net: relax rcvbuf limits
[deliverable/linux.git] / include / net / sock.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/lockdep.h>
50 #include <linux/netdevice.h>
51 #include <linux/skbuff.h> /* struct sk_buff */
52 #include <linux/mm.h>
53 #include <linux/security.h>
54 #include <linux/slab.h>
55 #include <linux/uaccess.h>
56
57 #include <linux/filter.h>
58 #include <linux/rculist_nulls.h>
59 #include <linux/poll.h>
60
61 #include <linux/atomic.h>
62 #include <net/dst.h>
63 #include <net/checksum.h>
64
65 /*
66 * This structure really needs to be cleaned up.
67 * Most of it is for TCP, and not used by any of
68 * the other protocols.
69 */
70
71 /* Define this to get the SOCK_DBG debugging facility. */
72 #define SOCK_DEBUGGING
73 #ifdef SOCK_DEBUGGING
74 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
75 printk(KERN_DEBUG msg); } while (0)
76 #else
77 /* Validate arguments and do nothing */
78 static inline __printf(2, 3)
79 void SOCK_DEBUG(struct sock *sk, const char *msg, ...)
80 {
81 }
82 #endif
83
84 /* This is the per-socket lock. The spinlock provides a synchronization
85 * between user contexts and software interrupt processing, whereas the
86 * mini-semaphore synchronizes multiple users amongst themselves.
87 */
88 typedef struct {
89 spinlock_t slock;
90 int owned;
91 wait_queue_head_t wq;
92 /*
93 * We express the mutex-alike socket_lock semantics
94 * to the lock validator by explicitly managing
95 * the slock as a lock variant (in addition to
96 * the slock itself):
97 */
98 #ifdef CONFIG_DEBUG_LOCK_ALLOC
99 struct lockdep_map dep_map;
100 #endif
101 } socket_lock_t;
102
103 struct sock;
104 struct proto;
105 struct net;
106
107 /**
108 * struct sock_common - minimal network layer representation of sockets
109 * @skc_daddr: Foreign IPv4 addr
110 * @skc_rcv_saddr: Bound local IPv4 addr
111 * @skc_hash: hash value used with various protocol lookup tables
112 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
113 * @skc_family: network address family
114 * @skc_state: Connection state
115 * @skc_reuse: %SO_REUSEADDR setting
116 * @skc_bound_dev_if: bound device index if != 0
117 * @skc_bind_node: bind hash linkage for various protocol lookup tables
118 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
119 * @skc_prot: protocol handlers inside a network family
120 * @skc_net: reference to the network namespace of this socket
121 * @skc_node: main hash linkage for various protocol lookup tables
122 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
123 * @skc_tx_queue_mapping: tx queue number for this connection
124 * @skc_refcnt: reference count
125 *
126 * This is the minimal network layer representation of sockets, the header
127 * for struct sock and struct inet_timewait_sock.
128 */
129 struct sock_common {
130 /* skc_daddr and skc_rcv_saddr must be grouped :
131 * cf INET_MATCH() and INET_TW_MATCH()
132 */
133 __be32 skc_daddr;
134 __be32 skc_rcv_saddr;
135
136 union {
137 unsigned int skc_hash;
138 __u16 skc_u16hashes[2];
139 };
140 unsigned short skc_family;
141 volatile unsigned char skc_state;
142 unsigned char skc_reuse;
143 int skc_bound_dev_if;
144 union {
145 struct hlist_node skc_bind_node;
146 struct hlist_nulls_node skc_portaddr_node;
147 };
148 struct proto *skc_prot;
149 #ifdef CONFIG_NET_NS
150 struct net *skc_net;
151 #endif
152 /*
153 * fields between dontcopy_begin/dontcopy_end
154 * are not copied in sock_copy()
155 */
156 /* private: */
157 int skc_dontcopy_begin[0];
158 /* public: */
159 union {
160 struct hlist_node skc_node;
161 struct hlist_nulls_node skc_nulls_node;
162 };
163 int skc_tx_queue_mapping;
164 atomic_t skc_refcnt;
165 /* private: */
166 int skc_dontcopy_end[0];
167 /* public: */
168 };
169
170 /**
171 * struct sock - network layer representation of sockets
172 * @__sk_common: shared layout with inet_timewait_sock
173 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
174 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
175 * @sk_lock: synchronizer
176 * @sk_rcvbuf: size of receive buffer in bytes
177 * @sk_wq: sock wait queue and async head
178 * @sk_dst_cache: destination cache
179 * @sk_dst_lock: destination cache lock
180 * @sk_policy: flow policy
181 * @sk_receive_queue: incoming packets
182 * @sk_wmem_alloc: transmit queue bytes committed
183 * @sk_write_queue: Packet sending queue
184 * @sk_async_wait_queue: DMA copied packets
185 * @sk_omem_alloc: "o" is "option" or "other"
186 * @sk_wmem_queued: persistent queue size
187 * @sk_forward_alloc: space allocated forward
188 * @sk_allocation: allocation mode
189 * @sk_sndbuf: size of send buffer in bytes
190 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
191 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
192 * @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
193 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
194 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
195 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
196 * @sk_gso_max_size: Maximum GSO segment size to build
197 * @sk_lingertime: %SO_LINGER l_linger setting
198 * @sk_backlog: always used with the per-socket spinlock held
199 * @sk_callback_lock: used with the callbacks in the end of this struct
200 * @sk_error_queue: rarely used
201 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
202 * IPV6_ADDRFORM for instance)
203 * @sk_err: last error
204 * @sk_err_soft: errors that don't cause failure but are the cause of a
205 * persistent failure not just 'timed out'
206 * @sk_drops: raw/udp drops counter
207 * @sk_ack_backlog: current listen backlog
208 * @sk_max_ack_backlog: listen backlog set in listen()
209 * @sk_priority: %SO_PRIORITY setting
210 * @sk_type: socket type (%SOCK_STREAM, etc)
211 * @sk_protocol: which protocol this socket belongs in this network family
212 * @sk_peer_pid: &struct pid for this socket's peer
213 * @sk_peer_cred: %SO_PEERCRED setting
214 * @sk_rcvlowat: %SO_RCVLOWAT setting
215 * @sk_rcvtimeo: %SO_RCVTIMEO setting
216 * @sk_sndtimeo: %SO_SNDTIMEO setting
217 * @sk_rxhash: flow hash received from netif layer
218 * @sk_filter: socket filtering instructions
219 * @sk_protinfo: private area, net family specific, when not using slab
220 * @sk_timer: sock cleanup timer
221 * @sk_stamp: time stamp of last packet received
222 * @sk_socket: Identd and reporting IO signals
223 * @sk_user_data: RPC layer private data
224 * @sk_sndmsg_page: cached page for sendmsg
225 * @sk_sndmsg_off: cached offset for sendmsg
226 * @sk_send_head: front of stuff to transmit
227 * @sk_security: used by security modules
228 * @sk_mark: generic packet mark
229 * @sk_classid: this socket's cgroup classid
230 * @sk_write_pending: a write to stream socket waits to start
231 * @sk_state_change: callback to indicate change in the state of the sock
232 * @sk_data_ready: callback to indicate there is data to be processed
233 * @sk_write_space: callback to indicate there is bf sending space available
234 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
235 * @sk_backlog_rcv: callback to process the backlog
236 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
237 */
238 struct sock {
239 /*
240 * Now struct inet_timewait_sock also uses sock_common, so please just
241 * don't add nothing before this first member (__sk_common) --acme
242 */
243 struct sock_common __sk_common;
244 #define sk_node __sk_common.skc_node
245 #define sk_nulls_node __sk_common.skc_nulls_node
246 #define sk_refcnt __sk_common.skc_refcnt
247 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
248
249 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
250 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
251 #define sk_hash __sk_common.skc_hash
252 #define sk_family __sk_common.skc_family
253 #define sk_state __sk_common.skc_state
254 #define sk_reuse __sk_common.skc_reuse
255 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
256 #define sk_bind_node __sk_common.skc_bind_node
257 #define sk_prot __sk_common.skc_prot
258 #define sk_net __sk_common.skc_net
259 socket_lock_t sk_lock;
260 struct sk_buff_head sk_receive_queue;
261 /*
262 * The backlog queue is special, it is always used with
263 * the per-socket spinlock held and requires low latency
264 * access. Therefore we special case it's implementation.
