
1625 {
1626 int err;
1627 if (likely(!sk->sk_err))
1628 return 0;
1629 err = xchg(&sk->sk_err, 0);
1630 return -err;
1631 }
1632
1633 static inline unsigned long sock_wspace(struct sock *sk)
1634 {
1635 int amt = 0;
1636
1637 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1638 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1639 if (amt < 0)
1640 amt = 0;
1641 }
1642 return amt;
1643 }
1644
1645 static inline void sk_wake_async(struct sock *sk, int how, int band)
1646 {
1647 if (sock_flag(sk, SOCK_FASYNC))
1648 sock_wake_async(sk->sk_socket, how, band);
1649 }
1650
1651 #define SOCK_MIN_SNDBUF 2048
1652 /*
1653 * Since sk_rmem_alloc sums skb->truesize, even a small frame might need
1654 * sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak
1655 */
1656 #define SOCK_MIN_RCVBUF (2048 + sizeof(struct sk_buff))
1657
1658 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1659 {
1660 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1661 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
1662 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1663 }
1664 }
1665
1666 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
1667
1668 static inline struct page *sk_stream_alloc_page(struct sock *sk)
1669 {
1670 struct page *page = NULL;
1671
1672 page = alloc_pages(sk->sk_allocation, 0);
1673 if (!page) {
1674 sk->sk_prot->enter_memory_pressure(sk);
1675 sk_stream_moderate_sndbuf(sk);
1676 }
1677 return page;
1678 }
1679
1680 /*
1681 * Default write policy as shown to user space via poll/select/SIGIO
1682 */
1683 static inline int sock_writeable(const struct sock *sk)
1684 {
1685 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
1686 }
1687
1688 static inline gfp_t gfp_any(void)
1689 {
1690 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
1691 }
1692
1693 static inline long sock_rcvtimeo(const struct sock *sk, int noblock)
1694 {
1695 return noblock ? 0 : sk->sk_rcvtimeo;
1696 }
1697
1698 static inline long sock_sndtimeo(const struct sock *sk, int noblock)
1699 {
1700 return noblock ? 0 : sk->sk_sndtimeo;
1701 }
1702
1703 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
1704 {
1705 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
1706 }
1707
1708 /* Alas, with timeout socket operations are not restartable.
1709 * Compare this to poll().
1710 */
1711 static inline int sock_intr_errno(long timeo)
1712 {
1713 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
1714 }
1715
1716 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
1717 struct sk_buff *skb);
1718 extern void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
1719 struct sk_buff *skb);
1720
1721 static __inline__ void
1722 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
1723 {
1724 ktime_t kt = skb->tstamp;
1725 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
1726
1727 /*
1728 * generate control messages if
1729 * - receive time stamping in software requested (SOCK_RCVTSTAMP
1730 * or SOCK_TIMESTAMPING_RX_SOFTWARE)
1731 * - software time stamp available and wanted
1732 * (SOCK_TIMESTAMPING_SOFTWARE)
1733 * - hardware time stamps available and wanted
1734 * (SOCK_TIMESTAMPING_SYS_HARDWARE or
1735 * SOCK_TIMESTAMPING_RAW_HARDWARE)
1736 */
1737 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
1738 sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
1739 (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
1740 (hwtstamps->hwtstamp.tv64 &&
1741 sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
1742 (hwtstamps->syststamp.tv64 &&
1743 sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
1744 __sock_recv_timestamp(msg, sk, skb);
1745 else
1746 sk->sk_stamp = kt;
1747
1748 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
1749 __sock_recv_wifi_status(msg, sk, skb);
1750 }
1751
1752 extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
1753 struct sk_buff *skb);
1754
1755 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
1756 struct sk_buff *skb)
1757 {
1758 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
1759 (1UL << SOCK_RCVTSTAMP) | \
1760 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE) | \
1761 (1UL << SOCK_TIMESTAMPING_SOFTWARE) | \
1762 (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE) | \
1763 (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE))
1764
1765 if (sk->sk_flags & FLAGS_TS_OR_DROPS)
1766 __sock_recv_ts_and_drops(msg, sk, skb);
1767 else
1768 sk->sk_stamp = skb->tstamp;
1769 }
1770
1771 /**
1772 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
1773 * @sk: socket sending this packet
1774 * @tx_flags: filled with instructions for time stamping
1775 *
1776 * Currently only depends on SOCK_TIMESTAMPING* flags. Returns error code if
1777 * parameters are invalid.
1778 */
1779 extern int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags);
1780
1781 /**
1782 * sk_eat_skb - Release a skb if it is no longer needed
1783 * @sk: socket to eat this skb from
1784 * @skb: socket buffer to eat
1785 * @copied_early: flag indicating whether DMA operations copied this data early
1786 *
1787 * This routine must be called with interrupts disabled or with the socket
1788 * locked so that the sk_buff queue operation is ok.
1789 */
1790 #ifdef CONFIG_NET_DMA
1791 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1792 {
1793 __skb_unlink(skb, &sk->sk_receive_queue);
1794 if (!copied_early)
1795 __kfree_skb(skb);
1796 else
1797 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
1798 }
1799 #else
1800 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1801 {
1802 __skb_unlink(skb, &sk->sk_receive_queue);
1803 __kfree_skb(skb);
1804 }
1805 #endif
1806
1807 static inline
1808 struct net *sock_net(const struct sock *sk)
1809 {
1810 return read_pnet(&sk->sk_net);
1811 }
1812
1813 static inline
1814 void sock_net_set(struct sock *sk, struct net *net)
1815 {
1816 write_pnet(&sk->sk_net, net);
1817 }
1818
1819 /*
1820 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
1821 * They should not hold a reference to a namespace in order to allow
1822 * to stop it.
1823 * Sockets after sk_change_net should be released using sk_release_kernel
1824 */
1825 static inline void sk_change_net(struct sock *sk, struct net *net)
1826 {
1827 put_net(sock_net(sk));
1828 sock_net_set(sk, hold_net(net));
1829 }
1830
1831 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
1832 {
1833 if (unlikely(skb->sk)) {
1834 struct sock *sk = skb->sk;
1835
1836 skb->destructor = NULL;
1837 skb->sk = NULL;
1838 return sk;
1839 }
1840 return NULL;
1841 }
1842
1843 extern void sock_enable_timestamp(struct sock *sk, int flag);
1844 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
1845 extern int sock_get_timestampns(struct sock *, struct timespec __user *);
1846
1847 /*
1848 * Enable debug/info messages
1849 */
1850 extern int net_msg_warn;
1851 #define NETDEBUG(fmt, args...) \
1852 do { if (net_msg_warn) printk(fmt,##args); } while (0)
1853
1854 #define LIMIT_NETDEBUG(fmt, args...) \
1855 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
1856
1857 extern __u32 sysctl_wmem_max;
1858 extern __u32 sysctl_rmem_max;
1859
1860 extern void sk_init(void);
1861
1862 extern int sysctl_optmem_max;
1863
1864 extern __u32 sysctl_wmem_default;
1865 extern __u32 sysctl_rmem_default;
1866
1867 #endif /* _SOCK_H */
This page took 0.070818 seconds and 5 git commands to generate.