265 * Note : rmem_alloc is in this structure to fill a hole
266 * on 64bit arches, not because its logically part of
267 * backlog.
268 */
269 struct {
270 atomic_t rmem_alloc;
271 int len;
272 struct sk_buff *head;
273 struct sk_buff *tail;
274 } sk_backlog;
275 #define sk_rmem_alloc sk_backlog.rmem_alloc
276 int sk_forward_alloc;
277 #ifdef CONFIG_RPS
278 __u32 sk_rxhash;
279 #endif
280 atomic_t sk_drops;
281 int sk_rcvbuf;
282
283 struct sk_filter __rcu *sk_filter;
284 struct socket_wq __rcu *sk_wq;
285
286 #ifdef CONFIG_NET_DMA
287 struct sk_buff_head sk_async_wait_queue;
288 #endif
289
290 #ifdef CONFIG_XFRM
291 struct xfrm_policy *sk_policy[2];
292 #endif
293 unsigned long sk_flags;
294 struct dst_entry *sk_dst_cache;
295 spinlock_t sk_dst_lock;
296 atomic_t sk_wmem_alloc;
297 atomic_t sk_omem_alloc;
298 int sk_sndbuf;
299 struct sk_buff_head sk_write_queue;
300 kmemcheck_bitfield_begin(flags);
301 unsigned int sk_shutdown : 2,
302 sk_no_check : 2,
303 sk_userlocks : 4,
304 sk_protocol : 8,
305 sk_type : 16;
306 kmemcheck_bitfield_end(flags);
307 int sk_wmem_queued;
308 gfp_t sk_allocation;
309 int sk_route_caps;
310 int sk_route_nocaps;
311 int sk_gso_type;
312 unsigned int sk_gso_max_size;
313 int sk_rcvlowat;
314 unsigned long sk_lingertime;
315 struct sk_buff_head sk_error_queue;
316 struct proto *sk_prot_creator;
317 rwlock_t sk_callback_lock;
318 int sk_err,
319 sk_err_soft;
320 unsigned short sk_ack_backlog;
321 unsigned short sk_max_ack_backlog;
322 __u32 sk_priority;
323 struct pid *sk_peer_pid;
324 const struct cred *sk_peer_cred;
325 long sk_rcvtimeo;
326 long sk_sndtimeo;
327 void *sk_protinfo;
328 struct timer_list sk_timer;
329 ktime_t sk_stamp;
330 struct socket *sk_socket;
331 void *sk_user_data;
332 struct page *sk_sndmsg_page;
333 struct sk_buff *sk_send_head;
334 __u32 sk_sndmsg_off;
335 int sk_write_pending;
336 #ifdef CONFIG_SECURITY
337 void *sk_security;
338 #endif
339 __u32 sk_mark;
340 u32 sk_classid;
341 void (*sk_state_change)(struct sock *sk);
342 void (*sk_data_ready)(struct sock *sk, int bytes);
343 void (*sk_write_space)(struct sock *sk);
344 void (*sk_error_report)(struct sock *sk);
345 int (*sk_backlog_rcv)(struct sock *sk,
346 struct sk_buff *skb);
347 void (*sk_destruct)(struct sock *sk);
348 };
349
350 /*
351 * Hashed lists helper routines
352 */
353 static inline struct sock *sk_entry(const struct hlist_node *node)
354 {
355 return hlist_entry(node, struct sock, sk_node);
356 }
357
358 static inline struct sock *__sk_head(const struct hlist_head *head)
359 {
360 return hlist_entry(head->first, struct sock, sk_node);
361 }
362
363 static inline struct sock *sk_head(const struct hlist_head *head)
364 {
365 return hlist_empty(head) ? NULL : __sk_head(head);
366 }
367
368 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
369 {
370 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
371 }
372
373 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
374 {
375 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
376 }
377
378 static inline struct sock *sk_next(const struct sock *sk)
379 {
380 return sk->sk_node.next ?
381 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
382 }
383
384 static inline struct sock *sk_nulls_next(const struct sock *sk)
385 {
386 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
387 hlist_nulls_entry(sk->sk_nulls_node.next,
388 struct sock, sk_nulls_node) :
389 NULL;
390 }
391
392 static inline int sk_unhashed(const struct sock *sk)
393 {
394 return hlist_unhashed(&sk->sk_node);
395 }
396
397 static inline int sk_hashed(const struct sock *sk)
398 {
399 return !sk_unhashed(sk);
400 }
401
402 static __inline__ void sk_node_init(struct hlist_node *node)
403 {
404 node->pprev = NULL;
405 }
406
407 static __inline__ void sk_nulls_node_init(struct hlist_nulls_node *node)
408 {
409 node->pprev = NULL;
410 }
411
412 static __inline__ void __sk_del_node(struct sock *sk)
413 {
414 __hlist_del(&sk->sk_node);
415 }
416
417 /* NB: equivalent to hlist_del_init_rcu */
418 static __inline__ int __sk_del_node_init(struct sock *sk)
419 {
420 if (sk_hashed(sk)) {
421 __sk_del_node(sk);
422 sk_node_init(&sk->sk_node);
423 return 1;
424 }
425 return 0;
426 }
427
428 /* Grab socket reference count. This operation is valid only
429 when sk is ALREADY grabbed f.e. it is found in hash table
430 or a list and the lookup is made under lock preventing hash table
431 modifications.
432 */
433
434 static inline void sock_hold(struct sock *sk)
435 {
436 atomic_inc(&sk->sk_refcnt);
437 }
438
439 /* Ungrab socket in the context, which assumes that socket refcnt
440 cannot hit zero, f.e. it is true in context of any socketcall.
441 */
442 static inline void __sock_put(struct sock *sk)
443 {
444 atomic_dec(&sk->sk_refcnt);
445 }
446
447 static __inline__ int sk_del_node_init(struct sock *sk)
448 {
449 int rc = __sk_del_node_init(sk);
450
451 if (rc) {
452 /* paranoid for a while -acme */
453 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
454 __sock_put(sk);
455 }
456 return rc;
457 }
458 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
459
460 static __inline__ int __sk_nulls_del_node_init_rcu(struct sock *sk)
461 {
462 if (sk_hashed(sk)) {
463 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
464 return 1;
465 }
466 return 0;
467 }
468
469 static __inline__ int sk_nulls_del_node_init_rcu(struct sock *sk)
470 {
471 int rc = __sk_nulls_del_node_init_rcu(sk);
472
473 if (rc) {
474 /* paranoid for a while -acme */
475 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
476 __sock_put(sk);
477 }
478 return rc;
479 }
480
481 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list)
482 {
483 hlist_add_head(&sk->sk_node, list);
484 }
485
486 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list)
487 {
488 sock_hold(sk);
489 __sk_add_node(sk, list);
490 }
491
492 static __inline__ void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
493 {
494 sock_hold(sk);
495 hlist_add_head_rcu(&sk->sk_node, list);
496 }
497
498 static __inline__ void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
499 {
500 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
501 }
502
503 static __inline__ void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
504 {
505 sock_hold(sk);
506 __sk_nulls_add_node_rcu(sk, list);
507 }
508
509 static __inline__ void __sk_del_bind_node(struct sock *sk)
510 {
511 __hlist_del(&sk->sk_bind_node);
512 }
513
514 static __inline__ void sk_add_bind_node(struct sock *sk,
515 struct hlist_head *list)
516 {
517 hlist_add_head(&sk->sk_bind_node, list);
518 }
519
520 #define sk_for_each(__sk, node, list) \
521 hlist_for_each_entry(__sk, node, list, sk_node)
522 #define sk_for_each_rcu(__sk, node, list) \
523 hlist_for_each_entry_rcu(__sk, node, list, sk_node)
524 #define sk_nulls_for_each(__sk, node, list) \
525 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
526 #define sk_nulls_for_each_rcu(__sk, node, list) \
527 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
528 #define sk_for_each_from(__sk, node) \
529 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
530 hlist_for_each_entry_from(__sk, node, sk_node)
531 #define sk_nulls_for_each_from(__sk, node) \
532 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
533 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
534 #define sk_for_each_safe(__sk, node, tmp, list) \
535 hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
536 #define sk_for_each_bound(__sk, node, list) \
537 hlist_for_each_entry(__sk, node, list, sk_bind_node)
538
539 /* Sock flags */
540 enum sock_flags {
541 SOCK_DEAD,
542 SOCK_DONE,
543 SOCK_URGINLINE,
544 SOCK_KEEPOPEN,
545 SOCK_LINGER,
546 SOCK_DESTROY,
547 SOCK_BROADCAST,
548 SOCK_TIMESTAMP,
549 SOCK_ZAPPED,
550 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
551 SOCK_DBG, /* %SO_DEBUG setting */
552 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
553 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
554 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
555 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
556 SOCK_TIMESTAMPING_TX_HARDWARE, /* %SOF_TIMESTAMPING_TX_HARDWARE */
557 SOCK_TIMESTAMPING_TX_SOFTWARE, /* %SOF_TIMESTAMPING_TX_SOFTWARE */
558 SOCK_TIMESTAMPING_RX_HARDWARE, /* %SOF_TIMESTAMPING_RX_HARDWARE */
559 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
560 SOCK_TIMESTAMPING_SOFTWARE, /* %SOF_TIMESTAMPING_SOFTWARE */
561 SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
562 SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
563 SOCK_FASYNC, /* fasync() active */
564 SOCK_RXQ_OVFL,
565 SOCK_ZEROCOPY, /* buffers from userspace */
566 };
567
568 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
569 {
570 nsk->sk_flags = osk->sk_flags;
571 }
572
573 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
574 {
575 __set_bit(flag, &sk->sk_flags);
576 }
577
578 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
579 {
580 __clear_bit(flag, &sk->sk_flags);
581 }
582
583 static inline int sock_flag(struct sock *sk, enum sock_flags flag)
584 {
585 return test_bit(flag, &sk->sk_flags);
586 }
587
588 static inline void sk_acceptq_removed(struct sock *sk)
589 {
590 sk->sk_ack_backlog--;
591 }
592
593 static inline void sk_acceptq_added(struct sock *sk)
594 {
595 sk->sk_ack_backlog++;
596 }
597
598 static inline int sk_acceptq_is_full(struct sock *sk)
599 {
600 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
601 }
602
603 /*
604 * Compute minimal free write space needed to queue new packets.
605 */
606 static inline int sk_stream_min_wspace(struct sock *sk)
607 {
608 return sk->sk_wmem_queued >> 1;
609 }
610
611 static inline int sk_stream_wspace(struct sock *sk)
612 {
613 return sk->sk_sndbuf - sk->sk_wmem_queued;
614 }
615
616 extern void sk_stream_write_space(struct sock *sk);
617
618 static inline int sk_stream_memory_free(struct sock *sk)
619 {
620 return sk->sk_wmem_queued < sk->sk_sndbuf;
621 }
622
623 /* OOB backlog add */
624 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
625 {
626 /* dont let skb dst not refcounted, we are going to leave rcu lock */
627 skb_dst_force(skb);
628
629 if (!sk->sk_backlog.tail)
630 sk->sk_backlog.head = skb;
631 else
632 sk->sk_backlog.tail->next = skb;
633
634 sk->sk_backlog.tail = skb;
635 skb->next = NULL;
636 }
637
638 /*
639 * Take into account size of receive queue and backlog queue
640 * Do not take into account this skb truesize,
641 * to allow even a single big packet to come.
642 */
643 static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb)
644 {
645 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
646
647 return qsize > sk->sk_rcvbuf;
648 }
649
650 /* The per-socket spinlock must be held here. */
651 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb)
652 {
653 if (sk_rcvqueues_full(sk, skb))
654 return -ENOBUFS;
655
656 __sk_add_backlog(sk, skb);
657 sk->sk_backlog.len += skb->truesize;
658 return 0;
659 }
660
661 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
662 {
663 return sk->sk_backlog_rcv(sk, skb);
664 }
665
666 static inline void sock_rps_record_flow(const struct sock *sk)
667 {
668 #ifdef CONFIG_RPS
669 struct rps_sock_flow_table *sock_flow_table;
670
671 rcu_read_lock();
672 sock_flow_table = rcu_dereference(rps_sock_flow_table);
673 rps_record_sock_flow(sock_flow_table, sk->sk_rxhash);
674 rcu_read_unlock();
675 #endif
676 }
677
678 static inline void sock_rps_reset_flow(const struct sock *sk)
679 {
680 #ifdef CONFIG_RPS
681 struct rps_sock_flow_table *sock_flow_table;
682
683 rcu_read_lock();
684 sock_flow_table = rcu_dereference(rps_sock_flow_table);
685 rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash);
686 rcu_read_unlock();
687 #endif
688 }
689
690 static inline void sock_rps_save_rxhash(struct sock *sk,
691 const struct sk_buff *skb)
692 {
693 #ifdef CONFIG_RPS
694 if (unlikely(sk->sk_rxhash != skb->rxhash)) {
695 sock_rps_reset_flow(sk);
696 sk->sk_rxhash = skb->rxhash;
697 }
698 #endif
699 }
700
701 static inline void sock_rps_reset_rxhash(struct sock *sk)
702 {
703 #ifdef CONFIG_RPS
704 sock_rps_reset_flow(sk);
705 sk->sk_rxhash = 0;
706 #endif
707 }
708
709 #define sk_wait_event(__sk, __timeo, __condition) \
710 ({ int __rc; \
711 release_sock(__sk); \
712 __rc = __condition; \
713 if (!__rc) { \
714 *(__timeo) = schedule_timeout(*(__timeo)); \
715 } \
716 lock_sock(__sk); \
717 __rc = __condition; \
718 __rc; \
719 })
720
721 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
722 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
723 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
724 extern int sk_stream_error(struct sock *sk, int flags, int err);
725 extern void sk_stream_kill_queues(struct sock *sk);
726
727 extern int sk_wait_data(struct sock *sk, long *timeo);
728
729 struct request_sock_ops;
730 struct timewait_sock_ops;
731 struct inet_hashinfo;
732 struct raw_hashinfo;
733 struct module;
734
735 /* Networking protocol blocks we attach to sockets.
736 * socket layer -> transport layer interface
737 * transport -> network interface is defined by struct inet_proto
738 */
739 struct proto {
740 void (*close)(struct sock *sk,
741 long timeout);
742 int (*connect)(struct sock *sk,
743 struct sockaddr *uaddr,
744 int addr_len);
745 int (*disconnect)(struct sock *sk, int flags);
746
747 struct sock * (*accept) (struct sock *sk, int flags, int *err);
748
749 int (*ioctl)(struct sock *sk, int cmd,
750 unsigned long arg);
751 int (*init)(struct sock *sk);
752 void (*destroy)(struct sock *sk);
753 void (*shutdown)(struct sock *sk, int how);
754 int (*setsockopt)(struct sock *sk, int level,
755 int optname, char __user *optval,
756 unsigned int optlen);
757 int (*getsockopt)(struct sock *sk, int level,
758 int optname, char __user *optval,
759 int __user *option);
760 #ifdef CONFIG_COMPAT
761 int (*compat_setsockopt)(struct sock *sk,
762 int level,
763 int optname, char __user *optval,
764 unsigned int optlen);
765 int (*compat_getsockopt)(struct sock *sk,
766 int level,
767 int optname, char __user *optval,
768 int __user *option);
769 int (*compat_ioctl)(struct sock *sk,
770 unsigned int cmd, unsigned long arg);
771 #endif
772 int (*sendmsg)(struct kiocb *iocb, struct sock *sk,
773 struct msghdr *msg, size_t len);
774 int (*recvmsg)(struct kiocb *iocb, struct sock *sk,
775 struct msghdr *msg,
776 size_t len, int noblock, int flags,
777 int *addr_len);
778 int (*sendpage)(struct sock *sk, struct page *page,
779 int offset, size_t size, int flags);
780 int (*bind)(struct sock *sk,
781 struct sockaddr *uaddr, int addr_len);
782
783 int (*backlog_rcv) (struct sock *sk,
784 struct sk_buff *skb);
785
786 /* Keeping track of sk's, looking them up, and port selection methods. */
787 void (*hash)(struct sock *sk);
788 void (*unhash)(struct sock *sk);
789 void (*rehash)(struct sock *sk);
790 int (*get_port)(struct sock *sk, unsigned short snum);
791 void (*clear_sk)(struct sock *sk, int size);
792
793 /* Keeping track of sockets in use */
794 #ifdef CONFIG_PROC_FS
795 unsigned int inuse_idx;
796 #endif
797
798 /* Memory pressure */
799 void (*enter_memory_pressure)(struct sock *sk);
800 atomic_long_t *memory_allocated; /* Current allocated memory. */
801 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
802 /*
803 * Pressure flag: try to collapse.
804 * Technical note: it is used by multiple contexts non atomically.
805 * All the __sk_mem_schedule() is of this nature: accounting
806 * is strict, actions are advisory and have some latency.
807 */
808 int *memory_pressure;
809 long *sysctl_mem;
810 int *sysctl_wmem;
811 int *sysctl_rmem;
812 int max_header;
813 bool no_autobind;
814
815 struct kmem_cache *slab;
816 unsigned int obj_size;
817 int slab_flags;
818
819 struct percpu_counter *orphan_count;
820
821 struct request_sock_ops *rsk_prot;
822 struct timewait_sock_ops *twsk_prot;
823
824 union {
825 struct inet_hashinfo *hashinfo;
826 struct udp_table *udp_table;
827 struct raw_hashinfo *raw_hash;
828 } h;
829
830 struct module *owner;
831
832 char name[32];
833
834 struct list_head node;
835 #ifdef SOCK_REFCNT_DEBUG
836 atomic_t socks;
837 #endif
838 };
839
840 extern int proto_register(struct proto *prot, int alloc_slab);
841 extern void proto_unregister(struct proto *prot);
842
843 #ifdef SOCK_REFCNT_DEBUG
844 static inline void sk_refcnt_debug_inc(struct sock *sk)
845 {
846 atomic_inc(&sk->sk_prot->socks);
847 }
848
849 static inline void sk_refcnt_debug_dec(struct sock *sk)
850 {
851 atomic_dec(&sk->sk_prot->socks);
852 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
853 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
854 }
855
856 static inline void sk_refcnt_debug_release(const struct sock *sk)
857 {
858 if (atomic_read(&sk->sk_refcnt) != 1)
859 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
860 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
861 }
862 #else /* SOCK_REFCNT_DEBUG */
863 #define sk_refcnt_debug_inc(sk) do { } while (0)
864 #define sk_refcnt_debug_dec(sk) do { } while (0)
865 #define sk_refcnt_debug_release(sk) do { } while (0)
866 #endif /* SOCK_REFCNT_DEBUG */
867
868
869 #ifdef CONFIG_PROC_FS
870 /* Called with local bh disabled */
871 extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
872 extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
873 #else
874 static void inline sock_prot_inuse_add(struct net *net, struct proto *prot,
875 int inc)
876 {
877 }
878 #endif
879
880
881 /* With per-bucket locks this operation is not-atomic, so that
882 * this version is not worse.
883 */
884 static inline void __sk_prot_rehash(struct sock *sk)
885 {
886 sk->sk_prot->unhash(sk);
887 sk->sk_prot->hash(sk);
888 }
889
890 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
891
892 /* About 10 seconds */
893 #define SOCK_DESTROY_TIME (10*HZ)
894
895 /* Sockets 0-1023 can't be bound to unless you are superuser */
896 #define PROT_SOCK 1024
897
898 #define SHUTDOWN_MASK 3
899 #define RCV_SHUTDOWN 1
900 #define SEND_SHUTDOWN 2
901
902 #define SOCK_SNDBUF_LOCK 1
903 #define SOCK_RCVBUF_LOCK 2
904 #define SOCK_BINDADDR_LOCK 4
905 #define SOCK_BINDPORT_LOCK 8
906
907 /* sock_iocb: used to kick off async processing of socket ios */
908 struct sock_iocb {
909 struct list_head list;
910
911 int flags;
912 int size;
913 struct socket *sock;
914 struct sock *sk;
915 struct scm_cookie *scm;
916 struct msghdr *msg, async_msg;
917 struct kiocb *kiocb;
918 };
919
920 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
921 {
922 return (struct sock_iocb *)iocb->private;
923 }
924
925 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
926 {
927 return si->kiocb;
928 }
929
930 struct socket_alloc {
931 struct socket socket;
932 struct inode vfs_inode;
933 };
934
935 static inline struct socket *SOCKET_I(struct inode *inode)
936 {
937 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
938 }
939
940 static inline struct inode *SOCK_INODE(struct socket *socket)
941 {
942 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
943 }
944
945 /*
946 * Functions for memory accounting
947 */
948 extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
949 extern void __sk_mem_reclaim(struct sock *sk);
950
951 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
952 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
953 #define SK_MEM_SEND 0
954 #define SK_MEM_RECV 1
955
956 static inline int sk_mem_pages(int amt)
957 {
958 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
959 }
960
961 static inline int sk_has_account(struct sock *sk)
962 {
963 /* return true if protocol supports memory accounting */
964 return !!sk->sk_prot->memory_allocated;
965 }
966
967 static inline int sk_wmem_schedule(struct sock *sk, int size)
968 {
969 if (!sk_has_account(sk))
970 return 1;
971 return size <= sk->sk_forward_alloc ||
972 __sk_mem_schedule(sk, size, SK_MEM_SEND);
973 }
974
975 static inline int sk_rmem_schedule(struct sock *sk, int size)
976 {
977 if (!sk_has_account(sk))
978 return 1;
979 return size <= sk->sk_forward_alloc ||
980 __sk_mem_schedule(sk, size, SK_MEM_RECV);
981 }
982
983 static inline void sk_mem_reclaim(struct sock *sk)
984 {
985 if (!sk_has_account(sk))
986 return;
987 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
988 __sk_mem_reclaim(sk);
989 }
990
991 static inline void sk_mem_reclaim_partial(struct sock *sk)
992 {
993 if (!sk_has_account(sk))
994 return;
995 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
996 __sk_mem_reclaim(sk);
997 }
998
999 static inline void sk_mem_charge(struct sock *sk, int size)
1000 {
1001 if (!sk_has_account(sk))
1002 return;
1003 sk->sk_forward_alloc -= size;
1004 }
1005
1006 static inline void sk_mem_uncharge(struct sock *sk, int size)
1007 {
1008 if (!sk_has_account(sk))
1009 return;
1010 sk->sk_forward_alloc += size;
1011 }
1012
1013 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1014 {
1015 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1016 sk->sk_wmem_queued -= skb->truesize;
1017 sk_mem_uncharge(sk, skb->truesize);
1018 __kfree_skb(skb);
1019 }
1020
1021 /* Used by processes to "lock" a socket state, so that
1022 * interrupts and bottom half handlers won't change it
1023 * from under us. It essentially blocks any incoming
1024 * packets, so that we won't get any new data or any
1025 * packets that change the state of the socket.
1026 *
1027 * While locked, BH processing will add new packets to
1028 * the backlog queue. This queue is processed by the
1029 * owner of the socket lock right before it is released.
1030 *
1031 * Since ~2.3.5 it is also exclusive sleep lock serializing
1032 * accesses from user process context.
1033 */
1034 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
1035
1036 /*
1037 * Macro so as to not evaluate some arguments when
1038 * lockdep is not enabled.
1039 *
1040 * Mark both the sk_lock and the sk_lock.slock as a
1041 * per-address-family lock class.
1042 */
1043 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1044 do { \
1045 sk->sk_lock.owned = 0; \
1046 init_waitqueue_head(&sk->sk_lock.wq); \
1047 spin_lock_init(&(sk)->sk_lock.slock); \
1048 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1049 sizeof((sk)->sk_lock)); \
1050 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1051 (skey), (sname)); \
1052 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1053 } while (0)
1054
1055 extern void lock_sock_nested(struct sock *sk, int subclass);
1056
1057 static inline void lock_sock(struct sock *sk)
1058 {
1059 lock_sock_nested(sk, 0);
1060 }
1061
1062 extern void release_sock(struct sock *sk);
1063
1064 /* BH context may only use the following locking interface. */
1065 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1066 #define bh_lock_sock_nested(__sk) \
1067 spin_lock_nested(&((__sk)->sk_lock.slock), \
1068 SINGLE_DEPTH_NESTING)
1069 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1070
1071 extern bool lock_sock_fast(struct sock *sk);
1072 /**
1073 * unlock_sock_fast - complement of lock_sock_fast
1074 * @sk: socket
1075 * @slow: slow mode
1076 *
1077 * fast unlock socket for user context.
1078 * If slow mode is on, we call regular release_sock()
1079 */
1080 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1081 {
1082 if (slow)
1083 release_sock(sk);
1084 else
1085 spin_unlock_bh(&sk->sk_lock.slock);
1086 }
1087
1088
1089 extern struct sock *sk_alloc(struct net *net, int family,
1090 gfp_t priority,
1091 struct proto *prot);
1092 extern void sk_free(struct sock *sk);
1093 extern void sk_release_kernel(struct sock *sk);
1094 extern struct sock *sk_clone(const struct sock *sk,
1095 const gfp_t priority);
1096
1097 extern struct sk_buff *sock_wmalloc(struct sock *sk,
1098 unsigned long size, int force,
1099 gfp_t priority);
1100 extern struct sk_buff *sock_rmalloc(struct sock *sk,
1101 unsigned long size, int force,
1102 gfp_t priority);
1103 extern void sock_wfree(struct sk_buff *skb);
1104 extern void sock_rfree(struct sk_buff *skb);
1105
1106 extern int sock_setsockopt(struct socket *sock, int level,
1107 int op, char __user *optval,
1108 unsigned int optlen);
1109
1110 extern int sock_getsockopt(struct socket *sock, int level,
1111 int op, char __user *optval,
1112 int __user *optlen);
1113 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1114 unsigned long size,
1115 int noblock,
1116 int *errcode);
1117 extern struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1118 unsigned long header_len,
1119 unsigned long data_len,
1120 int noblock,
1121 int *errcode);
1122 extern void *sock_kmalloc(struct sock *sk, int size,
1123 gfp_t priority);
1124 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
1125 extern void sk_send_sigurg(struct sock *sk);
1126
1127 #ifdef CONFIG_CGROUPS
1128 extern void sock_update_classid(struct sock *sk);
1129 #else
1130 static inline void sock_update_classid(struct sock *sk)
1131 {
1132 }
1133 #endif
1134
1135 /*
1136 * Functions to fill in entries in struct proto_ops when a protocol
1137 * does not implement a particular function.
1138 */
1139 extern int sock_no_bind(struct socket *,
1140 struct sockaddr *, int);
1141 extern int sock_no_connect(struct socket *,
1142 struct sockaddr *, int, int);
1143 extern int sock_no_socketpair(struct socket *,
1144 struct socket *);
1145 extern int sock_no_accept(struct socket *,
1146 struct socket *, int);
1147 extern int sock_no_getname(struct socket *,
1148 struct sockaddr *, int *, int);
1149 extern unsigned int sock_no_poll(struct file *, struct socket *,
1150 struct poll_table_struct *);
1151 extern int sock_no_ioctl(struct socket *, unsigned int,
1152 unsigned long);
1153 extern int sock_no_listen(struct socket *, int);
1154 extern int sock_no_shutdown(struct socket *, int);
1155 extern int sock_no_getsockopt(struct socket *, int , int,
1156 char __user *, int __user *);
1157 extern int sock_no_setsockopt(struct socket *, int, int,
1158 char __user *, unsigned int);
1159 extern int sock_no_sendmsg(struct kiocb *, struct socket *,
1160 struct msghdr *, size_t);
1161 extern int sock_no_recvmsg(struct kiocb *, struct socket *,
1162 struct msghdr *, size_t, int);
1163 extern int sock_no_mmap(struct file *file,
1164 struct socket *sock,
1165 struct vm_area_struct *vma);
1166 extern ssize_t sock_no_sendpage(struct socket *sock,
1167 struct page *page,
1168 int offset, size_t size,
1169 int flags);
1170
1171 /*
1172 * Functions to fill in entries in struct proto_ops when a protocol
1173 * uses the inet style.
1174 */
1175 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1176 char __user *optval, int __user *optlen);
1177 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1178 struct msghdr *msg, size_t size, int flags);
1179 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1180 char __user *optval, unsigned int optlen);
1181 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1182 int optname, char __user *optval, int __user *optlen);
1183 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1184 int optname, char __user *optval, unsigned int optlen);
1185
1186 extern void sk_common_release(struct sock *sk);
1187
1188 /*
1189 * Default socket callbacks and setup code
1190 */
1191
1192 /* Initialise core socket variables */
1193 extern void sock_init_data(struct socket *sock, struct sock *sk);
1194
1195 extern void sk_filter_release_rcu(struct rcu_head *rcu);
1196
1197 /**
1198 * sk_filter_release - release a socket filter
1199 * @fp: filter to remove
1200 *
1201 * Remove a filter from a socket and release its resources.
1202 */
1203
1204 static inline void sk_filter_release(struct sk_filter *fp)
1205 {
1206 if (atomic_dec_and_test(&fp->refcnt))
1207 call_rcu(&fp->rcu, sk_filter_release_rcu);
1208 }
1209
1210 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1211 {
1212 unsigned int size = sk_filter_len(fp);
1213
1214 atomic_sub(size, &sk->sk_omem_alloc);
1215 sk_filter_release(fp);
1216 }
1217
1218 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1219 {
1220 atomic_inc(&fp->refcnt);
1221 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1222 }
1223
1224 /*
1225 * Socket reference counting postulates.
1226 *
1227 * * Each user of socket SHOULD hold a reference count.
1228 * * Each access point to socket (an hash table bucket, reference from a list,
1229 * running timer, skb in flight MUST hold a reference count.
1230 * * When reference count hits 0, it means it will never increase back.
1231 * * When reference count hits 0, it means that no references from
1232 * outside exist to this socket and current process on current CPU
1233 * is last user and may/should destroy this socket.
1234 * * sk_free is called from any context: process, BH, IRQ. When
1235 * it is called, socket has no references from outside -> sk_free
1236 * may release descendant resources allocated by the socket, but
1237 * to the time when it is called, socket is NOT referenced by any
1238 * hash tables, lists etc.
1239 * * Packets, delivered from outside (from network or from another process)
1240 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1241 * when they sit in queue. Otherwise, packets will leak to hole, when
1242 * socket is looked up by one cpu and unhasing is made by another CPU.
1243 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1244 * (leak to backlog). Packet socket does all the processing inside
1245 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1246 * use separate SMP lock, so that they are prone too.
1247 */
1248
1249 /* Ungrab socket and destroy it, if it was the last reference. */
1250 static inline void sock_put(struct sock *sk)
1251 {
1252 if (atomic_dec_and_test(&sk->sk_refcnt))
1253 sk_free(sk);
1254 }
1255
1256 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1257 const int nested);
1258
1259 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1260 {
1261 sk->sk_tx_queue_mapping = tx_queue;
1262 }
1263
1264 static inline void sk_tx_queue_clear(struct sock *sk)
1265 {
1266 sk->sk_tx_queue_mapping = -1;
1267 }
1268
1269 static inline int sk_tx_queue_get(const struct sock *sk)
1270 {
1271 return sk ? sk->sk_tx_queue_mapping : -1;
1272 }
1273
1274 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1275 {
1276 sk_tx_queue_clear(sk);
1277 sk->sk_socket = sock;
1278 }
1279
1280 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1281 {
1282 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1283 return &rcu_dereference_raw(sk->sk_wq)->wait;
1284 }
1285 /* Detach socket from process context.
1286 * Announce socket dead, detach it from wait queue and inode.
1287 * Note that parent inode held reference count on this struct sock,
1288 * we do not release it in this function, because protocol
1289 * probably wants some additional cleanups or even continuing
1290 * to work with this socket (TCP).
1291 */
1292 static inline void sock_orphan(struct sock *sk)
1293 {
1294 write_lock_bh(&sk->sk_callback_lock);
1295 sock_set_flag(sk, SOCK_DEAD);
1296 sk_set_socket(sk, NULL);
1297 sk->sk_wq = NULL;
1298 write_unlock_bh(&sk->sk_callback_lock);
1299 }
1300
1301 static inline void sock_graft(struct sock *sk, struct socket *parent)
1302 {
1303 write_lock_bh(&sk->sk_callback_lock);
1304 sk->sk_wq = parent->wq;
1305 parent->sk = sk;
1306 sk_set_socket(sk, parent);
1307 security_sock_graft(sk, parent);
1308 write_unlock_bh(&sk->sk_callback_lock);
1309 }
1310
1311 extern int sock_i_uid(struct sock *sk);
1312 extern unsigned long sock_i_ino(struct sock *sk);
1313
1314 static inline struct dst_entry *
1315 __sk_dst_get(struct sock *sk)
1316 {
1317 return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1318 lockdep_is_held(&sk->sk_lock.slock));
1319 }
1320
1321 static inline struct dst_entry *
1322 sk_dst_get(struct sock *sk)
1323 {
1324 struct dst_entry *dst;
1325
1326 rcu_read_lock();
1327 dst = rcu_dereference(sk->sk_dst_cache);
1328 if (dst)
1329 dst_hold(dst);
1330 rcu_read_unlock();
1331 return dst;
1332 }
1333
1334 extern void sk_reset_txq(struct sock *sk);
1335
1336 static inline void dst_negative_advice(struct sock *sk)
1337 {
1338 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1339
1340 if (dst && dst->ops->negative_advice) {
1341 ndst = dst->ops->negative_advice(dst);
1342
1343 if (ndst != dst) {
1344 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1345 sk_reset_txq(sk);
1346 }
1347 }
1348 }
1349
1350 static inline void
1351 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1352 {
1353 struct dst_entry *old_dst;
1354
1355 sk_tx_queue_clear(sk);
1356 /*
1357 * This can be called while sk is owned by the caller only,
1358 * with no state that can be checked in a rcu_dereference_check() cond
1359 */
1360 old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1361 rcu_assign_pointer(sk->sk_dst_cache, dst);
1362 dst_release(old_dst);
1363 }
1364
1365 static inline void
1366 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1367 {
1368 spin_lock(&sk->sk_dst_lock);
1369 __sk_dst_set(sk, dst);
1370 spin_unlock(&sk->sk_dst_lock);
1371 }
1372
1373 static inline void
1374 __sk_dst_reset(struct sock *sk)
1375 {
1376 __sk_dst_set(sk, NULL);
1377 }
1378
1379 static inline void
1380 sk_dst_reset(struct sock *sk)
1381 {
1382 spin_lock(&sk->sk_dst_lock);
1383 __sk_dst_reset(sk);
1384 spin_unlock(&sk->sk_dst_lock);
1385 }
1386
1387 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1388
1389 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1390
1391 static inline int sk_can_gso(const struct sock *sk)
1392 {
1393 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1394 }
1395
1396 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1397
1398 static inline void sk_nocaps_add(struct sock *sk, int flags)
1399 {
1400 sk->sk_route_nocaps |= flags;
1401 sk->sk_route_caps &= ~flags;
1402 }
1403
1404 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1405 char __user *from, char *to,
1406 int copy, int offset)
1407 {
1408 if (skb->ip_summed == CHECKSUM_NONE) {
1409 int err = 0;
1410 __wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err);
1411 if (err)
1412 return err;
1413 skb->csum = csum_block_add(skb->csum, csum, offset);
1414 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1415 if (!access_ok(VERIFY_READ, from, copy) ||
1416 __copy_from_user_nocache(to, from, copy))
1417 return -EFAULT;
1418 } else if (copy_from_user(to, from, copy))
1419 return -EFAULT;
1420
1421 return 0;
1422 }
1423
1424 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1425 char __user *from, int copy)
1426 {
1427 int err, offset = skb->len;
1428
1429 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1430 copy, offset);
1431 if (err)
1432 __skb_trim(skb, offset);
1433
1434 return err;
1435 }
1436
1437 static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from,
1438 struct sk_buff *skb,
1439 struct page *page,
1440 int off, int copy)
1441 {
1442 int err;
1443
1444 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1445 copy, skb->len);
1446 if (err)
1447 return err;
1448
1449 skb->len += copy;
1450 skb->data_len += copy;
1451 skb->truesize += copy;
1452 sk->sk_wmem_queued += copy;
1453 sk_mem_charge(sk, copy);
1454 return 0;
1455 }
1456
1457 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1458 struct sk_buff *skb, struct page *page,
1459 int off, int copy)
1460 {
1461 if (skb->ip_summed == CHECKSUM_NONE) {
1462 int err = 0;
1463 __wsum csum = csum_and_copy_from_user(from,
1464 page_address(page) + off,
1465 copy, 0, &err);
1466 if (err)
1467 return err;
1468 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1469 } else if (copy_from_user(page_address(page) + off, from, copy))
1470 return -EFAULT;
1471
1472 skb->len += copy;
1473 skb->data_len += copy;
1474 skb->truesize += copy;
1475 sk->sk_wmem_queued += copy;
1476 sk_mem_charge(sk, copy);
1477 return 0;
1478 }
1479
1480 /**
1481 * sk_wmem_alloc_get - returns write allocations
1482 * @sk: socket
1483 *
1484 * Returns sk_wmem_alloc minus initial offset of one
1485 */
1486 static inline int sk_wmem_alloc_get(const struct sock *sk)
1487 {
1488 return atomic_read(&sk->sk_wmem_alloc) - 1;
1489 }
1490
1491 /**
1492 * sk_rmem_alloc_get - returns read allocations
1493 * @sk: socket
1494 *
1495 * Returns sk_rmem_alloc
1496 */
1497 static inline int sk_rmem_alloc_get(const struct sock *sk)
1498 {
1499 return atomic_read(&sk->sk_rmem_alloc);
1500 }
1501
1502 /**
1503 * sk_has_allocations - check if allocations are outstanding
1504 * @sk: socket
1505 *
1506 * Returns true if socket has write or read allocations
1507 */
1508 static inline int sk_has_allocations(const struct sock *sk)
1509 {
1510 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1511 }
1512
1513 /**
1514 * wq_has_sleeper - check if there are any waiting processes
1515 * @wq: struct socket_wq
1516 *
1517 * Returns true if socket_wq has waiting processes
1518 *
1519 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1520 * barrier call. They were added due to the race found within the tcp code.
1521 *
1522 * Consider following tcp code paths:
1523 *
1524 * CPU1 CPU2
1525 *
1526 * sys_select receive packet
1527 * ... ...
1528 * __add_wait_queue update tp->rcv_nxt
1529 * ... ...
1530 * tp->rcv_nxt check sock_def_readable
1531 * ... {
1532 * schedule rcu_read_lock();
1533 * wq = rcu_dereference(sk->sk_wq);
1534 * if (wq && waitqueue_active(&wq->wait))
1535 * wake_up_interruptible(&wq->wait)
1536 * ...
1537 * }
1538 *
1539 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1540 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1541 * could then endup calling schedule and sleep forever if there are no more
1542 * data on the socket.
1543 *
1544 */
1545 static inline bool wq_has_sleeper(struct socket_wq *wq)
1546 {
1547
1548 /*
1549 * We need to be sure we are in sync with the
1550 * add_wait_queue modifications to the wait queue.
1551 *
1552 * This memory barrier is paired in the sock_poll_wait.
1553 */
1554 smp_mb();
1555 return wq && waitqueue_active(&wq->wait);
1556 }
1557
1558 /**
1559 * sock_poll_wait - place memory barrier behind the poll_wait call.
1560 * @filp: file
1561 * @wait_address: socket wait queue
1562 * @p: poll_table
1563 *
1564 * See the comments in the wq_has_sleeper function.
1565 */
1566 static inline void sock_poll_wait(struct file *filp,
1567 wait_queue_head_t *wait_address, poll_table *p)
1568 {
1569 if (p && wait_address) {
1570 poll_wait(filp, wait_address, p);
1571 /*
1572 * We need to be sure we are in sync with the
1573 * socket flags modification.
1574 *
1575 * This memory barrier is paired in the wq_has_sleeper.
1576 */
1577 smp_mb();
1578 }
1579 }
1580
1581 /*
1582 * Queue a received datagram if it will fit. Stream and sequenced
1583 * protocols can't normally use this as they need to fit buffers in
1584 * and play with them.
1585 *
1586 * Inlined as it's very short and called for pretty much every
1587 * packet ever received.
1588 */
1589
1590 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1591 {
1592 skb_orphan(skb);
1593 skb->sk = sk;
1594 skb->destructor = sock_wfree;
1595 /*
1596 * We used to take a refcount on sk, but following operation
1597 * is enough to guarantee sk_free() wont free this sock until
1598 * all in-flight packets are completed
1599 */
1600 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1601 }
1602
1603 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1604 {
1605 skb_orphan(skb);
1606 skb->sk = sk;
1607 skb->destructor = sock_rfree;
1608 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1609 sk_mem_charge(sk, skb->truesize);
1610 }
1611
1612 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1613 unsigned long expires);
1614
1615 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer);
1616
1617 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1618
1619 extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1620
1621 /*
1622 * Recover an error report and clear atomically
1623 */
1624
1625 static inline int sock_error(struct sock *sk)
1626 {
1627 int err;
1628 if (likely(!sk->sk_err))
1629 return 0;
1630 err = xchg(&sk->sk_err, 0);
1631 return -err;
1632 }
1633
1634 static inline unsigned long sock_wspace(struct sock *sk)
1635 {
1636 int amt = 0;
1637
1638 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1639 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1640 if (amt < 0)
1641 amt = 0;
1642 }
1643 return amt;
1644 }
1645
1646 static inline void sk_wake_async(struct sock *sk, int how, int band)
1647 {
1648 if (sock_flag(sk, SOCK_FASYNC))
1649 sock_wake_async(sk->sk_socket, how, band);
1650 }
1651
1652 #define SOCK_MIN_SNDBUF 2048
1653 /*
1654 * Since sk_rmem_alloc sums skb->truesize, even a small frame might need
1655 * sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak
1656 */
1657 #define SOCK_MIN_RCVBUF (2048 + sizeof(struct sk_buff))
1658
1659 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1660 {
1661 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1662 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
1663 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1664 }
1665 }
1666
1667 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
1668
1669 static inline struct page *sk_stream_alloc_page(struct sock *sk)
1670 {
1671 struct page *page = NULL;
1672
1673 page = alloc_pages(sk->sk_allocation, 0);
1674 if (!page) {
1675 sk->sk_prot->enter_memory_pressure(sk);
1676 sk_stream_moderate_sndbuf(sk);
1677 }
1678 return page;
1679 }
1680
1681 /*
1682 * Default write policy as shown to user space via poll/select/SIGIO
1683 */
1684 static inline int sock_writeable(const struct sock *sk)
1685 {
1686 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
1687 }
1688
1689 static inline gfp_t gfp_any(void)
1690 {
1691 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
1692 }
1693
1694 static inline long sock_rcvtimeo(const struct sock *sk, int noblock)
1695 {
1696 return noblock ? 0 : sk->sk_rcvtimeo;
1697 }
1698
1699 static inline long sock_sndtimeo(const struct sock *sk, int noblock)
1700 {
1701 return noblock ? 0 : sk->sk_sndtimeo;
1702 }
1703
1704 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
1705 {
1706 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
1707 }
1708
1709 /* Alas, with timeout socket operations are not restartable.
1710 * Compare this to poll().
1711 */
1712 static inline int sock_intr_errno(long timeo)
1713 {
1714 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
1715 }
1716
1717 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
1718 struct sk_buff *skb);
1719
1720 static __inline__ void
1721 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
1722 {
1723 ktime_t kt = skb->tstamp;
1724 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
1725
1726 /*
1727 * generate control messages if
1728 * - receive time stamping in software requested (SOCK_RCVTSTAMP
1729 * or SOCK_TIMESTAMPING_RX_SOFTWARE)
1730 * - software time stamp available and wanted
1731 * (SOCK_TIMESTAMPING_SOFTWARE)
1732 * - hardware time stamps available and wanted
1733 * (SOCK_TIMESTAMPING_SYS_HARDWARE or
1734 * SOCK_TIMESTAMPING_RAW_HARDWARE)
1735 */
1736 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
1737 sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
1738 (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
1739 (hwtstamps->hwtstamp.tv64 &&
1740 sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
1741 (hwtstamps->syststamp.tv64 &&
1742 sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
1743 __sock_recv_timestamp(msg, sk, skb);
1744 else
1745 sk->sk_stamp = kt;
1746 }
1747
1748 extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
1749 struct sk_buff *skb);
1750
1751 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
1752 struct sk_buff *skb)
1753 {
1754 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
1755 (1UL << SOCK_RCVTSTAMP) | \
1756 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE) | \
1757 (1UL << SOCK_TIMESTAMPING_SOFTWARE) | \
1758 (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE) | \
1759 (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE))
1760
1761 if (sk->sk_flags & FLAGS_TS_OR_DROPS)
1762 __sock_recv_ts_and_drops(msg, sk, skb);
1763 else
1764 sk->sk_stamp = skb->tstamp;
1765 }
1766
1767 /**
1768 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
1769 * @sk: socket sending this packet
1770 * @tx_flags: filled with instructions for time stamping
1771 *
1772 * Currently only depends on SOCK_TIMESTAMPING* flags. Returns error code if
1773 * parameters are invalid.
1774 */
1775 extern int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags);
1776
1777 /**
1778 * sk_eat_skb - Release a skb if it is no longer needed
1779 * @sk: socket to eat this skb from
1780 * @skb: socket buffer to eat
1781 * @copied_early: flag indicating whether DMA operations copied this data early
1782 *
1783 * This routine must be called with interrupts disabled or with the socket
1784 * locked so that the sk_buff queue operation is ok.
1785 */
1786 #ifdef CONFIG_NET_DMA
1787 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1788 {
1789 __skb_unlink(skb, &sk->sk_receive_queue);
1790 if (!copied_early)
1791 __kfree_skb(skb);
1792 else
1793 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
1794 }
1795 #else
1796 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1797 {
1798 __skb_unlink(skb, &sk->sk_receive_queue);
1799 __kfree_skb(skb);
1800 }
1801 #endif
1802
1803 static inline
1804 struct net *sock_net(const struct sock *sk)
1805 {
1806 return read_pnet(&sk->sk_net);
1807 }
1808
1809 static inline
1810 void sock_net_set(struct sock *sk, struct net *net)
1811 {
1812 write_pnet(&sk->sk_net, net);
1813 }
1814
1815 /*
1816 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
1817 * They should not hold a reference to a namespace in order to allow
1818 * to stop it.
1819 * Sockets after sk_change_net should be released using sk_release_kernel
1820 */
1821 static inline void sk_change_net(struct sock *sk, struct net *net)
1822 {
1823 put_net(sock_net(sk));
1824 sock_net_set(sk, hold_net(net));
1825 }
1826
1827 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
1828 {
1829 if (unlikely(skb->sk)) {
1830 struct sock *sk = skb->sk;
1831
1832 skb->destructor = NULL;
1833 skb->sk = NULL;
1834 return sk;
1835 }
1836 return NULL;
1837 }
1838
1839 extern void sock_enable_timestamp(struct sock *sk, int flag);
1840 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
1841 extern int sock_get_timestampns(struct sock *, struct timespec __user *);
1842
1843 /*
1844 * Enable debug/info messages
1845 */
1846 extern int net_msg_warn;
1847 #define NETDEBUG(fmt, args...) \
1848 do { if (net_msg_warn) printk(fmt,##args); } while (0)
1849
1850 #define LIMIT_NETDEBUG(fmt, args...) \
1851 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
1852
1853 extern __u32 sysctl_wmem_max;
1854 extern __u32 sysctl_rmem_max;
1855
1856 extern void sk_init(void);
1857
1858 extern int sysctl_optmem_max;
1859
1860 extern __u32 sysctl_wmem_default;
1861 extern __u32 sysctl_rmem_default;
1862
1863 #endif /* _SOCK_H */
This page took 0.14175 seconds and 5 git commands to generate.